entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
sequencelengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
| pytorch_code
stringlengths 200
4.05k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
Network | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ue/cue5mtjj7uw3ki4nadxqlmbpntk4ca2ypkjbvrtwtoe2oxowuo5q.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# x_2 => sigmoid
# x_3 => mul
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, 100), kwargs = {})
triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 100.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Network(nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Network, self).__init__()
self.fc = torch.nn.Linear(n_feature, n_hidden)
self.out = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.fc(x))
x = self.out(x)
x = F.sigmoid(x)
x = 100 * x
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_feature': 4, 'n_hidden': 4, 'n_output': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 100.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_1[grid(256)](buf2, buf3, 256, XBLOCK=
256, num_warps=4, num_stages=1)
return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, primals_4, buf4
class NetworkNew(nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(NetworkNew, self).__init__()
self.fc = torch.nn.Linear(n_feature, n_hidden)
self.out = torch.nn.Linear(n_hidden, n_output)
def forward(self, input_0):
primals_1 = self.fc.weight
primals_2 = self.fc.bias
primals_4 = self.out.weight
primals_5 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ShiZhuming/ChallengeCup | Network | false | 5,818 | [
"MIT"
] | 1 | c422d1e9864e2bc663a3ddb5e3487a04a0525fcc | https://github.com/ShiZhuming/ChallengeCup/tree/c422d1e9864e2bc663a3ddb5e3487a04a0525fcc | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super().__init__()
self.fc = torch.nn.Linear(n_feature, n_hidden)
self.out = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.fc(x))
x = self.out(x)
x = F.sigmoid(x)
x = 100 * x
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
SpatialPyramidPooling | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/vi/cvih4u25oo4wxubp2b2ew7b4rm3k7js5c5bl6pzxtrnzdkaxor7e.py
# Topologically Sorted Source Nodes: [max_pool2d_2, features], Original ATen: [aten.max_pool2d_with_indices, aten.cat]
# Source node to ATen node mapping:
# features => cat
# max_pool2d_2 => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [5, 5], [1, 1], [2, 2], [1, 1], False), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_2, %getitem_4, %arg0_1], 1), kwargs = {})
triton_poi_fused_cat_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_cat_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 26, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_max_pool2d_with_indices_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x7 = xindex
x3 = (xindex // 64)
x4 = xindex % 64
tmp116 = tl.load(in_ptr0 + (x7), xmask)
tmp0 = (-2) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-2) + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-10) + x7), tmp10 & xmask, other=float("-inf"))
tmp12 = (-1) + x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-9) + x7), tmp16 & xmask, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-8) + x7), tmp23 & xmask, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 1 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp5 & tmp29
tmp31 = tl.load(in_ptr0 + ((-7) + x7), tmp30 & xmask, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = 2 + x0
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp5 & tmp36
tmp38 = tl.load(in_ptr0 + ((-6) + x7), tmp37 & xmask, other=float("-inf"))
tmp39 = triton_helpers.maximum(tmp38, tmp32)
tmp40 = (-1) + x1
tmp41 = tmp40 >= tmp1
tmp42 = tmp40 < tmp3
tmp43 = tmp41 & tmp42
tmp44 = tmp43 & tmp9
tmp45 = tl.load(in_ptr0 + ((-6) + x7), tmp44 & xmask, other=float("-inf"))
tmp46 = triton_helpers.maximum(tmp45, tmp39)
tmp47 = tmp43 & tmp15
tmp48 = tl.load(in_ptr0 + ((-5) + x7), tmp47 & xmask, other=float("-inf"))
tmp49 = triton_helpers.maximum(tmp48, tmp46)
tmp50 = tmp43 & tmp22
tmp51 = tl.load(in_ptr0 + ((-4) + x7), tmp50 & xmask, other=float("-inf"))
tmp52 = triton_helpers.maximum(tmp51, tmp49)
tmp53 = tmp43 & tmp29
tmp54 = tl.load(in_ptr0 + ((-3) + x7), tmp53 & xmask, other=float("-inf"))
tmp55 = triton_helpers.maximum(tmp54, tmp52)
tmp56 = tmp43 & tmp36
tmp57 = tl.load(in_ptr0 + ((-2) + x7), tmp56 & xmask, other=float("-inf"))
tmp58 = triton_helpers.maximum(tmp57, tmp55)
tmp59 = x1
tmp60 = tmp59 >= tmp1
tmp61 = tmp59 < tmp3
tmp62 = tmp60 & tmp61
tmp63 = tmp62 & tmp9
tmp64 = tl.load(in_ptr0 + ((-2) + x7), tmp63 & xmask, other=float("-inf"))
tmp65 = triton_helpers.maximum(tmp64, tmp58)
tmp66 = tmp62 & tmp15
tmp67 = tl.load(in_ptr0 + ((-1) + x7), tmp66 & xmask, other=float("-inf"))
tmp68 = triton_helpers.maximum(tmp67, tmp65)
tmp69 = tmp62 & tmp22
tmp70 = tl.load(in_ptr0 + (x7), tmp69 & xmask, other=float("-inf"))
tmp71 = triton_helpers.maximum(tmp70, tmp68)
tmp72 = tmp62 & tmp29
tmp73 = tl.load(in_ptr0 + (1 + x7), tmp72 & xmask, other=float("-inf"))
tmp74 = triton_helpers.maximum(tmp73, tmp71)
tmp75 = tmp62 & tmp36
tmp76 = tl.load(in_ptr0 + (2 + x7), tmp75 & xmask, other=float("-inf"))
tmp77 = triton_helpers.maximum(tmp76, tmp74)
tmp78 = 1 + x1
tmp79 = tmp78 >= tmp1
tmp80 = tmp78 < tmp3
tmp81 = tmp79 & tmp80
tmp82 = tmp81 & tmp9
tmp83 = tl.load(in_ptr0 + (2 + x7), tmp82 & xmask, other=float("-inf"))
tmp84 = triton_helpers.maximum(tmp83, tmp77)
tmp85 = tmp81 & tmp15
tmp86 = tl.load(in_ptr0 + (3 + x7), tmp85 & xmask, other=float("-inf"))
tmp87 = triton_helpers.maximum(tmp86, tmp84)
tmp88 = tmp81 & tmp22
tmp89 = tl.load(in_ptr0 + (4 + x7), tmp88 & xmask, other=float("-inf"))
tmp90 = triton_helpers.maximum(tmp89, tmp87)
tmp91 = tmp81 & tmp29
tmp92 = tl.load(in_ptr0 + (5 + x7), tmp91 & xmask, other=float("-inf"))
tmp93 = triton_helpers.maximum(tmp92, tmp90)
tmp94 = tmp81 & tmp36
tmp95 = tl.load(in_ptr0 + (6 + x7), tmp94 & xmask, other=float("-inf"))
tmp96 = triton_helpers.maximum(tmp95, tmp93)
tmp97 = 2 + x1
tmp98 = tmp97 >= tmp1
tmp99 = tmp97 < tmp3
tmp100 = tmp98 & tmp99
tmp101 = tmp100 & tmp9
tmp102 = tl.load(in_ptr0 + (6 + x7), tmp101 & xmask, other=float("-inf"))
tmp103 = triton_helpers.maximum(tmp102, tmp96)
tmp104 = tmp100 & tmp15
tmp105 = tl.load(in_ptr0 + (7 + x7), tmp104 & xmask, other=float("-inf"))
tmp106 = triton_helpers.maximum(tmp105, tmp103)
tmp107 = tmp100 & tmp22
tmp108 = tl.load(in_ptr0 + (8 + x7), tmp107 & xmask, other=float("-inf"))
tmp109 = triton_helpers.maximum(tmp108, tmp106)
tmp110 = tmp100 & tmp29
tmp111 = tl.load(in_ptr0 + (9 + x7), tmp110 & xmask, other=float("-inf"))
tmp112 = triton_helpers.maximum(tmp111, tmp109)
tmp113 = tmp100 & tmp36
tmp114 = tl.load(in_ptr0 + (10 + x7), tmp113 & xmask, other=float("-inf"))
tmp115 = triton_helpers.maximum(tmp114, tmp112)
tl.store(out_ptr0 + (x4 + (256*x3)), tmp115, xmask)
tl.store(out_ptr1 + (x4 + (256*x3)), tmp116, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wu/cwuiwj6jpv44elf77w3mkg3fk7wv6xwrv2wzcyipfdadqsgr6dzt.py
# Topologically Sorted Source Nodes: [features], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# features => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_2, %getitem_4, %arg0_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (256*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
buf0 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [13, 13], [1, 1], [6, 6])
buf1 = buf0[0]
del buf0
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
buf3 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [9, 9], [1, 1], [4, 4])
buf4 = buf3[0]
del buf3
buf10 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32)
buf6 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 128) # alias
buf9 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 192) # alias
# Topologically Sorted Source Nodes: [max_pool2d_2, features], Original ATen: [aten.max_pool2d_with_indices, aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_max_pool2d_with_indices_0.run(arg0_1, buf6, buf9, 256, grid=grid(256), stream=stream0)
del arg0_1
buf7 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [features], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf7, 256, grid=grid(256), stream=stream0)
del buf1
buf8 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [features], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf4, buf8, 256, grid=grid(256), stream=stream0)
del buf4
return (buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SpatialPyramidPooling(nn.Module):
def __init__(self, pool_sizes=[5, 9, 13]):
super(SpatialPyramidPooling, self).__init__()
self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size //
2) for pool_size in pool_sizes])
def forward(self, x):
features = [maxpool(x) for maxpool in self.maxpools[::-1]]
features = torch.cat(features + [x], dim=1)
return features
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_max_pool2d_with_indices_0(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x7 = xindex
x3 = xindex // 64
x4 = xindex % 64
tmp116 = tl.load(in_ptr0 + x7, xmask)
tmp0 = -2 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -2 + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-10 + x7), tmp10 & xmask, other=float('-inf'))
tmp12 = -1 + x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-9 + x7), tmp16 & xmask, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-8 + x7), tmp23 & xmask, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 1 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp5 & tmp29
tmp31 = tl.load(in_ptr0 + (-7 + x7), tmp30 & xmask, other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = 2 + x0
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp5 & tmp36
tmp38 = tl.load(in_ptr0 + (-6 + x7), tmp37 & xmask, other=float('-inf'))
tmp39 = triton_helpers.maximum(tmp38, tmp32)
tmp40 = -1 + x1
tmp41 = tmp40 >= tmp1
tmp42 = tmp40 < tmp3
tmp43 = tmp41 & tmp42
tmp44 = tmp43 & tmp9
tmp45 = tl.load(in_ptr0 + (-6 + x7), tmp44 & xmask, other=float('-inf'))
tmp46 = triton_helpers.maximum(tmp45, tmp39)
tmp47 = tmp43 & tmp15
tmp48 = tl.load(in_ptr0 + (-5 + x7), tmp47 & xmask, other=float('-inf'))
tmp49 = triton_helpers.maximum(tmp48, tmp46)
tmp50 = tmp43 & tmp22
tmp51 = tl.load(in_ptr0 + (-4 + x7), tmp50 & xmask, other=float('-inf'))
tmp52 = triton_helpers.maximum(tmp51, tmp49)
tmp53 = tmp43 & tmp29
tmp54 = tl.load(in_ptr0 + (-3 + x7), tmp53 & xmask, other=float('-inf'))
tmp55 = triton_helpers.maximum(tmp54, tmp52)
tmp56 = tmp43 & tmp36
tmp57 = tl.load(in_ptr0 + (-2 + x7), tmp56 & xmask, other=float('-inf'))
tmp58 = triton_helpers.maximum(tmp57, tmp55)
tmp59 = x1
tmp60 = tmp59 >= tmp1
tmp61 = tmp59 < tmp3
tmp62 = tmp60 & tmp61
tmp63 = tmp62 & tmp9
tmp64 = tl.load(in_ptr0 + (-2 + x7), tmp63 & xmask, other=float('-inf'))
tmp65 = triton_helpers.maximum(tmp64, tmp58)
tmp66 = tmp62 & tmp15
tmp67 = tl.load(in_ptr0 + (-1 + x7), tmp66 & xmask, other=float('-inf'))
tmp68 = triton_helpers.maximum(tmp67, tmp65)
tmp69 = tmp62 & tmp22
tmp70 = tl.load(in_ptr0 + x7, tmp69 & xmask, other=float('-inf'))
tmp71 = triton_helpers.maximum(tmp70, tmp68)
tmp72 = tmp62 & tmp29
tmp73 = tl.load(in_ptr0 + (1 + x7), tmp72 & xmask, other=float('-inf'))
tmp74 = triton_helpers.maximum(tmp73, tmp71)
tmp75 = tmp62 & tmp36
tmp76 = tl.load(in_ptr0 + (2 + x7), tmp75 & xmask, other=float('-inf'))
tmp77 = triton_helpers.maximum(tmp76, tmp74)
tmp78 = 1 + x1
tmp79 = tmp78 >= tmp1
tmp80 = tmp78 < tmp3
tmp81 = tmp79 & tmp80
tmp82 = tmp81 & tmp9
tmp83 = tl.load(in_ptr0 + (2 + x7), tmp82 & xmask, other=float('-inf'))
tmp84 = triton_helpers.maximum(tmp83, tmp77)
tmp85 = tmp81 & tmp15
tmp86 = tl.load(in_ptr0 + (3 + x7), tmp85 & xmask, other=float('-inf'))
tmp87 = triton_helpers.maximum(tmp86, tmp84)
tmp88 = tmp81 & tmp22
tmp89 = tl.load(in_ptr0 + (4 + x7), tmp88 & xmask, other=float('-inf'))
tmp90 = triton_helpers.maximum(tmp89, tmp87)
tmp91 = tmp81 & tmp29
tmp92 = tl.load(in_ptr0 + (5 + x7), tmp91 & xmask, other=float('-inf'))
tmp93 = triton_helpers.maximum(tmp92, tmp90)
tmp94 = tmp81 & tmp36
tmp95 = tl.load(in_ptr0 + (6 + x7), tmp94 & xmask, other=float('-inf'))
tmp96 = triton_helpers.maximum(tmp95, tmp93)
tmp97 = 2 + x1
tmp98 = tmp97 >= tmp1
tmp99 = tmp97 < tmp3
tmp100 = tmp98 & tmp99
tmp101 = tmp100 & tmp9
tmp102 = tl.load(in_ptr0 + (6 + x7), tmp101 & xmask, other=float('-inf'))
tmp103 = triton_helpers.maximum(tmp102, tmp96)
tmp104 = tmp100 & tmp15
tmp105 = tl.load(in_ptr0 + (7 + x7), tmp104 & xmask, other=float('-inf'))
tmp106 = triton_helpers.maximum(tmp105, tmp103)
tmp107 = tmp100 & tmp22
tmp108 = tl.load(in_ptr0 + (8 + x7), tmp107 & xmask, other=float('-inf'))
tmp109 = triton_helpers.maximum(tmp108, tmp106)
tmp110 = tmp100 & tmp29
tmp111 = tl.load(in_ptr0 + (9 + x7), tmp110 & xmask, other=float('-inf'))
tmp112 = triton_helpers.maximum(tmp111, tmp109)
tmp113 = tmp100 & tmp36
tmp114 = tl.load(in_ptr0 + (10 + x7), tmp113 & xmask, other=float('-inf'))
tmp115 = triton_helpers.maximum(tmp114, tmp112)
tl.store(out_ptr0 + (x4 + 256 * x3), tmp115, xmask)
tl.store(out_ptr1 + (x4 + 256 * x3), tmp116, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 256 * x1), tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [13,
13], [1, 1], [6, 6])
buf1 = buf0[0]
del buf0
buf3 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [9, 9
], [1, 1], [4, 4])
buf4 = buf3[0]
del buf3
buf10 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.
float32)
buf6 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 128)
buf9 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 192)
get_raw_stream(0)
triton_poi_fused_cat_max_pool2d_with_indices_0[grid(256)](arg0_1,
buf6, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf7 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 0)
triton_poi_fused_cat_1[grid(256)](buf1, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf1
buf8 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 64)
triton_poi_fused_cat_1[grid(256)](buf4, buf8, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf4
return buf10,
class SpatialPyramidPoolingNew(nn.Module):
def __init__(self, pool_sizes=[5, 9, 13]):
super(SpatialPyramidPoolingNew, self).__init__()
self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size //
2) for pool_size in pool_sizes])
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| SekiroRong/YOLOP | SpatialPyramidPooling | false | 5,819 | [
"MIT"
] | 1 | e59628925dfaadfa549790cd0cf1c8a7e1139a2c | https://github.com/SekiroRong/YOLOP/tree/e59628925dfaadfa549790cd0cf1c8a7e1139a2c | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, pool_sizes=[5, 9, 13]):
super().__init__()
self.maxpools = nn.ModuleList([nn.MaxPool2d(pool_size, 1, pool_size //
2) for pool_size in pool_sizes])
def forward(self, x):
features = [maxpool(x) for maxpool in self.maxpools[::-1]]
features = torch.cat(features + [x], dim=1)
return features
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
M | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/m6/cm6nixhuxyf76p5x5wtskqwfrb5kdl2bfda4t34yltftpilyxauy.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# y => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1],), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x0 = xindex % 64
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (64*((-4) + x1))), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, arg1_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
class M(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
y = torch.cat([x, y])
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x0 = xindex % 64
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 64 * (-4 + x1)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](arg0_1, arg1_1, buf0, 512, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class MNew(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ShuaihuaLu/examples | M | false | 5,820 | [
"BSD-3-Clause"
] | 1 | 2639cf050493df9d3cbf065d45e6025733add0f4 | https://github.com/ShuaihuaLu/examples/tree/2639cf050493df9d3cbf065d45e6025733add0f4 | import torch
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
y = torch.cat([x, y])
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SoftDiceLossSquared | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/we/cwegurhvuxmzu2fllhgfcphsnfz7i27goz3qz7lybzkuuk7lvt47.py
# Topologically Sorted Source Nodes: [intersect, pow_1, pow_2, denominator], Original ATen: [aten.mul, aten.pow, aten.add]
# Source node to ATen node mapping:
# denominator => add
# intersect => mul
# pow_1 => pow_1
# pow_2 => pow_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {})
triton_poi_fused_add_mul_pow_0 = async_compile.triton('triton_poi_fused_add_mul_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp1 * tmp1
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [intersect, pow_1, pow_2, denominator], Original ATen: [aten.mul, aten.pow, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_pow_0.run(arg0_1, arg1_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
import torch.jit
import torch.nn.functional
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
class SoftDiceLossSquared(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0):
"""
squares the terms in the denominator as proposed by Milletari et al.
"""
super(SoftDiceLossSquared, self).__init__()
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, x, y, loss_mask=None):
shp_x = x.shape
shp_y = y.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
with torch.no_grad():
if len(shp_x) != len(shp_y):
y = y.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(x.shape, y.shape)]):
y_onehot = y
else:
y = y.long()
y_onehot = torch.zeros(shp_x)
if x.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, y, 1).float()
intersect = x * y_onehot
denominator = x ** 2 + y_onehot ** 2
intersect = sum_tensor(intersect, axes, False) + self.smooth
denominator = sum_tensor(denominator, axes, False) + self.smooth
dc = 2 * intersect / denominator
if not self.do_bg:
if self.batch_dice:
dc = dc[1:]
else:
dc = dc[:, 1:]
dc = dc.mean()
return -dc
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
from torch import nn
import torch.jit
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_pow_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp1 * tmp1
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_pow_0[grid(256)](arg0_1, arg1_1, buf0,
buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf1
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
class SoftDiceLossSquaredNew(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0):
"""
squares the terms in the denominator as proposed by Milletari et al.
"""
super(SoftDiceLossSquaredNew, self).__init__()
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ShishuaiHu/DCAC | SoftDiceLossSquared | false | 5,821 | [
"MIT"
] | 1 | de04d00edde1b38385a8e5aade7541e2c22807e7 | https://github.com/ShishuaiHu/DCAC/tree/de04d00edde1b38385a8e5aade7541e2c22807e7 | import torch
import numpy as np
from torch import nn
import torch.jit
import torch.nn.functional
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
class Model(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0):
"""
squares the terms in the denominator as proposed by Milletari et al.
"""
super().__init__()
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, x, y, loss_mask=None):
shp_x = x.shape
shp_y = y.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
with torch.no_grad():
if len(shp_x) != len(shp_y):
y = y.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(x.shape, y.shape)]):
y_onehot = y
else:
y = y.long()
y_onehot = torch.zeros(shp_x)
if x.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, y, 1).float()
intersect = x * y_onehot
denominator = x ** 2 + y_onehot ** 2
intersect = sum_tensor(intersect, axes, False) + self.smooth
denominator = sum_tensor(denominator, axes, False) + self.smooth
dc = 2 * intersect / denominator
if not self.do_bg:
if self.batch_dice:
dc = dc[1:]
else:
dc = dc[:, 1:]
dc = dc.mean()
return -dc
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Foo | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/vd/cvdjjklkzjldbh43wy6eidgwuprnkti2uoezvtwnmkkx5huepurh.py
# Topologically Sorted Source Nodes: [x_1, x_4, c, half_2], Original ATen: [aten.sigmoid, aten.add, aten._to_copy]
# Source node to ATen node mapping:
# c => add
# half_2 => convert_element_type_4
# x_1 => sigmoid
# x_4 => sigmoid_1
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg1_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, %sigmoid_1), kwargs = {})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float16), kwargs = {})
triton_poi_fused__to_copy_add_sigmoid_0 = async_compile.triton('triton_poi_fused__to_copy_add_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp16', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp1 + tmp3
tmp5 = tmp4.to(tl.float32)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float16)
# Topologically Sorted Source Nodes: [x_1, x_4, c, half_2], Original ATen: [aten.sigmoid, aten.add, aten._to_copy]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_add_sigmoid_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
def add_lowp(a: 'torch.Tensor', b: 'torch.Tensor'):
a, b = a.float(), b.float()
c = a + b
return c.half()
def sigmoid_lowp(x: 'torch.Tensor'):
x = x.float()
x = x.sigmoid()
return x.half()
class Foo(torch.nn.Module):
def forward(self, x, y):
x = sigmoid_lowp(x)
y = sigmoid_lowp(y)
return add_lowp(x, y)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_add_sigmoid_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp1 + tmp3
tmp5 = tmp4.to(tl.float32)
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float16)
get_raw_stream(0)
triton_poi_fused__to_copy_add_sigmoid_0[grid(256)](arg0_1, arg1_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
def add_lowp(a: 'torch.Tensor', b: 'torch.Tensor'):
a, b = a.float(), b.float()
c = a + b
return c.half()
def sigmoid_lowp(x: 'torch.Tensor'):
x = x.float()
x = x.sigmoid()
return x.half()
class FooNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ShuaihuaLu/examples | Foo | false | 5,822 | [
"BSD-3-Clause"
] | 1 | 2639cf050493df9d3cbf065d45e6025733add0f4 | https://github.com/ShuaihuaLu/examples/tree/2639cf050493df9d3cbf065d45e6025733add0f4 | import torch
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
def add_lowp(a: 'torch.Tensor', b: 'torch.Tensor'):
a, b = a.float(), b.float()
c = a + b
return c.half()
def sigmoid_lowp(x: 'torch.Tensor'):
x = x.float()
x = x.sigmoid()
return x.half()
class Model(torch.nn.Module):
def forward(self, x, y):
x = sigmoid_lowp(x)
y = sigmoid_lowp(y)
return add_lowp(x, y)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
TripletLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/d2/cd2zwxt4jfakxwrthlpcmzuk22nuvfttcegknmkwvuwz2otlub42.py
# Topologically Sorted Source Nodes: [cosine_positive, cosine_negative], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
# Source node to ATen node mapping:
# cosine_negative => clamp_min_2, clamp_min_3, div_2, div_3, mul_1, pow_5, pow_6, pow_7, pow_8, sum_4, sum_5
# cosine_positive => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %clamp_min), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {})
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [-1], True), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_6, 1e-08), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %clamp_min_2), kwargs = {})
# %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg2_1, 2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_7, [-1], True), kwargs = {})
# %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_5, 0.5), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_8, 1e-08), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg2_1, %clamp_min_3), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_3, %div_2), kwargs = {})
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 15, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x2), xmask)
tmp17 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (x2), xmask)
tmp33 = tl.load(in_ptr2 + (4*x1), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr2 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp41 = tl.load(in_ptr2 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tmp34 = tmp33 * tmp33
tmp36 = tmp35 * tmp35
tmp37 = tmp34 + tmp36
tmp39 = tmp38 * tmp38
tmp40 = tmp37 + tmp39
tmp42 = tmp41 * tmp41
tmp43 = tmp40 + tmp42
tmp44 = libdevice.sqrt(tmp43)
tmp45 = triton_helpers.maximum(tmp44, tmp13)
tmp46 = tmp32 / tmp45
tmp47 = tmp15 * tmp46
tl.store(out_ptr0 + (x2), tmp31, xmask)
tl.store(out_ptr1 + (x2), tmp47, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qn/cqnnazyra2f2blpbvtgo3onk6mrxa5qttew2jm6ejey32fygkvvo.py
# Topologically Sorted Source Nodes: [cosine_positive, sub, cosine_negative, add, losses, mean], Original ATen: [aten.sum, aten.rsub, aten.add, aten.relu, aten.mean]
# Source node to ATen node mapping:
# add => add
# cosine_negative => sum_6
# cosine_positive => sum_3
# losses => relu
# mean => mean
# sub => sub
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4, %sum_3), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %sum_6), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%relu,), kwargs = {})
triton_per_fused_add_mean_relu_rsub_sum_1 = async_compile.triton('triton_per_fused_add_mean_relu_rsub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_relu_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_relu_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp7 - tmp6
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp8 + tmp15
tmp17 = tl.full([1, 1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = tl.sum(tmp19, 1)[:, None]
tmp22 = 64.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cosine_positive, cosine_negative], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg1_1, arg0_1, arg2_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [cosine_positive, sub, cosine_negative, add, losses, mean], Original ATen: [aten.sum, aten.rsub, aten.add, aten.relu, aten.mean]
triton_per_fused_add_mean_relu_rsub_sum_1.run(buf3, buf0, buf1, 1, 64, grid=grid(1), stream=stream0)
del buf0
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class TripletLoss(nn.Module):
def __init__(self, margin):
super(TripletLoss, self).__init__()
self.margin = margin
self.relu = nn.ReLU()
def forward(self, anchor, positive, negative, size_average=True):
cosine_positive = nn.CosineSimilarity(dim=-1)(anchor, positive)
cosine_negative = nn.CosineSimilarity(dim=-1)(anchor, negative)
losses = self.relu(self.margin - cosine_positive + cosine_negative)
return losses.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'margin': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + x2, xmask)
tmp17 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp32 = tl.load(in_ptr2 + x2, xmask)
tmp33 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp38 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp41 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tmp34 = tmp33 * tmp33
tmp36 = tmp35 * tmp35
tmp37 = tmp34 + tmp36
tmp39 = tmp38 * tmp38
tmp40 = tmp37 + tmp39
tmp42 = tmp41 * tmp41
tmp43 = tmp40 + tmp42
tmp44 = libdevice.sqrt(tmp43)
tmp45 = triton_helpers.maximum(tmp44, tmp13)
tmp46 = tmp32 / tmp45
tmp47 = tmp15 * tmp46
tl.store(out_ptr0 + x2, tmp31, xmask)
tl.store(out_ptr1 + x2, tmp47, xmask)
@triton.jit
def triton_per_fused_add_mean_relu_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp7 - tmp6
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp8 + tmp15
tmp17 = tl.full([1, 1], 0, tl.int32)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = tl.sum(tmp19, 1)[:, None]
tmp22 = 64.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(256)](
arg1_1, arg0_1, arg2_1, buf0, buf1, 256, XBLOCK=128, num_warps=
4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_add_mean_relu_rsub_sum_1[grid(1)](buf3, buf0, buf1,
1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
return buf3,
class TripletLossNew(nn.Module):
def __init__(self, margin):
super(TripletLossNew, self).__init__()
self.margin = margin
self.relu = nn.ReLU()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| SeungHeonDoh/music_zeroshot_models | TripletLoss | false | 5,823 | [
"MIT"
] | 1 | 38f80df868da357f3cb30522ad2e2031f0bc184e | https://github.com/SeungHeonDoh/music_zeroshot_models/tree/38f80df868da357f3cb30522ad2e2031f0bc184e | import torch
from torch import nn
class Model(nn.Module):
def __init__(self, margin):
super().__init__()
self.margin = margin
self.relu = nn.ReLU()
def forward(self, anchor, positive, negative, size_average=True):
cosine_positive = nn.CosineSimilarity(dim=-1)(anchor, positive)
cosine_negative = nn.CosineSimilarity(dim=-1)(anchor, negative)
losses = self.relu(self.margin - cosine_positive + cosine_negative)
return losses.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
_Enc | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oa/coakornhndym5lo236iulgqrlkvefskebasvbuutfqswfdylyrdz.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 + tmp2
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0)
del primals_2
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class _NestedEnc(torch.nn.Module):
def __init__(self, f):
super().__init__()
self.f = f
def forward(self, x):
return self.f(x)
class _Enc(torch.nn.Module):
def __init__(self):
super().__init__()
self.e1 = _NestedEnc(torch.nn.Linear(4, 2))
self.e2 = _NestedEnc(self.e1.f)
def forward(self, x):
return self.e1(x) + self.e2(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 + tmp2
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(128)](buf1, primals_2, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class _NestedEnc(torch.nn.Module):
def __init__(self, f):
super().__init__()
self.f = f
def forward(self, x):
return self.f(x)
class _EncNew(torch.nn.Module):
def __init__(self):
super().__init__()
self.e1 = _NestedEnc(torch.nn.Linear(4, 2))
self.e2 = _NestedEnc(self.e1.f)
def forward(self, input_0):
primals_1 = self.e1.f.weight
primals_2 = self.e1.f.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| SimonNick/metakbc | _Enc | false | 5,825 | [
"MIT"
] | 1 | b502104e00afcb274c673ecd3aaa0415933e745e | https://github.com/SimonNick/metakbc/tree/b502104e00afcb274c673ecd3aaa0415933e745e | import torch
class _NestedEnc(torch.nn.Module):
def __init__(self, f):
super().__init__()
self.f = f
def forward(self, x):
return self.f(x)
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.e1 = _NestedEnc(torch.nn.Linear(4, 2))
self.e2 = _NestedEnc(self.e1.f)
def forward(self, x):
return self.e1(x) + self.e2(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
FocalLossBinary | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ri/crimnfoch5j6tka32nd746ykaaa7p742j3zpyuv2dmcrylff2dyl.py
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, logpt, pt, sub, pow_1, neg_1, loss, mul_1, sub_1, mul_2, add, loss_1, loss_2], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mul, aten.add, aten.mean]
# Source node to ATen node mapping:
# add => add
# binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# logpt => neg_1
# loss => mul_1
# loss_1 => mul_4
# loss_2 => mean
# mul_1 => mul_2
# mul_2 => mul_3
# neg_1 => neg_2
# pow_1 => pow_1
# pt => exp_1
# sub => sub_3
# sub_1 => sub_4
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %view), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %view_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %view_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%view_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %neg_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%sub_2,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2.0), kwargs = {})
# %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_2, %neg_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 0.25), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %view), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, 0.75), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %add), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_4,), kwargs = {})
triton_per_fused_add_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = -tmp12
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp1 - tmp14
tmp16 = tmp15 * tmp15
tmp17 = -tmp16
tmp18 = tmp17 * tmp13
tmp19 = 0.25
tmp20 = tmp0 * tmp19
tmp21 = 0.75
tmp22 = tmp2 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = tmp18 * tmp23
tmp25 = tl.broadcast_to(tmp24, [RBLOCK])
tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0))
tmp28 = 256.0
tmp29 = tmp27 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, logpt, pt, sub, pow_1, neg_1, loss, mul_1, sub_1, mul_2, add, loss_1, loss_2], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mul, aten.add, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.jit
import torch.nn.functional
from functools import partial
from torch.nn.modules.loss import _Loss
def reduced_focal_loss(outputs: 'torch.Tensor', targets: 'torch.Tensor',
threshold: 'float'=0.5, gamma: 'float'=2.0, reduction='mean'):
"""
Compute reduced focal loss between target and output logits.
Source https://github.com/BloodAxe/pytorch-toolbelt
See :class:`~pytorch_toolbelt.losses` for details.
Args:
outputs: Tensor of arbitrary shape
targets: Tensor of the same shape as input
reduction (string, optional):
Specifies the reduction to apply to the output:
"none" | "mean" | "sum" | "batchwise_mean".
"none": no reduction will be applied,
"mean": the sum of the output will be divided by the number of
elements in the output,
"sum": the output will be summed.
Note: :attr:`size_average` and :attr:`reduce`
are in the process of being deprecated,
and in the meantime, specifying either of those two args
will override :attr:`reduction`.
"batchwise_mean" computes mean loss per sample in batch.
Default: "mean"
See https://arxiv.org/abs/1903.01347
"""
targets = targets.type(outputs.type())
logpt = -F.binary_cross_entropy_with_logits(outputs, targets, reduction
='none')
pt = torch.exp(logpt)
focal_reduction = ((1.0 - pt) / threshold).pow(gamma)
focal_reduction[pt < threshold] = 1
loss = -focal_reduction * logpt
if reduction == 'mean':
loss = loss.mean()
if reduction == 'sum':
loss = loss.sum()
if reduction == 'batchwise_mean':
loss = loss.sum(0)
return loss
def sigmoid_focal_loss(outputs: 'torch.Tensor', targets: 'torch.Tensor',
gamma: 'float'=2.0, alpha: 'float'=0.25, reduction: 'str'='mean'):
"""
Compute binary focal loss between target and output logits.
Source https://github.com/BloodAxe/pytorch-toolbelt
See :class:`~pytorch_toolbelt.losses` for details.
Args:
outputs: Tensor of arbitrary shape
targets: Tensor of the same shape as input
reduction (string, optional):
Specifies the reduction to apply to the output:
"none" | "mean" | "sum" | "batchwise_mean".
"none": no reduction will be applied,
"mean": the sum of the output will be divided by the number of
elements in the output,
"sum": the output will be summed.
See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py # noqa: E501
"""
targets = targets.type(outputs.type())
logpt = -F.binary_cross_entropy_with_logits(outputs, targets, reduction
='none')
pt = torch.exp(logpt)
loss = -(1 - pt).pow(gamma) * logpt
if alpha is not None:
loss = loss * (alpha * targets + (1 - alpha) * (1 - targets))
if reduction == 'mean':
loss = loss.mean()
if reduction == 'sum':
loss = loss.sum()
if reduction == 'batchwise_mean':
loss = loss.sum(0)
return loss
class FocalLossBinary(_Loss):
def __init__(self, ignore: 'int'=None, reduced: 'bool'=False, gamma:
'float'=2.0, alpha: 'float'=0.25, threshold: 'float'=0.5, reduction:
'str'='mean'):
"""
Compute focal loss for binary classification problem.
"""
super().__init__()
self.ignore = ignore
if reduced:
self.loss_fn = partial(reduced_focal_loss, gamma=gamma,
threshold=threshold, reduction=reduction)
else:
self.loss_fn = partial(sigmoid_focal_loss, gamma=gamma, alpha=
alpha, reduction=reduction)
def forward(self, logits, targets):
"""
Args:
logits: [bs; ...]
targets: [bs; ...]
"""
targets = targets.view(-1)
logits = logits.view(-1)
if self.ignore is not None:
not_ignored = targets != self.ignore
logits = logits[not_ignored]
targets = targets[not_ignored]
loss = self.loss_fn(logits, targets)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn.functional as F
import torch.jit
import torch.nn.functional
from functools import partial
from torch.nn.modules.loss import _Loss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = -tmp12
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp1 - tmp14
tmp16 = tmp15 * tmp15
tmp17 = -tmp16
tmp18 = tmp17 * tmp13
tmp19 = 0.25
tmp20 = tmp0 * tmp19
tmp21 = 0.75
tmp22 = tmp2 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = tmp18 * tmp23
tmp25 = tl.broadcast_to(tmp24, [RBLOCK])
tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0))
tmp28 = 256.0
tmp29 = tmp27 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_exp_mean_mul_neg_pow_rsub_0[
grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduced_focal_loss(outputs: 'torch.Tensor', targets: 'torch.Tensor',
threshold: 'float'=0.5, gamma: 'float'=2.0, reduction='mean'):
"""
Compute reduced focal loss between target and output logits.
Source https://github.com/BloodAxe/pytorch-toolbelt
See :class:`~pytorch_toolbelt.losses` for details.
Args:
outputs: Tensor of arbitrary shape
targets: Tensor of the same shape as input
reduction (string, optional):
Specifies the reduction to apply to the output:
"none" | "mean" | "sum" | "batchwise_mean".
"none": no reduction will be applied,
"mean": the sum of the output will be divided by the number of
elements in the output,
"sum": the output will be summed.
Note: :attr:`size_average` and :attr:`reduce`
are in the process of being deprecated,
and in the meantime, specifying either of those two args
will override :attr:`reduction`.
"batchwise_mean" computes mean loss per sample in batch.
Default: "mean"
See https://arxiv.org/abs/1903.01347
"""
targets = targets.type(outputs.type())
logpt = -F.binary_cross_entropy_with_logits(outputs, targets, reduction
='none')
pt = torch.exp(logpt)
focal_reduction = ((1.0 - pt) / threshold).pow(gamma)
focal_reduction[pt < threshold] = 1
loss = -focal_reduction * logpt
if reduction == 'mean':
loss = loss.mean()
if reduction == 'sum':
loss = loss.sum()
if reduction == 'batchwise_mean':
loss = loss.sum(0)
return loss
def sigmoid_focal_loss(outputs: 'torch.Tensor', targets: 'torch.Tensor',
gamma: 'float'=2.0, alpha: 'float'=0.25, reduction: 'str'='mean'):
"""
Compute binary focal loss between target and output logits.
Source https://github.com/BloodAxe/pytorch-toolbelt
See :class:`~pytorch_toolbelt.losses` for details.
Args:
outputs: Tensor of arbitrary shape
targets: Tensor of the same shape as input
reduction (string, optional):
Specifies the reduction to apply to the output:
"none" | "mean" | "sum" | "batchwise_mean".
"none": no reduction will be applied,
"mean": the sum of the output will be divided by the number of
elements in the output,
"sum": the output will be summed.
See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py # noqa: E501
"""
targets = targets.type(outputs.type())
logpt = -F.binary_cross_entropy_with_logits(outputs, targets, reduction
='none')
pt = torch.exp(logpt)
loss = -(1 - pt).pow(gamma) * logpt
if alpha is not None:
loss = loss * (alpha * targets + (1 - alpha) * (1 - targets))
if reduction == 'mean':
loss = loss.mean()
if reduction == 'sum':
loss = loss.sum()
if reduction == 'batchwise_mean':
loss = loss.sum(0)
return loss
class FocalLossBinaryNew(_Loss):
def __init__(self, ignore: 'int'=None, reduced: 'bool'=False, gamma:
'float'=2.0, alpha: 'float'=0.25, threshold: 'float'=0.5, reduction:
'str'='mean'):
"""
Compute focal loss for binary classification problem.
"""
super().__init__()
self.ignore = ignore
if reduced:
self.loss_fn = partial(reduced_focal_loss, gamma=gamma,
threshold=threshold, reduction=reduction)
else:
self.loss_fn = partial(sigmoid_focal_loss, gamma=gamma, alpha=
alpha, reduction=reduction)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ShishuaiHu/DCAC | FocalLossBinary | false | 5,826 | [
"MIT"
] | 1 | de04d00edde1b38385a8e5aade7541e2c22807e7 | https://github.com/ShishuaiHu/DCAC/tree/de04d00edde1b38385a8e5aade7541e2c22807e7 | import torch
import torch.nn.functional as F
import torch.jit
import torch.nn.functional
from functools import partial
from torch.nn.modules.loss import _Loss
def reduced_focal_loss(outputs: 'torch.Tensor', targets: 'torch.Tensor',
threshold: 'float'=0.5, gamma: 'float'=2.0, reduction='mean'):
"""
Compute reduced focal loss between target and output logits.
Source https://github.com/BloodAxe/pytorch-toolbelt
See :class:`~pytorch_toolbelt.losses` for details.
Args:
outputs: Tensor of arbitrary shape
targets: Tensor of the same shape as input
reduction (string, optional):
Specifies the reduction to apply to the output:
"none" | "mean" | "sum" | "batchwise_mean".
"none": no reduction will be applied,
"mean": the sum of the output will be divided by the number of
elements in the output,
"sum": the output will be summed.
Note: :attr:`size_average` and :attr:`reduce`
are in the process of being deprecated,
and in the meantime, specifying either of those two args
will override :attr:`reduction`.
"batchwise_mean" computes mean loss per sample in batch.
Default: "mean"
See https://arxiv.org/abs/1903.01347
"""
targets = targets.type(outputs.type())
logpt = -F.binary_cross_entropy_with_logits(outputs, targets, reduction
='none')
pt = torch.exp(logpt)
focal_reduction = ((1.0 - pt) / threshold).pow(gamma)
focal_reduction[pt < threshold] = 1
loss = -focal_reduction * logpt
if reduction == 'mean':
loss = loss.mean()
if reduction == 'sum':
loss = loss.sum()
if reduction == 'batchwise_mean':
loss = loss.sum(0)
return loss
def sigmoid_focal_loss(outputs: 'torch.Tensor', targets: 'torch.Tensor',
gamma: 'float'=2.0, alpha: 'float'=0.25, reduction: 'str'='mean'):
"""
Compute binary focal loss between target and output logits.
Source https://github.com/BloodAxe/pytorch-toolbelt
See :class:`~pytorch_toolbelt.losses` for details.
Args:
outputs: Tensor of arbitrary shape
targets: Tensor of the same shape as input
reduction (string, optional):
Specifies the reduction to apply to the output:
"none" | "mean" | "sum" | "batchwise_mean".
"none": no reduction will be applied,
"mean": the sum of the output will be divided by the number of
elements in the output,
"sum": the output will be summed.
See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py # noqa: E501
"""
targets = targets.type(outputs.type())
logpt = -F.binary_cross_entropy_with_logits(outputs, targets, reduction
='none')
pt = torch.exp(logpt)
loss = -(1 - pt).pow(gamma) * logpt
if alpha is not None:
loss = loss * (alpha * targets + (1 - alpha) * (1 - targets))
if reduction == 'mean':
loss = loss.mean()
if reduction == 'sum':
loss = loss.sum()
if reduction == 'batchwise_mean':
loss = loss.sum(0)
return loss
class Model(_Loss):
def __init__(self, ignore: 'int'=None, reduced: 'bool'=False, gamma:
'float'=2.0, alpha: 'float'=0.25, threshold: 'float'=0.5, reduction:
'str'='mean'):
"""
Compute focal loss for binary classification problem.
"""
super().__init__()
self.ignore = ignore
if reduced:
self.loss_fn = partial(reduced_focal_loss, gamma=gamma,
threshold=threshold, reduction=reduction)
else:
self.loss_fn = partial(sigmoid_focal_loss, gamma=gamma, alpha=
alpha, reduction=reduction)
def forward(self, logits, targets):
"""
Args:
logits: [bs; ...]
targets: [bs; ...]
"""
targets = targets.view(-1)
logi
# ... truncated (>4000 chars) for memory efficiency |
GDL | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/my/cmy3ptjdxy4kr3n5om5yjayav3eie3vcmckqm4vaoj4x2xupeiqs.py
# Topologically Sorted Source Nodes: [tp, sub, fp, sub_1, fn, sub_2, sub_3, tn], Original ATen: [aten.mul, aten.rsub]
# Source node to ATen node mapping:
# fn => mul_2
# fp => mul_1
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# tn => mul_3
# tp => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sub), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %sub_3), kwargs = {})
triton_poi_fused_mul_rsub_0 = async_compile.triton('triton_poi_fused_mul_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp1
tmp5 = tmp0 * tmp4
tmp6 = tmp3 - tmp0
tmp7 = tmp6 * tmp1
tmp8 = tmp6 * tmp4
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp5, xmask)
tl.store(out_ptr2 + (x0), tmp7, xmask)
tl.store(out_ptr3 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tp, sub, fp, sub_1, fn, sub_2, sub_3, tn], Original ATen: [aten.mul, aten.rsub]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_rsub_0.run(arg0_1, arg1_1, buf0, buf1, buf2, buf3, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, buf1, buf2, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
import torch.jit
import torch.nn.functional
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False):
"""
net_output must be (b, c, x, y(, z)))
gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z))
if mask is provided it must have shape (b, 1, x, y(, z)))
:param net_output:
:param gt:
:param axes: can be (, ) = no summation
:param mask: mask must be 1 for valid pixels and 0 for invalid pixels
:param square: if True then fp, tp and fn will be squared before summation
:return:
"""
if axes is None:
axes = tuple(range(2, len(net_output.size())))
shp_x = net_output.shape
shp_y = gt.shape
with torch.no_grad():
if len(shp_x) != len(shp_y):
gt = gt.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]):
y_onehot = gt
else:
gt = gt.long()
y_onehot = torch.zeros(shp_x)
if net_output.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, gt, 1)
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
tn = (1 - net_output) * (1 - y_onehot)
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp,
dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp,
dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn,
dim=1)), dim=1)
tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn,
dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tn = tn ** 2
if len(axes) > 0:
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
tn = sum_tensor(tn, axes, keepdim=False)
return tp, fp, fn, tn
class GDL(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0, square=False, square_volumes=False):
"""
square_volumes will square the weight term. The paper recommends square_volumes=True; I don't (just an intuition)
"""
super(GDL, self).__init__()
self.square_volumes = square_volumes
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, x, y, loss_mask=None):
shp_x = x.shape
shp_y = y.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if len(shp_x) != len(shp_y):
y = y.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(x.shape, y.shape)]):
y_onehot = y
else:
gt = y.long()
y_onehot = torch.zeros(shp_x)
if x.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, gt, 1)
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
if not self.do_bg:
x = x[:, 1:]
y_onehot = y_onehot[:, 1:]
tp, fp, fn, _ = get_tp_fp_fn_tn(x, y_onehot, axes, loss_mask, self.
square)
volumes = sum_tensor(y_onehot, axes) + 1e-06
if self.square_volumes:
volumes = volumes ** 2
tp = tp / volumes
fp = fp / volumes
fn = fn / volumes
if self.batch_dice:
axis = 0
else:
axis = 1
tp = tp.sum(axis, keepdim=False)
fp = fp.sum(axis, keepdim=False)
fn = fn.sum(axis, keepdim=False)
dc = (2 * tp + self.smooth) / (2 * tp + fp + fn + self.smooth)
dc = dc.mean()
return -dc
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
from torch import nn
import torch.jit
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp1
tmp5 = tmp0 * tmp4
tmp6 = tmp3 - tmp0
tmp7 = tmp6 * tmp1
tmp8 = tmp6 * tmp4
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp5, xmask)
tl.store(out_ptr2 + x0, tmp7, xmask)
tl.store(out_ptr3 + x0, tmp8, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_rsub_0[grid(256)](arg0_1, arg1_1, buf0, buf1,
buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf1, buf2, buf3
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False):
"""
net_output must be (b, c, x, y(, z)))
gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z))
if mask is provided it must have shape (b, 1, x, y(, z)))
:param net_output:
:param gt:
:param axes: can be (, ) = no summation
:param mask: mask must be 1 for valid pixels and 0 for invalid pixels
:param square: if True then fp, tp and fn will be squared before summation
:return:
"""
if axes is None:
axes = tuple(range(2, len(net_output.size())))
shp_x = net_output.shape
shp_y = gt.shape
with torch.no_grad():
if len(shp_x) != len(shp_y):
gt = gt.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]):
y_onehot = gt
else:
gt = gt.long()
y_onehot = torch.zeros(shp_x)
if net_output.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, gt, 1)
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
tn = (1 - net_output) * (1 - y_onehot)
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp,
dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp,
dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn,
dim=1)), dim=1)
tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn,
dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tn = tn ** 2
if len(axes) > 0:
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
tn = sum_tensor(tn, axes, keepdim=False)
return tp, fp, fn, tn
class GDLNew(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0, square=False, square_volumes=False):
"""
square_volumes will square the weight term. The paper recommends square_volumes=True; I don't (just an intuition)
"""
super(GDLNew, self).__init__()
self.square_volumes = square_volumes
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ShishuaiHu/DCAC | GDL | false | 5,827 | [
"MIT"
] | 1 | de04d00edde1b38385a8e5aade7541e2c22807e7 | https://github.com/ShishuaiHu/DCAC/tree/de04d00edde1b38385a8e5aade7541e2c22807e7 | import torch
import numpy as np
from torch import nn
import torch.jit
import torch.nn.functional
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
def get_tp_fp_fn_tn(net_output, gt, axes=None, mask=None, square=False):
"""
net_output must be (b, c, x, y(, z)))
gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z))
if mask is provided it must have shape (b, 1, x, y(, z)))
:param net_output:
:param gt:
:param axes: can be (, ) = no summation
:param mask: mask must be 1 for valid pixels and 0 for invalid pixels
:param square: if True then fp, tp and fn will be squared before summation
:return:
"""
if axes is None:
axes = tuple(range(2, len(net_output.size())))
shp_x = net_output.shape
shp_y = gt.shape
with torch.no_grad():
if len(shp_x) != len(shp_y):
gt = gt.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]):
y_onehot = gt
else:
gt = gt.long()
y_onehot = torch.zeros(shp_x)
if net_output.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, gt, 1)
tp = net_output * y_onehot
fp = net_output * (1 - y_onehot)
fn = (1 - net_output) * y_onehot
tn = (1 - net_output) * (1 - y_onehot)
if mask is not None:
tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp,
dim=1)), dim=1)
fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp,
dim=1)), dim=1)
fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn,
dim=1)), dim=1)
tn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tn,
dim=1)), dim=1)
if square:
tp = tp ** 2
fp = fp ** 2
fn = fn ** 2
tn = tn ** 2
if len(axes) > 0:
tp = sum_tensor(tp, axes, keepdim=False)
fp = sum_tensor(fp, axes, keepdim=False)
fn = sum_tensor(fn, axes, keepdim=False)
tn = sum_tensor(tn, axes, keepdim=False)
return tp, fp, fn, tn
class Model(nn.Module):
def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True,
smooth=1.0, square=False, square_volumes=False):
"""
square_volumes will square the weight term. The paper recommends square_volumes=True; I don't (just an intuition)
"""
super().__init__()
self.square_volumes = square_volumes
self.square = square
self.do_bg = do_bg
self.batch_dice = batch_dice
self.apply_nonlin = apply_nonlin
self.smooth = smooth
def forward(self, x, y, loss_mask=None):
shp_x = x.shape
shp_y = y.shape
if self.batch_dice:
axes = [0] + list(range(2, len(shp_x)))
else:
axes = list(range(2, len(shp_x)))
if len(shp_x) != len(shp_y):
y = y.view((shp_y[0], 1, *shp_y[1:]))
if all([(i == j) for i, j in zip(x.shape, y.shape)]):
y_onehot = y
else:
gt = y.long()
y_onehot = torch.zeros(shp_x)
if x.device.type == 'cuda':
y_onehot = y_onehot
y_onehot.scatter_(1, gt, 1)
if self.apply_nonlin is not None:
x = self.apply_nonlin(x)
if not self.do_bg:
x = x[:, 1:]
y_onehot = y_onehot[:, 1:]
tp, fp, fn, _ = get_tp_fp_fn_tn(x, y_onehot, axes, loss_mask, self.
square)
volumes = sum_tensor(y_onehot, axes) + 1e-06
if self.square_volumes:
volumes = volumes ** 2
tp = tp / volumes
fp = fp / volumes
# ... truncated (>4000 chars) for memory efficiency |
TernaryTanh | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oc/coca3f23qjhozjs5odpuotemmbtx2miprrijf7iqwevym5heoq4q.py
# Topologically Sorted Source Nodes: [mul, mul_1, sub, tanh, y, neg, mul_3, mul_4, sub_1, tanh_1, neg_1, mul_5, y_1], Original ATen: [aten.mul, aten.sub, aten.tanh, aten.neg, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# neg => neg
# neg_1 => neg_1
# sub => sub
# sub_1 => sub_1
# tanh => tanh
# tanh_1 => tanh_1
# y => mul_2
# y_1 => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 2.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 2.0), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%sub,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 0.5), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, 2.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, 2.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, 2.0), kwargs = {})
# %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%sub_1,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%tanh_1,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_5), kwargs = {})
triton_poi_fused_add_mul_neg_sub_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_neg_sub_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_neg_sub_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_neg_sub_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp1
tmp4 = tmp3 - tmp1
tmp5 = libdevice.tanh(tmp4)
tmp6 = 0.5
tmp7 = tmp5 * tmp6
tmp8 = -tmp0
tmp9 = tmp8 * tmp1
tmp10 = tmp9 * tmp1
tmp11 = tmp10 - tmp1
tmp12 = libdevice.tanh(tmp11)
tmp13 = -tmp12
tmp14 = tmp13 * tmp6
tmp15 = tmp7 + tmp14
tl.store(out_ptr0 + (x0), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, sub, tanh, y, neg, mul_3, mul_4, sub_1, tanh_1, neg_1, mul_5, y_1], Original ATen: [aten.mul, aten.sub, aten.tanh, aten.neg, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_neg_sub_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class TernaryTanh(nn.Module):
def __init__(self, beta=2.0, varying_beta=True):
super(TernaryTanh, self).__init__()
self.beta = beta
self.varying_beta = varying_beta
def forward(self, x):
m = torch.nn.Tanh()
if self.beta >= 1.0:
y = m(x * self.beta * 2.0 - self.beta) * 0.5
y += -m(-x * self.beta * 2.0 - self.beta) * 0.5
elif self.beta == 0.0:
y = torch.sign(x)
elif self.beta < 0:
y = torch.nn.HardTanh(x)
else:
y = torch.sign(x) * (torch.abs(x) > self.beta).float()
return y
def set_beta(self, beta):
if self.varying_beta:
self.beta = beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_neg_sub_tanh_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp1
tmp4 = tmp3 - tmp1
tmp5 = libdevice.tanh(tmp4)
tmp6 = 0.5
tmp7 = tmp5 * tmp6
tmp8 = -tmp0
tmp9 = tmp8 * tmp1
tmp10 = tmp9 * tmp1
tmp11 = tmp10 - tmp1
tmp12 = libdevice.tanh(tmp11)
tmp13 = -tmp12
tmp14 = tmp13 * tmp6
tmp15 = tmp7 + tmp14
tl.store(out_ptr0 + x0, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_neg_sub_tanh_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TernaryTanhNew(nn.Module):
def __init__(self, beta=2.0, varying_beta=True):
super(TernaryTanhNew, self).__init__()
self.beta = beta
self.varying_beta = varying_beta
def set_beta(self, beta):
if self.varying_beta:
self.beta = beta
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| SohamMazumder/Federated_Segmentation | TernaryTanh | false | 5,828 | [
"MIT"
] | 1 | d4eb681441003ba20f8b251a42a811c8c436f04e | https://github.com/SohamMazumder/Federated_Segmentation/tree/d4eb681441003ba20f8b251a42a811c8c436f04e | import torch
from torch import nn
class Model(nn.Module):
def __init__(self, beta=2.0, varying_beta=True):
super().__init__()
self.beta = beta
self.varying_beta = varying_beta
def forward(self, x):
m = torch.nn.Tanh()
if self.beta >= 1.0:
y = m(x * self.beta * 2.0 - self.beta) * 0.5
y += -m(-x * self.beta * 2.0 - self.beta) * 0.5
elif self.beta == 0.0:
y = torch.sign(x)
elif self.beta < 0:
y = torch.nn.HardTanh(x)
else:
y = torch.sign(x) * (torch.abs(x) > self.beta).float()
return y
def set_beta(self, beta):
if self.varying_beta:
self.beta = beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
DiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/pc/cpcbpt54cadkrv2hfrq6tzydcrlhbj3p4g4rsqpxvwppp3lgdqxw.py
# Topologically Sorted Source Nodes: [mul, intersect, mul_1, clamp, add, denominator, clamp_1, per_channel_dice], Original ATen: [aten.mul, aten.sum, aten.clamp, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# clamp => clamp_min
# clamp_1 => clamp_min_1
# denominator => sum_2
# intersect => sum_1
# mul => mul
# mul_1 => mul_1
# per_channel_dice => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_1, 1e-05), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [-1]), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_2, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_min, %clamp_min_1), kwargs = {})
triton_poi_fused_add_clamp_div_mul_sum_0 = async_compile.triton('triton_poi_fused_add_clamp_div_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_div_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp4 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp6 = tl.load(in_ptr1 + (4 + x0), xmask)
tmp9 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp11 = tl.load(in_ptr1 + (8 + x0), xmask)
tmp14 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp16 = tl.load(in_ptr1 + (12 + x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tl.sigmoid(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp8 + tmp12
tmp15 = tl.sigmoid(tmp14)
tmp17 = tmp15 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = 2.0
tmp20 = tmp18 * tmp19
tmp21 = 1e-05
tmp22 = triton_helpers.maximum(tmp20, tmp21)
tmp23 = tmp1 + tmp2
tmp24 = tmp5 + tmp6
tmp25 = tmp23 + tmp24
tmp26 = tmp10 + tmp11
tmp27 = tmp25 + tmp26
tmp28 = tmp15 + tmp16
tmp29 = tmp27 + tmp28
tmp30 = triton_helpers.maximum(tmp29, tmp21)
tmp31 = tmp22 / tmp30
tl.store(out_ptr0 + (x0), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul, intersect, mul_1, clamp, add, denominator, clamp_1, per_channel_dice], Original ATen: [aten.mul, aten.sum, aten.clamp, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_clamp_div_mul_sum_0.run(arg0_1, arg1_1, buf0, 4, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
from torch.autograd import Variable
def expand_as_one_hot(input, C, ignore_index=None):
"""
Converts NxDxHxW label image to NxCxDxHxW, where each label is stored in a separate channel
:param input: 4D input image (NxDxHxW)
:param C: number of channels/labels
:param ignore_index: ignore index to be kept during the expansion
:return: 5D output image (NxCxDxHxW)
"""
assert input.dim() == 4
shape = input.size()
shape = list(shape)
shape.insert(1, C)
shape = tuple(shape)
src = input.unsqueeze(0)
if ignore_index is not None:
expanded_src = src.expand(shape)
mask = expanded_src == ignore_index
src = src.clone()
src[src == ignore_index] = 0
result = torch.zeros(shape).scatter_(1, src, 1)
result[mask] = ignore_index
return result
else:
return torch.zeros(shape).scatter(1, src.type(torch.LongTensor), 1)
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.view(C, -1)
def compute_per_channel_dice(input, target, epsilon=1e-05, ignore_index=
None, weight=None):
if target.dim() == 4:
target = expand_as_one_hot(target, C=input.size()[1], ignore_index=
ignore_index)
assert input.size() == target.size(
), "'input' and 'target' must have the same shape"
if ignore_index is not None:
mask = target.clone().ne_(ignore_index)
mask.requires_grad = False
input = input * mask
target = target * mask
input = flatten(input)
target = flatten(target)
target = target.float()
intersect = (input * target).sum(-1)
if weight is not None:
intersect = weight * intersect
denominator = (input + target).sum(-1)
return (2.0 * intersect).clamp(min=epsilon) / denominator.clamp(min=epsilon
)
class DiceLoss(nn.Module):
"""Computes Dice Loss, which just 1 - DiceCoefficient described above.
Additionally allows per-class weights to be provided.
"""
def __init__(self, epsilon=1e-05, weight=None, ignore_index=None,
sigmoid_normalization=True):
super(DiceLoss, self).__init__()
self.epsilon = epsilon
self.register_buffer('weight', weight)
self.ignore_index = ignore_index
if sigmoid_normalization:
self.normalization = nn.Sigmoid()
else:
self.normalization = nn.Softmax(dim=1)
def forward(self, input, target):
input = self.normalization(input)
if self.weight is not None:
weight = Variable(self.weight, requires_grad=False)
else:
weight = None
per_channel_dice = compute_per_channel_dice(input, target, epsilon=
self.epsilon, ignore_index=self.ignore_index, weight=weight)
per_channel_dice = per_channel_dice[torch.unique(target).long()]
return torch.mean(1.0 - per_channel_dice)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_clamp_div_mul_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp6 = tl.load(in_ptr1 + (4 + x0), xmask)
tmp9 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp11 = tl.load(in_ptr1 + (8 + x0), xmask)
tmp14 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp16 = tl.load(in_ptr1 + (12 + x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tl.sigmoid(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp8 + tmp12
tmp15 = tl.sigmoid(tmp14)
tmp17 = tmp15 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = 2.0
tmp20 = tmp18 * tmp19
tmp21 = 1e-05
tmp22 = triton_helpers.maximum(tmp20, tmp21)
tmp23 = tmp1 + tmp2
tmp24 = tmp5 + tmp6
tmp25 = tmp23 + tmp24
tmp26 = tmp10 + tmp11
tmp27 = tmp25 + tmp26
tmp28 = tmp15 + tmp16
tmp29 = tmp27 + tmp28
tmp30 = triton_helpers.maximum(tmp29, tmp21)
tmp31 = tmp22 / tmp30
tl.store(out_ptr0 + x0, tmp31, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_clamp_div_mul_sum_0[grid(4)](arg0_1, arg1_1,
buf0, 4, XBLOCK=4, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
def expand_as_one_hot(input, C, ignore_index=None):
"""
Converts NxDxHxW label image to NxCxDxHxW, where each label is stored in a separate channel
:param input: 4D input image (NxDxHxW)
:param C: number of channels/labels
:param ignore_index: ignore index to be kept during the expansion
:return: 5D output image (NxCxDxHxW)
"""
assert input.dim() == 4
shape = input.size()
shape = list(shape)
shape.insert(1, C)
shape = tuple(shape)
src = input.unsqueeze(0)
if ignore_index is not None:
expanded_src = src.expand(shape)
mask = expanded_src == ignore_index
src = src.clone()
src[src == ignore_index] = 0
result = torch.zeros(shape).scatter_(1, src, 1)
result[mask] = ignore_index
return result
else:
return torch.zeros(shape).scatter(1, src.type(torch.LongTensor), 1)
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.view(C, -1)
def compute_per_channel_dice(input, target, epsilon=1e-05, ignore_index=
None, weight=None):
if target.dim() == 4:
target = expand_as_one_hot(target, C=input.size()[1], ignore_index=
ignore_index)
assert input.size() == target.size(
), "'input' and 'target' must have the same shape"
if ignore_index is not None:
mask = target.clone().ne_(ignore_index)
mask.requires_grad = False
input = input * mask
target = target * mask
input = flatten(input)
target = flatten(target)
target = target.float()
intersect = (input * target).sum(-1)
if weight is not None:
intersect = weight * intersect
denominator = (input + target).sum(-1)
return (2.0 * intersect).clamp(min=epsilon) / denominator.clamp(min=epsilon
)
class DiceLossNew(nn.Module):
"""Computes Dice Loss, which just 1 - DiceCoefficient described above.
Additionally allows per-class weights to be provided.
"""
def __init__(self, epsilon=1e-05, weight=None, ignore_index=None,
sigmoid_normalization=True):
super(DiceLossNew, self).__init__()
self.epsilon = epsilon
self.register_buffer('weight', weight)
self.ignore_index = ignore_index
if sigmoid_normalization:
self.normalization = nn.Sigmoid()
else:
self.normalization = nn.Softmax(dim=1)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| SohamMazumder/Federated_Segmentation | DiceLoss | false | 5,829 | [
"MIT"
] | 1 | d4eb681441003ba20f8b251a42a811c8c436f04e | https://github.com/SohamMazumder/Federated_Segmentation/tree/d4eb681441003ba20f8b251a42a811c8c436f04e | import torch
from torch import nn
from torch.autograd import Variable
def expand_as_one_hot(input, C, ignore_index=None):
"""
Converts NxDxHxW label image to NxCxDxHxW, where each label is stored in a separate channel
:param input: 4D input image (NxDxHxW)
:param C: number of channels/labels
:param ignore_index: ignore index to be kept during the expansion
:return: 5D output image (NxCxDxHxW)
"""
assert input.dim() == 4
shape = input.size()
shape = list(shape)
shape.insert(1, C)
shape = tuple(shape)
src = input.unsqueeze(0)
if ignore_index is not None:
expanded_src = src.expand(shape)
mask = expanded_src == ignore_index
src = src.clone()
src[src == ignore_index] = 0
result = torch.zeros(shape).scatter_(1, src, 1)
result[mask] = ignore_index
return result
else:
return torch.zeros(shape).scatter(1, src.type(torch.LongTensor), 1)
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.view(C, -1)
def compute_per_channel_dice(input, target, epsilon=1e-05, ignore_index=
None, weight=None):
if target.dim() == 4:
target = expand_as_one_hot(target, C=input.size()[1], ignore_index=
ignore_index)
assert input.size() == target.size(
), "'input' and 'target' must have the same shape"
if ignore_index is not None:
mask = target.clone().ne_(ignore_index)
mask.requires_grad = False
input = input * mask
target = target * mask
input = flatten(input)
target = flatten(target)
target = target.float()
intersect = (input * target).sum(-1)
if weight is not None:
intersect = weight * intersect
denominator = (input + target).sum(-1)
return (2.0 * intersect).clamp(min=epsilon) / denominator.clamp(min=epsilon
)
class Model(nn.Module):
"""Computes Dice Loss, which just 1 - DiceCoefficient described above.
Additionally allows per-class weights to be provided.
"""
def __init__(self, epsilon=1e-05, weight=None, ignore_index=None,
sigmoid_normalization=True):
super().__init__()
self.epsilon = epsilon
self.register_buffer('weight', weight)
self.ignore_index = ignore_index
if sigmoid_normalization:
self.normalization = nn.Sigmoid()
else:
self.normalization = nn.Softmax(dim=1)
def forward(self, input, target):
input = self.normalization(input)
if self.weight is not None:
weight = Variable(self.weight, requires_grad=False)
else:
weight = None
per_channel_dice = compute_per_channel_dice(input, target, epsilon=
self.epsilon, ignore_index=self.ignore_index, weight=weight)
per_channel_dice = per_channel_dice[torch.unique(target).long()]
return torch.mean(1.0 - per_channel_dice)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return []
|
ShallowNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/gz/cgzsvvv437wotw6wxl6ccd3pe3mteyaie3w6fyzbscxu4xitsb57.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0)
del primals_2
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ShallowNet(nn.Module):
def __init__(self, n_features):
super(ShallowNet, self).__init__()
self.a1 = nn.Linear(n_features, 2)
def forward(self, x):
return torch.sigmoid(self.a1(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(128)](buf1, primals_2, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_2
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1
class ShallowNetNew(nn.Module):
def __init__(self, n_features):
super(ShallowNetNew, self).__init__()
self.a1 = nn.Linear(n_features, 2)
def forward(self, input_0):
primals_1 = self.a1.weight
primals_2 = self.a1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| SkBlaz/KBNR | ShallowNet | false | 5,830 | [
"MIT"
] | 1 | 4c37fe3fdfa7719572affd617e2dab43a54ba1d5 | https://github.com/SkBlaz/KBNR/tree/4c37fe3fdfa7719572affd617e2dab43a54ba1d5 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n_features):
super().__init__()
self.a1 = nn.Linear(n_features, 2)
def forward(self, x):
return torch.sigmoid(self.a1(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
MyElementwiseModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/su/csuldvx2ji3skr757umg63h2gofaprdlh66smwh7lydet7yk57hd.py
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %arg1_1), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp2 + tmp1
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
class MyElementwiseModule(torch.nn.Module):
def forward(self, x, y):
return x * y + y
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp2 + tmp1
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class MyElementwiseModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ShuaihuaLu/examples | MyElementwiseModule | false | 5,831 | [
"BSD-3-Clause"
] | 1 | 2639cf050493df9d3cbf065d45e6025733add0f4 | https://github.com/ShuaihuaLu/examples/tree/2639cf050493df9d3cbf065d45e6025733add0f4 | import torch
import torch.nn.parallel
import torch.utils.data
import torch.onnx
import torch.fx
import torch.optim
import torch.utils.data.distributed
class Model(torch.nn.Module):
def forward(self, x, y):
return x * y + y
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/tu/ctuej2j6f3oxr5p43q7juhagc3r3ncgs2ikvxemutunlnxlnvl24.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2, -3], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cv/ccvicmhiupo7cb3dwu3rzvk4zvi24nzhtwz7a5c4ke3qpmz3ofpe.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/az/cazousalzuqn73ciahz5izvogzu4ekcsktal4tthjvwjd3cqdayz.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze_1, %primals_4, %primals_5, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/72/c72kehajbo6zfhkuwjl3g6t24haqfzxumia5abs5c2hzebjb6ubo.py
# Topologically Sorted Source Nodes: [x_4, mul], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# x_4 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (16, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (4, 16, 1, 1, 1), (16, 1, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 4, 64, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 1, 1, 1), (0, 1, 0, 0, 0), 0), primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf2, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1))
buf3 = reinterpret_tensor(buf2, (16, 1, 1, 1), (1, 16, 16, 16), 0); del buf2 # reuse
buf7 = empty_strided_cuda((16, 1, 1, 1), (1, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_3, buf7, 16, grid=grid(16), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (1, 16, 1, 1, 1), (0, 1, 0, 0, 0), 0), primals_4, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf4, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_5, 4, grid=grid(4), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4, mul], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_3.run(primals_1, buf5, buf6, 256, grid=grid(256), stream=stream0)
return (buf6, primals_1, primals_2, primals_4, reinterpret_tensor(buf1, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0), reinterpret_tensor(buf3, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1), 0), buf5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 16, 1, 1, 1), (16, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from itertools import chain as chain
import torch.utils.data
import torch.nn as nn
class SwishEfficient(torch.autograd.Function):
"""Swish activation function: x * sigmoid(x)."""
@staticmethod
def forward(ctx, x):
result = x * torch.sigmoid(x)
ctx.save_for_backward(x)
return result
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_variables[0]
sigmoid_x = torch.sigmoid(x)
return grad_output * (sigmoid_x * (1 + x * (1 - sigmoid_x)))
class Swish(nn.Module):
"""Swish activation function: x * sigmoid(x)."""
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
return SwishEfficient.apply(x)
class SE(nn.Module):
"""Squeeze-and-Excitation (SE) block w/ Swish: AvgPool, FC, Swish, FC, Sigmoid."""
def _round_width(self, width, multiplier, min_width=8, divisor=8):
"""
Round width of filters based on width multiplier
Args:
width (int): the channel dimensions of the input.
multiplier (float): the multiplication factor.
min_width (int): the minimum width after multiplication.
divisor (int): the new width should be dividable by divisor.
"""
if not multiplier:
return width
width *= multiplier
min_width = min_width or divisor
width_out = max(min_width, int(width + divisor / 2) // divisor *
divisor)
if width_out < 0.9 * width:
width_out += divisor
return int(width_out)
def __init__(self, dim_in, ratio, relu_act=True):
"""
Args:
dim_in (int): the channel dimensions of the input.
ratio (float): the channel reduction ratio for squeeze.
relu_act (bool): whether to use ReLU activation instead
of Swish (default).
divisor (int): the new width should be dividable by divisor.
"""
super(SE, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
dim_fc = self._round_width(dim_in, ratio)
self.fc1 = nn.Conv3d(dim_in, dim_fc, 1, bias=True)
self.fc1_act = nn.ReLU() if relu_act else Swish()
self.fc2 = nn.Conv3d(dim_fc, dim_in, 1, bias=True)
self.fc2_sig = nn.Sigmoid()
def forward(self, x):
x_in = x
for module in self.children():
x = module(x)
return x_in * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'ratio': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from itertools import chain as chain
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (16, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (4, 16, 1, 1, 1), (16, 1, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(4)](buf1, primals_1, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 1,
1, 1), (0, 1, 0, 0, 0), 0), primals_2, stride=(1, 1, 1),
padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf2, (1, 16, 1, 1, 1), (16, 1, 1, 1, 1))
buf3 = reinterpret_tensor(buf2, (16, 1, 1, 1), (1, 16, 16, 16), 0)
del buf2
buf7 = empty_strided_cuda((16, 1, 1, 1), (1, 1, 1, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(16)](buf3,
primals_3, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(reinterpret_tensor(buf3, (1, 16,
1, 1, 1), (0, 1, 0, 0, 0), 0), primals_4, stride=(1, 1, 1),
padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf4, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(4)](buf5, primals_5, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_3[grid(256)](primals_1, buf5, buf6,
256, XBLOCK=256, num_warps=4, num_stages=1)
return buf6, primals_1, primals_2, primals_4, reinterpret_tensor(buf1,
(1, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0), reinterpret_tensor(buf3, (1,
16, 1, 1, 1), (16, 1, 1, 1, 1), 0), buf5, buf7
class SwishEfficient(torch.autograd.Function):
"""Swish activation function: x * sigmoid(x)."""
@staticmethod
def forward(ctx, x):
result = x * torch.sigmoid(x)
ctx.save_for_backward(x)
return result
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_variables[0]
sigmoid_x = torch.sigmoid(x)
return grad_output * (sigmoid_x * (1 + x * (1 - sigmoid_x)))
class Swish(nn.Module):
"""Swish activation function: x * sigmoid(x)."""
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
return SwishEfficient.apply(x)
class SENew(nn.Module):
"""Squeeze-and-Excitation (SE) block w/ Swish: AvgPool, FC, Swish, FC, Sigmoid."""
def _round_width(self, width, multiplier, min_width=8, divisor=8):
"""
Round width of filters based on width multiplier
Args:
width (int): the channel dimensions of the input.
multiplier (float): the multiplication factor.
min_width (int): the minimum width after multiplication.
divisor (int): the new width should be dividable by divisor.
"""
if not multiplier:
return width
width *= multiplier
min_width = min_width or divisor
width_out = max(min_width, int(width + divisor / 2) // divisor *
divisor)
if width_out < 0.9 * width:
width_out += divisor
return int(width_out)
def __init__(self, dim_in, ratio, relu_act=True):
"""
Args:
dim_in (int): the channel dimensions of the input.
ratio (float): the channel reduction ratio for squeeze.
relu_act (bool): whether to use ReLU activation instead
of Swish (default).
divisor (int): the new width should be dividable by divisor.
"""
super(SENew, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
dim_fc = self._round_width(dim_in, ratio)
self.fc1 = nn.Conv3d(dim_in, dim_fc, 1, bias=True)
self.fc1_act = nn.ReLU() if relu_act else Swish()
self.fc2 = nn.Conv3d(dim_fc, dim_in, 1, bias=True)
self.fc2_sig = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| SheldongChen/SlowFast | SE | false | 5,832 | [
"Apache-2.0"
] | 1 | 298cd1648bcaaafa7d436bf286a2c7f243f36416 | https://github.com/SheldongChen/SlowFast/tree/298cd1648bcaaafa7d436bf286a2c7f243f36416 | import torch
from itertools import chain as chain
import torch.utils.data
import torch.nn as nn
class SwishEfficient(torch.autograd.Function):
"""Swish activation function: x * sigmoid(x)."""
@staticmethod
def forward(ctx, x):
result = x * torch.sigmoid(x)
ctx.save_for_backward(x)
return result
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_variables[0]
sigmoid_x = torch.sigmoid(x)
return grad_output * (sigmoid_x * (1 + x * (1 - sigmoid_x)))
class Swish(nn.Module):
"""Swish activation function: x * sigmoid(x)."""
def __init__(self):
super().__init__()
def forward(self, x):
return SwishEfficient.apply(x)
class Model(nn.Module):
"""Squeeze-and-Excitation (SE) block w/ Swish: AvgPool, FC, Swish, FC, Sigmoid."""
def _round_width(self, width, multiplier, min_width=8, divisor=8):
"""
Round width of filters based on width multiplier
Args:
width (int): the channel dimensions of the input.
multiplier (float): the multiplication factor.
min_width (int): the minimum width after multiplication.
divisor (int): the new width should be dividable by divisor.
"""
if not multiplier:
return width
width *= multiplier
min_width = min_width or divisor
width_out = max(min_width, int(width + divisor / 2) // divisor *
divisor)
if width_out < 0.9 * width:
width_out += divisor
return int(width_out)
def __init__(self, dim_in, ratio, relu_act=True):
"""
Args:
dim_in (int): the channel dimensions of the input.
ratio (float): the channel reduction ratio for squeeze.
relu_act (bool): whether to use ReLU activation instead
of Swish (default).
divisor (int): the new width should be dividable by divisor.
"""
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
dim_fc = self._round_width(dim_in, ratio)
self.fc1 = nn.Conv3d(dim_in, dim_fc, 1, bias=True)
self.fc1_act = nn.ReLU() if relu_act else Swish()
self.fc2 = nn.Conv3d(dim_fc, dim_in, 1, bias=True)
self.fc2_sig = nn.Sigmoid()
def forward(self, x):
x_in = x
for module in self.children():
x = module(x)
return x_in * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
GeneralizedDiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/gh/cghle66wvpgqujhxrm3zjfj4rnmvjkiij5wc4uxlubyxhntaojkx.py
# Topologically Sorted Source Nodes: [target_sum, mul, clamp, truediv], Original ATen: [aten.sum, aten.mul, aten.clamp, aten.reciprocal]
# Source node to ATen node mapping:
# clamp => clamp_min
# mul => mul
# target_sum => sum_1
# truediv => mul_1, reciprocal
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [-1]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, %sum_1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 1e-05), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
triton_poi_fused_clamp_mul_reciprocal_sum_0 = async_compile.triton('triton_poi_fused_clamp_mul_reciprocal_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_mul_reciprocal_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_mul_reciprocal_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp6 * tmp6
tmp8 = 1e-05
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.full([1], 1, tl.int32)
tmp11 = tmp10 / tmp9
tmp12 = 1.0
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/r5/cr5af6fzsr2gmixtrj6ikns5kjfz34fn7v3fwkmuybwhq2ocdmex.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# input_1 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [target_sum, mul, clamp, truediv], Original ATen: [aten.sum, aten.mul, aten.clamp, aten.reciprocal]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_mul_reciprocal_sum_0.run(arg1_1, buf0, 4, grid=grid(4), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(arg0_1, buf1, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), reinterpret_tensor(arg1_1, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
from torch.autograd import Variable
def expand_as_one_hot(input, C, ignore_index=None):
"""
Converts NxDxHxW label image to NxCxDxHxW, where each label is stored in a separate channel
:param input: 4D input image (NxDxHxW)
:param C: number of channels/labels
:param ignore_index: ignore index to be kept during the expansion
:return: 5D output image (NxCxDxHxW)
"""
assert input.dim() == 4
shape = input.size()
shape = list(shape)
shape.insert(1, C)
shape = tuple(shape)
src = input.unsqueeze(0)
if ignore_index is not None:
expanded_src = src.expand(shape)
mask = expanded_src == ignore_index
src = src.clone()
src[src == ignore_index] = 0
result = torch.zeros(shape).scatter_(1, src, 1)
result[mask] = ignore_index
return result
else:
return torch.zeros(shape).scatter(1, src.type(torch.LongTensor), 1)
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.view(C, -1)
class GeneralizedDiceLoss(nn.Module):
"""Computes Generalized Dice Loss (GDL) as described in https://arxiv.org/pdf/1707.03237.pdf
"""
def __init__(self, epsilon=1e-05, weight=None, ignore_index=None,
sigmoid_normalization=True):
super(GeneralizedDiceLoss, self).__init__()
self.epsilon = epsilon
self.register_buffer('weight', weight)
self.ignore_index = ignore_index
if sigmoid_normalization:
self.normalization = nn.Sigmoid()
else:
self.normalization = nn.Softmax(dim=1)
def forward(self, input, target):
input = self.normalization(input)
if target.dim() == 4:
target = expand_as_one_hot(target, C=input.size()[1],
ignore_index=self.ignore_index)
assert input.size() == target.size(
), "'input' and 'target' must have the same shape"
if self.ignore_index is not None:
mask = target.clone().ne_(self.ignore_index)
mask.requires_grad = False
input = input * mask
target = target * mask
input = flatten(input)
target = flatten(target)
target = target.float()
target_sum = target.sum(-1)
class_weights = Variable(1.0 / (target_sum * target_sum).clamp(min=
self.epsilon), requires_grad=False)
intersect = (input * target).sum(-1) * class_weights
if self.weight is not None:
weight = Variable(self.weight, requires_grad=False)
intersect = weight * intersect
denominator = (input + target).sum(-1) * class_weights
return torch.mean(1.0 - 2.0 * intersect / denominator.clamp(min=
self.epsilon))
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clamp_mul_reciprocal_sum_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp6 * tmp6
tmp8 = 1e-05
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.full([1], 1, tl.int32)
tmp11 = tmp10 / tmp9
tmp12 = 1.0
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_mul_reciprocal_sum_0[grid(4)](arg1_1, buf0,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_sigmoid_1[grid(16)](arg0_1, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0
), reinterpret_tensor(arg1_1, (4, 4), (1, 4), 0)
def expand_as_one_hot(input, C, ignore_index=None):
"""
Converts NxDxHxW label image to NxCxDxHxW, where each label is stored in a separate channel
:param input: 4D input image (NxDxHxW)
:param C: number of channels/labels
:param ignore_index: ignore index to be kept during the expansion
:return: 5D output image (NxCxDxHxW)
"""
assert input.dim() == 4
shape = input.size()
shape = list(shape)
shape.insert(1, C)
shape = tuple(shape)
src = input.unsqueeze(0)
if ignore_index is not None:
expanded_src = src.expand(shape)
mask = expanded_src == ignore_index
src = src.clone()
src[src == ignore_index] = 0
result = torch.zeros(shape).scatter_(1, src, 1)
result[mask] = ignore_index
return result
else:
return torch.zeros(shape).scatter(1, src.type(torch.LongTensor), 1)
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.view(C, -1)
class GeneralizedDiceLossNew(nn.Module):
"""Computes Generalized Dice Loss (GDL) as described in https://arxiv.org/pdf/1707.03237.pdf
"""
def __init__(self, epsilon=1e-05, weight=None, ignore_index=None,
sigmoid_normalization=True):
super(GeneralizedDiceLossNew, self).__init__()
self.epsilon = epsilon
self.register_buffer('weight', weight)
self.ignore_index = ignore_index
if sigmoid_normalization:
self.normalization = nn.Sigmoid()
else:
self.normalization = nn.Softmax(dim=1)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| SohamMazumder/Federated_Segmentation | GeneralizedDiceLoss | false | 5,833 | [
"MIT"
] | 1 | d4eb681441003ba20f8b251a42a811c8c436f04e | https://github.com/SohamMazumder/Federated_Segmentation/tree/d4eb681441003ba20f8b251a42a811c8c436f04e | import torch
from torch import nn
from torch.autograd import Variable
def expand_as_one_hot(input, C, ignore_index=None):
"""
Converts NxDxHxW label image to NxCxDxHxW, where each label is stored in a separate channel
:param input: 4D input image (NxDxHxW)
:param C: number of channels/labels
:param ignore_index: ignore index to be kept during the expansion
:return: 5D output image (NxCxDxHxW)
"""
assert input.dim() == 4
shape = input.size()
shape = list(shape)
shape.insert(1, C)
shape = tuple(shape)
src = input.unsqueeze(0)
if ignore_index is not None:
expanded_src = src.expand(shape)
mask = expanded_src == ignore_index
src = src.clone()
src[src == ignore_index] = 0
result = torch.zeros(shape).scatter_(1, src, 1)
result[mask] = ignore_index
return result
else:
return torch.zeros(shape).scatter(1, src.type(torch.LongTensor), 1)
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.view(C, -1)
class Model(nn.Module):
"""Computes Generalized Dice Loss (GDL) as described in https://arxiv.org/pdf/1707.03237.pdf
"""
def __init__(self, epsilon=1e-05, weight=None, ignore_index=None,
sigmoid_normalization=True):
super().__init__()
self.epsilon = epsilon
self.register_buffer('weight', weight)
self.ignore_index = ignore_index
if sigmoid_normalization:
self.normalization = nn.Sigmoid()
else:
self.normalization = nn.Softmax(dim=1)
def forward(self, input, target):
input = self.normalization(input)
if target.dim() == 4:
target = expand_as_one_hot(target, C=input.size()[1],
ignore_index=self.ignore_index)
assert input.size() == target.size(
), "'input' and 'target' must have the same shape"
if self.ignore_index is not None:
mask = target.clone().ne_(self.ignore_index)
mask.requires_grad = False
input = input * mask
target = target * mask
input = flatten(input)
target = flatten(target)
target = target.float()
target_sum = target.sum(-1)
class_weights = Variable(1.0 / (target_sum * target_sum).clamp(min=
self.epsilon), requires_grad=False)
intersect = (input * target).sum(-1) * class_weights
if self.weight is not None:
weight = Variable(self.weight, requires_grad=False)
intersect = weight * intersect
denominator = (input + target).sum(-1) * class_weights
return torch.mean(1.0 - 2.0 * intersect / denominator.clamp(min=
self.epsilon))
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return []
|
TwoNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6t/c6tj5mjk4hz7kmrhrg5u2iwiezqcy7a3trlworoutxljynfwnvct.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 256), (256, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 2), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf3, primals_5, 128, grid=grid(128), stream=stream0)
del primals_5
return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), buf3, primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class TwoNet(nn.Module):
def __init__(self, n_features, embedding_dim=256):
super(TwoNet, self).__init__()
self.a1 = nn.Linear(n_features, embedding_dim)
self.a2 = nn.Linear(embedding_dim, 2)
def forward(self, x):
x = torch.relu(self.a1(x))
return torch.sigmoid(self.a2(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 256), (256, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf4, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 2), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf2
triton_poi_fused_sigmoid_1[grid(128)](buf3, primals_5, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_5
return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), buf3, primals_4, buf4
class TwoNetNew(nn.Module):
def __init__(self, n_features, embedding_dim=256):
super(TwoNetNew, self).__init__()
self.a1 = nn.Linear(n_features, embedding_dim)
self.a2 = nn.Linear(embedding_dim, 2)
def forward(self, input_0):
primals_1 = self.a1.weight
primals_2 = self.a1.bias
primals_4 = self.a2.weight
primals_5 = self.a2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| SkBlaz/KBNR | TwoNet | false | 5,834 | [
"MIT"
] | 1 | 4c37fe3fdfa7719572affd617e2dab43a54ba1d5 | https://github.com/SkBlaz/KBNR/tree/4c37fe3fdfa7719572affd617e2dab43a54ba1d5 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n_features, embedding_dim=256):
super().__init__()
self.a1 = nn.Linear(n_features, embedding_dim)
self.a2 = nn.Linear(embedding_dim, 2)
def forward(self, x):
x = torch.relu(self.a1(x))
return torch.sigmoid(self.a2(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ConvBnRelu | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/73/c73oiwzususfhiw4ajocsxdjqbaldvictq7ue7d2ry64g6qrrccz.py
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => convolution
# x_1 => add, rsqrt, var_mean
# x_2 => relu
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp28 = 0.0
tmp29 = tmp27 <= tmp28
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.store(out_ptr2 + (r2 + (16*x3)), tmp27, xmask)
tl.store(out_ptr3 + (r2 + (16*x3)), tmp29, xmask)
tl.store(out_ptr4 + (x3), tmp24, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0.run(buf1, primals_2, buf2, buf6, buf7, buf5, 16, 16, grid=grid(16), stream=stream0)
del primals_2
return (buf6, primals_1, primals_3, buf1, reinterpret_tensor(buf5, (16, ), (1, ), 0), buf7, reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class ConvBnRelu(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super(ConvBnRelu, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0(
in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp28 = 0.0
tmp29 = tmp27 <= tmp28
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.store(out_ptr2 + (r2 + 16 * x3), tmp27, xmask)
tl.store(out_ptr3 + (r2 + 16 * x3), tmp29, xmask)
tl.store(out_ptr4 + x3, tmp24, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0[
grid(16)](buf1, primals_2, buf2, buf6, buf7, buf5, 16, 16,
XBLOCK=8, num_warps=2, num_stages=1)
del primals_2
return buf6, primals_1, primals_3, buf1, reinterpret_tensor(buf5, (16,),
(1,), 0), buf7, reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1,
1), 0)
class ConvBnReluNew(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super(ConvBnReluNew, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| SkywalkerAtlas/HRGAN | ConvBnRelu | false | 5,835 | [
"MIT"
] | 1 | bf6d58c1f3c6e042c7ea70319a25e3420531d552 | https://github.com/SkywalkerAtlas/HRGAN/tree/bf6d58c1f3c6e042c7ea70319a25e3420531d552 | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class Model(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
GenerativeLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ne/cnebqb4ivsqst5cjtek74fvg4bdcz5zjpfgrstqmpakikmxoy5wi.py
# Topologically Sorted Source Nodes: [binary_cross_entropy, loss, binary_cross_entropy_1, loss_1, binary_cross_entropy_2, loss_2, binary_cross_entropy_3, loss_3, truediv], Original ATen: [aten.binary_cross_entropy, aten.add, aten.div]
# Source node to ATen node mapping:
# binary_cross_entropy => full_default, full_default_1, log, log1p, maximum, maximum_1, mean, mul, mul_1, neg, sub, sub_1
# binary_cross_entropy_1 => full_default_2, full_default_3, log1p_1, log_1, maximum_2, maximum_3, mean_1, mul_2, mul_3, neg_1, sub_2, sub_3
# binary_cross_entropy_2 => full_default_4, full_default_5, log1p_2, log_2, maximum_4, maximum_5, mean_2, mul_4, mul_5, neg_2, sub_4, sub_5
# binary_cross_entropy_3 => full_default_6, full_default_7, log1p_3, log_3, maximum_6, maximum_7, mean_3, mul_6, mul_7, neg_3, sub_6, sub_7
# loss => add
# loss_1 => add_1
# loss_2 => add_2
# loss_3 => add_3
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, 1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%select,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%select,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %maximum_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_3, 1), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%select_2,), kwargs = {})
# %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg_1,), kwargs = {})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_2 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p_1, %full_default_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %maximum_2), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%select_2,), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_3 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log_1, %full_default_3), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %maximum_3), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_3,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_1), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_5, 1), kwargs = {})
# %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%select_4,), kwargs = {})
# %log1p_2 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg_2,), kwargs = {})
# %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_4 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p_2, %full_default_4), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %maximum_4), kwargs = {})
# %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%select_4,), kwargs = {})
# %full_default_5 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_5 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log_2, %full_default_5), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %maximum_5), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, %mul_5), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_5,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mean_2), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_7, 1), kwargs = {})
# %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%select_6,), kwargs = {})
# %log1p_3 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg_3,), kwargs = {})
# %full_default_6 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_6 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p_3, %full_default_6), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %maximum_6), kwargs = {})
# %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%select_6,), kwargs = {})
# %full_default_7 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_7 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log_3, %full_default_7), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_7, %maximum_7), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, %mul_7), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_7,), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mean_3), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {})
triton_per_fused_add_binary_cross_entropy_div_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_div_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp3 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp18 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp30 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp32 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp44 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp46 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.sum(tmp13, 1)[:, None]
tmp17 = tmp16 - tmp1
tmp19 = -tmp18
tmp20 = libdevice.log1p(tmp19)
tmp21 = triton_helpers.maximum(tmp20, tmp6)
tmp22 = tmp17 * tmp21
tmp23 = tl_math.log(tmp18)
tmp24 = triton_helpers.maximum(tmp23, tmp6)
tmp25 = tmp16 * tmp24
tmp26 = tmp22 - tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp31 = tmp30 - tmp1
tmp33 = -tmp32
tmp34 = libdevice.log1p(tmp33)
tmp35 = triton_helpers.maximum(tmp34, tmp6)
tmp36 = tmp31 * tmp35
tmp37 = tl_math.log(tmp32)
tmp38 = triton_helpers.maximum(tmp37, tmp6)
tmp39 = tmp30 * tmp38
tmp40 = tmp36 - tmp39
tmp41 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK])
tmp43 = tl.sum(tmp41, 1)[:, None]
tmp45 = tmp44 - tmp1
tmp47 = -tmp46
tmp48 = libdevice.log1p(tmp47)
tmp49 = triton_helpers.maximum(tmp48, tmp6)
tmp50 = tmp45 * tmp49
tmp51 = tl_math.log(tmp46)
tmp52 = triton_helpers.maximum(tmp51, tmp6)
tmp53 = tmp44 * tmp52
tmp54 = tmp50 - tmp53
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK])
tmp57 = tl.sum(tmp55, 1)[:, None]
tmp58 = 64.0
tmp59 = tmp15 / tmp58
tmp60 = 0.0
tmp61 = tmp59 + tmp60
tmp62 = tmp29 / tmp58
tmp63 = tmp61 + tmp62
tmp64 = tmp43 / tmp58
tmp65 = tmp63 + tmp64
tmp66 = tmp57 / tmp58
tmp67 = tmp65 + tmp66
tmp68 = 0.25
tmp69 = tmp67 * tmp68
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp69, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [binary_cross_entropy, loss, binary_cross_entropy_1, loss_1, binary_cross_entropy_2, loss_2, binary_cross_entropy_3, loss_3, truediv], Original ATen: [aten.binary_cross_entropy, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_div_0.run(buf4, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class GenerativeLoss(nn.Module):
def __init__(self):
super(GenerativeLoss, self).__init__()
self.criterion = nn.BCELoss(reduction='mean')
def forward(self, output, target):
num_joints = output.shape[1]
loss = 0
for idx in range(num_joints):
real_or_fake_pred = output[:, idx]
real_or_fake_gt = target[:, idx]
loss += self.criterion(real_or_fake_pred, real_or_fake_gt)
return loss / num_joints
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_div_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp3 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp18 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp30 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp32 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp44 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp46 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.sum(tmp13, 1)[:, None]
tmp17 = tmp16 - tmp1
tmp19 = -tmp18
tmp20 = libdevice.log1p(tmp19)
tmp21 = triton_helpers.maximum(tmp20, tmp6)
tmp22 = tmp17 * tmp21
tmp23 = tl_math.log(tmp18)
tmp24 = triton_helpers.maximum(tmp23, tmp6)
tmp25 = tmp16 * tmp24
tmp26 = tmp22 - tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp31 = tmp30 - tmp1
tmp33 = -tmp32
tmp34 = libdevice.log1p(tmp33)
tmp35 = triton_helpers.maximum(tmp34, tmp6)
tmp36 = tmp31 * tmp35
tmp37 = tl_math.log(tmp32)
tmp38 = triton_helpers.maximum(tmp37, tmp6)
tmp39 = tmp30 * tmp38
tmp40 = tmp36 - tmp39
tmp41 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK])
tmp43 = tl.sum(tmp41, 1)[:, None]
tmp45 = tmp44 - tmp1
tmp47 = -tmp46
tmp48 = libdevice.log1p(tmp47)
tmp49 = triton_helpers.maximum(tmp48, tmp6)
tmp50 = tmp45 * tmp49
tmp51 = tl_math.log(tmp46)
tmp52 = triton_helpers.maximum(tmp51, tmp6)
tmp53 = tmp44 * tmp52
tmp54 = tmp50 - tmp53
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK])
tmp57 = tl.sum(tmp55, 1)[:, None]
tmp58 = 64.0
tmp59 = tmp15 / tmp58
tmp60 = 0.0
tmp61 = tmp59 + tmp60
tmp62 = tmp29 / tmp58
tmp63 = tmp61 + tmp62
tmp64 = tmp43 / tmp58
tmp65 = tmp63 + tmp64
tmp66 = tmp57 / tmp58
tmp67 = tmp65 + tmp66
tmp68 = 0.25
tmp69 = tmp67 * tmp68
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp69, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_div_0[grid(1)](buf4,
arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf4,
class GenerativeLossNew(nn.Module):
def __init__(self):
super(GenerativeLossNew, self).__init__()
self.criterion = nn.BCELoss(reduction='mean')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| SkywalkerAtlas/HRGAN | GenerativeLoss | false | 5,836 | [
"MIT"
] | 1 | bf6d58c1f3c6e042c7ea70319a25e3420531d552 | https://github.com/SkywalkerAtlas/HRGAN/tree/bf6d58c1f3c6e042c7ea70319a25e3420531d552 | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class Model(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.BCELoss(reduction='mean')
def forward(self, output, target):
num_joints = output.shape[1]
loss = 0
for idx in range(num_joints):
real_or_fake_pred = output[:, idx]
real_or_fake_gt = target[:, idx]
loss += self.criterion(real_or_fake_pred, real_or_fake_gt)
return loss / num_joints
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Encoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/do/cdo22no4lmipk7byduyah2xsadvdcbfr22puoptl5br3l66r6jra.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# h => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
from torch.autograd import Variable
class Encoder(nn.Module):
def __init__(self, x_dim, h_dim, z_dim):
super(Encoder, self).__init__()
self.x_dim = x_dim
self.h_dim = h_dim
self.z_dim = z_dim
self.relu = nn.LeakyReLU()
self.fc1 = nn.Linear(x_dim, h_dim)
self.fc21 = nn.Linear(h_dim, z_dim)
self.fc22 = nn.Linear(h_dim, z_dim)
self._initialize_weights()
def reparameterize(self, mu, logvar):
if self.training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)
else:
return mu
def forward(self, x):
h = self.relu(self.fc1(x))
mu = self.fc21(h)
logvar = self.fc22(h)
z = self.reparameterize(mu, logvar)
return z
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'x_dim': 4, 'h_dim': 4, 'z_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1,
buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4
class EncoderNew(nn.Module):
def __init__(self, x_dim, h_dim, z_dim):
super(EncoderNew, self).__init__()
self.x_dim = x_dim
self.h_dim = h_dim
self.z_dim = z_dim
self.relu = nn.LeakyReLU()
self.fc1 = nn.Linear(x_dim, h_dim)
self.fc21 = nn.Linear(h_dim, z_dim)
self.fc22 = nn.Linear(h_dim, z_dim)
self._initialize_weights()
def reparameterize(self, mu, logvar):
if self.training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)
else:
return mu
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc21.weight
primals_5 = self.fc21.bias
primals_6 = self.fc22.weight
primals_7 = self.fc22.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Shimaa1/group_activity_gcn | Encoder | false | 5,837 | [
"MIT"
] | 1 | 53f86e93eb7a78d537532d48c836ce30cbf7e8d1 | https://github.com/Shimaa1/group_activity_gcn/tree/53f86e93eb7a78d537532d48c836ce30cbf7e8d1 | import torch
import torch.nn as nn
import torch.nn.parallel
from torch.autograd import Variable
class Model(nn.Module):
def __init__(self, x_dim, h_dim, z_dim):
super().__init__()
self.x_dim = x_dim
self.h_dim = h_dim
self.z_dim = z_dim
self.relu = nn.LeakyReLU()
self.fc1 = nn.Linear(x_dim, h_dim)
self.fc21 = nn.Linear(h_dim, z_dim)
self.fc22 = nn.Linear(h_dim, z_dim)
self._initialize_weights()
def reparameterize(self, mu, logvar):
if self.training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)
else:
return mu
def forward(self, x):
h = self.relu(self.fc1(x))
mu = self.fc21(h)
logvar = self.fc22(h)
z = self.reparameterize(mu, logvar)
return z
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ConvTripleBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/62/c62v5mlygwfh2a7awzppyaawfptyqx7wq2cizpnp2q7rfmihi7bs.py
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => add, rsqrt, var_mean
# x_2 => relu
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_relu_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[8, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 8
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.store(out_ptr2 + (r2 + (16*x3)), tmp27, xmask)
tl.store(out_ptr3 + (x3), tmp24, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wx/cwxflwzahbwbvyxtq3bhkpyiklixvt2lutns5coac4ns7tlgkkva.py
# Topologically Sorted Source Nodes: [x_6, x_7, x_8], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_6 => convolution_2
# x_7 => add_2, rsqrt_2, var_mean_2
# x_8 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp28 = 0.0
tmp29 = tmp27 <= tmp28
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.store(out_ptr2 + (r2 + (16*x3)), tmp27, xmask)
tl.store(out_ptr3 + (r2 + (16*x3)), tmp29, xmask)
tl.store(out_ptr4 + (x3), tmp24, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
buf6 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_0.run(buf1, primals_2, buf2, buf6, buf5, 8, 16, grid=grid(8), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 2, 4, 4), (32, 16, 4, 1))
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
buf13 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf12 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
# Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu]
triton_per_fused__native_batch_norm_legit_convolution_relu_0.run(buf8, primals_5, buf9, buf13, buf12, 8, 16, grid=grid(8), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 16, 4, 1))
buf15 = buf14; del buf14 # reuse
buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf19 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [x_6, x_7, x_8], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1.run(buf15, primals_7, buf16, buf20, buf21, buf19, 16, 16, grid=grid(16), stream=stream0)
del primals_7
return (buf20, primals_1, primals_3, primals_4, primals_6, buf1, reinterpret_tensor(buf5, (8, ), (1, ), 0), buf6, buf8, reinterpret_tensor(buf12, (8, ), (1, ), 0), buf13, buf15, reinterpret_tensor(buf19, (16, ), (1, ), 0), buf21, reinterpret_tensor(buf16, (1, 16, 1, 1), (16, 1, 1, 1), 0), reinterpret_tensor(buf9, (1, 8, 1, 1), (8, 1, 1, 1), 0), reinterpret_tensor(buf2, (1, 8, 1, 1), (8, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class ConvBnRelu(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super(ConvBnRelu, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class ConvTripleBlock(nn.Module):
"""
A block of 3 ConvBnRelu blocks.
This triple block makes up a residual block as described in the paper
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super(ConvTripleBlock, self).__init__()
out_channels_half = out_channels // 2
self.convblock1 = ConvBnRelu(in_channels, out_channels_half)
self.convblock2 = ConvBnRelu(out_channels_half, out_channels_half,
kernel_size=3, stride=1, padding=1)
self.convblock3 = ConvBnRelu(out_channels_half, out_channels)
def forward(self, x):
x = self.convblock1(x)
x = self.convblock2(x)
x = self.convblock3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_0(in_out_ptr0,
in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr
):
xnumel = 8
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.store(out_ptr2 + (r2 + 16 * x3), tmp27, xmask)
tl.store(out_ptr3 + x3, tmp24, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1(
in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp28 = 0.0
tmp29 = tmp27 <= tmp28
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.store(out_ptr2 + (r2 + 16 * x3), tmp27, xmask)
tl.store(out_ptr3 + (r2 + 16 * x3), tmp29, xmask)
tl.store(out_ptr4 + x3, tmp24, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
buf6 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_0[grid(8)](
buf1, primals_2, buf2, buf6, buf5, 8, 16, XBLOCK=8, num_warps=2,
num_stages=1)
del primals_2
buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 2, 4, 4), (32, 16, 4, 1))
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
buf13 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf12 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
triton_per_fused__native_batch_norm_legit_convolution_relu_0[grid(8)](
buf8, primals_5, buf9, buf13, buf12, 8, 16, XBLOCK=8, num_warps
=2, num_stages=1)
del primals_5
buf14 = extern_kernels.convolution(buf13, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 16, 4, 1))
buf15 = buf14
del buf14
buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf19 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1[
grid(16)](buf15, primals_7, buf16, buf20, buf21, buf19, 16, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_7
return (buf20, primals_1, primals_3, primals_4, primals_6, buf1,
reinterpret_tensor(buf5, (8,), (1,), 0), buf6, buf8,
reinterpret_tensor(buf12, (8,), (1,), 0), buf13, buf15,
reinterpret_tensor(buf19, (16,), (1,), 0), buf21,
reinterpret_tensor(buf16, (1, 16, 1, 1), (16, 1, 1, 1), 0),
reinterpret_tensor(buf9, (1, 8, 1, 1), (8, 1, 1, 1), 0),
reinterpret_tensor(buf2, (1, 8, 1, 1), (8, 1, 1, 1), 0))
class ConvBnRelu(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super(ConvBnRelu, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class ConvTripleBlockNew(nn.Module):
"""
A block of 3 ConvBnRelu blocks.
This triple block makes up a residual block as described in the paper
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super(ConvTripleBlockNew, self).__init__()
out_channels_half = out_channels // 2
self.convblock1 = ConvBnRelu(in_channels, out_channels_half)
self.convblock2 = ConvBnRelu(out_channels_half, out_channels_half,
kernel_size=3, stride=1, padding=1)
self.convblock3 = ConvBnRelu(out_channels_half, out_channels)
def forward(self, input_0):
primals_1 = self.convblock1.conv.weight
primals_2 = self.convblock1.conv.bias
primals_4 = self.convblock2.conv.weight
primals_5 = self.convblock2.conv.bias
primals_6 = self.convblock3.conv.weight
primals_7 = self.convblock3.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| SkywalkerAtlas/HRGAN | ConvTripleBlock | false | 5,838 | [
"MIT"
] | 1 | bf6d58c1f3c6e042c7ea70319a25e3420531d552 | https://github.com/SkywalkerAtlas/HRGAN/tree/bf6d58c1f3c6e042c7ea70319a25e3420531d552 | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class ConvBnRelu(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Model(nn.Module):
"""
A block of 3 ConvBnRelu blocks.
This triple block makes up a residual block as described in the paper
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super().__init__()
out_channels_half = out_channels // 2
self.convblock1 = ConvBnRelu(in_channels, out_channels_half)
self.convblock2 = ConvBnRelu(out_channels_half, out_channels_half,
kernel_size=3, stride=1, padding=1)
self.convblock3 = ConvBnRelu(out_channels_half, out_channels)
def forward(self, x):
x = self.convblock1(x)
x = self.convblock2(x)
x = self.convblock3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Residual | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/62/c62v5mlygwfh2a7awzppyaawfptyqx7wq2cizpnp2q7rfmihi7bs.py
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => add, rsqrt, var_mean
# x_2 => relu
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_relu_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[8, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 8
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.store(out_ptr2 + (r2 + (16*x3)), tmp27, xmask)
tl.store(out_ptr3 + (x3), tmp24, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/mf/cmfpnkpirh4iytg7cqvzbrlywp2aj4kfa32mpjdkakri6dj4hrsi.py
# Topologically Sorted Source Nodes: [x_6, x_7, x_8, out], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.add]
# Source node to ATen node mapping:
# out => add_3
# x_6 => convolution_2
# x_7 => add_2, rsqrt_2, var_mean_2
# x_8 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %relu_2 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_2, %primals_3), kwargs = {})
triton_per_fused__native_batch_norm_legit_add_convolution_relu_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_convolution_relu_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (r2 + (16*x3)), xmask, other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp29 = tmp27 + tmp28
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp23, xmask)
tl.store(out_ptr1 + (r2 + (16*x3)), tmp29, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
buf6 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_0.run(buf1, primals_2, buf2, buf6, buf5, 8, 16, grid=grid(8), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 2, 4, 4), (32, 16, 4, 1))
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
buf13 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf12 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
# Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu]
triton_per_fused__native_batch_norm_legit_convolution_relu_0.run(buf8, primals_5, buf9, buf13, buf12, 8, 16, grid=grid(8), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 16, 4, 1))
buf15 = buf14; del buf14 # reuse
buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf17 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf19 = reinterpret_tensor(buf17, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf17 # reuse
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6, x_7, x_8, out], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.add]
triton_per_fused__native_batch_norm_legit_add_convolution_relu_1.run(buf15, buf19, primals_7, primals_3, buf16, buf20, 16, 16, grid=grid(16), stream=stream0)
del primals_7
return (buf20, primals_1, primals_3, primals_4, primals_6, buf1, reinterpret_tensor(buf5, (8, ), (1, ), 0), buf6, buf8, reinterpret_tensor(buf12, (8, ), (1, ), 0), buf13, buf15, buf16, buf19, reinterpret_tensor(buf9, (1, 8, 1, 1), (8, 1, 1, 1), 0), reinterpret_tensor(buf2, (1, 8, 1, 1), (8, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class ConvBnRelu(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super(ConvBnRelu, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class ConvTripleBlock(nn.Module):
"""
A block of 3 ConvBnRelu blocks.
This triple block makes up a residual block as described in the paper
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super(ConvTripleBlock, self).__init__()
out_channels_half = out_channels // 2
self.convblock1 = ConvBnRelu(in_channels, out_channels_half)
self.convblock2 = ConvBnRelu(out_channels_half, out_channels_half,
kernel_size=3, stride=1, padding=1)
self.convblock3 = ConvBnRelu(out_channels_half, out_channels)
def forward(self, x):
x = self.convblock1(x)
x = self.convblock2(x)
x = self.convblock3(x)
return x
class SkipLayer(nn.Module):
"""
The skip connections are necessary for transferring global and local context
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super(SkipLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
if in_channels != out_channels:
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
if self.in_channels != self.out_channels:
x = self.conv(x)
return x
class Residual(nn.Module):
"""
The highly used Residual block
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super(Residual, self).__init__()
self.convblock = ConvTripleBlock(in_channels, out_channels)
self.skip = SkipLayer(in_channels, out_channels)
def forward(self, x):
y = self.convblock(x)
z = self.skip(x)
out = y + z
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_0(in_out_ptr0,
in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr
):
xnumel = 8
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.store(out_ptr2 + (r2 + 16 * x3), tmp27, xmask)
tl.store(out_ptr3 + x3, tmp24, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_convolution_relu_1(
in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (r2 + 16 * x3), xmask, other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp29 = tmp27 + tmp28
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp23, xmask)
tl.store(out_ptr1 + (r2 + 16 * x3), tmp29, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (4, 2, 1, 1), (2, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
buf6 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_0[grid(8)](
buf1, primals_2, buf2, buf6, buf5, 8, 16, XBLOCK=8, num_warps=2,
num_stages=1)
del primals_2
buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 2, 4, 4), (32, 16, 4, 1))
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
buf13 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf12 = empty_strided_cuda((1, 8, 1, 1), (8, 1, 8, 8), torch.float32)
triton_per_fused__native_batch_norm_legit_convolution_relu_0[grid(8)](
buf8, primals_5, buf9, buf13, buf12, 8, 16, XBLOCK=8, num_warps
=2, num_stages=1)
del primals_5
buf14 = extern_kernels.convolution(buf13, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 16, 4, 1))
buf15 = buf14
del buf14
buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf17 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
buf19 = reinterpret_tensor(buf17, (1, 16, 1, 1), (16, 1, 1, 1), 0)
del buf17
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused__native_batch_norm_legit_add_convolution_relu_1[grid
(16)](buf15, buf19, primals_7, primals_3, buf16, buf20, 16, 16,
XBLOCK=8, num_warps=2, num_stages=1)
del primals_7
return (buf20, primals_1, primals_3, primals_4, primals_6, buf1,
reinterpret_tensor(buf5, (8,), (1,), 0), buf6, buf8,
reinterpret_tensor(buf12, (8,), (1,), 0), buf13, buf15, buf16,
buf19, reinterpret_tensor(buf9, (1, 8, 1, 1), (8, 1, 1, 1), 0),
reinterpret_tensor(buf2, (1, 8, 1, 1), (8, 1, 1, 1), 0))
class ConvBnRelu(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super(ConvBnRelu, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class ConvTripleBlock(nn.Module):
"""
A block of 3 ConvBnRelu blocks.
This triple block makes up a residual block as described in the paper
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super(ConvTripleBlock, self).__init__()
out_channels_half = out_channels // 2
self.convblock1 = ConvBnRelu(in_channels, out_channels_half)
self.convblock2 = ConvBnRelu(out_channels_half, out_channels_half,
kernel_size=3, stride=1, padding=1)
self.convblock3 = ConvBnRelu(out_channels_half, out_channels)
def forward(self, x):
x = self.convblock1(x)
x = self.convblock2(x)
x = self.convblock3(x)
return x
class SkipLayer(nn.Module):
"""
The skip connections are necessary for transferring global and local context
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super(SkipLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
if in_channels != out_channels:
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
if self.in_channels != self.out_channels:
x = self.conv(x)
return x
class ResidualNew(nn.Module):
"""
The highly used Residual block
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super(ResidualNew, self).__init__()
self.convblock = ConvTripleBlock(in_channels, out_channels)
self.skip = SkipLayer(in_channels, out_channels)
def forward(self, input_0):
primals_1 = self.convblock.convblock1.conv.weight
primals_2 = self.convblock.convblock1.conv.bias
primals_4 = self.convblock.convblock2.conv.weight
primals_5 = self.convblock.convblock2.conv.bias
primals_6 = self.convblock.convblock3.conv.weight
primals_7 = self.convblock.convblock3.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| SkywalkerAtlas/HRGAN | Residual | false | 5,839 | [
"MIT"
] | 1 | bf6d58c1f3c6e042c7ea70319a25e3420531d552 | https://github.com/SkywalkerAtlas/HRGAN/tree/bf6d58c1f3c6e042c7ea70319a25e3420531d552 | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class ConvBnRelu(nn.Module):
"""
A block of convolution, relu, batchnorm
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.bn = nn.InstanceNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class ConvTripleBlock(nn.Module):
"""
A block of 3 ConvBnRelu blocks.
This triple block makes up a residual block as described in the paper
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super().__init__()
out_channels_half = out_channels // 2
self.convblock1 = ConvBnRelu(in_channels, out_channels_half)
self.convblock2 = ConvBnRelu(out_channels_half, out_channels_half,
kernel_size=3, stride=1, padding=1)
self.convblock3 = ConvBnRelu(out_channels_half, out_channels)
def forward(self, x):
x = self.convblock1(x)
x = self.convblock2(x)
x = self.convblock3(x)
return x
class SkipLayer(nn.Module):
"""
The skip connections are necessary for transferring global and local context
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
if in_channels != out_channels:
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
if self.in_channels != self.out_channels:
x = self.conv(x)
return x
class Model(nn.Module):
"""
The highly used Residual block
Resolution h x w does not change across this block
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.convblock = ConvTripleBlock(in_channels, out_channels)
self.skip = SkipLayer(in_channels, out_channels)
def forward(self, x):
y = self.convblock(x)
z = self.skip(x)
out = y + z
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
ThreeNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/x6/cx65c7anrs2c3riaymjsb6mn6ohxklfcjshh3ecknq2f4xdr66qf.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x => expm1, gt, mul, mul_1, mul_2, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0507009873554805), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.7580993408473766), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/gy/cgyyx66jhuwsuzcb24qaqbctecvvjauypfp6q3be6sjrt3suenf6.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x_1 => expm1_1, gt_1, mul_3, mul_4, mul_5, where_1
# Graph fragment:
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0507009873554805), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {})
# %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_4,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.7580993408473766), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {})
triton_poi_fused_elu_1 = async_compile.triton('triton_poi_fused_elu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wx/cwxar4rk2x5ajbatqjvts2od46iervhwx3dnv55krm6kmnormfto.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x_2 => expm1_2, gt_2, mul_6, mul_7, mul_8, where_2
# Graph fragment:
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 1.0507009873554805), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 1.0), kwargs = {})
# %expm1_2 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_7,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_2, 1.7580993408473766), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %mul_6, %mul_8), kwargs = {})
triton_poi_fused_elu_2 = async_compile.triton('triton_poi_fused_elu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 40960
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/h6/ch6kmqip2anqexwfkxuxh37r45n7j3wdnno5aqebkeo6yztktwjo.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_3 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {})
triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (2048, 4), (4, 1))
assert_size_stride(primals_2, (2048, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1024, 2048), (2048, 1))
assert_size_stride(primals_5, (1024, ), (1, ))
assert_size_stride(primals_6, (640, 1024), (1024, 1))
assert_size_stride(primals_7, (640, ), (1, ))
assert_size_stride(primals_8, (2, 640), (640, 1))
assert_size_stride(primals_9, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2048), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 2048), (32768, 8192, 2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_elu_0.run(buf0, buf1, 131072, grid=grid(131072), stream=stream0)
buf2 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2048), (2048, 1), 0), reinterpret_tensor(primals_4, (2048, 1024), (1, 2048), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu]
triton_poi_fused_elu_1.run(buf2, buf3, 65536, grid=grid(65536), stream=stream0)
buf4 = empty_strided_cuda((64, 640), (640, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_6, (1024, 640), (1, 1024), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 640), (10240, 2560, 640, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.elu]
triton_poi_fused_elu_2.run(buf4, buf5, 40960, grid=grid(40960), stream=stream0)
buf6 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 640), (640, 1), 0), reinterpret_tensor(primals_8, (640, 2), (1, 640), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_3.run(buf7, primals_9, 128, grid=grid(128), stream=stream0)
del primals_9
return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 2048), (2048, 1), 0), buf2, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0), buf4, reinterpret_tensor(buf5, (64, 640), (640, 1), 0), buf7, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1024, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((640, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((640, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((2, 640), (640, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ThreeNet(nn.Module):
def __init__(self, n_features, e1=2048, e2=1024, e3=640, e4=512, e5=216,
p=0.4):
super(ThreeNet, self).__init__()
self.a1 = nn.Linear(n_features, e1)
self.a2 = nn.Linear(e1, e2)
self.a3 = nn.Linear(e2, e3)
self.a4 = nn.Linear(e3, 2)
self.dropout = nn.Dropout(p)
def forward(self, x):
x = F.selu(self.dropout(self.a1(x)))
x = F.selu(self.dropout(self.a2(x)))
x = F.selu(self.dropout(self.a3(x)))
x = torch.sigmoid(self.a4(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_poi_fused_elu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (2048, 4), (4, 1))
assert_size_stride(primals_2, (2048,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1024, 2048), (2048, 1))
assert_size_stride(primals_5, (1024,), (1,))
assert_size_stride(primals_6, (640, 1024), (1024, 1))
assert_size_stride(primals_7, (640,), (1,))
assert_size_stride(primals_8, (2, 640), (640, 1))
assert_size_stride(primals_9, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2048), (2048, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2048), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 2048), (32768, 8192, 2048, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_elu_0[grid(131072)](buf0, buf1, 131072, XBLOCK=512,
num_warps=8, num_stages=1)
buf2 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2048),
(2048, 1), 0), reinterpret_tensor(primals_4, (2048, 1024), (1,
2048), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1),
torch.float32)
triton_poi_fused_elu_1[grid(65536)](buf2, buf3, 65536, XBLOCK=512,
num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 640), (640, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 1024),
(1024, 1), 0), reinterpret_tensor(primals_6, (1024, 640), (1,
1024), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 640), (10240, 2560, 640, 1),
torch.float32)
triton_poi_fused_elu_2[grid(40960)](buf4, buf5, 40960, XBLOCK=256,
num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 640), (640, 1), 0),
reinterpret_tensor(primals_8, (640, 2), (1, 640), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf6
triton_poi_fused_sigmoid_3[grid(128)](buf7, primals_9, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf1, (64, 2048), (2048, 1), 0
), buf2, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 640), (640, 1), 0
), buf7, primals_8, primals_6, primals_4
class ThreeNetNew(nn.Module):
def __init__(self, n_features, e1=2048, e2=1024, e3=640, e4=512, e5=216,
p=0.4):
super(ThreeNetNew, self).__init__()
self.a1 = nn.Linear(n_features, e1)
self.a2 = nn.Linear(e1, e2)
self.a3 = nn.Linear(e2, e3)
self.a4 = nn.Linear(e3, 2)
self.dropout = nn.Dropout(p)
def forward(self, input_0):
primals_1 = self.a1.weight
primals_2 = self.a1.bias
primals_4 = self.a2.weight
primals_5 = self.a2.bias
primals_6 = self.a3.weight
primals_7 = self.a3.bias
primals_8 = self.a4.weight
primals_9 = self.a4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| SkBlaz/KBNR | ThreeNet | false | 5,840 | [
"MIT"
] | 1 | 4c37fe3fdfa7719572affd617e2dab43a54ba1d5 | https://github.com/SkBlaz/KBNR/tree/4c37fe3fdfa7719572affd617e2dab43a54ba1d5 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, n_features, e1=2048, e2=1024, e3=640, e4=512, e5=216,
p=0.4):
super().__init__()
self.a1 = nn.Linear(n_features, e1)
self.a2 = nn.Linear(e1, e2)
self.a3 = nn.Linear(e2, e3)
self.a4 = nn.Linear(e3, 2)
self.dropout = nn.Dropout(p)
def forward(self, x):
x = F.selu(self.dropout(self.a1(x)))
x = F.selu(self.dropout(self.a2(x)))
x = F.selu(self.dropout(self.a3(x)))
x = torch.sigmoid(self.a4(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
AndModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ja/cjai25ymezyuledylgfusmsbmzcntnnlj2ymnqb47pogtjos3bke.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.minimum]
# Source node to ATen node mapping:
# out => minimum
# Graph fragment:
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%arg1_1, %arg0_1), kwargs = {})
triton_poi_fused_minimum_0 = async_compile.triton('triton_poi_fused_minimum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_minimum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_minimum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.minimum]
stream0 = get_raw_stream(0)
triton_poi_fused_minimum_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn
class AndModule(nn.Module):
def forward(self, attn1, attn2):
out = torch.min(attn1, attn2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_minimum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_minimum_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class AndModuleNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| SpyrosMouselinos/DeltaFormers | AndModule | false | 5,841 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn
class Model(nn.Module):
def forward(self, attn1, attn2):
out = torch.min(attn1, attn2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
FiveNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/x6/cx65c7anrs2c3riaymjsb6mn6ohxklfcjshh3ecknq2f4xdr66qf.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x => expm1, gt, mul, mul_1, mul_2, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0507009873554805), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.7580993408473766), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/gy/cgyyx66jhuwsuzcb24qaqbctecvvjauypfp6q3be6sjrt3suenf6.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x_1 => expm1_1, gt_1, mul_3, mul_4, mul_5, where_1
# Graph fragment:
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0507009873554805), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {})
# %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_4,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.7580993408473766), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {})
triton_poi_fused_elu_1 = async_compile.triton('triton_poi_fused_elu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wx/cwxar4rk2x5ajbatqjvts2od46iervhwx3dnv55krm6kmnormfto.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x_2 => expm1_2, gt_2, mul_6, mul_7, mul_8, where_2
# Graph fragment:
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 1.0507009873554805), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 1.0), kwargs = {})
# %expm1_2 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_7,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_2, 1.7580993408473766), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %mul_6, %mul_8), kwargs = {})
triton_poi_fused_elu_2 = async_compile.triton('triton_poi_fused_elu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 40960
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dz/cdzkjcozhsc75uorevx7znrpgkzbspdwobijrpdw2vkua3exf2ii.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x_3 => expm1_3, gt_3, mul_10, mul_11, mul_9, where_3
# Graph fragment:
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_7, 0), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, 1.0507009873554805), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, 1.0), kwargs = {})
# %expm1_3 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_10,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_3, 1.7580993408473766), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %mul_9, %mul_11), kwargs = {})
triton_poi_fused_elu_3 = async_compile.triton('triton_poi_fused_elu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cv/ccv4dzyrbocodwtc6uvuqfu6mqpxl43fxdr6kzafz6svjmgwoix3.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_4 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_9,), kwargs = {})
triton_poi_fused_sigmoid_4 = async_compile.triton('triton_poi_fused_sigmoid_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (2048, 4), (4, 1))
assert_size_stride(primals_2, (2048, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1024, 2048), (2048, 1))
assert_size_stride(primals_5, (1024, ), (1, ))
assert_size_stride(primals_6, (640, 1024), (1024, 1))
assert_size_stride(primals_7, (640, ), (1, ))
assert_size_stride(primals_8, (512, 640), (640, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (2, 512), (512, 1))
assert_size_stride(primals_11, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2048), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 2048), (32768, 8192, 2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_elu_0.run(buf0, buf1, 131072, grid=grid(131072), stream=stream0)
buf2 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2048), (2048, 1), 0), reinterpret_tensor(primals_4, (2048, 1024), (1, 2048), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu]
triton_poi_fused_elu_1.run(buf2, buf3, 65536, grid=grid(65536), stream=stream0)
buf4 = empty_strided_cuda((64, 640), (640, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_6, (1024, 640), (1, 1024), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 640), (10240, 2560, 640, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.elu]
triton_poi_fused_elu_2.run(buf4, buf5, 40960, grid=grid(40960), stream=stream0)
buf6 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 640), (640, 1), 0), reinterpret_tensor(primals_8, (640, 512), (1, 640), 0), alpha=1, beta=1, out=buf6)
del primals_9
buf7 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.elu]
triton_poi_fused_elu_3.run(buf6, buf7, 32768, grid=grid(32768), stream=stream0)
buf8 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (64, 512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 2), (1, 512), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_4.run(buf9, primals_11, 128, grid=grid(128), stream=stream0)
del primals_11
return (buf9, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 2048), (2048, 1), 0), buf2, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0), buf4, reinterpret_tensor(buf5, (64, 640), (640, 1), 0), buf6, reinterpret_tensor(buf7, (64, 512), (512, 1), 0), buf9, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1024, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((640, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((640, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 640), (640, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((2, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class FiveNet(nn.Module):
def __init__(self, n_features, e1=1024, e2=2048, e3=1024, e4=640, e5=
512, p=0.4):
super(FiveNet, self).__init__()
self.a1 = nn.Linear(n_features, e2)
self.a2 = nn.Linear(e2, e3)
self.a3 = nn.Linear(e3, e4)
self.a4 = nn.Linear(e4, e5)
self.a5 = nn.Linear(e5, 2)
self.dropout = nn.Dropout(p)
def forward(self, x):
x = F.selu(self.dropout(self.a1(x)))
x = F.selu(self.dropout(self.a2(x)))
x = F.selu(self.dropout(self.a3(x)))
x = F.selu(self.dropout(self.a4(x)))
x = torch.sigmoid(self.a5(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_poi_fused_elu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_poi_fused_elu_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0507009873554805
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp0 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = 1.7580993408473766
tmp9 = tmp7 * tmp8
tmp10 = tl.where(tmp2, tmp4, tmp9)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_poi_fused_sigmoid_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (2048, 4), (4, 1))
assert_size_stride(primals_2, (2048,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1024, 2048), (2048, 1))
assert_size_stride(primals_5, (1024,), (1,))
assert_size_stride(primals_6, (640, 1024), (1024, 1))
assert_size_stride(primals_7, (640,), (1,))
assert_size_stride(primals_8, (512, 640), (640, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (2, 512), (512, 1))
assert_size_stride(primals_11, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2048), (2048, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2048), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 2048), (32768, 8192, 2048, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_elu_0[grid(131072)](buf0, buf1, 131072, XBLOCK=512,
num_warps=8, num_stages=1)
buf2 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2048),
(2048, 1), 0), reinterpret_tensor(primals_4, (2048, 1024), (1,
2048), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1),
torch.float32)
triton_poi_fused_elu_1[grid(65536)](buf2, buf3, 65536, XBLOCK=512,
num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 640), (640, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 1024),
(1024, 1), 0), reinterpret_tensor(primals_6, (1024, 640), (1,
1024), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 640), (10240, 2560, 640, 1),
torch.float32)
triton_poi_fused_elu_2[grid(40960)](buf4, buf5, 40960, XBLOCK=256,
num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 640),
(640, 1), 0), reinterpret_tensor(primals_8, (640, 512), (1, 640
), 0), alpha=1, beta=1, out=buf6)
del primals_9
buf7 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1),
torch.float32)
triton_poi_fused_elu_3[grid(32768)](buf6, buf7, 32768, XBLOCK=128,
num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (64, 512), (512, 1), 0),
reinterpret_tensor(primals_10, (512, 2), (1, 512), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf8
triton_poi_fused_sigmoid_4[grid(128)](buf9, primals_11, 128, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_11
return buf9, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf1, (64, 2048), (2048, 1), 0
), buf2, reinterpret_tensor(buf3, (64, 1024), (1024, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 640), (640, 1), 0
), buf6, reinterpret_tensor(buf7, (64, 512), (512, 1), 0
), buf9, primals_10, primals_8, primals_6, primals_4
class FiveNetNew(nn.Module):
def __init__(self, n_features, e1=1024, e2=2048, e3=1024, e4=640, e5=
512, p=0.4):
super(FiveNetNew, self).__init__()
self.a1 = nn.Linear(n_features, e2)
self.a2 = nn.Linear(e2, e3)
self.a3 = nn.Linear(e3, e4)
self.a4 = nn.Linear(e4, e5)
self.a5 = nn.Linear(e5, 2)
self.dropout = nn.Dropout(p)
def forward(self, input_0):
primals_1 = self.a1.weight
primals_2 = self.a1.bias
primals_4 = self.a2.weight
primals_5 = self.a2.bias
primals_6 = self.a3.weight
primals_7 = self.a3.bias
primals_8 = self.a4.weight
primals_9 = self.a4.bias
primals_10 = self.a5.weight
primals_11 = self.a5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| SkBlaz/KBNR | FiveNet | false | 5,842 | [
"MIT"
] | 1 | 4c37fe3fdfa7719572affd617e2dab43a54ba1d5 | https://github.com/SkBlaz/KBNR/tree/4c37fe3fdfa7719572affd617e2dab43a54ba1d5 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, n_features, e1=1024, e2=2048, e3=1024, e4=640, e5=
512, p=0.4):
super().__init__()
self.a1 = nn.Linear(n_features, e2)
self.a2 = nn.Linear(e2, e3)
self.a3 = nn.Linear(e3, e4)
self.a4 = nn.Linear(e4, e5)
self.a5 = nn.Linear(e5, 2)
self.dropout = nn.Dropout(p)
def forward(self, x):
x = F.selu(self.dropout(self.a1(x)))
x = F.selu(self.dropout(self.a2(x)))
x = F.selu(self.dropout(self.a3(x)))
x = F.selu(self.dropout(self.a4(x)))
x = torch.sigmoid(self.a5(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
OrModule | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xn/cxncjpzgxjplm55ywcfy5vnpvvgzqmw56ruh2sgj4c3gtprfogbe.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.maximum]
# Source node to ATen node mapping:
# out => maximum
# Graph fragment:
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%arg1_1, %arg0_1), kwargs = {})
triton_poi_fused_maximum_0 = async_compile.triton('triton_poi_fused_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.maximum]
stream0 = get_raw_stream(0)
triton_poi_fused_maximum_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn
class OrModule(nn.Module):
def forward(self, attn1, attn2):
out = torch.max(attn1, attn2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_maximum_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class OrModuleNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| SpyrosMouselinos/DeltaFormers | OrModule | false | 5,843 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn
class Model(nn.Module):
def forward(self, attn1, attn2):
out = torch.max(attn1, attn2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
OneLayerFCBodyWithAction | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/kq/ckqwt2pwz66gtbhjk2az2uo7eeaumbjxytnisacsyuay6w5j2y3l.py
# Topologically Sorted Source Nodes: [cat, phi], Original ATen: [aten.cat, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# cat => cat
# phi => relu
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_1, %view_3], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%cat,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_cat_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_cat_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = 0.0
tmp14 = tmp12 <= tmp13
tl.store(out_ptr0 + (x3), tmp12, xmask)
tl.store(out_ptr1 + (x3), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [cat, phi], Original ATen: [aten.cat, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_relu_threshold_backward_0.run(buf0, buf1, buf2, buf3, 512, grid=grid(512), stream=stream0)
del buf0
del buf1
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def layer_init(layer, w_scale=1.0):
nn.init.orthogonal_(layer.weight.data)
layer.weight.data.mul_(w_scale)
nn.init.constant_(layer.bias.data, 0)
return layer
class OneLayerFCBodyWithAction(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units, gate=F.relu):
super(OneLayerFCBodyWithAction, self).__init__()
self.fc_s = layer_init(nn.Linear(state_dim, hidden_units))
self.fc_a = layer_init(nn.Linear(action_dim, hidden_units))
self.gate = gate
self.feature_dim = hidden_units * 2
def forward(self, x, action):
phi = self.gate(torch.cat([self.fc_s(x), self.fc_a(action)], dim=1))
return phi
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4, 'hidden_units': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_relu_threshold_backward_0(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = 0.0
tmp14 = tmp12 <= tmp13
tl.store(out_ptr0 + x3, tmp12, xmask)
tl.store(out_ptr1 + x3, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_cat_relu_threshold_backward_0[grid(512)](buf0,
buf1, buf2, buf3, 512, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del buf1
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf3
def layer_init(layer, w_scale=1.0):
nn.init.orthogonal_(layer.weight.data)
layer.weight.data.mul_(w_scale)
nn.init.constant_(layer.bias.data, 0)
return layer
class OneLayerFCBodyWithActionNew(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units, gate=F.relu):
super(OneLayerFCBodyWithActionNew, self).__init__()
self.fc_s = layer_init(nn.Linear(state_dim, hidden_units))
self.fc_a = layer_init(nn.Linear(action_dim, hidden_units))
self.gate = gate
self.feature_dim = hidden_units * 2
def forward(self, input_0, input_1):
primals_1 = self.fc_s.weight
primals_2 = self.fc_s.bias
primals_4 = self.fc_a.weight
primals_5 = self.fc_a.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| Sohojoe/UdacityDeepRL-Project2 | OneLayerFCBodyWithAction | false | 5,844 | [
"MIT"
] | 1 | 7137eea0b606ea32d00424d23130ff213f03ecf1 | https://github.com/Sohojoe/UdacityDeepRL-Project2/tree/7137eea0b606ea32d00424d23130ff213f03ecf1 | import torch
import torch.nn as nn
import torch.nn.functional as F
def layer_init(layer, w_scale=1.0):
nn.init.orthogonal_(layer.weight.data)
layer.weight.data.mul_(w_scale)
nn.init.constant_(layer.bias.data, 0)
return layer
class Model(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units, gate=F.relu):
super().__init__()
self.fc_s = layer_init(nn.Linear(state_dim, hidden_units))
self.fc_a = layer_init(nn.Linear(action_dim, hidden_units))
self.gate = gate
self.feature_dim = hidden_units * 2
def forward(self, x, action):
phi = self.gate(torch.cat([self.fc_s(x), self.fc_a(action)], dim=1))
return phi
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
QREmbeddingBag | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/iy/ciyon33lu2o3f2lebmdecxtlu42syxcwsaphharmspenqyfixtlk.py
# Topologically Sorted Source Nodes: [embed_q], Original ATen: [aten.arange]
# Source node to ATen node mapping:
# embed_q => iota
# Graph fragment:
# %iota : [num_users=3] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 4, dtype: torch.int64, device: cuda:0, requires_grad: False})
triton_poi_fused_arange_0 = async_compile.triton('triton_poi_fused_arange_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_arange_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 4*x0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zf/czfbkirglecm7wywddzz66rq764tpg3xvmbcbwoorawgjupe2rmx.py
# Topologically Sorted Source Nodes: [truediv, input_q, remainder, input_r], Original ATen: [aten.div, aten._to_copy, aten.remainder]
# Source node to ATen node mapping:
# input_q => convert_element_type
# input_r => convert_element_type_1
# remainder => remainder
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, 4), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%div, torch.int64), kwargs = {})
# %remainder : [num_users=1] = call_function[target=torch.ops.aten.remainder.Scalar](args = (%primals_1, 4), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%remainder, torch.int64), kwargs = {})
triton_poi_fused__to_copy_div_remainder_1 = async_compile.triton('triton_poi_fused__to_copy_div_remainder_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_div_remainder_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_div_remainder_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = tmp2.to(tl.int64)
tmp4 = 4.0
tmp5 = tmp0 % tmp4
tmp6 = tl.full([1], 0, tl.int32)
tmp7 = tmp5 != tmp6
tmp8 = libdevice.signbit(tmp5) if (tmp5).dtype is tl.float32 else tmp5 < 0
tmp9 = libdevice.signbit(tmp4) if (tmp4).dtype is tl.float32 else tmp4 < 0
tmp10 = tmp8 != tmp9
tmp11 = tmp7 & tmp10
tmp12 = tmp5 + tmp4
tmp13 = tl.where(tmp11, tmp12, tmp5)
tmp14 = tmp13.to(tl.int64)
tl.store(out_ptr0 + (x0), tmp3, xmask)
tl.store(out_ptr1 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/s6/cs6amwv6tcyb72n2inb7juqh7pzigbagrrevtktdjfchpnz3tffn.py
# Topologically Sorted Source Nodes: [embed], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# embed => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %getitem_4), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [embed_q], Original ATen: [aten.arange]
stream0 = get_raw_stream(0)
triton_poi_fused_arange_0.run(buf0, 4, grid=grid(4), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [truediv, input_q, remainder, input_r], Original ATen: [aten.div, aten._to_copy, aten.remainder]
triton_poi_fused__to_copy_div_remainder_1.run(primals_1, buf1, buf7, 16, grid=grid(16), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [embed_q], Original ATen: [aten._embedding_bag]
buf2 = torch.ops.aten._embedding_bag.default(primals_2, reinterpret_tensor(buf1, (16, ), (1, ), 0), buf0, False, 1)
del primals_2
buf3 = buf2[0]
buf4 = buf2[1]
buf5 = buf2[2]
buf6 = buf2[3]
del buf2
# Topologically Sorted Source Nodes: [embed_r], Original ATen: [aten._embedding_bag]
buf8 = torch.ops.aten._embedding_bag.default(primals_3, reinterpret_tensor(buf7, (16, ), (1, ), 0), buf0, False, 1)
del primals_3
buf9 = buf8[0]
buf10 = buf8[1]
buf11 = buf8[2]
buf12 = buf8[3]
del buf8
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [embed], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf3, buf9, buf13, 16, grid=grid(16), stream=stream0)
return (buf13, buf0, reinterpret_tensor(buf1, (16, ), (1, ), 0), buf3, buf4, buf5, buf6, reinterpret_tensor(buf7, (16, ), (1, ), 0), buf9, buf10, buf11, buf12, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
class QREmbeddingBag(nn.Module):
"""Computes sums or means over two 'bags' of embeddings, one using the quotient
of the indices and the other using the remainder of the indices, without
instantiating the intermediate embeddings, then performs an operation to combine these.
For bags of constant length and no :attr:`per_sample_weights`, this class
* with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=0)``,
* with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=0)``,
* with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=0)``.
However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
operations.
QREmbeddingBag also supports per-sample weights as an argument to the forward
pass. This scales the output of the Embedding before performing a weighted
reduction as specified by ``mode``. If :attr:`per_sample_weights`` is passed, the
only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
:attr:`per_sample_weights`.
Known Issues:
Autograd breaks with multiple GPUs. It breaks only with multiple embeddings.
Args:
num_categories (int): total number of unique categories. The input indices must be in
0, 1, ..., num_categories - 1.
embedding_dim (list): list of sizes for each embedding vector in each table. If ``"add"``
or ``"mult"`` operation are used, these embedding dimensions must be
the same. If a single embedding_dim is used, then it will use this
embedding_dim for both embedding tables.
num_collisions (int): number of collisions to enforce.
operation (string, optional): ``"concat"``, ``"add"``, or ``"mult". Specifies the operation
to compose embeddings. ``"concat"`` concatenates the embeddings,
``"add"`` sums the embeddings, and ``"mult"`` multiplies
(component-wise) the embeddings.
Default: ``"mult"``
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
Note: this option is not supported when ``mode="max"``.
mode (string, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
into consideration. ``"mean"`` computes the average of the values
in the bag, ``"max"`` computes the max value over each bag.
Default: ``"mean"``
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
Notes for more details regarding sparse gradients. Note: this option is not
supported when ``mode="max"``.
Attributes:
weight (Tensor): the learnable weights of each embedding table is the module of shape
`(num_embeddings, embedding_dim)` initialized using a uniform distribution
with sqrt(1 / num_categories).
Inputs: :attr:`input` (LongTensor), :attr:`offsets` (LongTensor, optional), and
:attr:`per_index_weights` (Tensor, optional)
- If :attr:`input` is 2D of shape `(B, N)`,
it will be treated as ``B`` bags (sequences) each of fixed length ``N``, and
this will return ``B`` values aggregated in a way depending on the :attr:`mode`.
:attr:`offsets` is ignored and required to be ``None`` in this case.
- If :attr:`input` is 1D of shape `(N)`,
it will be treated as a concatenation of multiple bags (sequences).
:attr:`offsets` is required to be a 1D tensor containing the
starting index positions of each bag in :attr:`input`. Therefore,
for :attr:`offsets` of shape `(B)`, :attr:`input` will be viewed as
having ``B`` bags. Empty bags (i.e., having 0-length) will have
returned vectors filled by zeros.
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
must have exactly the same shape as input and is treated as having the same
:attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.
Output shape: `(B, embedding_dim)`
"""
__constants__ = ['num_categories', 'embedding_dim', 'num_collisions',
'operation', 'max_norm', 'norm_type', 'scale_grad_by_freq', 'mode',
'sparse']
def __init__(self, num_categories, embedding_dim, num_collisions,
operation='mult', max_norm=None, norm_type=2.0, scale_grad_by_freq=
False, mode='mean', sparse=False, _weight=None):
super(QREmbeddingBag, self).__init__()
assert operation in ['concat', 'mult', 'add'], 'Not valid operation!'
self.num_categories = num_categories
if isinstance(embedding_dim, int) or len(embedding_dim) == 1:
self.embedding_dim = [embedding_dim, embedding_dim]
else:
self.embedding_dim = embedding_dim
self.num_collisions = num_collisions
self.operation = operation
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
if self.operation == 'add' or self.operation == 'mult':
assert self.embedding_dim[0] == self.embedding_dim[1
], 'Embedding dimensions do not match!'
self.num_embeddings = [int(np.ceil(num_categories / num_collisions)
), num_collisions]
if _weight is None:
self.weight_q = Parameter(torch.Tensor(self.num_embeddings[0],
self.embedding_dim[0]))
self.weight_r = Parameter(torch.Tensor(self.num_embeddings[1],
self.embedding_dim[1]))
self.reset_parameters()
else:
assert list(_weight[0].shape) == [self.num_embeddings[0], self.
embedding_dim[0]
], 'Shape of weight for quotient table does not match num_embeddings and embedding_dim'
assert list(_weight[1].shape) == [self.num_embeddings[1], self.
embedding_dim[1]
], 'Shape of weight for remainder table does not match num_embeddings and embedding_dim'
self.weight_q = Parameter(_weight[0])
self.weight_r = Parameter(_weight[1])
self.mode = mode
self.sparse = sparse
def reset_parameters(self):
nn.init.uniform_(self.weight_q, np.sqrt(1 / self.num_categories))
nn.init.uniform_(self.weight_r, np.sqrt(1 / self.num_categories))
def forward(self, input, offsets=None, per_sample_weights=None):
input_q = (input / self.num_collisions).long()
input_r = torch.remainder(input, self.num_collisions).long()
embed_q = F.embedding_bag(input_q, self.weight_q, offsets, self.
max_norm, self.norm_type, self.scale_grad_by_freq, self.mode,
self.sparse, per_sample_weights)
embed_r = F.embedding_bag(input_r, self.weight_r, offsets, self.
max_norm, self.norm_type, self.scale_grad_by_freq, self.mode,
self.sparse, per_sample_weights)
if self.operation == 'concat':
embed = torch.cat((embed_q, embed_r), dim=1)
elif self.operation == 'add':
embed = embed_q + embed_r
elif self.operation == 'mult':
embed = embed_q * embed_r
return embed
def extra_repr(self):
s = '{num_embeddings}, {embedding_dim}'
if self.max_norm is not None:
s += ', max_norm={max_norm}'
if self.norm_type != 2:
s += ', norm_type={norm_type}'
if self.scale_grad_by_freq is not False:
s += ', scale_grad_by_freq={scale_grad_by_freq}'
s += ', mode={mode}'
return s.format(**self.__dict__)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_categories': 4, 'embedding_dim': 4, 'num_collisions': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_arange_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 4 * x0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused__to_copy_div_remainder_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = tmp2.to(tl.int64)
tmp4 = 4.0
tmp5 = tmp0 % tmp4
tmp6 = tl.full([1], 0, tl.int32)
tmp7 = tmp5 != tmp6
tmp8 = libdevice.signbit(tmp5) if tmp5.dtype is tl.float32 else tmp5 < 0
tmp9 = libdevice.signbit(tmp4) if tmp4.dtype is tl.float32 else tmp4 < 0
tmp10 = tmp8 != tmp9
tmp11 = tmp7 & tmp10
tmp12 = tmp5 + tmp4
tmp13 = tl.where(tmp11, tmp12, tmp5)
tmp14 = tmp13.to(tl.int64)
tl.store(out_ptr0 + x0, tmp3, xmask)
tl.store(out_ptr1 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.int64)
get_raw_stream(0)
triton_poi_fused_arange_0[grid(4)](buf0, 4, XBLOCK=4, num_warps=1,
num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
triton_poi_fused__to_copy_div_remainder_1[grid(16)](primals_1, buf1,
buf7, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_1
buf2 = torch.ops.aten._embedding_bag.default(primals_2,
reinterpret_tensor(buf1, (16,), (1,), 0), buf0, False, 1)
del primals_2
buf3 = buf2[0]
buf4 = buf2[1]
buf5 = buf2[2]
buf6 = buf2[3]
del buf2
buf8 = torch.ops.aten._embedding_bag.default(primals_3,
reinterpret_tensor(buf7, (16,), (1,), 0), buf0, False, 1)
del primals_3
buf9 = buf8[0]
buf10 = buf8[1]
buf11 = buf8[2]
buf12 = buf8[3]
del buf8
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_2[grid(16)](buf3, buf9, buf13, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return buf13, buf0, reinterpret_tensor(buf1, (16,), (1,), 0
), buf3, buf4, buf5, buf6, reinterpret_tensor(buf7, (16,), (1,), 0
), buf9, buf10, buf11, buf12
class QREmbeddingBagNew(nn.Module):
"""Computes sums or means over two 'bags' of embeddings, one using the quotient
of the indices and the other using the remainder of the indices, without
instantiating the intermediate embeddings, then performs an operation to combine these.
For bags of constant length and no :attr:`per_sample_weights`, this class
* with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=0)``,
* with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=0)``,
* with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=0)``.
However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
operations.
QREmbeddingBag also supports per-sample weights as an argument to the forward
pass. This scales the output of the Embedding before performing a weighted
reduction as specified by ``mode``. If :attr:`per_sample_weights`` is passed, the
only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
:attr:`per_sample_weights`.
Known Issues:
Autograd breaks with multiple GPUs. It breaks only with multiple embeddings.
Args:
num_categories (int): total number of unique categories. The input indices must be in
0, 1, ..., num_categories - 1.
embedding_dim (list): list of sizes for each embedding vector in each table. If ``"add"``
or ``"mult"`` operation are used, these embedding dimensions must be
the same. If a single embedding_dim is used, then it will use this
embedding_dim for both embedding tables.
num_collisions (int): number of collisions to enforce.
operation (string, optional): ``"concat"``, ``"add"``, or ``"mult". Specifies the operation
to compose embeddings. ``"concat"`` concatenates the embeddings,
``"add"`` sums the embeddings, and ``"mult"`` multiplies
(component-wise) the embeddings.
Default: ``"mult"``
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
Note: this option is not supported when ``mode="max"``.
mode (string, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
into consideration. ``"mean"`` computes the average of the values
in the bag, ``"max"`` computes the max value over each bag.
Default: ``"mean"``
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
Notes for more details regarding sparse gradients. Note: this option is not
supported when ``mode="max"``.
Attributes:
weight (Tensor): the learnable weights of each embedding table is the module of shape
`(num_embeddings, embedding_dim)` initialized using a uniform distribution
with sqrt(1 / num_categories).
Inputs: :attr:`input` (LongTensor), :attr:`offsets` (LongTensor, optional), and
:attr:`per_index_weights` (Tensor, optional)
- If :attr:`input` is 2D of shape `(B, N)`,
it will be treated as ``B`` bags (sequences) each of fixed length ``N``, and
this will return ``B`` values aggregated in a way depending on the :attr:`mode`.
:attr:`offsets` is ignored and required to be ``None`` in this case.
- If :attr:`input` is 1D of shape `(N)`,
it will be treated as a concatenation of multiple bags (sequences).
:attr:`offsets` is required to be a 1D tensor containing the
starting index positions of each bag in :attr:`input`. Therefore,
for :attr:`offsets` of shape `(B)`, :attr:`input` will be viewed as
having ``B`` bags. Empty bags (i.e., having 0-length) will have
returned vectors filled by zeros.
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
must have exactly the same shape as input and is treated as having the same
:attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.
Output shape: `(B, embedding_dim)`
"""
__constants__ = ['num_categories', 'embedding_dim', 'num_collisions',
'operation', 'max_norm', 'norm_type', 'scale_grad_by_freq', 'mode',
'sparse']
def __init__(self, num_categories, embedding_dim, num_collisions,
operation='mult', max_norm=None, norm_type=2.0, scale_grad_by_freq=
False, mode='mean', sparse=False, _weight=None):
super(QREmbeddingBagNew, self).__init__()
assert operation in ['concat', 'mult', 'add'], 'Not valid operation!'
self.num_categories = num_categories
if isinstance(embedding_dim, int) or len(embedding_dim) == 1:
self.embedding_dim = [embedding_dim, embedding_dim]
else:
self.embedding_dim = embedding_dim
self.num_collisions = num_collisions
self.operation = operation
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
if self.operation == 'add' or self.operation == 'mult':
assert self.embedding_dim[0] == self.embedding_dim[1
], 'Embedding dimensions do not match!'
self.num_embeddings = [int(np.ceil(num_categories / num_collisions)
), num_collisions]
if _weight is None:
self.weight_q = Parameter(torch.Tensor(self.num_embeddings[0],
self.embedding_dim[0]))
self.weight_r = Parameter(torch.Tensor(self.num_embeddings[1],
self.embedding_dim[1]))
self.reset_parameters()
else:
assert list(_weight[0].shape) == [self.num_embeddings[0], self.
embedding_dim[0]
], 'Shape of weight for quotient table does not match num_embeddings and embedding_dim'
assert list(_weight[1].shape) == [self.num_embeddings[1], self.
embedding_dim[1]
], 'Shape of weight for remainder table does not match num_embeddings and embedding_dim'
self.weight_q = Parameter(_weight[0])
self.weight_r = Parameter(_weight[1])
self.mode = mode
self.sparse = sparse
def reset_parameters(self):
nn.init.uniform_(self.weight_q, np.sqrt(1 / self.num_categories))
nn.init.uniform_(self.weight_r, np.sqrt(1 / self.num_categories))
def extra_repr(self):
s = '{num_embeddings}, {embedding_dim}'
if self.max_norm is not None:
s += ', max_norm={max_norm}'
if self.norm_type != 2:
s += ', norm_type={norm_type}'
if self.scale_grad_by_freq is not False:
s += ', scale_grad_by_freq={scale_grad_by_freq}'
s += ', mode={mode}'
return s.format(**self.__dict__)
def forward(self, input_0):
primals_2 = self.weight_q
primals_1 = self.weight_r
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| SplitInfinity/dlrm | QREmbeddingBag | false | 5,845 | [
"MIT"
] | 1 | 726dc9059be94b249d41e9b5a399c991fe687edb | https://github.com/SplitInfinity/dlrm/tree/726dc9059be94b249d41e9b5a399c991fe687edb | import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
class Model(nn.Module):
"""Computes sums or means over two 'bags' of embeddings, one using the quotient
of the indices and the other using the remainder of the indices, without
instantiating the intermediate embeddings, then performs an operation to combine these.
For bags of constant length and no :attr:`per_sample_weights`, this class
* with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=0)``,
* with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=0)``,
* with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=0)``.
However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
operations.
QREmbeddingBag also supports per-sample weights as an argument to the forward
pass. This scales the output of the Embedding before performing a weighted
reduction as specified by ``mode``. If :attr:`per_sample_weights`` is passed, the
only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
:attr:`per_sample_weights`.
Known Issues:
Autograd breaks with multiple GPUs. It breaks only with multiple embeddings.
Args:
num_categories (int): total number of unique categories. The input indices must be in
0, 1, ..., num_categories - 1.
embedding_dim (list): list of sizes for each embedding vector in each table. If ``"add"``
or ``"mult"`` operation are used, these embedding dimensions must be
the same. If a single embedding_dim is used, then it will use this
embedding_dim for both embedding tables.
num_collisions (int): number of collisions to enforce.
operation (string, optional): ``"concat"``, ``"add"``, or ``"mult". Specifies the operation
to compose embeddings. ``"concat"`` concatenates the embeddings,
``"add"`` sums the embeddings, and ``"mult"`` multiplies
(component-wise) the embeddings.
Default: ``"mult"``
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
is renormalized to have norm :attr:`max_norm`.
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default ``False``.
Note: this option is not supported when ``mode="max"``.
mode (string, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
into consideration. ``"mean"`` computes the average of the values
in the bag, ``"max"`` computes the max value over each bag.
Default: ``"mean"``
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
Notes for more details regarding sparse gradients. Note: this option is not
supported when ``mode="max"``.
Attributes:
weight (Tensor): the learnable weights of each embedding table is the module of shape
`(num_embeddings, embedding_dim)` initialized using a uniform distrib
# ... truncated (>4000 chars) for memory efficiency |
PreActBlockNoBN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# out => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out_1 => convolution
# out_2 => relu_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yl/cyl57twtgf3lzd5sst7snomgtzysir6mpvrzx6jm7k4lxpcq6sru.py
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# out_3 => convolution_1
# out_4 => add
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_1), kwargs = {})
triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_2.run(buf4, primals_5, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_5
return (buf4, primals_2, primals_4, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class PreActBlockNoBN(nn.Module):
"""Pre-activation version of the BasicBlock."""
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(PreActBlockNoBN, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=
stride, padding=1)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1)
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.
expansion * planes, kernel_size=1, stride=stride))
def forward(self, x):
out = F.relu(x)
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = F.relu(out)
out = self.conv2(out)
out += shortcut
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_planes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_add_convolution_2[grid(256)](buf4, primals_5,
primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_5
return buf4, primals_2, primals_4, buf0, buf2
class PreActBlockNoBNNew(nn.Module):
"""Pre-activation version of the BasicBlock."""
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(PreActBlockNoBNNew, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=
stride, padding=1)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1)
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.
expansion * planes, kernel_size=1, stride=stride))
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Spijkervet/Greedy_InfoMax | PreActBlockNoBN | false | 5,846 | [
"MIT"
] | 1 | d1784da7995e029d07691ee0977fea49383fb0f8 | https://github.com/Spijkervet/Greedy_InfoMax/tree/d1784da7995e029d07691ee0977fea49383fb0f8 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""Pre-activation version of the BasicBlock."""
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super().__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=
stride, padding=1)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
padding=1)
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(nn.Conv2d(in_planes, self.
expansion * planes, kernel_size=1, stride=stride))
def forward(self, x):
out = F.relu(x)
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = F.relu(out)
out = self.conv2(out)
out += shortcut
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
SimpleNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/5y/c5yq7wkgmmcygrawripwacy566sggsmh2mzk5izw35wk7ferohhu.py
# Topologically Sorted Source Nodes: [a1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = (xindex // 1600)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/oh/cohanm7sr3shebg4mq7rt2azcmijr52qrchph5di4klyobcmad7b.py
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# mu => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = libdevice.tanh(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/za/cza67nv44riqkiyzlokj7kjzr25bmpox6dapzt6ostbdujikhukx.py
# Topologically Sorted Source Nodes: [relu_1, sigma], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# relu_1 => relu_1
# sigma => add
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_1, 0.001), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.001
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp5 <= tmp8
tl.store(out_ptr0 + (x0), tmp7, xmask)
tl.store(out_ptr1 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (100, 4), (4, 1))
assert_size_stride(primals_2, (100, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 100), (100, 1))
assert_size_stride(primals_5, (1, ), (1, ))
assert_size_stride(primals_6, (1, 100), (100, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (100, 4), (4, 1))
assert_size_stride(primals_9, (100, ), (1, ))
assert_size_stride(primals_10, (1, 100), (100, 1))
assert_size_stride(primals_11, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf0 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
# Topologically Sorted Source Nodes: [a1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf12, 6400, grid=grid(6400), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(primals_4, (100, 1), (1, 100), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(primals_6, (100, 1), (1, 100), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_1, sigma], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_2.run(buf4, primals_7, buf5, buf11, 64, grid=grid(64), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 100), (1, 4), 0), out=buf6)
del primals_8
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf6 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
# Topologically Sorted Source Nodes: [c1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf7, primals_9, buf10, 6400, grid=grid(6400), stream=stream0)
del primals_9
buf9 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 100), (100, 1), 0), reinterpret_tensor(primals_10, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf9)
del primals_11
return (buf3, buf5, reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 100), (100, 1), 0), buf3, reinterpret_tensor(buf7, (64, 100), (100, 1), 0), primals_10, buf10, buf11, primals_6, primals_4, buf12, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributions as D
class SimpleNet(nn.Module):
def __init__(self, s_dim, a_dim):
super(SimpleNet, self).__init__()
self.s_dim = s_dim
self.a_dim = a_dim
self.a1 = nn.Linear(s_dim, 100)
self.mu = nn.Linear(100, 1)
self.sigma = nn.Linear(100, 1)
self.c1 = nn.Linear(s_dim, 100)
self.v = nn.Linear(100, 1)
layers = [self.a1, self.mu, self.sigma, self.c1, self.v]
for layer in layers:
nn.init.normal(layer.weight, mean=0.0, std=0.1)
nn.init.constant(layer.bias, 0.1)
def forward(self, s):
a1 = F.relu(self.a1(s))
mu = F.tanh(self.mu(a1))
sigma = F.relu(self.sigma(a1)) + 0.001
c1 = F.relu(self.c1(s))
value = self.v(c1)
return mu, sigma, value
def choose_action(self, s):
mu, sigma, _ = self.forward(s)
gauss = D.Normal(mu, sigma)
return gauss.sample().data.numpy()
def loss_fn(self, s, a, v_td):
mu, sigma, value = self.forward(s)
td_error = v_td - value
critic_loss = td_error.pow(2)
gauss = D.Normal(mu, sigma)
log_prob = gauss.log_prob(a)
entropy = torch.log(gauss.std)
actor_loss = -(log_prob * td_error.detach() + 0.001 * entropy)
return (critic_loss + actor_loss).mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'s_dim': 4, 'a_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.distributions as D
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = xindex // 1600
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = libdevice.tanh(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_2(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.001
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp5 <= tmp8
tl.store(out_ptr0 + x0, tmp7, xmask)
tl.store(out_ptr1 + x0, tmp9, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (100, 4), (4, 1))
assert_size_stride(primals_2, (100,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 100), (100, 1))
assert_size_stride(primals_5, (1,), (1,))
assert_size_stride(primals_6, (1, 100), (100, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (100, 4), (4, 1))
assert_size_stride(primals_9, (100,), (1,))
assert_size_stride(primals_10, (1, 100), (100, 1))
assert_size_stride(primals_11, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0)
del buf0
buf12 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf1,
primals_2, buf12, 6400, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0),
reinterpret_tensor(primals_4, (100, 1), (1, 100), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf2
triton_poi_fused_tanh_1[grid(64)](buf3, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0),
reinterpret_tensor(primals_6, (100, 1), (1, 100), 0), out=buf4)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_2[grid(64)](buf4,
primals_7, buf5, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 100), (1, 4), 0), out=buf6)
del primals_8
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 100), (1600, 400, 100, 1), 0)
del buf6
buf10 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf7,
primals_9, buf10, 6400, XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf9 = buf4
del buf4
extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 100),
(100, 1), 0), reinterpret_tensor(primals_10, (100, 1), (1, 100),
0), alpha=1, beta=1, out=buf9)
del primals_11
return buf3, buf5, reinterpret_tensor(buf9, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 100), (100, 1), 0
), buf3, reinterpret_tensor(buf7, (64, 100), (100, 1), 0
), primals_10, buf10, buf11, primals_6, primals_4, buf12
class SimpleNetNew(nn.Module):
def __init__(self, s_dim, a_dim):
super(SimpleNetNew, self).__init__()
self.s_dim = s_dim
self.a_dim = a_dim
self.a1 = nn.Linear(s_dim, 100)
self.mu = nn.Linear(100, 1)
self.sigma = nn.Linear(100, 1)
self.c1 = nn.Linear(s_dim, 100)
self.v = nn.Linear(100, 1)
layers = [self.a1, self.mu, self.sigma, self.c1, self.v]
for layer in layers:
nn.init.normal(layer.weight, mean=0.0, std=0.1)
nn.init.constant(layer.bias, 0.1)
def choose_action(self, s):
mu, sigma, _ = self.forward(s)
gauss = D.Normal(mu, sigma)
return gauss.sample().data.numpy()
def loss_fn(self, s, a, v_td):
mu, sigma, value = self.forward(s)
td_error = v_td - value
critic_loss = td_error.pow(2)
gauss = D.Normal(mu, sigma)
log_prob = gauss.log_prob(a)
entropy = torch.log(gauss.std)
actor_loss = -(log_prob * td_error.detach() + 0.001 * entropy)
return (critic_loss + actor_loss).mean()
def forward(self, input_0):
primals_1 = self.a1.weight
primals_2 = self.a1.bias
primals_4 = self.mu.weight
primals_5 = self.mu.bias
primals_6 = self.sigma.weight
primals_7 = self.sigma.bias
primals_8 = self.c1.weight
primals_9 = self.c1.bias
primals_10 = self.v.weight
primals_11 = self.v.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0], output[1], output[2]
| SpencerLo-CMU/pytorch-rl-suite | SimpleNet | false | 5,847 | [
"MIT"
] | 1 | 52b215f38cbb4c39a0ccfff48ab8262b1c9ef4a0 | https://github.com/SpencerLo-CMU/pytorch-rl-suite/tree/52b215f38cbb4c39a0ccfff48ab8262b1c9ef4a0 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributions as D
class Model(nn.Module):
def __init__(self, s_dim, a_dim):
super().__init__()
self.s_dim = s_dim
self.a_dim = a_dim
self.a1 = nn.Linear(s_dim, 100)
self.mu = nn.Linear(100, 1)
self.sigma = nn.Linear(100, 1)
self.c1 = nn.Linear(s_dim, 100)
self.v = nn.Linear(100, 1)
layers = [self.a1, self.mu, self.sigma, self.c1, self.v]
for layer in layers:
nn.init.normal(layer.weight, mean=0.0, std=0.1)
nn.init.constant(layer.bias, 0.1)
def forward(self, s):
a1 = F.relu(self.a1(s))
mu = F.tanh(self.mu(a1))
sigma = F.relu(self.sigma(a1)) + 0.001
c1 = F.relu(self.c1(s))
value = self.v(c1)
return mu, sigma, value
def choose_action(self, s):
mu, sigma, _ = self.forward(s)
gauss = D.Normal(mu, sigma)
return gauss.sample().data.numpy()
def loss_fn(self, s, a, v_td):
mu, sigma, value = self.forward(s)
td_error = v_td - value
critic_loss = td_error.pow(2)
gauss = D.Normal(mu, sigma)
log_prob = gauss.log_prob(a)
entropy = torch.log(gauss.std)
actor_loss = -(log_prob * td_error.detach() + 0.001 * entropy)
return (critic_loss + actor_loss).mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
BertAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attention_scores => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/fh/cfhydrwaejluqurspx2dvattjq4qiiexqog4gfsdmfob43r5rnk5.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => amax, exp, sub, sum_1
# attention_scores_1 => div
# attention_scores_2 => add
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_8), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_div_1 = async_compile.triton('triton_poi_fused__softmax_add_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + (x2), tmp19, xmask)
tl.store(out_ptr1 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/g6/cg65jkqmchbdahuikqawep5p32pz7fmy6cfvgzohspjy5l4iqhrs.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => amax, div_1, exp, sub
# attention_scores_1 => div
# attention_scores_2 => add
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_8), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_div_2 = async_compile.triton('triton_poi_fused__softmax_add_div_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
triton_poi_fused__softmax_add_div_1.run(buf5, primals_8, buf6, buf7, 64, grid=grid(64), stream=stream0)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
triton_poi_fused__softmax_add_div_2.run(buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_7, buf9, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_10
return (reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), primals_9, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import math
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn
import torch as torch
import torch.sparse
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def transpose_key_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 3, 1)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_key_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer)
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = self.softmax(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dense.bert_output_layer = True
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.utils.data
import torch.nn as nn
import torch.nn
import torch as torch
import torch.sparse
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_add_div_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + x2, tmp19, xmask)
tl.store(out_ptr1 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused__softmax_add_div_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_add_div_1[grid(64)](buf5, primals_8, buf6,
buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_add_div_2[grid(256)](buf8, primals_8,
buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf9, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_clone_3[grid(16, 4)](buf10, buf11, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0)
del buf10
extern_kernels.addmm(primals_10, reinterpret_tensor(buf11, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf12)
del primals_10
return reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0
), primals_9, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def transpose_key_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 3, 1)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_key_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer)
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = self.softmax(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dense.bert_output_layer = True
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BertAttentionNew(nn.Module):
def __init__(self, config):
super(BertAttentionNew, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_0, input_1):
primals_1 = self.self.query.weight
primals_2 = self.self.query.bias
primals_4 = self.self.key.weight
primals_5 = self.self.key.bias
primals_6 = self.self.value.weight
primals_7 = self.self.value.bias
primals_9 = self.output.dense.weight
primals_10 = self.output.dense.bias
primals_3 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
| Somefive/cogdl | BertAttention | false | 5,848 | [
"MIT"
] | 1 | 1c5ab88aafc27529495d0d22f781055619e27cb2 | https://github.com/Somefive/cogdl/tree/1c5ab88aafc27529495d0d22f781055619e27cb2 | from _paritybench_helpers import _mock_config
import math
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn
import torch as torch
import torch.sparse
class BertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def transpose_key_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 3, 1)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_key_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer)
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = self.softmax(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dense.bert_output_layer = True
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class Model(nn.Module):
def __init__(self, config):
super().__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
|
BertIntermediate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xa/cxabafjtfjndz46pw4ti6adquiuke2zyw3aso3xn7wqzhc7xom32.py
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
# Source node to ATen node mapping:
# add => add
# erf => erf
# hidden_states_1 => mul_1
# mul => mul
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, 1.4142135623730951), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_add_div_erf_mul_0 = async_compile.triton('triton_poi_fused_add_div_erf_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
from torch.nn import Module
import math
import torch
import torch.nn as nn
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class BertIntermediate(Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config['hidden_dim'], 4 * config['hidden_dim'])
self.intermediate_act_fn = gelu
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_dim=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.nn import Module
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0[grid(1024)](buf0, buf1, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class BertIntermediateNew(Module):
def __init__(self, config):
super(BertIntermediateNew, self).__init__()
self.dense = nn.Linear(config['hidden_dim'], 4 * config['hidden_dim'])
self.intermediate_act_fn = gelu
def forward(self, input_0):
primals_1 = self.dense.weight
primals_2 = self.dense.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| SpyrosMouselinos/NVLR_solver | BertIntermediate | false | 5,849 | [
"Apache-2.0"
] | 1 | 7fe12f9eab980ee6959f0b8797aef779b3270c25 | https://github.com/SpyrosMouselinos/NVLR_solver/tree/7fe12f9eab980ee6959f0b8797aef779b3270c25 | from _paritybench_helpers import _mock_config
from torch.nn import Module
import math
import torch
import torch.nn as nn
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class Model(Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config['hidden_dim'], 4 * config['hidden_dim'])
self.intermediate_act_fn = gelu
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
QueryModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/f6/cf65bigf2x75qqtqyjjyxjzpdp7kb4qomxjgfae36bygybmqynpn.py
# Topologically Sorted Source Nodes: [repeat, attended_feats], Original ATen: [aten.repeat, aten.mul]
# Source node to ATen node mapping:
# attended_feats => mul
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_1, [1, 4, 1, 1]), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %repeat), kwargs = {})
triton_poi_fused_mul_repeat_0 = async_compile.triton('triton_poi_fused_mul_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 16384)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qt/cqt5smk332l2kh4wfeyvsehh4o3hjuh44mkvw236faomj45hqkkt.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_3, %primals_4, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tx/ctxjtvsia7dncnmfskvdhn4ghqvzrndmok4s6yrtrpaulwmmvoyr.py
# Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# out_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [repeat, attended_feats], Original ATen: [aten.repeat, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_repeat_0.run(primals_2, primals_1, buf0, 65536, grid=grid(65536), stream=stream0)
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_4, 65536, grid=grid(65536), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_2.run(buf4, primals_6, buf5, 65536, grid=grid(65536), stream=stream0)
del primals_6
return (buf4, primals_3, primals_5, buf0, buf2, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class QueryModule(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
self.dim = dim
def forward(self, feats, attn):
attended_feats = torch.mul(feats, attn.repeat(1, self.dim, 1, 1))
out = F.relu(self.conv1(attended_feats))
out = F.relu(self.conv2(out))
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64]), torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 16384
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, None)
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_repeat_0[grid(65536)](primals_2, primals_1,
buf0, 65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(65536)](buf2, primals_4,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_4
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_2[grid(65536)](
buf4, primals_6, buf5, 65536, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_6
return buf4, primals_3, primals_5, buf0, buf2, buf5
class QueryModuleNew(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
self.dim = dim
def forward(self, input_0, input_1):
primals_3 = self.conv1.weight
primals_4 = self.conv1.bias
primals_5 = self.conv2.weight
primals_6 = self.conv2.bias
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| SpyrosMouselinos/DeltaFormers | QueryModule | false | 5,850 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class Model(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
self.dim = dim
def forward(self, feats, attn):
attended_feats = torch.mul(feats, attn.repeat(1, self.dim, 1, 1))
out = F.relu(self.conv1(attended_feats))
out = F.relu(self.conv2(out))
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64]), torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [4]
|
AttentionModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/f6/cf65bigf2x75qqtqyjjyxjzpdp7kb4qomxjgfae36bygybmqynpn.py
# Topologically Sorted Source Nodes: [repeat, attended_feats], Original ATen: [aten.repeat, aten.mul]
# Source node to ATen node mapping:
# attended_feats => mul
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_1, [1, 4, 1, 1]), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %repeat), kwargs = {})
triton_poi_fused_mul_repeat_0 = async_compile.triton('triton_poi_fused_mul_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 16384)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qt/cqt5smk332l2kh4wfeyvsehh4o3hjuh44mkvw236faomj45hqkkt.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_3, %primals_4, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/fn/cfnrt4duwcumu56ph56rndy73cikgz6peivhcxw2phojuaeyivgs.py
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# out_2 => sigmoid
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_7, %primals_8, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [repeat, attended_feats], Original ATen: [aten.repeat, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_repeat_0.run(primals_2, primals_1, buf0, 65536, grid=grid(65536), stream=stream0)
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_4, 65536, grid=grid(65536), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf4, primals_6, 65536, grid=grid(65536), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_2.run(buf6, primals_8, 16384, grid=grid(16384), stream=stream0)
del primals_8
return (buf6, primals_3, primals_5, primals_7, buf0, buf2, buf4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class AttentionModule(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv3 = nn.Conv2d(dim, 1, kernel_size=(1, 1), padding=0)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
torch.nn.init.kaiming_normal_(self.conv3.weight)
self.dim = dim
def forward(self, feats, attn):
attended_feats = torch.mul(feats, attn.repeat(1, self.dim, 1, 1))
out = F.relu(self.conv1(attended_feats))
out = F.relu(self.conv2(out))
out = torch.sigmoid(self.conv3(out))
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64]), torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 16384
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_repeat_0[grid(65536)](primals_2, primals_1,
buf0, 65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(65536)](buf2, primals_4,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_4
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_1[grid(65536)](buf4, primals_6,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_6
buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf6 = buf5
del buf5
triton_poi_fused_convolution_sigmoid_2[grid(16384)](buf6, primals_8,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_8
return buf6, primals_3, primals_5, primals_7, buf0, buf2, buf4, buf6
class AttentionModuleNew(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv3 = nn.Conv2d(dim, 1, kernel_size=(1, 1), padding=0)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
torch.nn.init.kaiming_normal_(self.conv3.weight)
self.dim = dim
def forward(self, input_0, input_1):
primals_3 = self.conv1.weight
primals_4 = self.conv1.bias
primals_5 = self.conv2.weight
primals_6 = self.conv2.bias
primals_7 = self.conv3.weight
primals_8 = self.conv3.bias
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| SpyrosMouselinos/DeltaFormers | AttentionModule | false | 5,851 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class Model(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv3 = nn.Conv2d(dim, 1, kernel_size=(1, 1), padding=0)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
torch.nn.init.kaiming_normal_(self.conv3.weight)
self.dim = dim
def forward(self, feats, attn):
attended_feats = torch.mul(feats, attn.repeat(1, self.dim, 1, 1))
out = F.relu(self.conv1(attended_feats))
out = F.relu(self.conv2(out))
out = torch.sigmoid(self.conv3(out))
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64]), torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [4]
|
ComparisonModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ie/ciettq2a3562jfpgfe75iig4ki2hbm6pmbwujlvp6mw26i2odufm.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py
# Topologically Sorted Source Nodes: [conv2d, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/by/cbykhws2x6kalryfnj6qpqbhzeczn6v3odko34vz2xefoyjgdgxy.py
# Topologically Sorted Source Nodes: [conv2d_2, out_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# out_3 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_7, %primals_8, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d, out_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_4, 256, grid=grid(256), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, out_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf4, primals_6, 256, grid=grid(256), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 4, 4), (64, 16, 4, 1))
buf6 = buf5; del buf5 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, out_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_2.run(buf6, primals_8, buf7, 256, grid=grid(256), stream=stream0)
del primals_8
return (buf6, primals_3, primals_5, primals_7, buf0, buf2, buf4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class ComparisonModule(nn.Module):
def __init__(self, dim):
super().__init__()
self.projection = nn.Conv2d(2 * dim, dim, kernel_size=(1, 1), padding=0
)
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
def forward(self, in1, in2):
out = torch.cat([in1, in2], 1)
out = F.relu(self.projection(out))
out = F.relu(self.conv1(out))
out = F.relu(self.conv2(out))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_4, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_1[grid(256)](buf4, primals_6, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 4, 4), (64, 16, 4, 1))
buf6 = buf5
del buf5
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_2[grid(256)](buf6,
primals_8, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_8
return buf6, primals_3, primals_5, primals_7, buf0, buf2, buf4, buf7
class ComparisonModuleNew(nn.Module):
def __init__(self, dim):
super().__init__()
self.projection = nn.Conv2d(2 * dim, dim, kernel_size=(1, 1), padding=0
)
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
def forward(self, input_0, input_1):
primals_3 = self.projection.weight
primals_4 = self.projection.bias
primals_5 = self.conv1.weight
primals_6 = self.conv1.bias
primals_7 = self.conv2.weight
primals_8 = self.conv2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| SpyrosMouselinos/DeltaFormers | ComparisonModule | false | 5,852 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class Model(nn.Module):
def __init__(self, dim):
super().__init__()
self.projection = nn.Conv2d(2 * dim, dim, kernel_size=(1, 1), padding=0
)
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
def forward(self, in1, in2):
out = torch.cat([in1, in2], 1)
out = F.relu(self.projection(out))
out = F.relu(self.conv1(out))
out = F.relu(self.conv2(out))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ResBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# y => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/iw/ciwss4s6mhbwjd3m3xz3w2xexrkpf6d4obqawfbiopqaqcnnlprt.py
# Topologically Sorted Source Nodes: [y_1, add, relu_1], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add
# relu_1 => relu_1
# y_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %convolution_1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 0.0
tmp8 = tmp6 <= tmp7
tl.store(in_out_ptr0 + (x3), tmp6, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [y_1, add, relu_1], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward]
triton_poi_fused_add_convolution_relu_threshold_backward_1.run(buf3, primals_3, primals_2, buf4, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf3, primals_1, primals_3, buf1, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class ResBlock(torch.nn.Module):
def __init__(self, channels):
super(ResBlock, self).__init__()
self.channels = channels
self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=(3, 3),
padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv1(y)
return F.relu(x + y)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 0.0
tmp8 = tmp6 <= tmp7
tl.store(in_out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_convolution_relu_threshold_backward_1[grid(256)](
buf3, primals_3, primals_2, buf4, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_2
return buf3, primals_1, primals_3, buf1, buf4
class ResBlockNew(torch.nn.Module):
def __init__(self, channels):
super(ResBlockNew, self).__init__()
self.channels = channels
self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=(3, 3),
padding=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| StarsStation/DeepLearning | ResBlock | false | 5,853 | [
"MIT"
] | 1 | a4c833af93652069f19a8c6f0b1e42cde64bbb79 | https://github.com/StarsStation/DeepLearning/tree/a4c833af93652069f19a8c6f0b1e42cde64bbb79 | import torch
import torch.nn.functional as F
class Model(torch.nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=(3, 3),
padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv1(y)
return F.relu(x + y)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
TwoLayerFCBodyWithAction | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sm/csm4ofalq42npqq7fv6jo3il6ujywmjwqnazwa5z35h4asxel7vx.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 68
x1 = (xindex // 68)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((64*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 68, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-64) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/h5/ch5wfgxhdmtlmi7l5qnxrtr4qhayeefu77lzxdk35e2ns62vxdgh.py
# Topologically Sorted Source Nodes: [phi], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# phi => relu_1
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_6), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/it/cit4qjb7wmwrbvv2rtchpn3duppvfiyliqnz2jz3tymwbqqane7m.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (64, 68), (68, 1))
assert_size_stride(primals_6, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 68), (68, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 272, grid=grid(272), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (68, 64), (1, 68), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
buf4 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
# Topologically Sorted Source Nodes: [phi], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_6, buf4, 256, grid=grid(256), stream=stream0)
del primals_6
buf5 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf5, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
return (buf3, primals_3, buf1, buf4, primals_5, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, 68), (68, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def layer_init(layer, w_scale=1.0):
nn.init.orthogonal_(layer.weight.data)
layer.weight.data.mul_(w_scale)
nn.init.constant_(layer.bias.data, 0)
return layer
class TwoLayerFCBodyWithAction(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units=(64, 64), gate=F
.relu):
super(TwoLayerFCBodyWithAction, self).__init__()
hidden_size1, hidden_size2 = hidden_units
self.fc1 = layer_init(nn.Linear(state_dim, hidden_size1))
self.fc2 = layer_init(nn.Linear(hidden_size1 + action_dim,
hidden_size2))
self.gate = gate
self.feature_dim = hidden_size2
def forward(self, x, action):
x = self.gate(self.fc1(x))
phi = self.gate(self.fc2(torch.cat([x, action], dim=1)))
return phi
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 68
x1 = xindex // 68
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (64 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 68, tl.int64)
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-64 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (64, 68), (68, 1))
assert_size_stride(primals_6, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 68), (68, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(272)](buf0, primals_2, primals_4, buf1,
272, XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (68, 64), (1,
68), 0), out=buf2)
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3,
primals_6, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(256)](buf0,
primals_2, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
return buf3, primals_3, buf1, buf4, primals_5, buf5
def layer_init(layer, w_scale=1.0):
nn.init.orthogonal_(layer.weight.data)
layer.weight.data.mul_(w_scale)
nn.init.constant_(layer.bias.data, 0)
return layer
class TwoLayerFCBodyWithActionNew(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units=(64, 64), gate=F
.relu):
super(TwoLayerFCBodyWithActionNew, self).__init__()
hidden_size1, hidden_size2 = hidden_units
self.fc1 = layer_init(nn.Linear(state_dim, hidden_size1))
self.fc2 = layer_init(nn.Linear(hidden_size1 + action_dim,
hidden_size2))
self.gate = gate
self.feature_dim = hidden_size2
def forward(self, input_0, input_1):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| Sohojoe/UdacityDeepRL-Project2 | TwoLayerFCBodyWithAction | false | 5,854 | [
"MIT"
] | 1 | 7137eea0b606ea32d00424d23130ff213f03ecf1 | https://github.com/Sohojoe/UdacityDeepRL-Project2/tree/7137eea0b606ea32d00424d23130ff213f03ecf1 | import torch
import torch.nn as nn
import torch.nn.functional as F
def layer_init(layer, w_scale=1.0):
nn.init.orthogonal_(layer.weight.data)
layer.weight.data.mul_(w_scale)
nn.init.constant_(layer.bias.data, 0)
return layer
class Model(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units=(64, 64), gate=F
.relu):
super().__init__()
hidden_size1, hidden_size2 = hidden_units
self.fc1 = layer_init(nn.Linear(state_dim, hidden_size1))
self.fc2 = layer_init(nn.Linear(hidden_size1 + action_dim,
hidden_size2))
self.gate = gate
self.feature_dim = hidden_size2
def forward(self, x, action):
x = self.gate(self.fc1(x))
phi = self.gate(self.fc2(torch.cat([x, action], dim=1)))
return phi
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
Encoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [h_], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h_ => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xh/cxhi2oxtldw7gsvpajvcvh4iks7iujnefav4smobuv5savmjupdj.py
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# std => exp
# z => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 0.5), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %rand), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %mul_1), kwargs = {})
triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp5 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_var], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
# Topologically Sorted Source Nodes: [epsilon], Original ATen: [aten.rand_like]
buf4 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
triton_poi_fused_add_exp_mul_1.run(buf2, buf3, buf5, buf6, 256, grid=grid(256), stream=stream0)
return (buf6, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf5, primals_6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(Encoder, self).__init__()
self.FC_input = nn.Linear(input_dim, hidden_dim)
self.FC_mean = nn.Linear(hidden_dim, latent_dim)
self.FC_var = nn.Linear(hidden_dim, latent_dim)
self.training = True
def forward(self, x):
h_ = torch.relu(self.FC_input(x))
mean = self.FC_mean(h_)
log_var = self.FC_var(h_)
std = torch.exp(0.5 * log_var)
z = self.reparameterization(mean, std)
return z, mean, log_var
def reparameterization(self, mean, std):
epsilon = torch.rand_like(std)
z = mean + std * epsilon
return z
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'hidden_dim': 4, 'latent_dim': 4}]
| import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp5 = tl.load(in_ptr2 + x0, xmask)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_7
buf4 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_exp_mul_1[grid(256)](buf2, buf3, buf5, buf6,
256, XBLOCK=128, num_warps=4, num_stages=1)
return buf6, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf5, primals_6, primals_4, buf7
class EncoderNew(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(EncoderNew, self).__init__()
self.FC_input = nn.Linear(input_dim, hidden_dim)
self.FC_mean = nn.Linear(hidden_dim, latent_dim)
self.FC_var = nn.Linear(hidden_dim, latent_dim)
self.training = True
def reparameterization(self, mean, std):
epsilon = torch.rand_like(std)
z = mean + std * epsilon
return z
def forward(self, input_0):
primals_1 = self.FC_input.weight
primals_2 = self.FC_input.bias
primals_4 = self.FC_mean.weight
primals_5 = self.FC_mean.bias
primals_6 = self.FC_var.weight
primals_7 = self.FC_var.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1], output[2]
| StefanNa/dtu_mlops | Encoder | false | 5,855 | [
"Apache-2.0"
] | 1 | 148f3427f8d090d39d127857be8a37832f800279 | https://github.com/StefanNa/dtu_mlops/tree/148f3427f8d090d39d127857be8a37832f800279 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super().__init__()
self.FC_input = nn.Linear(input_dim, hidden_dim)
self.FC_mean = nn.Linear(hidden_dim, latent_dim)
self.FC_var = nn.Linear(hidden_dim, latent_dim)
self.training = True
def forward(self, x):
h_ = torch.relu(self.FC_input(x))
mean = self.FC_mean(h_)
log_var = self.FC_var(h_)
std = torch.exp(0.5 * log_var)
z = self.reparameterization(mean, std)
return z, mean, log_var
def reparameterization(self, mean, std):
epsilon = torch.rand_like(std)
z = mean + std * epsilon
return z
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
CosineClassifier | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/bs/cbsjjiba7tb74nqp4kgxnwhguhyb74na52swveq2ubkqgsjdda3o.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# x => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
triton_red_fused_linalg_vector_norm_0 = async_compile.triton('triton_red_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[16384, 512],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = (xindex // 4096)
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (2097152*x1)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2f/c2f3ux3klo77lszm3nvopysyqiori3pmw2rvdwykye3peprglsni.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.div]
# Source node to ATen node mapping:
# x => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y1 = (yindex // 512)
y0 = yindex % 512
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + (4096*y1)), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zi/czipfmhzrmxtd7w2efbevwasjwg2kxu2mexohgjrxt6ftf2fzdpw.py
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.linalg_vector_norm, aten.div]
# Source node to ATen node mapping:
# normalize_1 => div_1, pow_3, pow_4, sum_2
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {})
# %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {})
triton_per_fused_div_linalg_vector_norm_2 = async_compile.triton('triton_per_fused_div_linalg_vector_norm_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_linalg_vector_norm_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_linalg_vector_norm_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 4
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 1e-12
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp5, None)
tl.store(out_ptr0 + (r1 + (512*x0)), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/4p/c4pdvfoceuyvd32bhypazb7cirwblteciqlpkarnapamsshlu3hk.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 10.0), kwargs = {})
triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16384*y1)), ymask, eviction_policy='evict_last')
tmp1 = 10.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (4, 512, 1, 1), (512, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0.run(primals_1, buf0, 16384, 512, grid=grid(16384), stream=stream0)
buf1 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.div]
triton_poi_fused_div_1.run(primals_1, buf0, buf1, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del buf0
del primals_1
buf2 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf2, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.linalg_vector_norm, aten.div]
triton_per_fused_div_linalg_vector_norm_2.run(buf3, primals_2, buf4, 4, 512, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf1, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 64, 64), (16384, 1, 256, 4))
buf6 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_3.run(buf5, buf6, 16, 4096, grid=grid(16, 4096), stream=stream0)
del buf5
return (buf6, primals_2, buf1, buf3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data
class CosineClassifier(nn.Module):
def __init__(self, classes, channels=512):
super().__init__()
self.channels = channels
self.cls = nn.Conv2d(channels, classes, 1, bias=False)
self.scaler = 10.0
def forward(self, x):
x = F.normalize(x, p=2, dim=1)
return self.scaler * F.conv2d(x, F.normalize(self.cls.weight, dim=1,
p=2))
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {'classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = xindex // 4096
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 2097152 * x1), rmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y1 = yindex // 512
y0 = yindex % 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + 4096 * y1), None, eviction_policy=
'evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp5, None)
@triton.jit
def triton_per_fused_div_linalg_vector_norm_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 1e-12
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp5, None)
tl.store(out_ptr0 + (r1 + 512 * x0), tmp8, None)
@triton.jit
def triton_poi_fused_mul_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16384 * y1), ymask,
eviction_policy='evict_last')
tmp1 = 10.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, ymask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (4, 512, 1, 1), (512, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0[grid(16384)](primals_1, buf0,
16384, 512, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
triton_poi_fused_div_1[grid(2048, 4096)](primals_1, buf0, buf1,
2048, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf0
del primals_1
buf2 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf2, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 512, 1, 1), (512, 1, 512, 512), torch
.float32)
triton_per_fused_div_linalg_vector_norm_2[grid(4)](buf3, primals_2,
buf4, 4, 512, num_warps=4, num_stages=1)
buf5 = extern_kernels.convolution(buf1, buf4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 64, 64), (16384, 1, 256, 4))
buf6 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
triton_poi_fused_mul_3[grid(16, 4096)](buf5, buf6, 16, 4096, XBLOCK
=64, YBLOCK=16, num_warps=4, num_stages=1)
del buf5
return buf6, primals_2, buf1, buf3, buf4
class CosineClassifierNew(nn.Module):
def __init__(self, classes, channels=512):
super().__init__()
self.channels = channels
self.cls = nn.Conv2d(channels, classes, 1, bias=False)
self.scaler = 10.0
def forward(self, input_0):
primals_2 = self.cls.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| SirRob1997/DomainBed | CosineClassifier | false | 5,856 | [
"MIT"
] | 1 | 7399a2b0a63df48f4b67755a3f33901223d5c8fb | https://github.com/SirRob1997/DomainBed/tree/7399a2b0a63df48f4b67755a3f33901223d5c8fb | import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data
class Model(nn.Module):
def __init__(self, classes, channels=512):
super().__init__()
self.channels = channels
self.cls = nn.Conv2d(channels, classes, 1, bias=False)
self.scaler = 10.0
def forward(self, x):
x = F.normalize(x, p=2, dim=1)
return self.scaler * F.conv2d(x, F.normalize(self.cls.weight, dim=1,
p=2))
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [4]
|
ConcatClassifierHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/tf/ctfobpckmiv3kkga3a6gzs6unuclcnxpb4xc2h5r3udgxgix4ip5.py
# Topologically Sorted Source Nodes: [flat_set_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# flat_set_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 16), (16, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 4), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [flat_set_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (buf2, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
from torch.nn import Module
import torch
import torch.nn as nn
import torch.nn
class ConcatClassifierHead(Module):
def __init__(self, config: 'dict'):
super(ConcatClassifierHead, self).__init__()
self.linear_layer_1 = nn.Linear(config['max_objects_per_scene'] *
config['hidden_dim'], config['hidden_dim'])
self.linear_layer_2 = nn.Linear(config['hidden_dim'], config[
'num_output_classes'])
def forward(self, input_set):
flat_set = input_set.view(input_set.size(0), -1)
flat_set = nn.ReLU()(self.linear_layer_1(flat_set))
return self.linear_layer_2(flat_set)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(max_objects_per_scene=4, hidden_dim
=4, num_output_classes=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 16), (16, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(16)](buf1, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return buf2, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), buf1, primals_4
class ConcatClassifierHeadNew(Module):
def __init__(self, config: 'dict'):
super(ConcatClassifierHeadNew, self).__init__()
self.linear_layer_1 = nn.Linear(config['max_objects_per_scene'] *
config['hidden_dim'], config['hidden_dim'])
self.linear_layer_2 = nn.Linear(config['hidden_dim'], config[
'num_output_classes'])
def forward(self, input_0):
primals_2 = self.linear_layer_1.weight
primals_3 = self.linear_layer_1.bias
primals_4 = self.linear_layer_2.weight
primals_5 = self.linear_layer_2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| SpyrosMouselinos/DeltaFormers | ConcatClassifierHead | false | 5,857 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | from _paritybench_helpers import _mock_config
from torch.nn import Module
import torch
import torch.nn as nn
import torch.nn
class Model(Module):
def __init__(self, config: 'dict'):
super().__init__()
self.linear_layer_1 = nn.Linear(config['max_objects_per_scene'] *
config['hidden_dim'], config['hidden_dim'])
self.linear_layer_2 = nn.Linear(config['hidden_dim'], config[
'num_output_classes'])
def forward(self, input_set):
flat_set = input_set.view(input_set.size(0), -1)
flat_set = nn.ReLU()(self.linear_layer_1(flat_set))
return self.linear_layer_2(flat_set)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(max_objects_per_scene=4, hidden_dim
=4, num_output_classes=4)}]
|
RelateModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/f6/cf65bigf2x75qqtqyjjyxjzpdp7kb4qomxjgfae36bygybmqynpn.py
# Topologically Sorted Source Nodes: [repeat, feats], Original ATen: [aten.repeat, aten.mul]
# Source node to ATen node mapping:
# feats => mul
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_1, [1, 4, 1, 1]), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %repeat), kwargs = {})
triton_poi_fused_mul_repeat_0 = async_compile.triton('triton_poi_fused_mul_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 16384)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qt/cqt5smk332l2kh4wfeyvsehh4o3hjuh44mkvw236faomj45hqkkt.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_3, %primals_4, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/fn/cfnrt4duwcumu56ph56rndy73cikgz6peivhcxw2phojuaeyivgs.py
# Topologically Sorted Source Nodes: [conv2d_5, out_5], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# out_5 => sigmoid
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_13, %primals_14, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_5,), kwargs = {})
triton_poi_fused_convolution_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_14, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [repeat, feats], Original ATen: [aten.repeat, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_repeat_0.run(primals_2, primals_1, buf0, 65536, grid=grid(65536), stream=stream0)
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_4, 65536, grid=grid(65536), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf4, primals_6, 65536, grid=grid(65536), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf6, primals_8, 65536, grid=grid(65536), stream=stream0)
del primals_8
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_9, stride=(1, 1), padding=(8, 8), dilation=(8, 8), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, out_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf8, primals_10, 65536, grid=grid(65536), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf10, primals_12, 65536, grid=grid(65536), stream=stream0)
del primals_12
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, out_5], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_2.run(buf12, primals_14, 16384, grid=grid(16384), stream=stream0)
del primals_14
return (buf12, primals_3, primals_5, primals_7, primals_9, primals_11, primals_13, buf0, buf2, buf4, buf6, buf8, buf10, buf12, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class RelateModule(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1,
dilation=(1, 1))
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=2,
dilation=(2, 2))
self.conv3 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=4,
dilation=(4, 4))
self.conv4 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=8,
dilation=(8, 8))
self.conv5 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1,
dilation=(1, 1))
self.conv6 = nn.Conv2d(dim, 1, kernel_size=(1, 1), padding=0)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
torch.nn.init.kaiming_normal_(self.conv3.weight)
torch.nn.init.kaiming_normal_(self.conv4.weight)
torch.nn.init.kaiming_normal_(self.conv5.weight)
torch.nn.init.kaiming_normal_(self.conv6.weight)
self.dim = dim
def forward(self, feats, attn):
feats = torch.mul(feats, attn.repeat(1, self.dim, 1, 1))
out = F.relu(self.conv1(feats))
out = F.relu(self.conv2(out))
out = F.relu(self.conv3(out))
out = F.relu(self.conv4(out))
out = F.relu(self.conv5(out))
out = torch.sigmoid(self.conv6(out))
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64]), torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 16384
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_14, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_repeat_0[grid(65536)](primals_2, primals_1,
buf0, 65536, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(65536)](buf2, primals_4,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_4
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_1[grid(65536)](buf4, primals_6,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_6
buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1),
padding=(4, 4), dilation=(4, 4), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_1[grid(65536)](buf6, primals_8,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_8
buf7 = extern_kernels.convolution(buf6, primals_9, stride=(1, 1),
padding=(8, 8), dilation=(8, 8), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf8 = buf7
del buf7
triton_poi_fused_convolution_relu_1[grid(65536)](buf8, primals_10,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_10
buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf10 = buf9
del buf9
triton_poi_fused_convolution_relu_1[grid(65536)](buf10, primals_12,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_12
buf11 = extern_kernels.convolution(buf10, primals_13, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf12 = buf11
del buf11
triton_poi_fused_convolution_sigmoid_2[grid(16384)](buf12,
primals_14, 16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_14
return (buf12, primals_3, primals_5, primals_7, primals_9, primals_11,
primals_13, buf0, buf2, buf4, buf6, buf8, buf10, buf12)
class RelateModuleNew(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1,
dilation=(1, 1))
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=2,
dilation=(2, 2))
self.conv3 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=4,
dilation=(4, 4))
self.conv4 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=8,
dilation=(8, 8))
self.conv5 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1,
dilation=(1, 1))
self.conv6 = nn.Conv2d(dim, 1, kernel_size=(1, 1), padding=0)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
torch.nn.init.kaiming_normal_(self.conv3.weight)
torch.nn.init.kaiming_normal_(self.conv4.weight)
torch.nn.init.kaiming_normal_(self.conv5.weight)
torch.nn.init.kaiming_normal_(self.conv6.weight)
self.dim = dim
def forward(self, input_0, input_1):
primals_3 = self.conv1.weight
primals_4 = self.conv1.bias
primals_5 = self.conv2.weight
primals_6 = self.conv2.bias
primals_7 = self.conv3.weight
primals_8 = self.conv3.bias
primals_9 = self.conv4.weight
primals_10 = self.conv4.bias
primals_11 = self.conv5.weight
primals_12 = self.conv5.bias
primals_13 = self.conv6.weight
primals_14 = self.conv6.bias
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0]
| SpyrosMouselinos/DeltaFormers | RelateModule | false | 5,858 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class Model(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1,
dilation=(1, 1))
self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=2,
dilation=(2, 2))
self.conv3 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=4,
dilation=(4, 4))
self.conv4 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=8,
dilation=(8, 8))
self.conv5 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1,
dilation=(1, 1))
self.conv6 = nn.Conv2d(dim, 1, kernel_size=(1, 1), padding=0)
torch.nn.init.kaiming_normal_(self.conv1.weight)
torch.nn.init.kaiming_normal_(self.conv2.weight)
torch.nn.init.kaiming_normal_(self.conv3.weight)
torch.nn.init.kaiming_normal_(self.conv4.weight)
torch.nn.init.kaiming_normal_(self.conv5.weight)
torch.nn.init.kaiming_normal_(self.conv6.weight)
self.dim = dim
def forward(self, feats, attn):
feats = torch.mul(feats, attn.repeat(1, self.dim, 1, 1))
out = F.relu(self.conv1(feats))
out = F.relu(self.conv2(out))
out = F.relu(self.conv3(out))
out = F.relu(self.conv4(out))
out = F.relu(self.conv5(out))
out = torch.sigmoid(self.conv6(out))
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64]), torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [4]
|
MNIST_CNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xd/cxdqslrdqajmcxikxhvxi7lkzd2yepfzcwkkltrpstapeq35h632.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 256
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ra/crarmf7s2qf36jg27hprl42qtwcxcnnoyrgzgevtstzj4qgsdzwl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dd/cddy2xs2uderg6rhu3vap3su355lmjpkrmadmh5gnbcfg2frfd5z.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/e4/ce4nidkyu2gtcdpalogjljsg5wvmcfnzpr4d7mxmzgqhcik7e3zy.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/uo/cuoq67x7pplkn56jmv4egzgakdmdolviuhclk6uuvy2isp3yvvam.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# x_2 => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_per_fused_native_group_norm_5 = async_compile.triton('triton_per_fused_native_group_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[32, 128],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_5(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 32
rnumel = 128
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex % 8
r3 = (rindex // 8)
x0 = xindex % 8
x1 = (xindex // 8)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (8*x0) + (64*r3) + (1024*x1)), xmask, other=0.0)
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 128, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 128.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr2 + (x4), tmp23, xmask)
tl.store(out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr1 + (x4), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/t3/ct3qwupet5zpwc3rrfmucbarfddm4ezt2y7zf5ute5oce57arckm.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# x_2 => add_1, mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
triton_poi_fused_native_group_norm_6 = async_compile.triton('triton_poi_fused_native_group_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 64
x2 = (xindex // 1024)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp3 = tl.load(in_ptr1 + ((8*x2) + (x0 // 8)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + ((8*x2) + (x0 // 8)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 128.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/bo/cboj3lo2ix24qbhixyncx6gvd7fcgojynowxk4mu7hyobzavs4tx.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7q/c7q6tque53rs7lodp6ydfpgpqa75zh7pikmsrf2pnpy6czejrkpz.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# x_5 => add_2, rsqrt_1, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
triton_per_fused_native_group_norm_8 = async_compile.triton('triton_per_fused_native_group_norm_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[32, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 32
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex % 16
r3 = (rindex // 16)
x0 = xindex % 8
x1 = (xindex // 8)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (128*r3) + (512*x1)), xmask, other=0.0)
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr2 + (x4), tmp23, xmask)
tl.store(out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr1 + (x4), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/uu/cuu4nxa6fxukpo23zd5i5bbo3jmi4tcdz5jxk75g5k63t4k6dxob.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# x_5 => add_3, mul_3
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {})
# %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_8), kwargs = {})
triton_poi_fused_native_group_norm_9 = async_compile.triton('triton_poi_fused_native_group_norm_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 128
x2 = (xindex // 512)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp3 = tl.load(in_ptr1 + ((8*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + ((8*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 64.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xr/cxrvhmzov25motoxdbptp5xb5kgxlq4dxjyz2c5uqkf2isadwdos.py
# Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.native_group_norm, aten.mean]
# Source node to ATen node mapping:
# x_11 => add_7, mul_7
# x_12 => mean
# Graph fragment:
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, %unsqueeze_23), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %unsqueeze_20), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_7, [-1, -2], True), kwargs = {})
triton_poi_fused_mean_native_group_norm_10 = async_compile.triton('triton_poi_fused_mean_native_group_norm_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_native_group_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_native_group_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 128
x1 = (xindex // 128)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (512*x1)), xmask)
tmp3 = tl.load(in_ptr1 + ((x2 // 16)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + ((x2 // 16)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (128 + x0 + (512*x1)), xmask)
tmp23 = tl.load(in_ptr0 + (256 + x0 + (512*x1)), xmask)
tmp30 = tl.load(in_ptr0 + (384 + x0 + (512*x1)), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 64.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tmp17 = triton_helpers.maximum(tmp1, tmp16)
tmp18 = tmp17 - tmp3
tmp19 = tmp18 * tmp10
tmp20 = tmp19 * tmp12
tmp21 = tmp20 + tmp14
tmp22 = tmp15 + tmp21
tmp24 = triton_helpers.maximum(tmp1, tmp23)
tmp25 = tmp24 - tmp3
tmp26 = tmp25 * tmp10
tmp27 = tmp26 * tmp12
tmp28 = tmp27 + tmp14
tmp29 = tmp22 + tmp28
tmp31 = triton_helpers.maximum(tmp1, tmp30)
tmp32 = tmp31 - tmp3
tmp33 = tmp32 * tmp10
tmp34 = tmp33 * tmp12
tmp35 = tmp34 + tmp14
tmp36 = tmp29 + tmp35
tmp37 = 4.0
tmp38 = tmp36 / tmp37
tl.store(out_ptr0 + (x2), tmp38, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, ), (1, ))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, ), (1, ))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (128, ), (1, ))
assert_size_stride(primals_13, (128, ), (1, ))
assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (128, ), (1, ))
assert_size_stride(primals_16, (128, ), (1, ))
assert_size_stride(primals_17, (128, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 256, 9, grid=grid(256, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_6, buf2, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_6
buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_10, buf3, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_10
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_14, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_14
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 64, 4, 4), (1024, 1, 256, 64))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
triton_poi_fused_convolution_4.run(buf6, primals_2, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf7 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf8 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf11 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_5.run(buf6, buf7, buf8, buf11, 32, 128, grid=grid(32), stream=stream0)
buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm]
triton_poi_fused_native_group_norm_6.run(buf6, buf7, buf8, primals_4, primals_5, buf10, 4096, grid=grid(4096), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf10, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 2, 2), (512, 1, 256, 128))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf13, primals_7, 2048, grid=grid(2048), stream=stream0)
del primals_7
buf14 = buf8; del buf8 # reuse
buf15 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf18 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_8.run(buf13, buf14, buf15, buf18, 32, 64, grid=grid(32), stream=stream0)
buf17 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm]
triton_poi_fused_native_group_norm_9.run(buf13, buf14, buf15, primals_8, primals_9, buf17, 2048, grid=grid(2048), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf17, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 2, 2), (512, 1, 256, 128))
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf20, primals_11, 2048, grid=grid(2048), stream=stream0)
del primals_11
buf21 = buf15; del buf15 # reuse
buf22 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf25 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_8.run(buf20, buf21, buf22, buf25, 32, 64, grid=grid(32), stream=stream0)
buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.native_group_norm]
triton_poi_fused_native_group_norm_9.run(buf20, buf21, buf22, primals_12, primals_13, buf24, 2048, grid=grid(2048), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf24, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 128, 2, 2), (512, 1, 256, 128))
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf27, primals_15, 2048, grid=grid(2048), stream=stream0)
del primals_15
buf28 = buf22; del buf22 # reuse
buf29 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf31 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_8.run(buf27, buf28, buf29, buf31, 32, 64, grid=grid(32), stream=stream0)
buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.native_group_norm, aten.mean]
triton_poi_fused_mean_native_group_norm_10.run(buf27, buf28, buf29, primals_16, primals_17, buf32, 512, grid=grid(512), stream=stream0)
del buf29
del primals_17
return (reinterpret_tensor(buf32, (4, 128), (128, 1), 0), buf0, buf1, primals_4, buf2, primals_8, buf3, primals_12, buf4, primals_16, buf6, buf10, reinterpret_tensor(buf7, (4, 8), (8, 1), 0), reinterpret_tensor(buf11, (4, 8), (8, 1), 0), buf13, buf17, reinterpret_tensor(buf14, (4, 8), (8, 1), 0), reinterpret_tensor(buf18, (4, 8), (8, 1), 0), buf20, buf24, reinterpret_tensor(buf21, (4, 8), (8, 1), 0), reinterpret_tensor(buf25, (4, 8), (8, 1), 0), buf27, reinterpret_tensor(buf28, (4, 8), (8, 1), 0), reinterpret_tensor(buf31, (4, 8), (8, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data
class SqueezeLastTwo(nn.Module):
"""A module which squeezes the last two dimensions, ordinary squeeze can be a problem for batch size 1"""
def __init__(self):
super(SqueezeLastTwo, self).__init__()
def forward(self, x):
return x.view(x.shape[0], x.shape[1])
class MNIST_CNN(nn.Module):
"""
Hand-tuned architecture for MNIST.
Weirdness I've noticed so far with this architecture:
- adding a linear layer after the mean-pool in features hurts
RotatedMNIST-100 generalization severely.
"""
n_outputs = 128
def __init__(self, input_shape):
super(MNIST_CNN, self).__init__()
self.conv1 = nn.Conv2d(input_shape[0], 64, 3, 1, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(128, 128, 3, 1, padding=1)
self.conv4 = nn.Conv2d(128, 128, 3, 1, padding=1)
self.bn0 = nn.GroupNorm(8, 64)
self.bn1 = nn.GroupNorm(8, 128)
self.bn2 = nn.GroupNorm(8, 128)
self.bn3 = nn.GroupNorm(8, 128)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.squeezeLastTwo = SqueezeLastTwo()
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.bn0(x)
x = self.conv2(x)
x = F.relu(x)
x = self.bn1(x)
x = self.conv3(x)
x = F.relu(x)
x = self.bn2(x)
x = self.conv4(x)
x = F.relu(x)
x = self.bn3(x)
x = self.avgpool(x)
x = self.squeezeLastTwo(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 256
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_per_fused_native_group_norm_5(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 32
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex % 8
r3 = rindex // 8
x0 = xindex % 8
x1 = xindex // 8
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 8 * x0 + 64 * r3 + 1024 * x1), xmask,
other=0.0)
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 128, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 128.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr2 + x4, tmp23, xmask)
tl.store(out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr1 + x4, tmp18, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 64
x2 = xindex // 1024
tmp0 = tl.load(in_ptr0 + x3, None)
tmp3 = tl.load(in_ptr1 + (8 * x2 + x0 // 8), None, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr2 + (8 * x2 + x0 // 8), None, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 128.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_per_fused_native_group_norm_8(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 32
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex % 16
r3 = rindex // 16
x0 = xindex % 8
x1 = xindex // 8
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 128 * r3 + 512 * x1), xmask,
other=0.0)
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr2 + x4, tmp23, xmask)
tl.store(out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr1 + x4, tmp18, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 128
x2 = xindex // 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp3 = tl.load(in_ptr1 + (8 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr2 + (8 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 64.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_mean_native_group_norm_10(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 128
x1 = xindex // 128
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1), xmask)
tmp3 = tl.load(in_ptr1 + x2 // 16, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x2 // 16, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (128 + x0 + 512 * x1), xmask)
tmp23 = tl.load(in_ptr0 + (256 + x0 + 512 * x1), xmask)
tmp30 = tl.load(in_ptr0 + (384 + x0 + 512 * x1), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = 64.0
tmp7 = tmp5 / tmp6
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp4 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tmp17 = triton_helpers.maximum(tmp1, tmp16)
tmp18 = tmp17 - tmp3
tmp19 = tmp18 * tmp10
tmp20 = tmp19 * tmp12
tmp21 = tmp20 + tmp14
tmp22 = tmp15 + tmp21
tmp24 = triton_helpers.maximum(tmp1, tmp23)
tmp25 = tmp24 - tmp3
tmp26 = tmp25 * tmp10
tmp27 = tmp26 * tmp12
tmp28 = tmp27 + tmp14
tmp29 = tmp22 + tmp28
tmp31 = triton_helpers.maximum(tmp1, tmp30)
tmp32 = tmp31 - tmp3
tmp33 = tmp32 * tmp10
tmp34 = tmp33 * tmp12
tmp35 = tmp34 + tmp14
tmp36 = tmp29 + tmp35
tmp37 = 4.0
tmp38 = tmp36 / tmp37
tl.store(out_ptr0 + x2, tmp38, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64,), (1,))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128,), (1,))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (128,), (1,))
assert_size_stride(primals_13, (128,), (1,))
assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (128,), (1,))
assert_size_stride(primals_16, (128,), (1,))
assert_size_stride(primals_17, (128,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4, 3, 3), (36, 1, 12, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(256, 9)](primals_1, buf0, 256, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_2[grid(8192, 9)](primals_6, buf2, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_10, buf3, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_14, buf4, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_14
buf5 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 64, 4, 4), (1024, 1, 256, 64))
buf6 = buf5
del buf5
triton_poi_fused_convolution_4[grid(4096)](buf6, primals_2, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf7 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf8 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf11 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
triton_per_fused_native_group_norm_5[grid(32)](buf6, buf7, buf8,
buf11, 32, 128, XBLOCK=1, num_warps=2, num_stages=1)
buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch
.float32)
triton_poi_fused_native_group_norm_6[grid(4096)](buf6, buf7, buf8,
primals_4, primals_5, buf10, 4096, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_5
buf12 = extern_kernels.convolution(buf10, buf2, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 2, 2), (512, 1, 256, 128))
buf13 = buf12
del buf12
triton_poi_fused_convolution_7[grid(2048)](buf13, primals_7, 2048,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf14 = buf8
del buf8
buf15 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf18 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
triton_per_fused_native_group_norm_8[grid(32)](buf13, buf14, buf15,
buf18, 32, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf17 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128),
torch.float32)
triton_poi_fused_native_group_norm_9[grid(2048)](buf13, buf14,
buf15, primals_8, primals_9, buf17, 2048, XBLOCK=256, num_warps
=4, num_stages=1)
del primals_9
buf19 = extern_kernels.convolution(buf17, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 2, 2), (512, 1, 256, 128))
buf20 = buf19
del buf19
triton_poi_fused_convolution_7[grid(2048)](buf20, primals_11, 2048,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf21 = buf15
del buf15
buf22 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf25 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
triton_per_fused_native_group_norm_8[grid(32)](buf20, buf21, buf22,
buf25, 32, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128),
torch.float32)
triton_poi_fused_native_group_norm_9[grid(2048)](buf20, buf21,
buf22, primals_12, primals_13, buf24, 2048, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_13
buf26 = extern_kernels.convolution(buf24, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 128, 2, 2), (512, 1, 256, 128))
buf27 = buf26
del buf26
triton_poi_fused_convolution_7[grid(2048)](buf27, primals_15, 2048,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
buf28 = buf22
del buf22
buf29 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
buf31 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32)
triton_per_fused_native_group_norm_8[grid(32)](buf27, buf28, buf29,
buf31, 32, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.
float32)
triton_poi_fused_mean_native_group_norm_10[grid(512)](buf27, buf28,
buf29, primals_16, primals_17, buf32, 512, XBLOCK=128,
num_warps=4, num_stages=1)
del buf29
del primals_17
return (reinterpret_tensor(buf32, (4, 128), (128, 1), 0), buf0, buf1,
primals_4, buf2, primals_8, buf3, primals_12, buf4, primals_16,
buf6, buf10, reinterpret_tensor(buf7, (4, 8), (8, 1), 0),
reinterpret_tensor(buf11, (4, 8), (8, 1), 0), buf13, buf17,
reinterpret_tensor(buf14, (4, 8), (8, 1), 0), reinterpret_tensor(
buf18, (4, 8), (8, 1), 0), buf20, buf24, reinterpret_tensor(buf21,
(4, 8), (8, 1), 0), reinterpret_tensor(buf25, (4, 8), (8, 1), 0),
buf27, reinterpret_tensor(buf28, (4, 8), (8, 1), 0),
reinterpret_tensor(buf31, (4, 8), (8, 1), 0))
class SqueezeLastTwo(nn.Module):
"""A module which squeezes the last two dimensions, ordinary squeeze can be a problem for batch size 1"""
def __init__(self):
super(SqueezeLastTwo, self).__init__()
def forward(self, x):
return x.view(x.shape[0], x.shape[1])
class MNIST_CNNNew(nn.Module):
"""
Hand-tuned architecture for MNIST.
Weirdness I've noticed so far with this architecture:
- adding a linear layer after the mean-pool in features hurts
RotatedMNIST-100 generalization severely.
"""
n_outputs = 128
def __init__(self, input_shape):
super(MNIST_CNNNew, self).__init__()
self.conv1 = nn.Conv2d(input_shape[0], 64, 3, 1, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(128, 128, 3, 1, padding=1)
self.conv4 = nn.Conv2d(128, 128, 3, 1, padding=1)
self.bn0 = nn.GroupNorm(8, 64)
self.bn1 = nn.GroupNorm(8, 128)
self.bn2 = nn.GroupNorm(8, 128)
self.bn3 = nn.GroupNorm(8, 128)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.squeezeLastTwo = SqueezeLastTwo()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_6 = self.conv2.weight
primals_7 = self.conv2.bias
primals_10 = self.conv3.weight
primals_8 = self.conv3.bias
primals_14 = self.conv4.weight
primals_9 = self.conv4.bias
primals_4 = self.bn0.weight
primals_5 = self.bn0.bias
primals_11 = self.bn1.weight
primals_12 = self.bn1.bias
primals_13 = self.bn2.weight
primals_15 = self.bn2.bias
primals_16 = self.bn3.weight
primals_17 = self.bn3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0]
| SirRob1997/DomainBed | MNIST_CNN | false | 5,859 | [
"MIT"
] | 1 | 7399a2b0a63df48f4b67755a3f33901223d5c8fb | https://github.com/SirRob1997/DomainBed/tree/7399a2b0a63df48f4b67755a3f33901223d5c8fb | import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data
class SqueezeLastTwo(nn.Module):
"""A module which squeezes the last two dimensions, ordinary squeeze can be a problem for batch size 1"""
def __init__(self):
super().__init__()
def forward(self, x):
return x.view(x.shape[0], x.shape[1])
class Model(nn.Module):
"""
Hand-tuned architecture for MNIST.
Weirdness I've noticed so far with this architecture:
- adding a linear layer after the mean-pool in features hurts
RotatedMNIST-100 generalization severely.
"""
n_outputs = 128
def __init__(self, input_shape):
super().__init__()
self.conv1 = nn.Conv2d(input_shape[0], 64, 3, 1, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(128, 128, 3, 1, padding=1)
self.conv4 = nn.Conv2d(128, 128, 3, 1, padding=1)
self.bn0 = nn.GroupNorm(8, 64)
self.bn1 = nn.GroupNorm(8, 128)
self.bn2 = nn.GroupNorm(8, 128)
self.bn3 = nn.GroupNorm(8, 128)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.squeezeLastTwo = SqueezeLastTwo()
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.bn0(x)
x = self.conv2(x)
x = F.relu(x)
x = self.bn1(x)
x = self.conv3(x)
x = F.relu(x)
x = self.bn2(x)
x = self.conv4(x)
x = F.relu(x)
x = self.bn3(x)
x = self.avgpool(x)
x = self.squeezeLastTwo(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
LanguageModelCriterion | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/y6/cy6c63inntzv3gk7tttvtntl47lyazeloek7emnkrhkhkqbx5kci.py
# Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# neg => neg
# output => mul
# output_1 => div
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %arg2_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr2 + (r0), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last')
tmp7 = -tmp6
tmp8 = tmp7.to(tl.float32)
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp17 = tmp13 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import *
class LanguageModelCriterion(nn.Module):
def __init__(self):
super(LanguageModelCriterion, self).__init__()
def forward(self, input, target, mask):
if target.ndim == 3:
target = target.reshape(-1, target.shape[2])
mask = mask.reshape(-1, mask.shape[2])
target = target[:, :input.size(1)]
mask = mask[:, :input.size(1)].float()
output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4],
dtype=torch.int64), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr2 + r0, None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy=
'evict_last')
tmp7 = -tmp6
tmp8 = tmp7.to(tl.float32)
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp17 = tmp13 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg0_1, arg1_1,
arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
class LanguageModelCriterionNew(nn.Module):
def __init__(self):
super(LanguageModelCriterionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg1_1 = input_0
arg0_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| SunZongdi/self-critical.pytorch | LanguageModelCriterion | false | 5,861 | [
"MIT"
] | 1 | 6cecbeb949e68007b72e84198cf74f9fb288aeda | https://github.com/SunZongdi/self-critical.pytorch/tree/6cecbeb949e68007b72e84198cf74f9fb288aeda | import torch
import torch.nn as nn
from torch.autograd import *
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input, target, mask):
if target.ndim == 3:
target = target.reshape(-1, target.shape[2])
mask = mask.reshape(-1, mask.shape[2])
target = target[:, :input.size(1)]
mask = mask[:, :input.size(1)].float()
output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4],
dtype=torch.int64), torch.rand([4, 4])]
def get_init_inputs():
return []
|
RewardCriterion | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/th/cthi7dvxte3xeavjjqrz6omclqig3gqujobvt5ooicycppv45vw4.py
# Topologically Sorted Source Nodes: [neg, mul, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# mul => mul
# neg => neg
# output => mul_1
# output_1 => div
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%view,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %view_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %view_2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr2 + (r0), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last')
tmp7 = -tmp6
tmp8 = tmp7.to(tl.float32)
tmp10 = tmp8 * tmp9
tmp11 = r0 % 4
tmp12 = tl.full([1, 1], 0, tl.int64)
tmp13 = tmp11 >= tmp12
tmp14 = tl.full([1, 1], 1, tl.int64)
tmp15 = tmp11 < tmp14
tmp16 = 1.0
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp15, tmp16, tmp17)
tmp19 = tmp11 >= tmp14
tmp20 = tl.full([1, 1], 4, tl.int64)
tmp21 = tmp11 < tmp20
tmp22 = tl.load(in_ptr0 + (tl.broadcast_to((4*(r0 // 4)) + ((-1) + (r0 % 4)), [XBLOCK, RBLOCK])), tmp19, eviction_policy='evict_last', other=0.0)
tmp23 = tmp22 > tmp12
tmp24 = tmp23.to(tl.float32)
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp15, tmp18, tmp26)
tmp28 = tmp10 * tmp27
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp34 = tl.sum(tmp32, 1)[:, None]
tmp35 = tmp31 / tmp34
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp35, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [neg, mul, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0.run(buf2, arg1_1, arg0_1, arg2_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import *
class RewardCriterion(nn.Module):
def __init__(self):
super(RewardCriterion, self).__init__()
def forward(self, input, seq, reward):
input = input.gather(2, seq.unsqueeze(2)).squeeze(2)
input = input.reshape(-1)
reward = reward.reshape(-1)
mask = (seq > 0).float()
mask = torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1
).reshape(-1)
output = -input * reward * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4],
dtype=torch.int64), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr2 + r0, None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy=
'evict_last')
tmp7 = -tmp6
tmp8 = tmp7.to(tl.float32)
tmp10 = tmp8 * tmp9
tmp11 = r0 % 4
tmp12 = tl.full([1, 1], 0, tl.int64)
tmp14 = tl.full([1, 1], 1, tl.int64)
tmp15 = tmp11 < tmp14
tmp16 = 1.0
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp15, tmp16, tmp17)
tmp19 = tmp11 >= tmp14
tl.full([1, 1], 4, tl.int64)
tmp22 = tl.load(in_ptr0 + tl.broadcast_to(4 * (r0 // 4) + (-1 + r0 % 4),
[XBLOCK, RBLOCK]), tmp19, eviction_policy='evict_last', other=0.0)
tmp23 = tmp22 > tmp12
tmp24 = tmp23.to(tl.float32)
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp15, tmp18, tmp26)
tmp28 = tmp10 * tmp27
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp34 = tl.sum(tmp32, 1)[:, None]
tmp35 = tmp31 / tmp34
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp35, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg1_1, arg0_1,
arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
class RewardCriterionNew(nn.Module):
def __init__(self):
super(RewardCriterionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| SunZongdi/self-critical.pytorch | RewardCriterion | false | 5,862 | [
"MIT"
] | 1 | 6cecbeb949e68007b72e84198cf74f9fb288aeda | https://github.com/SunZongdi/self-critical.pytorch/tree/6cecbeb949e68007b72e84198cf74f9fb288aeda | import torch
import torch.nn as nn
from torch.autograd import *
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input, seq, reward):
input = input.gather(2, seq.unsqueeze(2)).squeeze(2)
input = input.reshape(-1)
reward = reward.reshape(-1)
mask = (seq > 0).float()
mask = torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1
).reshape(-1)
output = -input * reward * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4],
dtype=torch.int64), torch.rand([4, 4])]
def get_init_inputs():
return []
|
VNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/zi/czi6taqk3yywywfl3iwbejutxysbxi6hrg6s2rrrevzoemnmagnw.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x4), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6h/c6hgrncbhy7kjladlqflhqnw52mciqxt6qj53hxyw2giskevmcnl.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.view]
# Source node to ATen node mapping:
# out => view_7
# Graph fragment:
# %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 4]), kwargs = {})
triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*((x1 % 4) // 4)) + (64*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xr/cxrxf4nkydknjv7xhdecpyrprhviagsqwicrk4lpp64qv2hkzaxp.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_8,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.view]
triton_poi_fused_view_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
del buf1
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf4, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class VNet(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1):
super(VNet, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.linear1(x)
x = self.relu1(x)
out = self.linear2(x)
return torch.sigmoid(out)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + x4, tmp6, xmask)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * (x1 % 4 // 4) + 64 * ((4 *
(x1 // 4 % 4) + x1 % 4) // 16)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused_view_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 1), (1, 4
), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf3
triton_poi_fused_sigmoid_2[grid(64)](buf4, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, buf4, primals_4, buf5
class VNetNew(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1):
super(VNetNew, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Stranger469/wrench | VNet | false | 5,863 | [
"Apache-2.0"
] | 1 | ab717ac26a76649c8fdb946a28dffe7e682c80ba | https://github.com/Stranger469/wrench/tree/ab717ac26a76649c8fdb946a28dffe7e682c80ba | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_size, hidden_size, output_size=1):
super().__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.linear1(x)
x = self.relu1(x)
out = self.linear2(x)
return torch.sigmoid(out)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Attention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ch/cchblwxibhbejgpezaajsszmynwayrtalecnd5ksg22infzh2v3o.py
# Topologically Sorted Source Nodes: [dot, dot_1], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# dot => add
# dot_1 => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, %expand), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = libdevice.tanh(tmp4)
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/pw/cpw7p22sygsv72j67klg2k3xeokdqrvalgmkjpkzpqpj5pv4xmkc.py
# Topologically Sorted Source Nodes: [weight], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# weight => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_5, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot, dot_1], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(primals_2, buf0, primals_4, buf1, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_4
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf6 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [weight], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf3, buf4, buf5, buf6, 4, 16, grid=grid(4), stream=stream0)
buf7 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 1, 16), (16, 0, 1), 0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 4, 1), 0), out=buf7)
del buf6
return (reinterpret_tensor(buf7, (4, 4), (4, 1), 0), primals_5, buf1, buf3, buf4, buf5, reinterpret_tensor(primals_1, (4, 4, 16), (64, 1, 4), 0), primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
class Attention(nn.Module):
def __init__(self, opt):
super(Attention, self).__init__()
self.rnn_size = opt.rnn_size
self.att_hid_size = opt.att_hid_size
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
def forward(self, h, att_feats, p_att_feats, att_masks=None):
att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1)
att = p_att_feats.view(-1, att_size, self.att_hid_size)
att_h = self.h2att(h)
att_h = att_h.unsqueeze(1).expand_as(att)
dot = att + att_h
dot = torch.tanh(dot)
dot = dot.view(-1, self.att_hid_size)
dot = self.alpha_net(dot)
dot = dot.view(-1, att_size)
weight = F.softmax(dot, dim=1)
if att_masks is not None:
weight = weight * att_masks.view(-1, att_size).float()
weight = weight / weight.sum(1, keepdim=True)
att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1))
att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1)
return att_res
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4,
4, 4])]
def get_init_inputs():
return [[], {'opt': _mock_config(rnn_size=4, att_hid_size=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
from torch.autograd import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = libdevice.tanh(tmp4)
tl.store(out_ptr0 + x3, tmp5, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_5, reinterpret_tensor(primals_3, (4, 4),
(1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(256)](primals_2, buf0, primals_4,
buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
del primals_4
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf6 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
triton_per_fused__softmax_1[grid(4)](buf3, buf4, buf5, buf6, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
buf7 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 1, 16), (16, 0, 1),
0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 4, 1), 0),
out=buf7)
del buf6
return reinterpret_tensor(buf7, (4, 4), (4, 1), 0
), primals_5, buf1, buf3, buf4, buf5, reinterpret_tensor(primals_1,
(4, 4, 16), (64, 1, 4), 0), primals_6
class AttentionNew(nn.Module):
def __init__(self, opt):
super(AttentionNew, self).__init__()
self.rnn_size = opt.rnn_size
self.att_hid_size = opt.att_hid_size
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
def forward(self, input_0, input_1, input_2):
primals_3 = self.h2att.weight
primals_4 = self.h2att.bias
primals_6 = self.alpha_net.weight
primals_7 = self.alpha_net.bias
primals_5 = input_0
primals_1 = input_1
primals_2 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| SunZongdi/self-critical.pytorch | Attention | false | 5,864 | [
"MIT"
] | 1 | 6cecbeb949e68007b72e84198cf74f9fb288aeda | https://github.com/SunZongdi/self-critical.pytorch/tree/6cecbeb949e68007b72e84198cf74f9fb288aeda | from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
class Model(nn.Module):
def __init__(self, opt):
super().__init__()
self.rnn_size = opt.rnn_size
self.att_hid_size = opt.att_hid_size
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
def forward(self, h, att_feats, p_att_feats, att_masks=None):
att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1)
att = p_att_feats.view(-1, att_size, self.att_hid_size)
att_h = self.h2att(h)
att_h = att_h.unsqueeze(1).expand_as(att)
dot = att + att_h
dot = torch.tanh(dot)
dot = dot.view(-1, self.att_hid_size)
dot = self.alpha_net(dot)
dot = dot.view(-1, att_size)
weight = F.softmax(dot, dim=1)
if att_masks is not None:
weight = weight * att_masks.view(-1, att_size).float()
weight = weight / weight.sum(1, keepdim=True)
att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1))
att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1)
return att_res
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4,
4, 4])]
def get_init_inputs():
return []
|
StackedAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/hd/chdl6pmcku25ogjqf2jico75q3zbf4ildxlg5z7qzg22kzut6hqq.py
# Topologically Sorted Source Nodes: [v_proj, add, h], Original ATen: [aten.convolution, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# h => tanh
# v_proj => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %expand), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_convolution_tanh_0 = async_compile.triton('triton_poi_fused_add_convolution_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
x4 = (xindex // 16)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/k6/ck6noxh32dcboenlnpypgwejuatvdhjguazlw4zfuz5pjvuoo55s.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, float("-inf"))
tmp7 = triton_helpers.max2(tmp6, 1)[:, None]
tmp8 = tmp3 - tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tmp9 / tmp13
tl.store(out_ptr2 + (r1 + (16*x0)), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/vf/cvfkeernfkoxw64mey4uhun4hqqdtsmlllbjohoyzdjuv3fghuwt.py
# Topologically Sorted Source Nodes: [mul, sum_1, sum_2, next_u], Original ATen: [aten.mul, aten.sum, aten.add]
# Source node to ATen node mapping:
# mul => mul
# next_u => add_1
# sum_1 => sum_2
# sum_2 => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand_1, %primals_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_2, [2]), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_6, %sum_3), kwargs = {})
triton_poi_fused_add_mul_sum_2 = async_compile.triton('triton_poi_fused_add_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 33, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (16*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (16*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + (16*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (4 + (16*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + (16*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (8 + (16*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (12 + (16*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (12 + (16*x2)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (1 + (16*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (1 + (16*x2)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (5 + (16*x1)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (5 + (16*x2)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr0 + (9 + (16*x1)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (9 + (16*x2)), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr0 + (13 + (16*x1)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (13 + (16*x2)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (2 + (16*x1)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr1 + (2 + (16*x2)), xmask, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr0 + (6 + (16*x1)), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr1 + (6 + (16*x2)), xmask, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr0 + (10 + (16*x1)), xmask, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr1 + (10 + (16*x2)), xmask, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr0 + (14 + (16*x1)), xmask, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr1 + (14 + (16*x2)), xmask, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (3 + (16*x1)), xmask, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr1 + (3 + (16*x2)), xmask, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr0 + (7 + (16*x1)), xmask, eviction_policy='evict_last')
tmp51 = tl.load(in_ptr1 + (7 + (16*x2)), xmask, eviction_policy='evict_last')
tmp54 = tl.load(in_ptr0 + (11 + (16*x1)), xmask, eviction_policy='evict_last')
tmp55 = tl.load(in_ptr1 + (11 + (16*x2)), xmask, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr0 + (15 + (16*x1)), xmask, eviction_policy='evict_last')
tmp59 = tl.load(in_ptr1 + (15 + (16*x2)), xmask, eviction_policy='evict_last')
tmp63 = tl.load(in_ptr2 + (x2), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp17 = tmp15 * tmp16
tmp20 = tmp18 * tmp19
tmp21 = tmp17 + tmp20
tmp24 = tmp22 * tmp23
tmp25 = tmp21 + tmp24
tmp28 = tmp26 * tmp27
tmp29 = tmp25 + tmp28
tmp30 = tmp14 + tmp29
tmp33 = tmp31 * tmp32
tmp36 = tmp34 * tmp35
tmp37 = tmp33 + tmp36
tmp40 = tmp38 * tmp39
tmp41 = tmp37 + tmp40
tmp44 = tmp42 * tmp43
tmp45 = tmp41 + tmp44
tmp46 = tmp30 + tmp45
tmp49 = tmp47 * tmp48
tmp52 = tmp50 * tmp51
tmp53 = tmp49 + tmp52
tmp56 = tmp54 * tmp55
tmp57 = tmp53 + tmp56
tmp60 = tmp58 * tmp59
tmp61 = tmp57 + tmp60
tmp62 = tmp46 + tmp61
tmp64 = tmp63 + tmp62
tl.store(in_out_ptr0 + (x2), tmp64, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [v_proj], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_6, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [v_proj, add, h], Original ATen: [aten.convolution, aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_tanh_0.run(buf2, primals_3, buf1, primals_5, 256, grid=grid(256), stream=stream0)
del primals_3
del primals_5
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 4, 4), (16, 16, 4, 1))
buf6 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf3, primals_8, buf6, 4, 16, grid=grid(4), stream=stream0)
del buf3
del primals_8
buf7 = buf1; del buf1 # reuse
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [mul, sum_1, sum_2, next_u], Original ATen: [aten.mul, aten.sum, aten.add]
triton_poi_fused_add_mul_sum_2.run(buf8, buf6, primals_1, primals_6, 16, grid=grid(16), stream=stream0)
return (buf8, reinterpret_tensor(buf6, (4, 1, 4, 4), (16, 16, 4, 1), 0), primals_1, primals_2, primals_6, primals_7, buf2, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class StackedAttention(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(StackedAttention, self).__init__()
self.Wv = nn.Conv2d(input_dim, hidden_dim, kernel_size=(1, 1),
padding=(0, 0))
self.Wu = nn.Linear(input_dim, hidden_dim)
self.Wp = nn.Conv2d(hidden_dim, 1, kernel_size=(1, 1), padding=(0, 0))
self.hidden_dim = hidden_dim
self.attention_maps = None
def forward(self, v, u):
"""
Input:
- v: N x D x H x W
- u: N x D
Returns:
- next_u: N x D
"""
N, K = v.size(0), self.hidden_dim
D, H, W = v.size(1), v.size(2), v.size(3)
v_proj = self.Wv(v)
u_proj = self.Wu(u)
u_proj_expand = u_proj.view(N, K, 1, 1).expand(N, K, H, W)
h = torch.tanh(v_proj + u_proj_expand)
p = F.softmax(self.Wp(h).view(N, H * W), dim=1).view(N, 1, H, W)
self.attention_maps = p.data.clone()
v_tilde = (p.expand_as(v) * v).sum(2).sum(2).view(N, D)
next_u = u + v_tilde
return next_u
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_convolution_tanh_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
x4 = xindex // 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(in_out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, float('-inf'))
tmp7 = triton_helpers.max2(tmp6, 1)[:, None]
tmp8 = tmp3 - tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tmp9 / tmp13
tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask)
@triton.jit
def triton_poi_fused_add_mul_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 16 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp4 = tl.load(in_ptr1 + (4 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (8 + 16 * x1), xmask, eviction_policy='evict_last'
)
tmp8 = tl.load(in_ptr1 + (8 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (12 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (12 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (1 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + (1 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr0 + (5 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr1 + (5 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp22 = tl.load(in_ptr0 + (9 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr1 + (9 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp26 = tl.load(in_ptr0 + (13 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr1 + (13 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp31 = tl.load(in_ptr0 + (2 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp32 = tl.load(in_ptr1 + (2 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp34 = tl.load(in_ptr0 + (6 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp35 = tl.load(in_ptr1 + (6 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp38 = tl.load(in_ptr0 + (10 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp39 = tl.load(in_ptr1 + (10 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp42 = tl.load(in_ptr0 + (14 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp43 = tl.load(in_ptr1 + (14 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp47 = tl.load(in_ptr0 + (3 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp48 = tl.load(in_ptr1 + (3 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp50 = tl.load(in_ptr0 + (7 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp51 = tl.load(in_ptr1 + (7 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp54 = tl.load(in_ptr0 + (11 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp55 = tl.load(in_ptr1 + (11 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp58 = tl.load(in_ptr0 + (15 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp59 = tl.load(in_ptr1 + (15 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp63 = tl.load(in_ptr2 + x2, xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp17 = tmp15 * tmp16
tmp20 = tmp18 * tmp19
tmp21 = tmp17 + tmp20
tmp24 = tmp22 * tmp23
tmp25 = tmp21 + tmp24
tmp28 = tmp26 * tmp27
tmp29 = tmp25 + tmp28
tmp30 = tmp14 + tmp29
tmp33 = tmp31 * tmp32
tmp36 = tmp34 * tmp35
tmp37 = tmp33 + tmp36
tmp40 = tmp38 * tmp39
tmp41 = tmp37 + tmp40
tmp44 = tmp42 * tmp43
tmp45 = tmp41 + tmp44
tmp46 = tmp30 + tmp45
tmp49 = tmp47 * tmp48
tmp52 = tmp50 * tmp51
tmp53 = tmp49 + tmp52
tmp56 = tmp54 * tmp55
tmp57 = tmp53 + tmp56
tmp60 = tmp58 * tmp59
tmp61 = tmp57 + tmp60
tmp62 = tmp46 + tmp61
tmp64 = tmp63 + tmp62
tl.store(in_out_ptr0 + x2, tmp64, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_6, reinterpret_tensor(primals_4, (4, 4),
(1, 4), 0), out=buf1)
del primals_4
buf2 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_convolution_tanh_0[grid(256)](buf2, primals_3,
buf1, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
del primals_5
buf3 = extern_kernels.convolution(buf2, primals_7, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 4, 4), (16, 16, 4, 1))
buf6 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
triton_per_fused__softmax_1[grid(4)](buf3, primals_8, buf6, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del buf3
del primals_8
buf7 = buf1
del buf1
buf8 = buf7
del buf7
triton_poi_fused_add_mul_sum_2[grid(16)](buf8, buf6, primals_1,
primals_6, 16, XBLOCK=16, num_warps=1, num_stages=1)
return buf8, reinterpret_tensor(buf6, (4, 1, 4, 4), (16, 16, 4, 1), 0
), primals_1, primals_2, primals_6, primals_7, buf2, buf6
class StackedAttentionNew(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(StackedAttentionNew, self).__init__()
self.Wv = nn.Conv2d(input_dim, hidden_dim, kernel_size=(1, 1),
padding=(0, 0))
self.Wu = nn.Linear(input_dim, hidden_dim)
self.Wp = nn.Conv2d(hidden_dim, 1, kernel_size=(1, 1), padding=(0, 0))
self.hidden_dim = hidden_dim
self.attention_maps = None
def forward(self, input_0, input_1):
primals_2 = self.Wv.weight
primals_3 = self.Wv.bias
primals_4 = self.Wu.weight
primals_5 = self.Wu.bias
primals_7 = self.Wp.weight
primals_8 = self.Wp.bias
primals_1 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| SpyrosMouselinos/DeltaFormers | StackedAttention | false | 5,865 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class Model(nn.Module):
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.Wv = nn.Conv2d(input_dim, hidden_dim, kernel_size=(1, 1),
padding=(0, 0))
self.Wu = nn.Linear(input_dim, hidden_dim)
self.Wp = nn.Conv2d(hidden_dim, 1, kernel_size=(1, 1), padding=(0, 0))
self.hidden_dim = hidden_dim
self.attention_maps = None
def forward(self, v, u):
"""
Input:
- v: N x D x H x W
- u: N x D
Returns:
- next_u: N x D
"""
N, K = v.size(0), self.hidden_dim
D, H, W = v.size(1), v.size(2), v.size(3)
v_proj = self.Wv(v)
u_proj = self.Wu(u)
u_proj_expand = u_proj.view(N, K, 1, 1).expand(N, K, H, W)
h = torch.tanh(v_proj + u_proj_expand)
p = F.softmax(self.Wp(h).view(N, H * W), dim=1).view(N, 1, H, W)
self.attention_maps = p.data.clone()
v_tilde = (p.expand_as(v) * v).sum(2).sum(2).view(N, D)
next_u = u + v_tilde
return next_u
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
CNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nx/cnxws3q66oexgt7cc7qipch6axzrogfuqs62jltv7afv7kdhibh7.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 288000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3600) % 20
x0 = xindex % 3600
x4 = (xindex // 3600)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (3616*x4)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ar/carimle5mqx7xfbvwnn44w6mirx7wgqcjxiw32pqiiybbxmwtswv.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_1 => _low_memory_max_pool2d_with_offsets, getitem_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu, [3, 3], [3, 3], [0, 0], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = (xindex // 20) % 20
x2 = (xindex // 400)
x5 = xindex
x4 = (xindex // 8000)
x6 = xindex % 8000
tmp0 = tl.load(in_ptr0 + ((3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (60 + (3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (61 + (3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (62 + (3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (120 + (3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (121 + (3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (122 + (3*x0) + (180*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp17 = tmp1 > tmp0
tmp18 = tl.full([1], 1, tl.int8)
tmp19 = tl.full([1], 0, tl.int8)
tmp20 = tl.where(tmp17, tmp18, tmp19)
tmp21 = tmp3 > tmp2
tmp22 = tl.full([1], 2, tl.int8)
tmp23 = tl.where(tmp21, tmp22, tmp20)
tmp24 = tmp5 > tmp4
tmp25 = tl.full([1], 3, tl.int8)
tmp26 = tl.where(tmp24, tmp25, tmp23)
tmp27 = tmp7 > tmp6
tmp28 = tl.full([1], 4, tl.int8)
tmp29 = tl.where(tmp27, tmp28, tmp26)
tmp30 = tmp9 > tmp8
tmp31 = tl.full([1], 5, tl.int8)
tmp32 = tl.where(tmp30, tmp31, tmp29)
tmp33 = tmp11 > tmp10
tmp34 = tl.full([1], 6, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp13 > tmp12
tmp37 = tl.full([1], 7, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tmp39 = tmp15 > tmp14
tmp40 = tl.full([1], 8, tl.int8)
tmp41 = tl.where(tmp39, tmp40, tmp38)
tl.store(out_ptr0 + (x5), tmp16, xmask)
tl.store(out_ptr1 + (x6 + (8064*x4)), tmp41, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yi/cyin4ihdolqlj45lkcjp4sx4eyv33tfs5j2qljx4g5jvtfmbgw25.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %cat_default : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %full_default_2],), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 35840
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 1280)
x0 = xindex % 1280
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 25, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (1280*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 28, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = 0.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/l5/cl5sjq3cao3ukqmcgpoa2rk5rt5frxu6v3u2awumu7n77uacypek.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_3 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%slice_tensor,), kwargs = {})
triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sp/cspf4xskbjcs6u62siylmohrnlsuhwlvu5pyqxybc4vjyblunr3h.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_per_fused__log_softmax_4 = async_compile.triton('triton_per_fused__log_softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[32, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 25
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + (10*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (20, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_2, (20, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (64, 1280), (1280, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (10, 64), (64, 1))
assert_size_stride(primals_7, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 20, 60, 60), (72000, 3600, 60, 1))
buf1 = empty_strided_cuda((4, 20, 60, 60), (72320, 3616, 60, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 288000, grid=grid(288000), stream=stream0)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 20, 20, 20), (8000, 400, 20, 1), torch.float32)
buf3 = empty_strided_cuda((4, 20, 20, 20), (8064, 400, 20, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 32000, grid=grid(32000), stream=stream0)
buf4 = empty_strided_cuda((28, 1280), (1280, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf2, buf4, 35840, grid=grid(35840), stream=stream0)
buf5 = empty_strided_cuda((28, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf4, reinterpret_tensor(primals_4, (1280, 64), (1, 1280), 0), out=buf5)
del buf4
buf6 = empty_strided_cuda((25, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_3.run(buf5, primals_5, buf6, 1600, grid=grid(1600), stream=stream0)
del buf5
del primals_5
buf7 = empty_strided_cuda((25, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf6, reinterpret_tensor(primals_6, (64, 10), (1, 64), 0), alpha=1, beta=1, out=buf7)
del primals_7
buf10 = empty_strided_cuda((25, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_per_fused__log_softmax_4.run(buf7, buf10, 25, 10, grid=grid(25), stream=stream0)
del buf7
return (buf10, primals_1, primals_3, buf1, buf3, reinterpret_tensor(buf2, (25, 1280), (1280, 1), 0), buf6, buf10, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((20, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 1280), (1280, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((10, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
"""
Convolutional Neural Network.
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5, stride=1)
self.fc1 = nn.Linear(8 * 8 * 20, 64)
self.fc2 = nn.Linear(64, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 3, 3)
x = x.view(-1, 8 * 8 * 20)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=-1)
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 288000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3600 % 20
x0 = xindex % 3600
x4 = xindex // 3600
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 3616 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = xindex // 20 % 20
x2 = xindex // 400
x5 = xindex
x4 = xindex // 8000
x6 = xindex % 8000
tmp0 = tl.load(in_ptr0 + (3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (60 + 3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (61 + 3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (62 + 3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (120 + 3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (121 + 3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (122 + 3 * x0 + 180 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp17 = tmp1 > tmp0
tmp18 = tl.full([1], 1, tl.int8)
tmp19 = tl.full([1], 0, tl.int8)
tmp20 = tl.where(tmp17, tmp18, tmp19)
tmp21 = tmp3 > tmp2
tmp22 = tl.full([1], 2, tl.int8)
tmp23 = tl.where(tmp21, tmp22, tmp20)
tmp24 = tmp5 > tmp4
tmp25 = tl.full([1], 3, tl.int8)
tmp26 = tl.where(tmp24, tmp25, tmp23)
tmp27 = tmp7 > tmp6
tmp28 = tl.full([1], 4, tl.int8)
tmp29 = tl.where(tmp27, tmp28, tmp26)
tmp30 = tmp9 > tmp8
tmp31 = tl.full([1], 5, tl.int8)
tmp32 = tl.where(tmp30, tmp31, tmp29)
tmp33 = tmp11 > tmp10
tmp34 = tl.full([1], 6, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp13 > tmp12
tmp37 = tl.full([1], 7, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tmp39 = tmp15 > tmp14
tmp40 = tl.full([1], 8, tl.int8)
tmp41 = tl.where(tmp39, tmp40, tmp38)
tl.store(out_ptr0 + x5, tmp16, xmask)
tl.store(out_ptr1 + (x6 + 8064 * x4), tmp41, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 35840
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 1280
x0 = xindex % 1280
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 25, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 1280 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 28, tl.int64)
tmp9 = 0.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + x2, tmp12, xmask)
@triton.jit
def triton_poi_fused_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_per_fused__log_softmax_4(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 25
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (20, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_2, (20,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (64, 1280), (1280, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (10, 64), (64, 1))
assert_size_stride(primals_7, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 20, 60, 60), (72000, 3600, 60, 1))
buf1 = empty_strided_cuda((4, 20, 60, 60), (72320, 3616, 60, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(288000)](buf0, primals_2,
buf1, 288000, XBLOCK=512, num_warps=8, num_stages=1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 20, 20, 20), (8000, 400, 20, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 20, 20, 20), (8064, 400, 20, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(32000)](buf1, buf2,
buf3, 32000, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((28, 1280), (1280, 1), torch.float32)
triton_poi_fused_2[grid(35840)](buf2, buf4, 35840, XBLOCK=512,
num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((28, 64), (64, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_4, (1280, 64), (
1, 1280), 0), out=buf5)
del buf4
buf6 = empty_strided_cuda((25, 64), (64, 1), torch.float32)
triton_poi_fused_relu_3[grid(1600)](buf5, primals_5, buf6, 1600,
XBLOCK=256, num_warps=4, num_stages=1)
del buf5
del primals_5
buf7 = empty_strided_cuda((25, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_7, buf6, reinterpret_tensor(primals_6,
(64, 10), (1, 64), 0), alpha=1, beta=1, out=buf7)
del primals_7
buf10 = empty_strided_cuda((25, 10), (10, 1), torch.float32)
triton_per_fused__log_softmax_4[grid(25)](buf7, buf10, 25, 10,
XBLOCK=1, num_warps=2, num_stages=1)
del buf7
return buf10, primals_1, primals_3, buf1, buf3, reinterpret_tensor(buf2,
(25, 1280), (1280, 1), 0), buf6, buf10, primals_6, primals_4
class CNNNew(nn.Module):
"""
Convolutional Neural Network.
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5, stride=1)
self.fc1 = nn.Linear(8 * 8 * 20, 64)
self.fc2 = nn.Linear(64, 10)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.fc1.weight
primals_5 = self.fc1.bias
primals_6 = self.fc2.weight
primals_7 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| StanislawSwierc/Ax | CNN | false | 5,866 | [
"MIT"
] | 1 | 175dff2294af4548ae258105346eeaca22a30197 | https://github.com/StanislawSwierc/Ax/tree/175dff2294af4548ae258105346eeaca22a30197 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Convolutional Neural Network.
"""
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5, stride=1)
self.fc1 = nn.Linear(8 * 8 * 20, 64)
self.fc2 = nn.Linear(64, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 3, 3)
x = x.view(-1, 8 * 8 * 20)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=-1)
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return []
|
BinaryLogisticRegressionLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/tt/ctthaisn2h6qlimrjmp65k5b5meevfl4by5fxrswxdbne2bmkie2.py
# Topologically Sorted Source Nodes: [gt, pmask, sum_1, num_positive, ratio, clamp_1, ratio_1, coef_1, mul_2, add, log, mul_3, mul, sub, coef_0, sub_1, mul_4, sub_2, add_1, log_1, mul_5, loss, mean, loss_1], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# clamp_1 => clamp_min_1
# coef_0 => div
# coef_1 => mul_2
# gt => gt
# log => log
# log_1 => log_1
# loss => add_2
# loss_1 => neg
# mean => mean
# mul => mul_1
# mul_2 => mul_3
# mul_3 => mul_4
# mul_4 => mul_5
# mul_5 => mul_6
# num_positive => clamp_min
# pmask => convert_element_type
# ratio => mul, reciprocal
# ratio_1 => clamp_max
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sum_1 => sum_1
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view, 0.5), kwargs = {})
# %convert_element_type : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_1, 1), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 256), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 1.05), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 21), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %convert_element_type), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, 1e-05), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %log), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %sub), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_2, 1e-05), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %log_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_6), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_2,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp19 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 1.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 256.0
tmp12 = tmp10 * tmp11
tmp13 = 1.05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = 21.0
tmp16 = triton_helpers.minimum(tmp14, tmp15)
tmp17 = tmp16 * tmp1
tmp18 = tmp17 * tmp3
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = tl_math.log(tmp21)
tmp23 = tmp18 * tmp22
tmp24 = tmp16 - tmp7
tmp25 = tmp17 / tmp24
tmp26 = tmp7 - tmp3
tmp27 = tmp25 * tmp26
tmp28 = tmp7 - tmp19
tmp29 = tmp28 + tmp20
tmp30 = tl_math.log(tmp29)
tmp31 = tmp27 * tmp30
tmp32 = tmp23 + tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp36 = tmp35 / tmp11
tmp37 = -tmp36
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp37, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [gt, pmask, sum_1, num_positive, ratio, clamp_1, ratio_1, coef_1, mul_2, add, log, mul_3, mul, sub, coef_0, sub_1, mul_4, sub_2, add_1, log_1, mul_5, loss, mean, loss_1], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def binary_logistic_regression_loss(reg_score, label, threshold=0.5,
ratio_range=(1.05, 21), eps=1e-05):
"""Binary Logistic Regression Loss."""
label = label.view(-1)
reg_score = reg_score.contiguous().view(-1)
pmask = (label > threshold).float()
num_positive = max(torch.sum(pmask), 1)
num_entries = len(label)
ratio = num_entries / num_positive
ratio = min(max(ratio, ratio_range[0]), ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask
) * torch.log(1.0 - reg_score + eps)
loss = -torch.mean(loss)
return loss
class BinaryLogisticRegressionLoss(nn.Module):
"""Binary Logistic Regression Loss.
It will calculate binary logistic regression loss given reg_score and
label.
"""
def forward(self, reg_score, label, threshold=0.5, ratio_range=(1.05,
21), eps=1e-05):
"""Calculate Binary Logistic Regression Loss.
Args:
reg_score (torch.Tensor): Predicted score by model.
label (torch.Tensor): Groundtruth labels.
threshold (float): Threshold for positive instances.
Default: 0.5.
ratio_range (tuple): Lower bound and upper bound for ratio.
Default: (1.05, 21)
eps (float): Epsilon for small value. Default: 1e-5.
Returns:
torch.Tensor: Returned binary logistic loss.
"""
return binary_logistic_regression_loss(reg_score, label, threshold,
ratio_range, eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp19 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 1.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 256.0
tmp12 = tmp10 * tmp11
tmp13 = 1.05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = 21.0
tmp16 = triton_helpers.minimum(tmp14, tmp15)
tmp17 = tmp16 * tmp1
tmp18 = tmp17 * tmp3
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = tl_math.log(tmp21)
tmp23 = tmp18 * tmp22
tmp24 = tmp16 - tmp7
tmp25 = tmp17 / tmp24
tmp26 = tmp7 - tmp3
tmp27 = tmp25 * tmp26
tmp28 = tmp7 - tmp19
tmp29 = tmp28 + tmp20
tmp30 = tl_math.log(tmp29)
tmp31 = tmp27 * tmp30
tmp32 = tmp23 + tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp36 = tmp35 / tmp11
tmp37 = -tmp36
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp37, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
get_raw_stream(0)
triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0[
grid(1)](buf3, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
def binary_logistic_regression_loss(reg_score, label, threshold=0.5,
ratio_range=(1.05, 21), eps=1e-05):
"""Binary Logistic Regression Loss."""
label = label.view(-1)
reg_score = reg_score.contiguous().view(-1)
pmask = (label > threshold).float()
num_positive = max(torch.sum(pmask), 1)
num_entries = len(label)
ratio = num_entries / num_positive
ratio = min(max(ratio, ratio_range[0]), ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask
) * torch.log(1.0 - reg_score + eps)
loss = -torch.mean(loss)
return loss
class BinaryLogisticRegressionLossNew(nn.Module):
"""Binary Logistic Regression Loss.
It will calculate binary logistic regression loss given reg_score and
label.
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| SvipRepetitionCounting/TransRAC | BinaryLogisticRegressionLoss | false | 5,867 | [
"Apache-2.0"
] | 1 | eec12553dfa1e2fde6356b0e2703c633d225feb3 | https://github.com/SvipRepetitionCounting/TransRAC/tree/eec12553dfa1e2fde6356b0e2703c633d225feb3 | import torch
import torch.nn as nn
def binary_logistic_regression_loss(reg_score, label, threshold=0.5,
ratio_range=(1.05, 21), eps=1e-05):
"""Binary Logistic Regression Loss."""
label = label.view(-1)
reg_score = reg_score.contiguous().view(-1)
pmask = (label > threshold).float()
num_positive = max(torch.sum(pmask), 1)
num_entries = len(label)
ratio = num_entries / num_positive
ratio = min(max(ratio, ratio_range[0]), ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask
) * torch.log(1.0 - reg_score + eps)
loss = -torch.mean(loss)
return loss
class Model(nn.Module):
"""Binary Logistic Regression Loss.
It will calculate binary logistic regression loss given reg_score and
label.
"""
def forward(self, reg_score, label, threshold=0.5, ratio_range=(1.05,
21), eps=1e-05):
"""Calculate Binary Logistic Regression Loss.
Args:
reg_score (torch.Tensor): Predicted score by model.
label (torch.Tensor): Groundtruth labels.
threshold (float): Threshold for positive instances.
Default: 0.5.
ratio_range (tuple): Lower bound and upper bound for ratio.
Default: (1.05, 21)
eps (float): Epsilon for small value. Default: 1e-5.
Returns:
torch.Tensor: Returned binary logistic loss.
"""
return binary_logistic_regression_loss(reg_score, label, threshold,
ratio_range, eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Autoencoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oh/cohhzozgklcdr3g2cpdmnac2zvbvmk53smneafef4zekz5p2kieu.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xv/cxv6btckfuml6hxefmi2ilywyg4d6dpbiwh4qofpvqphr6oyxcrq.py
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_offsets_to_indices, _low_memory_max_pool2d_with_offsets, getitem
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %_low_memory_max_pool2d_offsets_to_indices : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_offsets_to_indices.default](args = (%getitem_1, 2, 64, [2, 2], [0, 0]), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
x2 = (xindex // 32) % 32
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tmp17 = tl.full([1], 2, tl.int32)
tmp18 = tl.where((tmp16 < 0) != (tmp17 < 0), tl.where(tmp16 % tmp17 != 0, tmp16 // tmp17 - 1, tmp16 // tmp17), tmp16 // tmp17)
tmp19 = tmp18 * tmp17
tmp20 = tmp16 - tmp19
tmp21 = 2*x2
tmp22 = tmp21 + tmp18
tmp23 = 2*x0
tmp24 = tmp23 + tmp20
tmp25 = tl.full([1], 64, tl.int64)
tmp26 = tmp22 * tmp25
tmp27 = tmp26 + tmp24
tl.store(out_ptr0 + (x4), tmp6, None)
tl.store(out_ptr1 + (x4), tmp27, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tk/ctkr5j63ngqpsdf5zpn24uwouxiguv7jseip5x6trqjye5gti4rn.py
# Topologically Sorted Source Nodes: [x_5, x_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_5 => convolution_2
# x_6 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qp/cqpq5mf7sbft3bvjthjt7vxmu3sbn7sic3jloxkb73zf5gnxgntg.py
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_1 => _low_memory_max_pool2d_offsets_to_indices_1, _low_memory_max_pool2d_with_offsets_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_3, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %_low_memory_max_pool2d_offsets_to_indices_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_offsets_to_indices.default](args = (%getitem_3, 2, 32, [2, 2], [0, 0]), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x3 = (xindex // 16)
x1 = (xindex // 16) % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x3)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x3)), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x3)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x3)), None, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 2, tl.int32)
tmp18 = tl.where((tmp15 < 0) != (tmp17 < 0), tl.where(tmp15 % tmp17 != 0, tmp15 // tmp17 - 1, tmp15 // tmp17), tmp15 // tmp17)
tmp19 = tmp18 * tmp17
tmp20 = tmp15 - tmp19
tmp21 = 2*x1
tmp22 = tmp21 + tmp18
tmp23 = 2*x0
tmp24 = tmp23 + tmp20
tmp25 = tl.full([1], 32, tl.int64)
tmp26 = tmp22 * tmp25
tmp27 = tmp26 + tmp24
tl.store(out_ptr0 + (x4), tmp27, None)
tl.store(out_ptr1 + (x4), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/rd/crd6o5dwk57s3e26hulgasudtug6tb5zxdk4jbrvlvkzghm552bm.py
# Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_15 => relu_4
# Graph fragment:
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%max_unpool2d,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/gy/cgywnjxm7eucoifckaeatm6tlye2fyfy2h6f3pelrcjxyhttin2l.py
# Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_18 => convolution_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/k3/ck3it6pguxbprqavq7jtvx7zudf7ymudhezrol335pggcqczxj7m.py
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_20 => relu_6
# Graph fragment:
# %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%max_unpool2d_1,), kwargs = {})
triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hk/chkbtn34xrzxxbrali3tmhhvipkxe6tbpkdaom3gw5eqe2btyuvf.py
# Topologically Sorted Source Nodes: [x_23], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_23 => convolution_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_7, %primals_20, %primals_21, [1, 1], [1, 1], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21 = args
args.clear()
assert_size_stride(primals_1, (8, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_5, (8, ), (1, ))
assert_size_stride(primals_6, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_7, (16, ), (1, ))
assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_9, (16, ), (1, ))
assert_size_stride(primals_10, (3, 4096), (4096, 1))
assert_size_stride(primals_11, (3, ), (1, ))
assert_size_stride(primals_12, (4096, 3), (3, 1))
assert_size_stride(primals_13, (4096, ), (1, ))
assert_size_stride(primals_14, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_15, (16, ), (1, ))
assert_size_stride(primals_16, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_17, (8, ), (1, ))
assert_size_stride(primals_18, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_19, (8, ), (1, ))
assert_size_stride(primals_20, (8, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_21, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 64, 64), (32768, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 131072, grid=grid(131072), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 64, 64), (32768, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 131072, grid=grid(131072), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.float32)
buf5 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1), torch.int64)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf3, buf4, buf5, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_5, x_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf7, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_7, x_8], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf9, primals_9, 65536, grid=grid(65536), stream=stream0)
del primals_9
buf10 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.int64)
buf11 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf9, buf10, buf11, 16384, grid=grid(16384), stream=stream0)
buf12 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 4096), (4096, 1), 0), reinterpret_tensor(primals_10, (4096, 3), (1, 4096), 0), alpha=1, beta=1, out=buf12)
del primals_11
buf13 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_13, buf12, reinterpret_tensor(primals_12, (3, 4096), (1, 3), 0), alpha=1, beta=1, out=buf13)
del primals_13
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.max_unpool2d]
buf14 = torch.ops.aten.max_unpool2d.default(reinterpret_tensor(buf13, (4, 16, 16, 16), (4096, 256, 16, 1), 0), buf10, [32, 32])
del buf13
buf15 = buf14
del buf14
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf16, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [x_16, x_17], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf18, primals_15, 65536, grid=grid(65536), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 8, 32, 32), (8192, 1024, 32, 1))
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf20, primals_17, 32768, grid=grid(32768), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [x_18, x_19], Original ATen: [aten.convolution, aten.max_unpool2d]
buf21 = torch.ops.aten.max_unpool2d.default(buf20, buf5, [64, 64])
del buf20
buf22 = buf21
del buf21
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.relu]
triton_poi_fused_relu_6.run(buf23, 131072, grid=grid(131072), stream=stream0)
# Topologically Sorted Source Nodes: [x_21], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 8, 64, 64), (32768, 4096, 64, 1))
buf25 = buf24; del buf24 # reuse
# Topologically Sorted Source Nodes: [x_21, x_22], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf25, primals_19, 131072, grid=grid(131072), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [x_23], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf25, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [x_23], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf27, primals_21, 16384, grid=grid(16384), stream=stream0)
del primals_21
return (buf27, primals_1, primals_3, primals_4, primals_6, primals_8, primals_14, primals_16, primals_18, primals_20, buf1, buf3, buf4, buf5, buf7, buf9, buf10, reinterpret_tensor(buf11, (4, 4096), (4096, 1), 0), buf12, buf16, buf18, buf23, buf25, primals_12, primals_10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((3, 4096), (4096, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4096, 3), (3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((8, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class Autoencoder(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(1, 8, 3, padding=1)
self.conv2 = torch.nn.Conv2d(8, 8, 3, padding=1)
self.conv3 = torch.nn.Conv2d(8, 16, 3, padding=1)
self.conv4 = torch.nn.Conv2d(16, 16, 3, padding=1)
self.lc1 = torch.nn.Linear(16 * 16 * 16, 3)
self.lc2 = torch.nn.Linear(3, 16 * 16 * 16)
self.trans1 = torch.nn.ConvTranspose2d(16, 16, 3, padding=1)
self.trans2 = torch.nn.ConvTranspose2d(16, 8, 3, padding=1)
self.trans3 = torch.nn.ConvTranspose2d(8, 8, 3, padding=1)
self.trans4 = torch.nn.ConvTranspose2d(8, 1, 3, padding=1)
self.mp = torch.nn.MaxPool2d(2, return_indices=True)
self.up = torch.nn.MaxUnpool2d(2)
self.relu = torch.nn.ReLU()
def encoder(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
s1 = x.size()
x, ind1 = self.mp(x)
x = self.conv3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.relu(x)
s2 = x.size()
x, ind2 = self.mp(x)
x = x.view(int(x.size()[0]), -1)
x = self.lc1(x)
return x, ind1, s1, ind2, s2
def decoder(self, x, ind1, s1, ind2, s2):
x = self.lc2(x)
x = x.view(int(x.size()[0]), 16, 16, 16)
x = self.up(x, ind2, output_size=s2)
x = self.relu(x)
x = self.trans1(x)
x = self.relu(x)
x = self.trans2(x)
x = self.up(x, ind1, output_size=s1)
x = self.relu(x)
x = self.trans3(x)
x = self.relu(x)
x = self.trans4(x)
return x
def forward(self, x):
x, ind1, s1, ind2, s2 = self.encoder(x)
output = self.decoder(x, ind1, s1, ind2, s2)
return output
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 8
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
x2 = xindex // 32 % 32
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tmp17 = tl.full([1], 2, tl.int32)
tmp18 = tl.where((tmp16 < 0) != (tmp17 < 0), tl.where(tmp16 % tmp17 !=
0, tmp16 // tmp17 - 1, tmp16 // tmp17), tmp16 // tmp17)
tmp19 = tmp18 * tmp17
tmp20 = tmp16 - tmp19
tmp21 = 2 * x2
tmp22 = tmp21 + tmp18
tmp23 = 2 * x0
tmp24 = tmp23 + tmp20
tmp25 = tl.full([1], 64, tl.int64)
tmp26 = tmp22 * tmp25
tmp27 = tmp26 + tmp24
tl.store(out_ptr0 + x4, tmp6, None)
tl.store(out_ptr1 + x4, tmp27, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x3 = xindex // 16
x1 = xindex // 16 % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x3), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x3), None, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x3), None, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x3), None,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp17 = tl.full([1], 2, tl.int32)
tmp18 = tl.where((tmp15 < 0) != (tmp17 < 0), tl.where(tmp15 % tmp17 !=
0, tmp15 // tmp17 - 1, tmp15 // tmp17), tmp15 // tmp17)
tmp19 = tmp18 * tmp17
tmp20 = tmp15 - tmp19
tmp21 = 2 * x1
tmp22 = tmp21 + tmp18
tmp23 = 2 * x0
tmp24 = tmp23 + tmp20
tmp25 = tl.full([1], 32, tl.int64)
tmp26 = tmp22 * tmp25
tmp27 = tmp26 + tmp24
tl.store(out_ptr0 + x4, tmp27, None)
tl.store(out_ptr1 + x4, tmp16, None)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 8
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21) = args
args.clear()
assert_size_stride(primals_1, (8, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_5, (8,), (1,))
assert_size_stride(primals_6, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_7, (16,), (1,))
assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_9, (16,), (1,))
assert_size_stride(primals_10, (3, 4096), (4096, 1))
assert_size_stride(primals_11, (3,), (1,))
assert_size_stride(primals_12, (4096, 3), (3, 1))
assert_size_stride(primals_13, (4096,), (1,))
assert_size_stride(primals_14, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_15, (16,), (1,))
assert_size_stride(primals_16, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_17, (8,), (1,))
assert_size_stride(primals_18, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_19, (8,), (1,))
assert_size_stride(primals_20, (8, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_21, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 64, 64), (32768, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(131072)](buf1, primals_2,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 64, 64), (32768, 4096, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(131072)](buf3, primals_5,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1),
torch.float32)
buf5 = empty_strided_cuda((4, 8, 32, 32), (8192, 1024, 32, 1),
torch.int64)
triton_poi_fused_max_pool2d_with_indices_1[grid(32768)](buf3, buf4,
buf5, 32768, XBLOCK=256, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_2[grid(65536)](buf7, primals_7,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_2[grid(65536)](buf9, primals_9,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_9
buf10 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1),
torch.int64)
buf11 = empty_strided_cuda((4, 16, 16, 16), (4096, 256, 16, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_3[grid(16384)](buf9, buf10,
buf11, 16384, XBLOCK=256, num_warps=4, num_stages=1)
buf12 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 4096
), (4096, 1), 0), reinterpret_tensor(primals_10, (4096, 3), (1,
4096), 0), alpha=1, beta=1, out=buf12)
del primals_11
buf13 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32)
extern_kernels.addmm(primals_13, buf12, reinterpret_tensor(
primals_12, (3, 4096), (1, 3), 0), alpha=1, beta=1, out=buf13)
del primals_13
buf14 = torch.ops.aten.max_unpool2d.default(reinterpret_tensor(
buf13, (4, 16, 16, 16), (4096, 256, 16, 1), 0), buf10, [32, 32])
del buf13
buf15 = buf14
del buf14
buf16 = buf15
del buf15
triton_poi_fused_relu_4[grid(65536)](buf16, 65536, XBLOCK=512,
num_warps=4, num_stages=1)
buf17 = extern_kernels.convolution(buf16, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 16, 32, 32), (16384, 1024, 32, 1))
buf18 = buf17
del buf17
triton_poi_fused_convolution_relu_2[grid(65536)](buf18, primals_15,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_15
buf19 = extern_kernels.convolution(buf18, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 8, 32, 32), (8192, 1024, 32, 1))
buf20 = buf19
del buf19
triton_poi_fused_convolution_5[grid(32768)](buf20, primals_17,
32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_17
buf21 = torch.ops.aten.max_unpool2d.default(buf20, buf5, [64, 64])
del buf20
buf22 = buf21
del buf21
buf23 = buf22
del buf22
triton_poi_fused_relu_6[grid(131072)](buf23, 131072, XBLOCK=1024,
num_warps=4, num_stages=1)
buf24 = extern_kernels.convolution(buf23, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 8, 64, 64), (32768, 4096, 64, 1))
buf25 = buf24
del buf24
triton_poi_fused_convolution_relu_0[grid(131072)](buf25, primals_19,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_19
buf26 = extern_kernels.convolution(buf25, primals_20, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf27 = buf26
del buf26
triton_poi_fused_convolution_7[grid(16384)](buf27, primals_21,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_21
return (buf27, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_14, primals_16, primals_18, primals_20, buf1, buf3, buf4,
buf5, buf7, buf9, buf10, reinterpret_tensor(buf11, (4, 4096), (4096,
1), 0), buf12, buf16, buf18, buf23, buf25, primals_12, primals_10)
class AutoencoderNew(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(1, 8, 3, padding=1)
self.conv2 = torch.nn.Conv2d(8, 8, 3, padding=1)
self.conv3 = torch.nn.Conv2d(8, 16, 3, padding=1)
self.conv4 = torch.nn.Conv2d(16, 16, 3, padding=1)
self.lc1 = torch.nn.Linear(16 * 16 * 16, 3)
self.lc2 = torch.nn.Linear(3, 16 * 16 * 16)
self.trans1 = torch.nn.ConvTranspose2d(16, 16, 3, padding=1)
self.trans2 = torch.nn.ConvTranspose2d(16, 8, 3, padding=1)
self.trans3 = torch.nn.ConvTranspose2d(8, 8, 3, padding=1)
self.trans4 = torch.nn.ConvTranspose2d(8, 1, 3, padding=1)
self.mp = torch.nn.MaxPool2d(2, return_indices=True)
self.up = torch.nn.MaxUnpool2d(2)
self.relu = torch.nn.ReLU()
def encoder(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
s1 = x.size()
x, ind1 = self.mp(x)
x = self.conv3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.relu(x)
s2 = x.size()
x, ind2 = self.mp(x)
x = x.view(int(x.size()[0]), -1)
x = self.lc1(x)
return x, ind1, s1, ind2, s2
def decoder(self, x, ind1, s1, ind2, s2):
x = self.lc2(x)
x = x.view(int(x.size()[0]), 16, 16, 16)
x = self.up(x, ind2, output_size=s2)
x = self.relu(x)
x = self.trans1(x)
x = self.relu(x)
x = self.trans2(x)
x = self.up(x, ind1, output_size=s1)
x = self.relu(x)
x = self.trans3(x)
x = self.relu(x)
x = self.trans4(x)
return x
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.lc1.weight
primals_11 = self.lc1.bias
primals_12 = self.lc2.weight
primals_13 = self.lc2.bias
primals_14 = self.trans1.weight
primals_15 = self.trans1.bias
primals_16 = self.trans2.weight
primals_17 = self.trans2.bias
primals_18 = self.trans3.weight
primals_19 = self.trans3.bias
primals_20 = self.trans4.weight
primals_21 = self.trans4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21])
return output[0]
| SpaceMeerkat/CAE | Autoencoder | false | 5,868 | [
"MIT"
] | 1 | 8c5e2fbe751810a87ca155d0e3d53797f52fd9ea | https://github.com/SpaceMeerkat/CAE/tree/8c5e2fbe751810a87ca155d0e3d53797f52fd9ea | import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(1, 8, 3, padding=1)
self.conv2 = torch.nn.Conv2d(8, 8, 3, padding=1)
self.conv3 = torch.nn.Conv2d(8, 16, 3, padding=1)
self.conv4 = torch.nn.Conv2d(16, 16, 3, padding=1)
self.lc1 = torch.nn.Linear(16 * 16 * 16, 3)
self.lc2 = torch.nn.Linear(3, 16 * 16 * 16)
self.trans1 = torch.nn.ConvTranspose2d(16, 16, 3, padding=1)
self.trans2 = torch.nn.ConvTranspose2d(16, 8, 3, padding=1)
self.trans3 = torch.nn.ConvTranspose2d(8, 8, 3, padding=1)
self.trans4 = torch.nn.ConvTranspose2d(8, 1, 3, padding=1)
self.mp = torch.nn.MaxPool2d(2, return_indices=True)
self.up = torch.nn.MaxUnpool2d(2)
self.relu = torch.nn.ReLU()
def encoder(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
s1 = x.size()
x, ind1 = self.mp(x)
x = self.conv3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.relu(x)
s2 = x.size()
x, ind2 = self.mp(x)
x = x.view(int(x.size()[0]), -1)
x = self.lc1(x)
return x, ind1, s1, ind2, s2
def decoder(self, x, ind1, s1, ind2, s2):
x = self.lc2(x)
x = x.view(int(x.size()[0]), 16, 16, 16)
x = self.up(x, ind2, output_size=s2)
x = self.relu(x)
x = self.trans1(x)
x = self.relu(x)
x = self.trans2(x)
x = self.up(x, ind1, output_size=s1)
x = self.relu(x)
x = self.trans3(x)
x = self.relu(x)
x = self.trans4(x)
return x
def forward(self, x):
x, ind1, s1, ind2, s2 = self.encoder(x)
output = self.decoder(x, ind1, s1, ind2, s2)
return output
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return []
|
InceptionA | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/p3/cp32zuxrp2cknaaat4l46gcxlkrjzggsmqqhfyznul7wqfb4ebec.py
# Topologically Sorted Source Nodes: [branch1x1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# branch1x1 => convolution
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/pb/cpbadr4mlklsm2wsqfjoz2cymcfug6mdrrrgmdl7w4mjrll45aku.py
# Topologically Sorted Source Nodes: [branch3x3_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# branch3x3_1 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 24
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/em/cemc3jqja2kwvgm7onb76we2dehvtipmlyp7igln4trye3m6kju4.py
# Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# branch_pool => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_3, [3, 3], [1, 1], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_2 = async_compile.triton('triton_poi_fused_avg_pool2d_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + x4), tmp10 & xmask, other=0.0)
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + x4), tmp16 & xmask, other=0.0)
tmp18 = tmp17 + tmp11
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + x4), tmp23 & xmask, other=0.0)
tmp25 = tmp24 + tmp18
tmp26 = x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-1) + x4), tmp30 & xmask, other=0.0)
tmp32 = tmp31 + tmp25
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x4), tmp33 & xmask, other=0.0)
tmp35 = tmp34 + tmp32
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=0.0)
tmp38 = tmp37 + tmp35
tmp39 = 1 + x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + x4), tmp43 & xmask, other=0.0)
tmp45 = tmp44 + tmp38
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + x4), tmp46 & xmask, other=0.0)
tmp48 = tmp47 + tmp45
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + x4), tmp49 & xmask, other=0.0)
tmp51 = tmp50 + tmp48
tmp52 = 1 + ((-1)*x0) + ((-1)*x1) + (x0*x1) + (((5) * ((5) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (5)))*((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))) + ((-1)*x0*((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))) + ((-1)*x1*((5) * ((5) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (5)))) + ((5) * ((5) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (5))) + ((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))
tmp53 = tmp51 / tmp52
tl.store(out_ptr0 + (x4), tmp53, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/x6/cx6rdu5zhcf7lsqauiipv2bughhyspmkntbyzpcsxcjmj4rhue2q.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_2, %convolution_5, %convolution_6], 1), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5632
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 88
x0 = xindex % 16
x2 = (xindex // 1408)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (256*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 40, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (16*((-16) + x1)) + (384*x2)), tmp9 & xmask, other=0.0)
tmp11 = tl.load(in_ptr2 + ((-16) + x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp9, tmp12, tmp13)
tmp15 = tmp0 >= tmp7
tmp16 = tl.full([1], 64, tl.int64)
tmp17 = tmp0 < tmp16
tmp18 = tmp15 & tmp17
tmp19 = tl.load(in_ptr3 + (x0 + (16*((-40) + x1)) + (384*x2)), tmp18 & xmask, other=0.0)
tmp20 = tl.load(in_ptr4 + ((-40) + x1), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp18, tmp21, tmp22)
tmp24 = tmp0 >= tmp16
tmp25 = tl.full([1], 88, tl.int64)
tmp26 = tmp0 < tmp25
tmp27 = tl.load(in_ptr5 + (x0 + (16*((-64) + x1)) + (384*x2)), tmp24 & xmask, other=0.0)
tmp28 = tl.load(in_ptr6 + ((-64) + x1), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tmp27 + tmp28
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp24, tmp29, tmp30)
tmp32 = tl.where(tmp18, tmp23, tmp31)
tmp33 = tl.where(tmp9, tmp14, tmp32)
tmp34 = tl.where(tmp4, tmp5, tmp33)
tl.store(out_ptr0 + (x3), tmp34, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (24, 16, 5, 5), (400, 25, 5, 1))
assert_size_stride(primals_5, (24, ), (1, ))
assert_size_stride(primals_6, (24, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_7, (24, ), (1, ))
assert_size_stride(primals_8, (24, 24, 3, 3), (216, 9, 3, 1))
assert_size_stride(primals_9, (24, ), (1, ))
assert_size_stride(primals_10, (24, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (24, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [branch1x1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [branch1x1], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 1024, grid=grid(1024), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [branch5x5_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 24, 4, 4), (384, 16, 4, 1))
# Topologically Sorted Source Nodes: [branch3x3_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf1, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 24, 4, 4), (384, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [branch3x3_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf4, primals_7, 1536, grid=grid(1536), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [branch3x3_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 24, 4, 4), (384, 16, 4, 1))
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_2.run(primals_3, buf6, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [branch_pool_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 24, 4, 4), (384, 16, 4, 1))
buf8 = empty_strided_cuda((4, 88, 4, 4), (1408, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf1, buf2, primals_5, buf5, primals_9, buf7, primals_11, buf8, 5632, grid=grid(5632), stream=stream0)
del buf2
del buf5
del buf7
del primals_11
del primals_5
del primals_9
return (buf8, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((24, 16, 5, 5), (400, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((24, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((24, 24, 3, 3), (216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((24, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class InceptionA(torch.nn.Module):
def __init__(self, in_channels):
super(InceptionA, self).__init__()
self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))
self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=(1, 1))
self.branch5x5 = torch.nn.Conv2d(16, 24, kernel_size=(5, 5), padding=2)
self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=(3, 3),
padding=1)
self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=(3, 3),
padding=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch1x1(x)
branch5x5 = self.branch5x5(branch5x5)
branch3x3 = self.branch1x1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x, kernel_size=(3, 3), stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(outputs, dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 24
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + x4), tmp10 & xmask, other=0.0)
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + x4), tmp16 & xmask, other=0.0)
tmp18 = tmp17 + tmp11
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + x4), tmp23 & xmask, other=0.0)
tmp25 = tmp24 + tmp18
tmp26 = x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + x4), tmp30 & xmask, other=0.0)
tmp32 = tmp31 + tmp25
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + x4, tmp33 & xmask, other=0.0)
tmp35 = tmp34 + tmp32
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36 & xmask, other=0.0)
tmp38 = tmp37 + tmp35
tmp39 = 1 + x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + x4), tmp43 & xmask, other=0.0)
tmp45 = tmp44 + tmp38
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + x4), tmp46 & xmask, other=0.0)
tmp48 = tmp47 + tmp45
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + x4), tmp49 & xmask, other=0.0)
tmp51 = tmp50 + tmp48
tmp52 = 1 + -1 * x0 + -1 * x1 + x0 * x1 + (5 * (5 <= 2 + x0) + (2 + x0) *
(2 + x0 < 5)) * (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)
) + -1 * x0 * (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)
) + -1 * x1 * (5 * (5 <= 2 + x0) + (2 + x0) * (2 + x0 < 5)) + (5 *
(5 <= 2 + x0) + (2 + x0) * (2 + x0 < 5)) + (5 * (5 <= 2 + x1) + (2 +
x1) * (2 + x1 < 5))
tmp53 = tmp51 / tmp52
tl.store(out_ptr0 + x4, tmp53, xmask)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 5632
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 88
x0 = xindex % 16
x2 = xindex // 1408
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 16, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 256 * x2), tmp4 & xmask, other=0.0
)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 40, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 16 * (-16 + x1) + 384 * x2), tmp9 &
xmask, other=0.0)
tmp11 = tl.load(in_ptr2 + (-16 + x1), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype)
tmp14 = tl.where(tmp9, tmp12, tmp13)
tmp15 = tmp0 >= tmp7
tmp16 = tl.full([1], 64, tl.int64)
tmp17 = tmp0 < tmp16
tmp18 = tmp15 & tmp17
tmp19 = tl.load(in_ptr3 + (x0 + 16 * (-40 + x1) + 384 * x2), tmp18 &
xmask, other=0.0)
tmp20 = tl.load(in_ptr4 + (-40 + x1), tmp18 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp18, tmp21, tmp22)
tmp24 = tmp0 >= tmp16
tl.full([1], 88, tl.int64)
tmp27 = tl.load(in_ptr5 + (x0 + 16 * (-64 + x1) + 384 * x2), tmp24 &
xmask, other=0.0)
tmp28 = tl.load(in_ptr6 + (-64 + x1), tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp29 = tmp27 + tmp28
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp24, tmp29, tmp30)
tmp32 = tl.where(tmp18, tmp23, tmp31)
tmp33 = tl.where(tmp9, tmp14, tmp32)
tmp34 = tl.where(tmp4, tmp5, tmp33)
tl.store(out_ptr0 + x3, tmp34, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (24, 16, 5, 5), (400, 25, 5, 1))
assert_size_stride(primals_5, (24,), (1,))
assert_size_stride(primals_6, (24, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_7, (24,), (1,))
assert_size_stride(primals_8, (24, 24, 3, 3), (216, 9, 3, 1))
assert_size_stride(primals_9, (24,), (1,))
assert_size_stride(primals_10, (24, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (24,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(1024)](buf1, primals_2, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 24, 4, 4), (384, 16, 4, 1))
buf3 = extern_kernels.convolution(buf1, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 24, 4, 4), (384, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_1[grid(1536)](buf4, primals_7, 1536,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf5 = extern_kernels.convolution(buf4, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 24, 4, 4), (384, 16, 4, 1))
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_avg_pool2d_2[grid(256)](primals_3, buf6, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf7 = extern_kernels.convolution(buf6, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 24, 4, 4), (384, 16, 4, 1))
buf8 = empty_strided_cuda((4, 88, 4, 4), (1408, 16, 4, 1), torch.
float32)
triton_poi_fused_cat_3[grid(5632)](buf1, buf2, primals_5, buf5,
primals_9, buf7, primals_11, buf8, 5632, XBLOCK=256, num_warps=
4, num_stages=1)
del buf2
del buf5
del buf7
del primals_11
del primals_5
del primals_9
return (buf8, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf4, buf6)
class InceptionANew(torch.nn.Module):
def __init__(self, in_channels):
super(InceptionANew, self).__init__()
self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))
self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=(1, 1))
self.branch5x5 = torch.nn.Conv2d(16, 24, kernel_size=(5, 5), padding=2)
self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=(3, 3),
padding=1)
self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=(3, 3),
padding=1)
def forward(self, input_0):
primals_1 = self.branch1x1.weight
primals_2 = self.branch1x1.bias
primals_10 = self.branch_pool.weight
primals_5 = self.branch_pool.bias
primals_4 = self.branch5x5.weight
primals_7 = self.branch5x5.bias
primals_6 = self.branch3x3_2.weight
primals_9 = self.branch3x3_2.bias
primals_8 = self.branch3x3_3.weight
primals_11 = self.branch3x3_3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| StarsStation/DeepLearning | InceptionA | false | 5,869 | [
"MIT"
] | 1 | a4c833af93652069f19a8c6f0b1e42cde64bbb79 | https://github.com/StarsStation/DeepLearning/tree/a4c833af93652069f19a8c6f0b1e42cde64bbb79 | import torch
import torch.nn.functional as F
class Model(torch.nn.Module):
def __init__(self, in_channels):
super().__init__()
self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))
self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=(1, 1))
self.branch5x5 = torch.nn.Conv2d(16, 24, kernel_size=(5, 5), padding=2)
self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=(3, 3),
padding=1)
self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=(3, 3),
padding=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch1x1(x)
branch5x5 = self.branch5x5(branch5x5)
branch3x3 = self.branch1x1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x, kernel_size=(3, 3), stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(outputs, dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
DotProductAttention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(arg0_1, reinterpret_tensor(arg1_1, (4, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [softmax, bmm_1], Original ATen: [aten._softmax, aten.bmm]
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
def masked_softmax(X, valid_len):
"""Perform softmax by filtering out some elements."""
if valid_len is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_len.dim() == 1:
valid_len = torch.repeat_interleave(valid_len, repeats=shape[1],
dim=0)
else:
valid_len = valid_len.reshape(-1)
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_len, value=-
1000000.0)
return nn.functional.softmax(X.reshape(shape), dim=-1)
class DotProductAttention(nn.Module):
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, valid_len=None):
d = query.shape[-1]
scores = torch.bmm(query, key.transpose(1, 2)) / math.sqrt(d)
attention_weights = self.dropout(masked_softmax(scores, valid_len))
return torch.bmm(attention_weights, value)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg0_1, reinterpret_tensor(arg1_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
del buf2
return buf3,
def masked_softmax(X, valid_len):
"""Perform softmax by filtering out some elements."""
if valid_len is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_len.dim() == 1:
valid_len = torch.repeat_interleave(valid_len, repeats=shape[1],
dim=0)
else:
valid_len = valid_len.reshape(-1)
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_len, value=-
1000000.0)
return nn.functional.softmax(X.reshape(shape), dim=-1)
class DotProductAttentionNew(nn.Module):
def __init__(self, dropout, **kwargs):
super(DotProductAttentionNew, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| StevenJokess/d2l-en-read | DotProductAttention | false | 5,870 | [
"MIT"
] | 1 | 71b0f35971063b9fe5f21319b8072d61c9e5a298 | https://github.com/StevenJokess/d2l-en-read/tree/71b0f35971063b9fe5f21319b8072d61c9e5a298 | import math
import torch
from torch import nn
def masked_softmax(X, valid_len):
"""Perform softmax by filtering out some elements."""
if valid_len is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_len.dim() == 1:
valid_len = torch.repeat_interleave(valid_len, repeats=shape[1],
dim=0)
else:
valid_len = valid_len.reshape(-1)
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_len, value=-
1000000.0)
return nn.functional.softmax(X.reshape(shape), dim=-1)
class Model(nn.Module):
def __init__(self, dropout, **kwargs):
super().__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, valid_len=None):
d = query.shape[-1]
scores = torch.bmm(query, key.transpose(1, 2)) / math.sqrt(d)
attention_weights = self.dropout(masked_softmax(scores, valid_len))
return torch.bmm(attention_weights, value)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [0.5]
|
Linear_dynamics | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/p7/cp77ymib6ecyor4nz6kwye6nesu6xpmd66exj4t35p7cyrrvqs44.py
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tl.load(in_ptr2 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp4 = tmp1 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(primals_3, primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_3
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch import nn
class Linear_dynamics(nn.Module):
def __init__(self, device='cpu'):
super(Linear_dynamics, self).__init__()
self.time = nn.Parameter(torch.ones(1) * 0.7)
self.device = device
self
def forward(self, x, v):
return x + v * self.time
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tl.load(in_ptr2 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp4 = tmp1 * tmp3
tmp5 = tmp0 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](primals_3, primals_2,
primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_3
return buf0, primals_2
class Linear_dynamicsNew(nn.Module):
def __init__(self, device='cpu'):
super(Linear_dynamicsNew, self).__init__()
self.time = nn.Parameter(torch.ones(1) * 0.7)
self.device = device
self
def forward(self, input_0, input_1):
primals_1 = self.time
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
| SuperXiang/GMN | Linear_dynamics | false | 5,871 | [
"MIT"
] | 1 | b74364e5b9f424b63a5ce63a207a6e4a067d7d3b | https://github.com/SuperXiang/GMN/tree/b74364e5b9f424b63a5ce63a207a6e4a067d7d3b | import torch
import torch.utils.data
from torch import nn
class Model(nn.Module):
def __init__(self, device='cpu'):
super().__init__()
self.time = nn.Parameter(torch.ones(1) * 0.7)
self.device = device
self
def forward(self, x, v):
return x + v * self.time
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ContrastiveLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/lh/clhtaboxxs526aw4bqcb7s6xoig5vzwco55tfg6waaga3ao3elgd.py
# Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm]
# Source node to ATen node mapping:
# euclidean_distance => add, pow_1, pow_2, sub, sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
triton_poi_fused_add_norm_sub_0 = async_compile.triton('triton_poi_fused_add_norm_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = 1e-06
tmp4 = tmp2 + tmp3
tmp5 = tmp4 * tmp4
tmp8 = tmp6 - tmp7
tmp9 = tmp8 + tmp3
tmp10 = tmp9 * tmp9
tmp11 = tmp5 + tmp10
tmp14 = tmp12 - tmp13
tmp15 = tmp14 + tmp3
tmp16 = tmp15 * tmp15
tmp17 = tmp11 + tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 + tmp3
tmp22 = tmp21 * tmp21
tmp23 = tmp17 + tmp22
tmp24 = libdevice.sqrt(tmp23)
tl.store(out_ptr0 + (x0), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/oz/cozw5x2bk76j7tahc22ioqpknxpqkdrfq7isfehwmyef3hmqkog7.py
# Topologically Sorted Source Nodes: [mul, mul_1, add, add_1, sqrt, sub, relu, pow_1, mul_2, add_2, losses, loss_contrastive], Original ATen: [aten.mul, aten.add, aten.sqrt, aten.rsub, aten.relu, aten.pow, aten.mean]
# Source node to ATen node mapping:
# add => add_1
# add_1 => add_2
# add_2 => add_3
# loss_contrastive => mean
# losses => mul_3
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# pow_1 => pow_3
# relu => relu
# sqrt => sqrt
# sub => sub_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, -1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-09), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_2,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %sqrt), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_1,), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu, 2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %pow_3), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 0.5), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_3,), kwargs = {})
triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1 = async_compile.triton('triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex
r0 = rindex % 64
tmp0 = tl.load(in_ptr0 + (r2), None)
tmp1 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = -1.0
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp4 + tmp5
tmp7 = 1e-09
tmp8 = tmp1 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = 2.0
tmp11 = tmp10 - tmp9
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tmp13 * tmp13
tmp15 = tmp6 * tmp14
tmp16 = tmp2 + tmp15
tmp17 = 0.5
tmp18 = tmp16 * tmp17
tmp19 = tl.broadcast_to(tmp18, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp22 = 256.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm]
stream0 = get_raw_stream(0)
triton_poi_fused_add_norm_sub_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [mul, mul_1, add, add_1, sqrt, sub, relu, pow_1, mul_2, add_2, losses, loss_contrastive], Original ATen: [aten.mul, aten.add, aten.sqrt, aten.rsub, aten.relu, aten.pow, aten.mean]
triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1.run(buf2, arg2_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg2_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torchvision.transforms import functional as F
import torch.nn as nn
import torch.nn.functional as F
class ContrastiveLoss(nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
"""
def __init__(self, margin: 'float'=2.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin
self.eps = 1e-09
def forward(self, output1: 'torch.Tensor', output2: 'torch.Tensor',
label: 'torch.Tensor'):
euclidean_distance = F.pairwise_distance(output1, output2)
losses = 0.5 * (label.float() * euclidean_distance + (1 + -1 *
label).float() * F.relu(self.margin - (euclidean_distance +
self.eps).sqrt()).pow(2))
loss_contrastive = torch.mean(losses)
return loss_contrastive
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 - tmp1
tmp3 = 1e-06
tmp4 = tmp2 + tmp3
tmp5 = tmp4 * tmp4
tmp8 = tmp6 - tmp7
tmp9 = tmp8 + tmp3
tmp10 = tmp9 * tmp9
tmp11 = tmp5 + tmp10
tmp14 = tmp12 - tmp13
tmp15 = tmp14 + tmp3
tmp16 = tmp15 * tmp15
tmp17 = tmp11 + tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 + tmp3
tmp22 = tmp21 * tmp21
tmp23 = tmp17 + tmp22
tmp24 = libdevice.sqrt(tmp23)
tl.store(out_ptr0 + x0, tmp24, xmask)
@triton.jit
def triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex
r0 = rindex % 64
tmp0 = tl.load(in_ptr0 + r2, None)
tmp1 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = -1.0
tmp4 = tmp0 * tmp3
tmp5 = 1.0
tmp6 = tmp4 + tmp5
tmp7 = 1e-09
tmp8 = tmp1 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = 2.0
tmp11 = tmp10 - tmp9
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tmp13 * tmp13
tmp15 = tmp6 * tmp14
tmp16 = tmp2 + tmp15
tmp17 = 0.5
tmp18 = tmp16 * tmp17
tmp19 = tl.broadcast_to(tmp18, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp22 = 256.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_norm_sub_0[grid(64)](arg1_1, arg0_1, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1[grid(1)](buf2,
arg2_1, buf0, 1, 256, num_warps=2, num_stages=1)
del arg2_1
del buf0
return buf2,
class ContrastiveLossNew(nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
"""
def __init__(self, margin: 'float'=2.0):
super(ContrastiveLossNew, self).__init__()
self.margin = margin
self.eps = 1e-09
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| Swall0w/cougar | ContrastiveLoss | false | 5,872 | [
"MIT"
] | 1 | 9161b2b1d0c256f4bb952ec190351684f28ec1b7 | https://github.com/Swall0w/cougar/tree/9161b2b1d0c256f4bb952ec190351684f28ec1b7 | import torch
from torchvision.transforms import functional as F
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
"""
def __init__(self, margin: 'float'=2.0):
super().__init__()
self.margin = margin
self.eps = 1e-09
def forward(self, output1: 'torch.Tensor', output2: 'torch.Tensor',
label: 'torch.Tensor'):
euclidean_distance = F.pairwise_distance(output1, output2)
losses = 0.5 * (label.float() * euclidean_distance + (1 + -1 *
label).float() * F.relu(self.margin - (euclidean_distance +
self.eps).sqrt()).pow(2))
loss_contrastive = torch.mean(losses)
return loss_contrastive
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
SeqFC1 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wn/cwnbny2g2c4hzf4klds4ngvg6nqtj6s4fbxcgkvzmot3mq2igc6c.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (16, 4), (4, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (2, 16), (16, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (16, 2), (1, 16), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (buf2, primals_1, buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class SeqFC1(nn.Module):
""" Neural network definition
"""
def __init__(self, size):
super(SeqFC1, self).__init__()
self.size = size
self.fc1 = nn.Linear(in_features=self.size, out_features=16)
self.fc2 = nn.Linear(in_features=16, out_features=2)
def forward(self, coord):
x = coord.float().view(coord.size(0), -1)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (16, 4), (4, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (2, 16), (16, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 16),
(1, 4), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(64)](buf1, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(16, 2), (1, 16), 0), alpha=1, beta=1, out=buf2)
del primals_5
return buf2, primals_1, buf1, primals_4
class SeqFC1New(nn.Module):
""" Neural network definition
"""
def __init__(self, size):
super(SeqFC1New, self).__init__()
self.size = size
self.fc1 = nn.Linear(in_features=self.size, out_features=16)
self.fc2 = nn.Linear(in_features=16, out_features=2)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Thibaud-Ardoin/Dial-a-Ride | SeqFC1 | false | 5,873 | [
"MIT"
] | 1 | 7d9b3cd904d3194dccad31fec2533e2cf58cad0c | https://github.com/Thibaud-Ardoin/Dial-a-Ride/tree/7d9b3cd904d3194dccad31fec2533e2cf58cad0c | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
""" Neural network definition
"""
def __init__(self, size):
super().__init__()
self.size = size
self.fc1 = nn.Linear(in_features=self.size, out_features=16)
self.fc2 = nn.Linear(in_features=16, out_features=2)
def forward(self, coord):
x = coord.float().view(coord.size(0), -1)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
Net_BP | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ff/cffi7vxidma5gei4f6wznc3qzapljmsv5w6dvkcys2pj7dzl4a37.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (50, 4), (4, 1))
assert_size_stride(primals_2, (50, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 50), (50, 1))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 3200, grid=grid(3200), stream=stream0)
del primals_2
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(primals_4, (50, 1), (1, 50), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 50), (50, 1), 0), primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((50, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class Net_BP(torch.nn.Module):
def __init__(self, n_features, n_hidden=50, n_output=1):
super(Net_BP, self).__init__()
self.hidden = torch.nn.Linear(n_features, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (50, 4), (4, 1))
assert_size_stride(primals_2, (50,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 50), (50, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(3200)](buf1,
primals_2, buf4, 3200, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 50),
(50, 1), 0), reinterpret_tensor(primals_4, (50, 1), (1, 50), 0),
alpha=1, beta=1, out=buf3)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 50), (50, 1), 0), primals_4, buf4
class Net_BPNew(torch.nn.Module):
def __init__(self, n_features, n_hidden=50, n_output=1):
super(Net_BPNew, self).__init__()
self.hidden = torch.nn.Linear(n_features, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, input_0):
primals_1 = self.hidden.weight
primals_2 = self.hidden.bias
primals_4 = self.predict.weight
primals_5 = self.predict.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Tappai/PV_prediction | Net_BP | false | 5,874 | [
"Apache-2.0"
] | 1 | 2ff1e1af183a28f07ebc2ec2979488eb8e246813 | https://github.com/Tappai/PV_prediction/tree/2ff1e1af183a28f07ebc2ec2979488eb8e246813 | import torch
import torch.nn.functional as F
class Model(torch.nn.Module):
def __init__(self, n_features, n_hidden=50, n_output=1):
super().__init__()
self.hidden = torch.nn.Linear(n_features, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
DQN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6u/c6ufp5mhtyb52rjuttkjkth37r5jth4hkisc5653pwg6o4xnhyax.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 16), (16, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (16, 1), (1, 1))
assert_size_stride(primals_5, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 1), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [reconstruction], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (1, 16), (1, 1), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (buf2, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DQN(nn.Module):
def __init__(self, size, upscale_factor, layer_size, channels):
super(DQN, self).__init__()
self.relu = nn.ReLU()
self.fc1 = nn.Linear(in_features=size ** 2, out_features=layer_size)
self.fc2 = nn.Linear(in_features=layer_size, out_features=size ** 2)
def forward(self, input_image):
image_vector = input_image.view(input_image.size(0), -1)
x = self.relu(self.fc1(image_vector))
reconstruction = self.fc2(x)
return reconstruction
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'size': 4, 'upscale_factor': 1.0, 'layer_size': 1,
'channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 16), (16, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (16, 1), (1, 1))
assert_size_stride(primals_5, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), reinterpret_tensor(primals_2, (16, 1), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(4)](buf1, primals_3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(1, 16), (1, 1), 0), alpha=1, beta=1, out=buf2)
del primals_5
return buf2, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), buf1, primals_4
class DQNNew(nn.Module):
def __init__(self, size, upscale_factor, layer_size, channels):
super(DQNNew, self).__init__()
self.relu = nn.ReLU()
self.fc1 = nn.Linear(in_features=size ** 2, out_features=layer_size)
self.fc2 = nn.Linear(in_features=layer_size, out_features=size ** 2)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Thibaud-Ardoin/Dial-a-Ride | DQN | false | 5,875 | [
"MIT"
] | 1 | 7d9b3cd904d3194dccad31fec2533e2cf58cad0c | https://github.com/Thibaud-Ardoin/Dial-a-Ride/tree/7d9b3cd904d3194dccad31fec2533e2cf58cad0c | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, size, upscale_factor, layer_size, channels):
super().__init__()
self.relu = nn.ReLU()
self.fc1 = nn.Linear(in_features=size ** 2, out_features=layer_size)
self.fc2 = nn.Linear(in_features=layer_size, out_features=size ** 2)
def forward(self, input_image):
image_vector = input_image.view(input_image.size(0), -1)
x = self.relu(self.fc1(image_vector))
reconstruction = self.fc2(x)
return reconstruction
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'size': 4, 'upscale_factor': 1.0, 'layer_size': 1,
'channels': 4}]
|
SameModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/p5/cp5zogooiopkv5uuult2mrr7qjmdp7iv4fmoa5574usff6d364fk.py
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%primals_1, [4, 4], [4, 4], [0, 0], [1, 1], False), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp37 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp52 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp57 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp62 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp67 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp72 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp18 = tmp17 > tmp16
tmp19 = tl.full([1], 4, tl.int8)
tmp20 = tl.where(tmp18, tmp19, tmp15)
tmp21 = triton_helpers.maximum(tmp17, tmp16)
tmp23 = tmp22 > tmp21
tmp24 = tl.full([1], 5, tl.int8)
tmp25 = tl.where(tmp23, tmp24, tmp20)
tmp26 = triton_helpers.maximum(tmp22, tmp21)
tmp28 = tmp27 > tmp26
tmp29 = tl.full([1], 6, tl.int8)
tmp30 = tl.where(tmp28, tmp29, tmp25)
tmp31 = triton_helpers.maximum(tmp27, tmp26)
tmp33 = tmp32 > tmp31
tmp34 = tl.full([1], 7, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp30)
tmp36 = triton_helpers.maximum(tmp32, tmp31)
tmp38 = tmp37 > tmp36
tmp39 = tl.full([1], 8, tl.int8)
tmp40 = tl.where(tmp38, tmp39, tmp35)
tmp41 = triton_helpers.maximum(tmp37, tmp36)
tmp43 = tmp42 > tmp41
tmp44 = tl.full([1], 9, tl.int8)
tmp45 = tl.where(tmp43, tmp44, tmp40)
tmp46 = triton_helpers.maximum(tmp42, tmp41)
tmp48 = tmp47 > tmp46
tmp49 = tl.full([1], 10, tl.int8)
tmp50 = tl.where(tmp48, tmp49, tmp45)
tmp51 = triton_helpers.maximum(tmp47, tmp46)
tmp53 = tmp52 > tmp51
tmp54 = tl.full([1], 11, tl.int8)
tmp55 = tl.where(tmp53, tmp54, tmp50)
tmp56 = triton_helpers.maximum(tmp52, tmp51)
tmp58 = tmp57 > tmp56
tmp59 = tl.full([1], 12, tl.int8)
tmp60 = tl.where(tmp58, tmp59, tmp55)
tmp61 = triton_helpers.maximum(tmp57, tmp56)
tmp63 = tmp62 > tmp61
tmp64 = tl.full([1], 13, tl.int8)
tmp65 = tl.where(tmp63, tmp64, tmp60)
tmp66 = triton_helpers.maximum(tmp62, tmp61)
tmp68 = tmp67 > tmp66
tmp69 = tl.full([1], 14, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp65)
tmp71 = triton_helpers.maximum(tmp67, tmp66)
tmp73 = tmp72 > tmp71
tmp74 = tl.full([1], 15, tl.int8)
tmp75 = tl.where(tmp73, tmp74, tmp70)
tmp76 = triton_helpers.maximum(tmp72, tmp71)
tl.store(out_ptr0 + (x0), tmp75, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/mh/cmhje4kzx2kzanf5cgc6ilsip7tzwbuvl4t5vfmwebu2blmwkv5c.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mul, %primals_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 5
x0 = xindex % 16
x2 = (xindex // 80)
x4 = xindex
tmp6 = tl.load(in_ptr1 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = tl.full([1], 4, tl.int32)
tmp9 = tl.where((tmp7 < 0) != (tmp8 < 0), tl.where(tmp7 % tmp8 != 0, tmp7 // tmp8 - 1, tmp7 // tmp8), tmp7 // tmp8)
tmp10 = tmp9 * tmp8
tmp11 = tmp7 - tmp10
tmp12 = tmp1 + tmp9
tmp13 = tmp1 + tmp11
tmp14 = tl.full([1], 4, tl.int64)
tmp15 = tmp12 * tmp14
tmp16 = tmp15 + tmp13
tmp17 = tmp16 % tmp14
tmp18 = tl.full([1], 0, tl.int32)
tmp19 = tmp17 != tmp18
tmp20 = libdevice.signbit(tmp17) if (tmp17).dtype is tl.float32 else tmp17 < 0
tmp21 = libdevice.signbit(tmp14) if (tmp14).dtype is tl.float32 else tmp14 < 0
tmp22 = tmp20 != tmp21
tmp23 = tmp19 & tmp22
tmp24 = tmp17 + tmp14
tmp25 = tl.where(tmp23, tmp24, tmp17)
tmp26 = tl.full([XBLOCK], 4, tl.int32)
tmp27 = tmp25 + tmp26
tmp28 = tmp25 < 0
tmp29 = tl.where(tmp28, tmp27, tmp25)
tl.device_assert(((0 <= tl.broadcast_to(tmp29, [XBLOCK])) & (tl.broadcast_to(tmp29, [XBLOCK]) < 4)) | ~(tmp4 & xmask), "index out of bounds: 0 <= tl.broadcast_to(tmp29, [XBLOCK]) < 4")
tmp31 = tl.where((tmp16 < 0) != (tmp14 < 0), tl.where(tmp16 % tmp14 != 0, tmp16 // tmp14 - 1, tmp16 // tmp14), tmp16 // tmp14)
tmp32 = tmp31 + tmp26
tmp33 = tmp31 < 0
tmp34 = tl.where(tmp33, tmp32, tmp31)
tl.device_assert(((0 <= tl.broadcast_to(tmp34, [XBLOCK])) & (tl.broadcast_to(tmp34, [XBLOCK]) < 4)) | ~(tmp4 & xmask), "index out of bounds: 0 <= tl.broadcast_to(tmp34, [XBLOCK]) < 4")
tmp36 = tl.load(in_ptr0 + (tmp29 + (4*tmp34) + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp37 = tmp5 * tmp36
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp4, tmp37, tmp38)
tmp40 = tmp0 >= tmp3
tmp41 = tl.full([1], 5, tl.int64)
tmp42 = tmp0 < tmp41
tmp43 = tl.load(in_ptr2 + (x0 + (16*((-1) + x1)) + (64*x2)), tmp40 & xmask, other=0.0)
tmp44 = tl.where(tmp4, tmp39, tmp43)
tl.store(out_ptr0 + (x4), tmp44, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/oc/cocfsjkcudwohj5ajxn73666nyu2k5qiltgioztutzryztik22ar.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# conv2d => convolution
# out => sigmoid
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_3, (1, 5, 1, 1), (5, 1, 1, 1))
assert_size_stride(primals_4, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.int8)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_2, buf0, primals_1, buf1, 320, grid=grid(320), stream=stream0)
del buf0
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 4, 4), (16, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_2.run(buf3, primals_4, 64, grid=grid(64), stream=stream0)
del primals_4
return (buf3, primals_3, buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 5, 1, 1), (5, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class SameModule(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = nn.Conv2d(dim + 1, 1, kernel_size=(1, 1))
torch.nn.init.kaiming_normal_(self.conv.weight)
self.dim = dim
def forward(self, feats, attn):
size = attn.size()[2]
_the_max, the_idx = F.max_pool2d(attn, size, return_indices=True)
attended_feats = feats.index_select(2, torch.div(the_idx[0, 0, 0, 0
], size, rounding_mode='floor'))
attended_feats = attended_feats.index_select(3, the_idx[0, 0, 0, 0] %
size)
x = torch.mul(feats, attended_feats.repeat(1, 1, size, size))
x = torch.cat([x, attn], dim=1)
out = torch.sigmoid(self.conv(x))
return out
def get_inputs():
return [torch.rand([4, 1, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp22 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp32 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp37 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp42 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp47 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp52 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp57 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp62 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp67 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp72 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tmp18 = tmp17 > tmp16
tmp19 = tl.full([1], 4, tl.int8)
tmp20 = tl.where(tmp18, tmp19, tmp15)
tmp21 = triton_helpers.maximum(tmp17, tmp16)
tmp23 = tmp22 > tmp21
tmp24 = tl.full([1], 5, tl.int8)
tmp25 = tl.where(tmp23, tmp24, tmp20)
tmp26 = triton_helpers.maximum(tmp22, tmp21)
tmp28 = tmp27 > tmp26
tmp29 = tl.full([1], 6, tl.int8)
tmp30 = tl.where(tmp28, tmp29, tmp25)
tmp31 = triton_helpers.maximum(tmp27, tmp26)
tmp33 = tmp32 > tmp31
tmp34 = tl.full([1], 7, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp30)
tmp36 = triton_helpers.maximum(tmp32, tmp31)
tmp38 = tmp37 > tmp36
tmp39 = tl.full([1], 8, tl.int8)
tmp40 = tl.where(tmp38, tmp39, tmp35)
tmp41 = triton_helpers.maximum(tmp37, tmp36)
tmp43 = tmp42 > tmp41
tmp44 = tl.full([1], 9, tl.int8)
tmp45 = tl.where(tmp43, tmp44, tmp40)
tmp46 = triton_helpers.maximum(tmp42, tmp41)
tmp48 = tmp47 > tmp46
tmp49 = tl.full([1], 10, tl.int8)
tmp50 = tl.where(tmp48, tmp49, tmp45)
tmp51 = triton_helpers.maximum(tmp47, tmp46)
tmp53 = tmp52 > tmp51
tmp54 = tl.full([1], 11, tl.int8)
tmp55 = tl.where(tmp53, tmp54, tmp50)
tmp56 = triton_helpers.maximum(tmp52, tmp51)
tmp58 = tmp57 > tmp56
tmp59 = tl.full([1], 12, tl.int8)
tmp60 = tl.where(tmp58, tmp59, tmp55)
tmp61 = triton_helpers.maximum(tmp57, tmp56)
tmp63 = tmp62 > tmp61
tmp64 = tl.full([1], 13, tl.int8)
tmp65 = tl.where(tmp63, tmp64, tmp60)
tmp66 = triton_helpers.maximum(tmp62, tmp61)
tmp68 = tmp67 > tmp66
tmp69 = tl.full([1], 14, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp65)
tmp71 = triton_helpers.maximum(tmp67, tmp66)
tmp73 = tmp72 > tmp71
tmp74 = tl.full([1], 15, tl.int8)
tmp75 = tl.where(tmp73, tmp74, tmp70)
triton_helpers.maximum(tmp72, tmp71)
tl.store(out_ptr0 + x0, tmp75, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 320
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 5
x0 = xindex % 16
x2 = xindex // 80
x4 = xindex
tmp6 = tl.load(in_ptr1 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp8 = tl.full([1], 4, tl.int32)
tmp9 = tl.where((tmp7 < 0) != (tmp8 < 0), tl.where(tmp7 % tmp8 != 0,
tmp7 // tmp8 - 1, tmp7 // tmp8), tmp7 // tmp8)
tmp10 = tmp9 * tmp8
tmp11 = tmp7 - tmp10
tmp12 = tmp1 + tmp9
tmp13 = tmp1 + tmp11
tmp14 = tl.full([1], 4, tl.int64)
tmp15 = tmp12 * tmp14
tmp16 = tmp15 + tmp13
tmp17 = tmp16 % tmp14
tmp18 = tl.full([1], 0, tl.int32)
tmp19 = tmp17 != tmp18
tmp20 = libdevice.signbit(tmp17
) if tmp17.dtype is tl.float32 else tmp17 < 0
tmp21 = libdevice.signbit(tmp14
) if tmp14.dtype is tl.float32 else tmp14 < 0
tmp22 = tmp20 != tmp21
tmp23 = tmp19 & tmp22
tmp24 = tmp17 + tmp14
tmp25 = tl.where(tmp23, tmp24, tmp17)
tmp26 = tl.full([XBLOCK], 4, tl.int32)
tmp27 = tmp25 + tmp26
tmp28 = tmp25 < 0
tmp29 = tl.where(tmp28, tmp27, tmp25)
tl.device_assert((0 <= tl.broadcast_to(tmp29, [XBLOCK])) & (tl.
broadcast_to(tmp29, [XBLOCK]) < 4) | ~(tmp4 & xmask),
'index out of bounds: 0 <= tl.broadcast_to(tmp29, [XBLOCK]) < 4')
tmp31 = tl.where((tmp16 < 0) != (tmp14 < 0), tl.where(tmp16 % tmp14 !=
0, tmp16 // tmp14 - 1, tmp16 // tmp14), tmp16 // tmp14)
tmp32 = tmp31 + tmp26
tmp33 = tmp31 < 0
tmp34 = tl.where(tmp33, tmp32, tmp31)
tl.device_assert((0 <= tl.broadcast_to(tmp34, [XBLOCK])) & (tl.
broadcast_to(tmp34, [XBLOCK]) < 4) | ~(tmp4 & xmask),
'index out of bounds: 0 <= tl.broadcast_to(tmp34, [XBLOCK]) < 4')
tmp36 = tl.load(in_ptr0 + (tmp29 + 4 * tmp34 + 16 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp37 = tmp5 * tmp36
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp4, tmp37, tmp38)
tmp40 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp43 = tl.load(in_ptr2 + (x0 + 16 * (-1 + x1) + 64 * x2), tmp40 &
xmask, other=0.0)
tmp44 = tl.where(tmp4, tmp39, tmp43)
tl.store(out_ptr0 + x4, tmp44, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_3, (1, 5, 1, 1), (5, 1, 1, 1))
assert_size_stride(primals_4, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.int8)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(16)](primals_1,
buf0, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
triton_poi_fused_cat_1[grid(320)](primals_2, buf0, primals_1, buf1,
320, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_1
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 4, 4), (16, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_sigmoid_2[grid(64)](buf3, primals_4,
64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_4
return buf3, primals_3, buf1, buf3
class SameModuleNew(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = nn.Conv2d(dim + 1, 1, kernel_size=(1, 1))
torch.nn.init.kaiming_normal_(self.conv.weight)
self.dim = dim
def forward(self, input_0, input_1):
primals_3 = self.conv.weight
primals_4 = self.conv.bias
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| SpyrosMouselinos/DeltaFormers | SameModule | false | 5,876 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class Model(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv = nn.Conv2d(dim + 1, 1, kernel_size=(1, 1))
torch.nn.init.kaiming_normal_(self.conv.weight)
self.dim = dim
def forward(self, feats, attn):
size = attn.size()[2]
_the_max, the_idx = F.max_pool2d(attn, size, return_indices=True)
attended_feats = feats.index_select(2, torch.div(the_idx[0, 0, 0, 0
], size, rounding_mode='floor'))
attended_feats = attended_feats.index_select(3, the_idx[0, 0, 0, 0] %
size)
x = torch.mul(feats, attended_feats.repeat(1, 1, size, size))
x = torch.cat([x, attn], dim=1)
out = torch.sigmoid(self.conv(x))
return out
def get_inputs():
return [torch.rand([4, 1, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
FC1 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6u/c6ufp5mhtyb52rjuttkjkth37r5jth4hkisc5653pwg6o4xnhyax.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 16), (16, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (2, 1), (1, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 1), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 4, grid=grid(4), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (1, 2), (1, 1), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (buf2, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class FC1(nn.Module):
""" Neural network definition
"""
def __init__(self, size, hidden_layers):
super(FC1, self).__init__()
self.size = size
self.hidden_layers = hidden_layers
self.fc1 = nn.Linear(in_features=self.size ** 2, out_features=self.
hidden_layers)
self.fc2 = nn.Linear(in_features=self.hidden_layers, out_features=2)
def forward(self, x):
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'size': 4, 'hidden_layers': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 16), (16, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (2, 1), (1, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), reinterpret_tensor(primals_2, (16, 1), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(4)](buf1, primals_3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(1, 2), (1, 1), 0), alpha=1, beta=1, out=buf2)
del primals_5
return buf2, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), buf1, primals_4
class FC1New(nn.Module):
""" Neural network definition
"""
def __init__(self, size, hidden_layers):
super(FC1New, self).__init__()
self.size = size
self.hidden_layers = hidden_layers
self.fc1 = nn.Linear(in_features=self.size ** 2, out_features=self.
hidden_layers)
self.fc2 = nn.Linear(in_features=self.hidden_layers, out_features=2)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Thibaud-Ardoin/Dial-a-Ride | FC1 | false | 5,877 | [
"MIT"
] | 1 | 7d9b3cd904d3194dccad31fec2533e2cf58cad0c | https://github.com/Thibaud-Ardoin/Dial-a-Ride/tree/7d9b3cd904d3194dccad31fec2533e2cf58cad0c | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
""" Neural network definition
"""
def __init__(self, size, hidden_layers):
super().__init__()
self.size = size
self.hidden_layers = hidden_layers
self.fc1 = nn.Linear(in_features=self.size ** 2, out_features=self.
hidden_layers)
self.fc2 = nn.Linear(in_features=self.hidden_layers, out_features=2)
def forward(self, x):
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 1]
|
HyperLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/pz/cpznhaxldshs2hscttm7w2cepb2cey5fcd4xk3t34jxmbu44geyy.py
# Topologically Sorted Source Nodes: [output_1, hnet_out, mul_1, hnet_out_1, output_2], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# hnet_out => mul_1
# hnet_out_1 => add
# mul_1 => mul_2
# output_1 => mul
# output_2 => add_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm, %primals_4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_2, %mm_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_4, %primals_8), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (x0 + (8*x1)), xmask)
tmp5 = tl.load(in_ptr3 + (x2), xmask)
tmp7 = tl.load(in_ptr2 + (4 + x0 + (8*x1)), xmask)
tmp8 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp0 * tmp2
tmp6 = tmp4 * tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp11 = tmp3 + tmp10
tl.store(out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (1, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (8, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [hnet_scalars], Original ATen: [aten.mm]
extern_kernels.mm(primals_5, reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), out=buf1)
del primals_6
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1, hnet_out, mul_1, hnet_out_1, output_2], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(buf0, primals_4, buf1, buf2, primals_8, buf3, 16, grid=grid(16), stream=stream0)
return (buf3, primals_3, primals_4, primals_5, primals_8, buf0, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn.functional as F
import torch.nn as nn
class HyperLinear(nn.Module):
def __init__(self, in_features, out_features, num_hparams, bias=True):
super(HyperLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.num_hparams = num_hparams
self.elem_weight = nn.Parameter(torch.Tensor(out_features, in_features)
)
self.hnet_weight = nn.Parameter(torch.Tensor(out_features, in_features)
)
if bias:
self.elem_bias = nn.Parameter(torch.Tensor(out_features))
self.hnet_bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('elem_bias', None)
self.register_parameter('hnet_bias', None)
self.htensor_to_scalars = nn.Linear(num_hparams, 2 * out_features,
bias=False)
self.elem_scalar = nn.Parameter(torch.ones(1))
self.init_params()
def forward(self, input, htensor):
"""
Arguments:
input (tensor): size should be (B, D)
htensor (tensor): size should be (B, num_hparams)
"""
output = F.linear(input, self.elem_weight, self.elem_bias)
output *= self.elem_scalar
if htensor is not None:
hnet_scalars = self.htensor_to_scalars(htensor)
hnet_wscalars = hnet_scalars[:, :self.out_features]
hnet_bscalars = hnet_scalars[:, self.out_features:]
hnet_out = hnet_wscalars * F.linear(input, self.hnet_weight)
if self.hnet_bias is not None:
hnet_out += hnet_bscalars * self.hnet_bias
output += hnet_out
return output
def init_params(self):
stdv = 1.0 / math.sqrt(self.in_features)
self.elem_weight.data.uniform_(-stdv, stdv)
self.hnet_weight.data.uniform_(-stdv, stdv)
if self.elem_bias is not None:
self.elem_bias.data.uniform_(-stdv, stdv)
self.hnet_bias.data.uniform_(-stdv, stdv)
self.htensor_to_scalars.weight.data.normal_(std=0.01)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4, 'num_hparams': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (x0 + 8 * x1), xmask)
tmp5 = tl.load(in_ptr3 + x2, xmask)
tmp7 = tl.load(in_ptr2 + (4 + x0 + 8 * x1), xmask)
tmp8 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp0 * tmp2
tmp6 = tmp4 * tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp11 = tmp3 + tmp10
tl.store(out_ptr0 + x2, tmp11, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (8, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(
primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(primals_5, reinterpret_tensor(primals_6, (4, 8),
(1, 4), 0), out=buf1)
del primals_6
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_7, (4, 4),
(1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(16)](buf0, primals_4, buf1, buf2,
primals_8, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1)
return buf3, primals_3, primals_4, primals_5, primals_8, buf0, buf1, buf2
class HyperLinearNew(nn.Module):
def __init__(self, in_features, out_features, num_hparams, bias=True):
super(HyperLinearNew, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.num_hparams = num_hparams
self.elem_weight = nn.Parameter(torch.Tensor(out_features, in_features)
)
self.hnet_weight = nn.Parameter(torch.Tensor(out_features, in_features)
)
if bias:
self.elem_bias = nn.Parameter(torch.Tensor(out_features))
self.hnet_bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('elem_bias', None)
self.register_parameter('hnet_bias', None)
self.htensor_to_scalars = nn.Linear(num_hparams, 2 * out_features,
bias=False)
self.elem_scalar = nn.Parameter(torch.ones(1))
self.init_params()
def init_params(self):
stdv = 1.0 / math.sqrt(self.in_features)
self.elem_weight.data.uniform_(-stdv, stdv)
self.hnet_weight.data.uniform_(-stdv, stdv)
if self.elem_bias is not None:
self.elem_bias.data.uniform_(-stdv, stdv)
self.hnet_bias.data.uniform_(-stdv, stdv)
self.htensor_to_scalars.weight.data.normal_(std=0.01)
def forward(self, input_0, input_1):
primals_1 = self.elem_weight
primals_3 = self.hnet_weight
primals_2 = self.elem_bias
primals_8 = self.hnet_bias
primals_4 = self.elem_scalar
primals_6 = self.htensor_to_scalars.weight
primals_5 = input_0
primals_7 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| ThrunGroup/implicit-hyper-opt | HyperLinear | false | 5,878 | [
"MIT"
] | 1 | fe4ac539c947ca8083049d23c5f1f67f44cd09f0 | https://github.com/ThrunGroup/implicit-hyper-opt/tree/fe4ac539c947ca8083049d23c5f1f67f44cd09f0 | import math
import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_features, out_features, num_hparams, bias=True):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.num_hparams = num_hparams
self.elem_weight = nn.Parameter(torch.Tensor(out_features, in_features)
)
self.hnet_weight = nn.Parameter(torch.Tensor(out_features, in_features)
)
if bias:
self.elem_bias = nn.Parameter(torch.Tensor(out_features))
self.hnet_bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('elem_bias', None)
self.register_parameter('hnet_bias', None)
self.htensor_to_scalars = nn.Linear(num_hparams, 2 * out_features,
bias=False)
self.elem_scalar = nn.Parameter(torch.ones(1))
self.init_params()
def forward(self, input, htensor):
"""
Arguments:
input (tensor): size should be (B, D)
htensor (tensor): size should be (B, num_hparams)
"""
output = F.linear(input, self.elem_weight, self.elem_bias)
output *= self.elem_scalar
if htensor is not None:
hnet_scalars = self.htensor_to_scalars(htensor)
hnet_wscalars = hnet_scalars[:, :self.out_features]
hnet_bscalars = hnet_scalars[:, self.out_features:]
hnet_out = hnet_wscalars * F.linear(input, self.hnet_weight)
if self.hnet_bias is not None:
hnet_out += hnet_bscalars * self.hnet_bias
output += hnet_out
return output
def init_params(self):
stdv = 1.0 / math.sqrt(self.in_features)
self.elem_weight.data.uniform_(-stdv, stdv)
self.hnet_weight.data.uniform_(-stdv, stdv)
if self.elem_bias is not None:
self.elem_bias.data.uniform_(-stdv, stdv)
self.hnet_bias.data.uniform_(-stdv, stdv)
self.htensor_to_scalars.weight.data.normal_(std=0.01)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
DQN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/do/cdo22no4lmipk7byduyah2xsadvdcbfr22puoptl5br3l66r6jra.py
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# hidden => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0)
del primals_5
buf6 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf6, primals_7, buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf6
del primals_7
return (buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), buf7, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class DQN(nn.Module):
def __init__(self, input_size, hidden_1_size, hidden_2_size, output_size):
super().__init__()
self.fc1 = nn.Linear(input_size, hidden_1_size)
self.fc2 = nn.Linear(hidden_1_size, hidden_2_size)
self.fc3 = nn.Linear(hidden_2_size, output_size)
def forward(self, input):
hidden = F.leaky_relu(self.fc1(input))
hidden = F.leaky_relu(self.fc2(hidden))
output = F.leaky_relu(self.fc3(hidden))
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_1_size': 4, 'hidden_2_size': 4,
'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1,
buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_leaky_relu_0[grid(256)](buf3, primals_5, buf4,
buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf6 = buf3
del buf3
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_leaky_relu_0[grid(256)](buf6, primals_7, buf7,
buf8, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf6
del primals_7
return buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0
), buf7, primals_6, primals_4
class DQNNew(nn.Module):
def __init__(self, input_size, hidden_1_size, hidden_2_size, output_size):
super().__init__()
self.fc1 = nn.Linear(input_size, hidden_1_size)
self.fc2 = nn.Linear(hidden_1_size, hidden_2_size)
self.fc3 = nn.Linear(hidden_2_size, output_size)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| TejaswiniMedi/DRL | DQN | false | 5,879 | [
"MIT"
] | 1 | d4a694c5e505822e6e8627be52afd0ccc60f80ef | https://github.com/TejaswiniMedi/DRL/tree/d4a694c5e505822e6e8627be52afd0ccc60f80ef | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, input_size, hidden_1_size, hidden_2_size, output_size):
super().__init__()
self.fc1 = nn.Linear(input_size, hidden_1_size)
self.fc2 = nn.Linear(hidden_1_size, hidden_2_size)
self.fc3 = nn.Linear(hidden_2_size, output_size)
def forward(self, input):
hidden = F.leaky_relu(self.fc1(input))
hidden = F.leaky_relu(self.fc2(hidden))
output = F.leaky_relu(self.fc3(hidden))
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_1_size': 4, 'hidden_2_size': 4,
'output_size': 4}]
|
PositionwiseFeedForward | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/i3/ci3nuuurbsrmcufle642yc7udhwn4itsu6aptfssij5nzrnylpne.py
# Topologically Sorted Source Nodes: [conv1d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv1d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# output_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d, relu], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4), (16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
return (reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionwiseFeedForward(nn.Module):
"""A two-feed-forward-layer module.
Parameters
----------
d_model : int
embed_dim.
d_inner : int
dff.
dropout : float
dropout rate.
"""
def __init__(self, d, d_inner):
super().__init__()
self.w_1 = nn.Conv1d(d, d_inner, 1)
self.w_2 = nn.Conv1d(d_inner, d, 1)
def forward(self, x):
"""
Parameters
----------
x : `torch.Tensor`
Tensor of shape (batch, len, embed_dim)
"""
output = x.transpose(1, 2)
output = self.w_2(F.relu(self.w_1(output)))
output = output.transpose(1, 2)
return output
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'d': 4, 'd_inner': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
del buf0
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4), (16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
return reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0
), primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (
16, 1, 4), 0), buf2
class PositionwiseFeedForwardNew(nn.Module):
"""A two-feed-forward-layer module.
Parameters
----------
d_model : int
embed_dim.
d_inner : int
dff.
dropout : float
dropout rate.
"""
def __init__(self, d, d_inner):
super().__init__()
self.w_1 = nn.Conv1d(d, d_inner, 1)
self.w_2 = nn.Conv1d(d_inner, d, 1)
def forward(self, input_0):
primals_2 = self.w_1.weight
primals_3 = self.w_1.bias
primals_4 = self.w_2.weight
primals_5 = self.w_2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| TaoranJ/PC-RNN | PositionwiseFeedForward | false | 5,880 | [
"MIT"
] | 1 | f360b464cf68737fefd5e6093e55056838693b1b | https://github.com/TaoranJ/PC-RNN/tree/f360b464cf68737fefd5e6093e55056838693b1b | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""A two-feed-forward-layer module.
Parameters
----------
d_model : int
embed_dim.
d_inner : int
dff.
dropout : float
dropout rate.
"""
def __init__(self, d, d_inner):
super().__init__()
self.w_1 = nn.Conv1d(d, d_inner, 1)
self.w_2 = nn.Conv1d(d_inner, d, 1)
def forward(self, x):
"""
Parameters
----------
x : `torch.Tensor`
Tensor of shape (batch, len, embed_dim)
"""
output = x.transpose(1, 2)
output = self.w_2(F.relu(self.w_1(output)))
output = output.transpose(1, 2)
return output
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Switch | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6r/c6rglhxr2ifgihpbbosowrqvxkyq7pucoa4kvzjjrdtkegormwxh.py
# Topologically Sorted Source Nodes: [h_cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# h_cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xz/cxz6vcjkcxl7vopelpwsvwygzmlafkqiolysvvaouzoq75iq7oub.py
# Topologically Sorted Source Nodes: [h_tmp], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# h_tmp => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3w/c3wxeqk5okayj66zgai4mx3d5w7kam547j5qjthdexbfu7754q7x.py
# Topologically Sorted Source Nodes: [alpha], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# alpha => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 192, grid=grid(192), stream=stream0)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (16, 12), (12, 1), 0), reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1)
del primals_4
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [h_tmp], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 1), (4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [alpha], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf4, 16, grid=grid(16), stream=stream0)
return (buf4, reinterpret_tensor(buf0, (16, 12), (12, 1), 0), buf2, buf4, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import kaiming_normal
def ZeroInitializer(param):
shape = param.size()
init = np.zeros(shape).astype(np.float32)
param.data.set_(torch.from_numpy(init))
def Linear(initializer=kaiming_normal, bias_initializer=ZeroInitializer):
class CustomLinear(nn.Linear):
def reset_parameters(self):
initializer(self.weight)
if self.bias is not None:
bias_initializer(self.bias)
return CustomLinear
class Switch(nn.Module):
def __init__(self, hidden_dim):
super(Switch, self).__init__()
self.fc1 = Linear()(in_features=3 * hidden_dim, out_features=
hidden_dim, bias=False)
self.fc2 = Linear()(in_features=hidden_dim, out_features=1, bias=False)
def forward(self, hl, hr, hn):
h_cat = torch.cat([hl, hr, hn], dim=2)
h_tmp = F.tanh(self.fc1(h_cat))
alpha = F.sigmoid(self.fc2(h_tmp))
return alpha
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
from torch.nn.init import kaiming_normal
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(192)](primals_1, primals_2, primals_3,
buf0, 192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 12), (12, 1), 0),
reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1)
del primals_4
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
triton_poi_fused_tanh_1[grid(64)](buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 1), (4, 1, 1), 0)
del buf3
triton_poi_fused_sigmoid_2[grid(16)](buf4, 16, XBLOCK=16, num_warps
=1, num_stages=1)
return buf4, reinterpret_tensor(buf0, (16, 12), (12, 1), 0
), buf2, buf4, primals_5
def ZeroInitializer(param):
shape = param.size()
init = np.zeros(shape).astype(np.float32)
param.data.set_(torch.from_numpy(init))
def Linear(initializer=kaiming_normal, bias_initializer=ZeroInitializer):
class CustomLinear(nn.Linear):
def reset_parameters(self):
initializer(self.weight)
if self.bias is not None:
bias_initializer(self.bias)
return CustomLinear
class SwitchNew(nn.Module):
def __init__(self, hidden_dim):
super(SwitchNew, self).__init__()
self.fc1 = Linear()(in_features=3 * hidden_dim, out_features=
hidden_dim, bias=False)
self.fc2 = Linear()(in_features=hidden_dim, out_features=1, bias=False)
def forward(self, input_0, input_1, input_2):
primals_4 = self.fc1.weight
primals_5 = self.fc2.weight
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| TaoMiner/eesc | Switch | false | 5,881 | [
"Apache-2.0"
] | 1 | fa0ca532333cad2262d20707899f97a6c8a99cfb | https://github.com/TaoMiner/eesc/tree/fa0ca532333cad2262d20707899f97a6c8a99cfb | import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import kaiming_normal
def ZeroInitializer(param):
shape = param.size()
init = np.zeros(shape).astype(np.float32)
param.data.set_(torch.from_numpy(init))
def Linear(initializer=kaiming_normal, bias_initializer=ZeroInitializer):
class CustomLinear(nn.Linear):
def reset_parameters(self):
initializer(self.weight)
if self.bias is not None:
bias_initializer(self.bias)
return CustomLinear
class Model(nn.Module):
def __init__(self, hidden_dim):
super().__init__()
self.fc1 = Linear()(in_features=3 * hidden_dim, out_features=
hidden_dim, bias=False)
self.fc2 = Linear()(in_features=hidden_dim, out_features=1, bias=False)
def forward(self, hl, hr, hn):
h_cat = torch.cat([hl, hr, hn], dim=2)
h_tmp = F.tanh(self.fc1(h_cat))
alpha = F.sigmoid(self.fc2(h_tmp))
return alpha
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [4]
|
PerOutputClassifierHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/7o/c7otc5ij6whexgxcr56vlxp2l7hzg3oc4onljp557uc6wncu5gvg.py
# Topologically Sorted Source Nodes: [reduced_set], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# reduced_set => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [1]), kwargs = {})
triton_poi_fused_sum_0 = async_compile.triton('triton_poi_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zs/czsjjn4ked2qccquznaomvsr5zpcpbcu2swlwfl5ka7h45yrawlp.py
# Topologically Sorted Source Nodes: [reduced_set_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# reduced_set_2 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [reduced_set], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_sum_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 2), (8, 2, 1), 0); del buf1 # reuse
buf4 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [reduced_set_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf4, 32, grid=grid(32), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [reduced_set_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 2), (2, 1), 0), primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
from torch.nn import Module
import torch
import torch.nn as nn
import torch.nn
class PerOutputClassifierHead(Module):
def __init__(self, config: 'dict'):
super(PerOutputClassifierHead, self).__init__()
self.linear_layer_1 = nn.Linear(config['hidden_dim'], config[
'hidden_dim'] // 2)
self.linear_layer_2 = nn.Linear(config['hidden_dim'] // 2, config[
'num_output_classes'])
def forward(self, input_set):
reduced_set = torch.sum(input_set, dim=1)
reduced_set = self.linear_layer_1(reduced_set)
reduced_set = nn.ReLU()(reduced_set)
reduced_set = self.linear_layer_2(reduced_set)
return reduced_set
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_dim=4, num_output_classes=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sum_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 2), (8, 2, 1), 0)
del buf1
buf4 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(32)](buf2,
primals_3, buf4, 32, XBLOCK=32, num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 2), (
2, 1), 0), reinterpret_tensor(primals_4, (2, 4), (1, 2), 0),
alpha=1, beta=1, out=buf3)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(
buf2, (16, 2), (2, 1), 0), primals_4, buf4
class PerOutputClassifierHeadNew(Module):
def __init__(self, config: 'dict'):
super(PerOutputClassifierHeadNew, self).__init__()
self.linear_layer_1 = nn.Linear(config['hidden_dim'], config[
'hidden_dim'] // 2)
self.linear_layer_2 = nn.Linear(config['hidden_dim'] // 2, config[
'num_output_classes'])
def forward(self, input_0):
primals_2 = self.linear_layer_1.weight
primals_3 = self.linear_layer_1.bias
primals_4 = self.linear_layer_2.weight
primals_5 = self.linear_layer_2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| SpyrosMouselinos/DeltaFormers | PerOutputClassifierHead | false | 5,882 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | from _paritybench_helpers import _mock_config
from torch.nn import Module
import torch
import torch.nn as nn
import torch.nn
class Model(Module):
def __init__(self, config: 'dict'):
super().__init__()
self.linear_layer_1 = nn.Linear(config['hidden_dim'], config[
'hidden_dim'] // 2)
self.linear_layer_2 = nn.Linear(config['hidden_dim'] // 2, config[
'num_output_classes'])
def forward(self, input_set):
reduced_set = torch.sum(input_set, dim=1)
reduced_set = self.linear_layer_1(reduced_set)
reduced_set = nn.ReLU()(reduced_set)
reduced_set = self.linear_layer_2(reduced_set)
return reduced_set
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Net | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/4d/c4d7os35bf4bckecmik4nlyqqsirmteh4sh3yxnab5lmuntnmwk2.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 128
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wv/cwvtp6qflpb42kxrujmda5zselv7wvkz3fgp2tryo2ftsisaildr.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = (yindex // 32)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tl/ctlxctn7eg6nwvpdhdhyqadp63cm2ogdwxsotfynexn2zw62nfbb.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ku/ckuw5gg26ddjp4n4da74yttcx6jxcy2y4vb2npxdoq42pzni2oot.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/m3/cm3haovccm7lav2s6wgp3wthu7in42r335z2o7yva4d7olh5begj.py
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ir/cirx6nbkabstacj3yb3umtzb7ustxzn5ha5etdpsewqc2v53x42u.py
# Topologically Sorted Source Nodes: [conv2d_3, x_act], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x_act => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (16*y3)), tmp4, xmask & ymask)
tl.store(out_ptr1 + (y0 + (4*x2) + (64*y1)), tmp6, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/rb/crb6df5i4fj7va6pqmjdujv4exclbhsso3bsidedqutaurbifibm.py
# Topologically Sorted Source Nodes: [x_act_2], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# x_act_2 => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [0], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {})
triton_poi_fused__log_softmax_8 = async_compile.triton('triton_poi_fused__log_softmax_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7f/c7fnf7agzhzdv535i3zkol5pjetvlxlgbu326q7iy2k7dq2xzede.py
# Topologically Sorted Source Nodes: [x_act_2], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# x_act_2 => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_9 = async_compile.triton('triton_poi_fused__log_softmax_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/on/conxj47djvqjzakx6mljwgukxjpey3danp45ggw6c75sexuturr2.py
# Topologically Sorted Source Nodes: [conv2d_4, x_val], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_val => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = (yindex // 2)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (2*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (16*y3)), tmp4, xmask & ymask)
tl.store(out_ptr1 + (y0 + (2*x2) + (32*y1)), tmp6, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kb/ckbbggjhfcxfux6zrz7mpystnqvz4nmsec5iq472s25vu5hw55ss.py
# Topologically Sorted Source Nodes: [x_val_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_val_2 => relu_5
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_15), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_11 = async_compile.triton('triton_poi_fused_relu_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/aa/caa7nl5rqw7shobfwduyslxrsqjhypmlsxjm3jq4tok2aff6jtdf.py
# Topologically Sorted Source Nodes: [x_val_3], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_val_3 => tanh
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_17), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_tanh_12 = async_compile.triton('triton_poi_fused_tanh_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = libdevice.tanh(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (4, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (16, 64), (64, 1))
assert_size_stride(primals_11, (16, ), (1, ))
assert_size_stride(primals_12, (2, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_13, (2, ), (1, ))
assert_size_stride(primals_14, (64, 32), (32, 1))
assert_size_stride(primals_15, (64, ), (1, ))
assert_size_stride(primals_16, (1, 64), (64, 1))
assert_size_stride(primals_17, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 128, 9, grid=grid(128, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 2048, 9, grid=grid(2048, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 4, 4), (512, 1, 128, 32))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf5, primals_2, 2048, grid=grid(2048), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 64, 4, 4), (1024, 1, 256, 64))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_5.run(buf7, primals_5, 4096, grid=grid(4096), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 4, 4), (2048, 1, 512, 128))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf9, primals_7, 8192, grid=grid(8192), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 1, 16, 4))
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf22 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_3, x_act], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_7.run(buf10, primals_9, buf11, buf22, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_9
buf12 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 16), (1, 64), 0), alpha=1, beta=1, out=buf12)
del primals_11
buf13 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_act_2], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_8.run(buf12, buf13, 64, grid=grid(64), stream=stream0)
buf14 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_act_2], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_9.run(buf13, buf14, 64, grid=grid(64), stream=stream0)
del buf13
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 2, 4, 4), (32, 1, 8, 2))
buf16 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf21 = empty_strided_cuda((4, 2, 4, 4), (32, 1, 8, 2), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_4, x_val], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_10.run(buf15, primals_13, buf16, buf21, 8, 16, grid=grid(8, 16), stream=stream0)
del buf15
del primals_13
buf17 = reinterpret_tensor(buf10, (4, 64), (64, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf16, (4, 32), (32, 1), 0), reinterpret_tensor(primals_14, (32, 64), (1, 32), 0), out=buf17)
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [x_val_2], Original ATen: [aten.relu]
triton_poi_fused_relu_11.run(buf18, primals_15, 256, grid=grid(256), stream=stream0)
del primals_15
buf19 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf18, reinterpret_tensor(primals_16, (64, 1), (1, 64), 0), out=buf19)
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [x_val_3], Original ATen: [aten.tanh]
triton_poi_fused_tanh_12.run(buf20, primals_17, 4, grid=grid(4), stream=stream0)
del primals_17
return (buf14, buf20, buf0, buf1, buf2, buf3, primals_8, primals_12, buf5, buf7, buf9, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), buf14, reinterpret_tensor(buf16, (4, 32), (32, 1), 0), buf18, buf20, primals_16, primals_14, buf21, primals_10, buf22, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((16, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((2, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((64, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self, board_width, board_height):
super(Net, self).__init__()
self.board_width = board_width
self.board_height = board_height
self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.act_conv1 = nn.Conv2d(128, 4, kernel_size=1)
self.act_fc1 = nn.Linear(4 * board_width * board_height,
board_width * board_height)
self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2 * board_width * board_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, state_input):
x = F.relu(self.conv1(state_input))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x_act = F.relu(self.act_conv1(x))
x_act = x_act.view(-1, 4 * self.board_width * self.board_height)
x_act = F.log_softmax(self.act_fc1(x_act), dim=0)
x_val = F.relu(self.val_conv1(x))
x_val = x_val.view(-1, 2 * self.board_width * self.board_height)
x_val = F.relu(self.val_fc1(x_val))
x_val = torch.tanh(self.val_fc2(x_val))
return x_act, x_val
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'board_width': 4, 'board_height': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask & ymask)
tl.store(out_ptr1 + (y0 + 4 * x2 + 64 * y1), tmp6, xmask & ymask)
@triton.jit
def triton_poi_fused__log_softmax_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
ynumel = 8
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = yindex // 2
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 2 * x2 + 32 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask & ymask)
tl.store(out_ptr1 + (y0 + 2 * x2 + 32 * y1), tmp6, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_tanh_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = libdevice.tanh(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (4, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (16, 64), (64, 1))
assert_size_stride(primals_11, (16,), (1,))
assert_size_stride(primals_12, (2, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_13, (2,), (1,))
assert_size_stride(primals_14, (64, 32), (32, 1))
assert_size_stride(primals_15, (64,), (1,))
assert_size_stride(primals_16, (1, 64), (64, 1))
assert_size_stride(primals_17, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 4, 3, 3), (36, 1, 12, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(128, 9)](primals_1, buf0, 128, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.
float32)
triton_poi_fused_2[grid(2048, 9)](primals_4, buf2, 2048, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 4, 4), (512, 1, 128, 32))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_4[grid(2048)](buf5, primals_2,
2048, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf6 = extern_kernels.convolution(buf5, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 64, 4, 4), (1024, 1, 256, 64))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_5[grid(4096)](buf7, primals_5,
4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 4, 4), (2048, 1, 512, 128))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_6[grid(8192)](buf9, primals_7,
8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 1, 16, 4))
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf22 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_7[grid(16, 16)](
buf10, primals_9, buf11, buf22, 16, 16, XBLOCK=16, YBLOCK=16,
num_warps=4, num_stages=1)
del primals_9
buf12 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 64),
(64, 1), 0), reinterpret_tensor(primals_10, (64, 16), (1, 64),
0), alpha=1, beta=1, out=buf12)
del primals_11
buf13 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
triton_poi_fused__log_softmax_8[grid(64)](buf12, buf13, 64, XBLOCK=
64, num_warps=1, num_stages=1)
buf14 = buf12
del buf12
triton_poi_fused__log_softmax_9[grid(64)](buf13, buf14, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del buf13
buf15 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 2, 4, 4), (32, 1, 8, 2))
buf16 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
buf21 = empty_strided_cuda((4, 2, 4, 4), (32, 1, 8, 2), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_10[grid(8, 16)](
buf15, primals_13, buf16, buf21, 8, 16, XBLOCK=16, YBLOCK=2,
num_warps=1, num_stages=1)
del buf15
del primals_13
buf17 = reinterpret_tensor(buf10, (4, 64), (64, 1), 0)
del buf10
extern_kernels.mm(reinterpret_tensor(buf16, (4, 32), (32, 1), 0),
reinterpret_tensor(primals_14, (32, 64), (1, 32), 0), out=buf17)
buf18 = buf17
del buf17
triton_poi_fused_relu_11[grid(256)](buf18, primals_15, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_15
buf19 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf18, reinterpret_tensor(primals_16, (64, 1), (1,
64), 0), out=buf19)
buf20 = buf19
del buf19
triton_poi_fused_tanh_12[grid(4)](buf20, primals_17, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_17
return (buf14, buf20, buf0, buf1, buf2, buf3, primals_8, primals_12,
buf5, buf7, buf9, reinterpret_tensor(buf11, (4, 64), (64, 1), 0),
buf14, reinterpret_tensor(buf16, (4, 32), (32, 1), 0), buf18, buf20,
primals_16, primals_14, buf21, primals_10, buf22)
class NetNew(nn.Module):
def __init__(self, board_width, board_height):
super(NetNew, self).__init__()
self.board_width = board_width
self.board_height = board_height
self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.act_conv1 = nn.Conv2d(128, 4, kernel_size=1)
self.act_fc1 = nn.Linear(4 * board_width * board_height,
board_width * board_height)
self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2 * board_width * board_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.act_conv1.weight
primals_9 = self.act_conv1.bias
primals_10 = self.act_fc1.weight
primals_11 = self.act_fc1.bias
primals_12 = self.val_conv1.weight
primals_13 = self.val_conv1.bias
primals_14 = self.val_fc1.weight
primals_15 = self.val_fc1.bias
primals_16 = self.val_fc2.weight
primals_17 = self.val_fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0], output[1]
| SummitChen/ComputationalAdvertisement | Net | false | 5,883 | [
"MIT"
] | 1 | 05a9e8bd82ca834219121de4257185d63f592d78 | https://github.com/SummitChen/ComputationalAdvertisement/tree/05a9e8bd82ca834219121de4257185d63f592d78 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, board_width, board_height):
super().__init__()
self.board_width = board_width
self.board_height = board_height
self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.act_conv1 = nn.Conv2d(128, 4, kernel_size=1)
self.act_fc1 = nn.Linear(4 * board_width * board_height,
board_width * board_height)
self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2 * board_width * board_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, state_input):
x = F.relu(self.conv1(state_input))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x_act = F.relu(self.act_conv1(x))
x_act = x_act.view(-1, 4 * self.board_width * self.board_height)
x_act = F.log_softmax(self.act_fc1(x_act), dim=0)
x_val = F.relu(self.val_conv1(x))
x_val = x_val.view(-1, 2 * self.board_width * self.board_height)
x_val = F.relu(self.val_fc1(x_val))
x_val = torch.tanh(self.val_fc2(x_val))
return x_act, x_val
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
VAE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/3q/c3qwr2d2rrpjzvnddomnmdy6cwva4hjlvrn2y5epemk4ak3k2m6c.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# h1 => relu
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_3), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 400
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wc/cwccwpcx37typ43npqql5ch6jg26xdsj4ic4s37clsyqn7fk4mdk.py
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# std => exp
# z => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_2, 0.5), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%addmm_1, %mul_1), kwargs = {})
triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask)
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 * tmp5
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/pc/cpc2c26vqpsaowq5hxwek5cxku4ndcncpbh7zxgqeycjjazyxg25.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 28224
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 7056
x1 = (xindex // 7056)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (7072*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 7056), (7056, 1))
assert_size_stride(primals_2, (400, 7056), (7056, 1))
assert_size_stride(primals_3, (400, ), (1, ))
assert_size_stride(primals_4, (20, 400), (400, 1))
assert_size_stride(primals_5, (20, ), (1, ))
assert_size_stride(primals_6, (20, 400), (400, 1))
assert_size_stride(primals_7, (20, ), (1, ))
assert_size_stride(primals_8, (400, 20), (20, 1))
assert_size_stride(primals_9, (400, ), (1, ))
assert_size_stride(primals_10, (7056, 400), (400, 1))
assert_size_stride(primals_11, (7056, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (7056, 400), (1, 7056), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 1600, grid=grid(1600), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (400, 20), (1, 400), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (400, 20), (1, 400), 0), alpha=1, beta=1, out=buf3)
del primals_7
# Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like]
buf4 = torch.ops.aten.randn.default([4, 20], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
triton_poi_fused_add_exp_mul_1.run(buf2, buf5, buf3, buf6, 80, grid=grid(80), stream=stream0)
buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf6, reinterpret_tensor(primals_8, (20, 400), (1, 20), 0), out=buf7)
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu]
triton_poi_fused_relu_0.run(buf8, primals_9, 1600, grid=grid(1600), stream=stream0)
del primals_9
buf9 = empty_strided_cuda((4, 7056), (7072, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (400, 7056), (1, 400), 0), out=buf9)
buf10 = empty_strided_cuda((4, 7056), (7056, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf9, primals_11, buf10, 28224, grid=grid(28224), stream=stream0)
del buf9
del primals_11
return (buf10, buf2, buf3, primals_1, buf1, buf3, buf5, buf6, buf8, buf10, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 7056), (7056, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((400, 7056), (7056, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((20, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((20, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((400, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((7056, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((7056, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
from torch.nn import functional as F
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(84 * 84, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 84 * 84)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 84 * 84))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def get_inputs():
return [torch.rand([4, 7056])]
def get_init_inputs():
return [[], {}]
| import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 400
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask)
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 * tmp5
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 28224
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 7056
x1 = xindex // 7056
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 7072 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 7056), (7056, 1))
assert_size_stride(primals_2, (400, 7056), (7056, 1))
assert_size_stride(primals_3, (400,), (1,))
assert_size_stride(primals_4, (20, 400), (400, 1))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (20, 400), (400, 1))
assert_size_stride(primals_7, (20,), (1,))
assert_size_stride(primals_8, (400, 20), (20, 1))
assert_size_stride(primals_9, (400,), (1,))
assert_size_stride(primals_10, (7056, 400), (400, 1))
assert_size_stride(primals_11, (7056,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (7056,
400), (1, 7056), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(1600)](buf1, primals_3, 1600, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(400, 20), (1, 400), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6,
(400, 20), (1, 400), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = torch.ops.aten.randn.default([4, 20], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
triton_poi_fused_add_exp_mul_1[grid(80)](buf2, buf5, buf3, buf6, 80,
XBLOCK=128, num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
extern_kernels.mm(buf6, reinterpret_tensor(primals_8, (20, 400), (1,
20), 0), out=buf7)
buf8 = buf7
del buf7
triton_poi_fused_relu_0[grid(1600)](buf8, primals_9, 1600, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
buf9 = empty_strided_cuda((4, 7056), (7072, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (400, 7056),
(1, 400), 0), out=buf9)
buf10 = empty_strided_cuda((4, 7056), (7056, 1), torch.float32)
triton_poi_fused_sigmoid_2[grid(28224)](buf9, primals_11, buf10,
28224, XBLOCK=128, num_warps=4, num_stages=1)
del buf9
del primals_11
return (buf10, buf2, buf3, primals_1, buf1, buf3, buf5, buf6, buf8,
buf10, primals_10, primals_8, primals_6, primals_4)
class VAENew(nn.Module):
def __init__(self):
super(VAENew, self).__init__()
self.fc1 = nn.Linear(84 * 84, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 84 * 84)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc21.weight
primals_5 = self.fc21.bias
primals_6 = self.fc22.weight
primals_7 = self.fc22.bias
primals_8 = self.fc3.weight
primals_9 = self.fc3.bias
primals_10 = self.fc4.weight
primals_11 = self.fc4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0], output[1], output[2]
| TannerSorensen/speech_production_manifolds | VAE | false | 5,884 | [
"MIT"
] | 1 | 0dcc2c099ad0e1e157c7f108e28f5957d4ac2f48 | https://github.com/TannerSorensen/speech_production_manifolds/tree/0dcc2c099ad0e1e157c7f108e28f5957d4ac2f48 | import torch
from torch import nn
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(84 * 84, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 84 * 84)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 84 * 84))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def get_inputs():
return [torch.rand([4, 7056])]
def get_init_inputs():
return []
|
down | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/e6/ce6fwb7cuhy3qppzvzwzq3dqytlyhklktwnjhzdza6cxmtqodq25.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/j6/cj6n5qdz5f6f2g4oatwbm2xfskl6mdyix2skekye6ilanaqhphqv.py
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 15376
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 961) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zg/czgcv4szvzqiitflipuf2423tmuqp5ogktsqdb2cvy5thsi6rpqj.py
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_2 => gt_1, mul_1, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 14400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 900) % 4
x2 = (xindex // 3600)
x4 = xindex % 3600
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x4 + (3712*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16384, grid=grid(16384), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 31, 31), (3844, 961, 31, 1))
buf2 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch.bool)
buf3 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, buf3, 15376, grid=grid(15376), stream=stream0)
del buf1
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 30, 30), (3600, 900, 30, 1))
buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf4, primals_5, buf5, buf6, 14400, grid=grid(14400), stream=stream0)
del buf4
del primals_5
return (buf6, primals_2, primals_4, buf0, buf2, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.functional import F
import torch.nn as nn
import torch.nn.functional as F
class down(nn.Module):
"""
A class for creating neural network blocks containing layers:
Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels, filterSize):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used as input and output channels for the
second convolutional layer.
filterSize : int
filter size for the convolution filter. input N would create
a N x N filter.
"""
super(down, self).__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=
1, padding=int((filterSize - 1) / 2))
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride
=1, padding=int((filterSize - 1) / 2))
def forward(self, x):
"""
Returns output tensor after passing input `x` to the neural network
block.
Parameters
----------
x : tensor
input to the NN block.
Returns
-------
tensor
output of the NN block.
"""
x = F.avg_pool2d(x, 2)
x = F.leaky_relu(self.conv1(x), negative_slope=0.1)
x = F.leaky_relu(self.conv2(x), negative_slope=0.1)
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'inChannels': 4, 'outChannels': 4, 'filterSize': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 15376
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 961 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 14400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 900 % 4
x2 = xindex // 3600
x4 = xindex % 3600
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x4 + 3712 * x2), tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(16384)](primals_1, buf0, 16384,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 31, 31), (3844, 961, 31, 1))
buf2 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch
.bool)
buf3 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch
.float32)
triton_poi_fused_convolution_leaky_relu_1[grid(15376)](buf1,
primals_3, buf2, buf3, 15376, XBLOCK=128, num_warps=4, num_stages=1
)
del buf1
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 30, 30), (3600, 900, 30, 1))
buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch
.bool)
buf6 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch
.float32)
triton_poi_fused_convolution_leaky_relu_2[grid(14400)](buf4,
primals_5, buf5, buf6, 14400, XBLOCK=128, num_warps=4, num_stages=1
)
del buf4
del primals_5
return buf6, primals_2, primals_4, buf0, buf2, buf3, buf5
class downNew(nn.Module):
"""
A class for creating neural network blocks containing layers:
Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels, filterSize):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used as input and output channels for the
second convolutional layer.
filterSize : int
filter size for the convolution filter. input N would create
a N x N filter.
"""
super(downNew, self).__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=
1, padding=int((filterSize - 1) / 2))
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride
=1, padding=int((filterSize - 1) / 2))
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Thomasedv/AI_Interpolation | down | false | 5,885 | [
"MIT"
] | 1 | cee51d92185a43a60797785554ee1ae924e5da0d | https://github.com/Thomasedv/AI_Interpolation/tree/cee51d92185a43a60797785554ee1ae924e5da0d | import torch
from torch.functional import F
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
A class for creating neural network blocks containing layers:
Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU
This is used in the UNet Class to create a UNet like NN architecture.
...
Methods
-------
forward(x)
Returns output tensor after passing input `x` to the neural network
block.
"""
def __init__(self, inChannels, outChannels, filterSize):
"""
Parameters
----------
inChannels : int
number of input channels for the first convolutional layer.
outChannels : int
number of output channels for the first convolutional layer.
This is also used as input and output channels for the
second convolutional layer.
filterSize : int
filter size for the convolution filter. input N would create
a N x N filter.
"""
super().__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=
1, padding=int((filterSize - 1) / 2))
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride
=1, padding=int((filterSize - 1) / 2))
def forward(self, x):
"""
Returns output tensor after passing input `x` to the neural network
block.
Parameters
----------
x : tensor
input to the NN block.
Returns
-------
tensor
output of the NN block.
"""
x = F.avg_pool2d(x, 2)
x = F.leaky_relu(self.conv1(x), negative_slope=0.1)
x = F.leaky_relu(self.conv2(x), negative_slope=0.1)
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [4, 4, 4]
|
BMNLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/vw/cvww5edufkr5ujgf6bj4jckegfkgvq2h247sfq65sokeomv4ycn6.py
# Topologically Sorted Source Nodes: [gt_6, pmask_1, sum_9, num_positive_1, ratio_2, clamp_3, ratio_3, coef_3, mul_18, add_6, log_2, mul_19, mul_16, sub_4, coef_2, sub_5, mul_20, sub_6, add_7, log_3, mul_21, loss_3, mean, loss_4, gt_7, pmask_2, sum_10, num_positive_2, ratio_4, clamp_6, ratio_5, coef_5, mul_24, add_9, log_4, mul_25, mul_22, sub_7, coef_4, sub_8, mul_26, sub_9, add_10, log_5, mul_27, loss_5, mean_1, loss_6, loss_7, mul_28, pred_bm_reg, gt_iou_map, le, gt_1, and_, u_mmask, u_smmask_1, gt, u_hmask, num_h, num_m, r_m, sub, gt_3, u_smmask_2, add, le_1, gt_2, and__1, u_lmask, u_lmask_1, u_slmask_1, num_l, r_l, sub_1, gt_4, u_slmask_2, weights, mul_4, mul_5, loss, ones_like, mul_6, sum_4, mul_7, sum_5, loss_1, mul_29, add_13, gt_5, pmask, sum_6, num_positive, le_2, nmask, nmask_1, sum_7, num_entries, ratio, ratio_1, coef_1, pred_bm_cls, add_3, log, mul_11, loss_pos, mul_9, sub_2, coef_0, sub_3, add_4, log_1, mul_13, loss_neg, add_5, sum_8, mul_15, loss_2, mul_30, loss_8], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg, aten.clone, aten.le, aten.bitwise_and, aten.mse_loss, aten.ones_like]
# Source node to ATen node mapping:
# add => add
# add_10 => add_10
# add_13 => add_13
# add_3 => add_3
# add_4 => add_4
# add_5 => add_5
# add_6 => add_6
# add_7 => add_7
# add_9 => add_9
# and_ => bitwise_and
# and__1 => bitwise_and_1
# clamp_3 => clamp_min_3
# clamp_6 => clamp_min_5
# coef_0 => div_4
# coef_1 => mul_10
# coef_2 => div_6
# coef_3 => mul_18
# coef_4 => div_7
# coef_5 => mul_25
# gt => gt
# gt_1 => gt_1
# gt_2 => gt_2
# gt_3 => gt_3
# gt_4 => gt_4
# gt_5 => gt_5
# gt_6 => gt_6
# gt_7 => gt_7
# gt_iou_map => mul
# le => le
# le_1 => le_1
# le_2 => le_2
# log => log
# log_1 => log_1
# log_2 => log_2
# log_3 => log_3
# log_4 => log_4
# log_5 => log_5
# loss => mean, pow_1, sub_2
# loss_1 => div_2
# loss_2 => div_5
# loss_3 => add_8
# loss_4 => neg
# loss_5 => add_11
# loss_6 => neg_1
# loss_7 => add_12
# loss_8 => add_14
# loss_neg => mul_14
# loss_pos => mul_12
# mean => mean_1
# mean_1 => mean_2
# mul_11 => mul_11
# mul_13 => mul_13
# mul_15 => mul_15
# mul_16 => mul_17
# mul_18 => mul_19
# mul_19 => mul_20
# mul_20 => mul_21
# mul_21 => mul_22
# mul_22 => mul_24
# mul_24 => mul_26
# mul_25 => mul_27
# mul_26 => mul_28
# mul_27 => mul_29
# mul_28 => mul_30
# mul_29 => mul_31
# mul_30 => mul_32
# mul_4 => mul_4
# mul_5 => mul_5
# mul_6 => mul_6
# mul_7 => mul_7
# mul_9 => mul_9
# nmask => convert_element_type_6
# nmask_1 => mul_8
# num_entries => add_2
# num_h => sum_1
# num_l => sum_3
# num_m => sum_2
# num_positive => clamp_min
# num_positive_1 => clamp_min_2
# num_positive_2 => clamp_min_4
# ones_like => full_default
# pmask => convert_element_type_5
# pmask_1 => convert_element_type_7
# pmask_2 => convert_element_type_8
# pred_bm_cls => clone_1
# pred_bm_reg => clone
# r_l => div_1
# r_m => div
# ratio => div_3
# ratio_1 => clamp_max, clamp_min_1
# ratio_2 => mul_16, reciprocal
# ratio_3 => clamp_max_1
# ratio_4 => mul_23, reciprocal_1
# ratio_5 => clamp_max_2
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_3
# sub_3 => sub_4
# sub_4 => sub_5
# sub_5 => sub_6
# sub_6 => sub_7
# sub_7 => sub_8
# sub_8 => sub_9
# sub_9 => sub_10
# sum_10 => sum_10
# sum_4 => sum_4
# sum_5 => sum_5
# sum_6 => sum_6
# sum_7 => sum_7
# sum_8 => sum_8
# sum_9 => sum_9
# u_hmask => convert_element_type
# u_lmask => convert_element_type_2
# u_lmask_1 => mul_1
# u_mmask => convert_element_type_1
# u_slmask_1 => mul_3
# u_slmask_2 => convert_element_type_4
# u_smmask_1 => mul_2
# u_smmask_2 => convert_element_type_3
# weights => add_1
# Graph fragment:
# %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view, 0.5), kwargs = {})
# %convert_element_type_7 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_6, torch.float32), kwargs = {})
# %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_7,), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_9, 1), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min_2,), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 256), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_16, 1.05), kwargs = {})
# %clamp_max_1 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 21), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_1, 0.5), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_18, %convert_element_type_7), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, 1e-05), kwargs = {})
# %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_6,), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_19, %log_2), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_1, 0.5), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max_1, 1), kwargs = {})
# %div_6 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_17, %sub_5), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type_7), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_6, %sub_6), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view_1), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_7, 1e-05), kwargs = {})
# %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_7,), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_21, %log_3), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_20, %mul_22), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_8,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_2, 0.5), kwargs = {})
# %convert_element_type_8 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_7, torch.float32), kwargs = {})
# %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_8,), kwargs = {})
# %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_10, 1), kwargs = {})
# %reciprocal_1 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min_4,), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_1, 256), kwargs = {})
# %clamp_min_5 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_23, 1.05), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_5, 21), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_2, 0.5), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_25, %convert_element_type_8), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, 1e-05), kwargs = {})
# %log_4 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_9,), kwargs = {})
# %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_26, %log_4), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_2, 0.5), kwargs = {})
# %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max_2, 1), kwargs = {})
# %div_7 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_24, %sub_8), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type_8), kwargs = {})
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_7, %sub_9), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view_3), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_10, 1e-05), kwargs = {})
# %log_5 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_10,), kwargs = {})
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_28, %log_5), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_27, %mul_29), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_11,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_2,), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %neg_1), kwargs = {})
# %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_12, 1.0), kwargs = {})
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format})
# %mul : [num_users=8] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg2_1), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%mul, 0.7), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0.3), kwargs = {})
# %bitwise_and : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%le, %gt_1), kwargs = {})
# %convert_element_type_1 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%bitwise_and, torch.float32), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %rand), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0.7), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%mul_2, %sub), kwargs = {})
# %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_3, torch.float32), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, %convert_element_type_3), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%mul, 0.3), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0.0), kwargs = {})
# %bitwise_and_1 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%le_1, %gt_2), kwargs = {})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%bitwise_and_1, torch.float32), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_2, %arg2_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %rand_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_3), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div_1), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%mul_3, %sub_1), kwargs = {})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_4, torch.float32), kwargs = {})
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %convert_element_type_4), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clone, %add_1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, %mul_5), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, %full_default), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 0.5), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add_1,), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_7, %sum_5), kwargs = {})
# %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, 10.0), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_30, %mul_31), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 0.9), kwargs = {})
# %convert_element_type_5 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt_5, torch.float32), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type_5,), kwargs = {})
# %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_6, 1), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%mul, 0.9), kwargs = {})
# %convert_element_type_6 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%le_2, torch.float32), kwargs = {})
# %mul_8 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_6, %arg2_1), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_8,), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, %sum_7), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, %clamp_min), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div_3, 1.05), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 21), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {})
# %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%select_1,), kwargs = {memory_format: torch.contiguous_format})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clone_1, 1e-05), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_3,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_10, %log), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_11, %convert_element_type_5), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, 1), kwargs = {})
# %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_9, %sub_3), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %clone_1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_4, 1e-05), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_4,), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_4, %log_1), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_13, %mul_8), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, %mul_14), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add_5,), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_8, -1), kwargs = {})
# %div_5 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_15, %add_2), kwargs = {})
# %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_5, 1.0), kwargs = {})
# %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, %mul_32), kwargs = {})
triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32', 14: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {13: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14), equal_to_1=(13,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': True, 'num_load': 10, 'num_reduction': 13, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr12, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = (rindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp19 = tl.load(in_ptr1 + (r0), None)
tmp36 = tl.load(in_ptr2 + (r0), None)
tmp37 = tl.load(in_ptr3 + (r0), None)
tmp62 = tl.load(in_ptr4 + (r0), None)
tmp69 = tl.load(in_out_ptr0 + (r0), None)
tmp76 = tl.load(in_ptr5 + (r1 + (64*r2)), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr5 + (16 + r1 + (64*r2)), None, eviction_policy='evict_last')
tmp126 = tl.load(in_ptr6 + (r0), None)
tmp139 = tl.load(in_ptr7 + (r0), None)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 1.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 256.0
tmp12 = tmp10 * tmp11
tmp13 = 1.05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = 21.0
tmp16 = triton_helpers.minimum(tmp14, tmp15)
tmp17 = tmp16 * tmp1
tmp18 = tmp17 * tmp3
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = tl_math.log(tmp21)
tmp23 = tmp18 * tmp22
tmp24 = tmp16 - tmp7
tmp25 = tmp17 / tmp24
tmp26 = tmp7 - tmp3
tmp27 = tmp25 * tmp26
tmp28 = tmp7 - tmp19
tmp29 = tmp28 + tmp20
tmp30 = tl_math.log(tmp29)
tmp31 = tmp27 * tmp30
tmp32 = tmp23 + tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp38 = tmp36 * tmp37
tmp39 = 0.7
tmp40 = tmp38 > tmp39
tmp41 = tmp40.to(tl.float32)
tmp42 = tl.broadcast_to(tmp41, [RBLOCK])
tmp44 = triton_helpers.promote_to_tensor(tl.sum(tmp42, 0))
tmp45 = tmp38 <= tmp39
tmp46 = 0.3
tmp47 = tmp38 > tmp46
tmp48 = tmp45 & tmp47
tmp49 = tmp48.to(tl.float32)
tmp50 = tl.broadcast_to(tmp49, [RBLOCK])
tmp52 = triton_helpers.promote_to_tensor(tl.sum(tmp50, 0))
tmp53 = tmp38 <= tmp46
tmp54 = 0.0
tmp55 = tmp38 > tmp54
tmp56 = tmp53 & tmp55
tmp57 = tmp56.to(tl.float32)
tmp58 = tmp57 * tmp37
tmp59 = tl.broadcast_to(tmp58, [RBLOCK])
tmp61 = triton_helpers.promote_to_tensor(tl.sum(tmp59, 0))
tmp63 = tmp49 * tmp62
tmp64 = tmp44 / tmp52
tmp65 = tmp7 - tmp64
tmp66 = tmp63 > tmp65
tmp67 = tmp66.to(tl.float32)
tmp68 = tmp41 + tmp67
tmp70 = tmp58 * tmp69
tmp71 = tmp44 / tmp61
tmp72 = tmp7 - tmp71
tmp73 = tmp70 > tmp72
tmp74 = tmp73.to(tl.float32)
tmp75 = tmp68 + tmp74
tmp77 = tmp76 * tmp75
tmp78 = tmp38 * tmp75
tmp79 = tmp77 - tmp78
tmp80 = tmp79 * tmp79
tmp81 = tl.broadcast_to(tmp80, [RBLOCK])
tmp83 = triton_helpers.promote_to_tensor(tl.sum(tmp81, 0))
tmp84 = 0.9
tmp85 = tmp38 > tmp84
tmp86 = tmp85.to(tl.float32)
tmp87 = tl.broadcast_to(tmp86, [RBLOCK])
tmp89 = triton_helpers.promote_to_tensor(tl.sum(tmp87, 0))
tmp90 = tmp38 <= tmp84
tmp91 = tmp90.to(tl.float32)
tmp92 = tmp91 * tmp37
tmp93 = tl.broadcast_to(tmp92, [RBLOCK])
tmp95 = triton_helpers.promote_to_tensor(tl.sum(tmp93, 0))
tmp96 = tl.broadcast_to(tmp75, [RBLOCK])
tmp98 = triton_helpers.promote_to_tensor(tl.sum(tmp96, 0))
tmp99 = tmp83 / tmp11
tmp100 = tmp99 * tmp7
tmp101 = tl.broadcast_to(tmp100, [RBLOCK])
tmp103 = triton_helpers.promote_to_tensor(tl.sum(tmp101, 0))
tmp104 = triton_helpers.maximum(tmp89, tmp7)
tmp105 = tmp104 + tmp95
tmp106 = tmp105 / tmp104
tmp107 = triton_helpers.maximum(tmp106, tmp13)
tmp108 = triton_helpers.minimum(tmp107, tmp15)
tmp109 = tmp108 * tmp1
tmp111 = tmp110 + tmp20
tmp112 = tl_math.log(tmp111)
tmp113 = tmp109 * tmp112
tmp114 = tmp113 * tmp86
tmp115 = tmp108 - tmp7
tmp116 = tmp109 / tmp115
tmp117 = tmp7 - tmp110
tmp118 = tmp117 + tmp20
tmp119 = tl_math.log(tmp118)
tmp120 = tmp116 * tmp119
tmp121 = tmp120 * tmp92
tmp122 = tmp114 + tmp121
tmp123 = tl.broadcast_to(tmp122, [RBLOCK])
tmp125 = triton_helpers.promote_to_tensor(tl.sum(tmp123, 0))
tmp127 = tmp126 > tmp1
tmp128 = tmp127.to(tl.float32)
tmp129 = tl.broadcast_to(tmp128, [RBLOCK])
tmp131 = triton_helpers.promote_to_tensor(tl.sum(tmp129, 0))
tmp132 = triton_helpers.maximum(tmp131, tmp7)
tmp133 = tmp9 / tmp132
tmp134 = tmp133 * tmp11
tmp135 = triton_helpers.maximum(tmp134, tmp13)
tmp136 = triton_helpers.minimum(tmp135, tmp15)
tmp137 = tmp136 * tmp1
tmp138 = tmp137 * tmp128
tmp140 = tmp139 + tmp20
tmp141 = tl_math.log(tmp140)
tmp142 = tmp138 * tmp141
tmp143 = tmp136 - tmp7
tmp144 = tmp137 / tmp143
tmp145 = tmp7 - tmp128
tmp146 = tmp144 * tmp145
tmp147 = tmp7 - tmp139
tmp148 = tmp147 + tmp20
tmp149 = tl_math.log(tmp148)
tmp150 = tmp146 * tmp149
tmp151 = tmp142 + tmp150
tmp152 = tl.broadcast_to(tmp151, [RBLOCK])
tmp154 = triton_helpers.promote_to_tensor(tl.sum(tmp152, 0))
tmp155 = tmp35 / tmp11
tmp156 = -tmp155
tmp157 = tmp154 / tmp11
tmp158 = -tmp157
tmp159 = tmp156 + tmp158
tmp160 = tmp103 * tmp1
tmp161 = tmp160 / tmp98
tmp162 = -1.0
tmp163 = tmp125 * tmp162
tmp164 = tmp163 / tmp105
tmp165 = tmp159 * tmp7
tmp166 = 10.0
tmp167 = tmp161 * tmp166
tmp168 = tmp165 + tmp167
tmp169 = tmp164 * tmp7
tmp170 = tmp168 + tmp169
tl.debug_barrier()
tl.store(in_out_ptr2 + (tl.full([1], 0, tl.int32)), tmp159, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp161, None)
tl.debug_barrier()
tl.store(in_out_ptr3 + (tl.full([1], 0, tl.int32)), tmp164, None)
tl.store(out_ptr12 + (tl.full([1], 0, tl.int32)), tmp170, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [u_slmask], Original ATen: [aten.rand_like]
buf11 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf12 = buf11
del buf11
# Topologically Sorted Source Nodes: [u_smmask], Original ATen: [aten.rand_like]
buf7 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf8 = buf7
del buf7
buf2 = empty_strided_cuda((), (), torch.float32)
buf14 = buf12; del buf12 # reuse
buf15 = empty_strided_cuda((), (), torch.float32)
buf16 = buf15; del buf15 # reuse
buf22 = empty_strided_cuda((), (), torch.float32)
buf6 = buf2; del buf2 # reuse
buf18 = buf16; del buf16 # reuse
buf23 = buf22; del buf22 # reuse
buf24 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [gt_6, pmask_1, sum_9, num_positive_1, ratio_2, clamp_3, ratio_3, coef_3, mul_18, add_6, log_2, mul_19, mul_16, sub_4, coef_2, sub_5, mul_20, sub_6, add_7, log_3, mul_21, loss_3, mean, loss_4, gt_7, pmask_2, sum_10, num_positive_2, ratio_4, clamp_6, ratio_5, coef_5, mul_24, add_9, log_4, mul_25, mul_22, sub_7, coef_4, sub_8, mul_26, sub_9, add_10, log_5, mul_27, loss_5, mean_1, loss_6, loss_7, mul_28, pred_bm_reg, gt_iou_map, le, gt_1, and_, u_mmask, u_smmask_1, gt, u_hmask, num_h, num_m, r_m, sub, gt_3, u_smmask_2, add, le_1, gt_2, and__1, u_lmask, u_lmask_1, u_slmask_1, num_l, r_l, sub_1, gt_4, u_slmask_2, weights, mul_4, mul_5, loss, ones_like, mul_6, sum_4, mul_7, sum_5, loss_1, mul_29, add_13, gt_5, pmask, sum_6, num_positive, le_2, nmask, nmask_1, sum_7, num_entries, ratio, ratio_1, coef_1, pred_bm_cls, add_3, log, mul_11, loss_pos, mul_9, sub_2, coef_0, sub_3, add_4, log_1, mul_13, loss_neg, add_5, sum_8, mul_15, loss_2, mul_30, loss_8], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg, aten.clone, aten.le, aten.bitwise_and, aten.mse_loss, aten.ones_like]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0.run(buf14, buf18, buf6, buf23, arg4_1, arg3_1, arg1_1, arg2_1, buf8, arg0_1, arg6_1, arg5_1, buf24, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
del arg5_1
del arg6_1
del buf14
del buf8
return (buf24, buf6, buf18, buf23, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg5_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg6_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
def binary_logistic_regression_loss(reg_score, label, threshold=0.5,
ratio_range=(1.05, 21), eps=1e-05):
"""Binary Logistic Regression Loss."""
label = label.view(-1)
reg_score = reg_score.contiguous().view(-1)
pmask = (label > threshold).float()
num_positive = max(torch.sum(pmask), 1)
num_entries = len(label)
ratio = num_entries / num_positive
ratio = min(max(ratio, ratio_range[0]), ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask
) * torch.log(1.0 - reg_score + eps)
loss = -torch.mean(loss)
return loss
class BMNLoss(nn.Module):
"""BMN Loss.
From paper https://arxiv.org/abs/1907.09702,
code https://github.com/JJBOY/BMN-Boundary-Matching-Network.
It will calculate loss for BMN Model. This loss is a weighted sum of
1) temporal evaluation loss based on confidence score of start and
end positions.
2) proposal evaluation regression loss based on confidence scores of
candidate proposals.
3) proposal evaluation classification loss based on classification
results of candidate proposals.
"""
@staticmethod
def tem_loss(pred_start, pred_end, gt_start, gt_end):
"""Calculate Temporal Evaluation Module Loss.
This function calculate the binary_logistic_regression_loss for start
and end respectively and returns the sum of their losses.
Args:
pred_start (torch.Tensor): Predicted start score by BMN model.
pred_end (torch.Tensor): Predicted end score by BMN model.
gt_start (torch.Tensor): Groundtruth confidence score for start.
gt_end (torch.Tensor): Groundtruth confidence score for end.
Returns:
torch.Tensor: Returned binary logistic loss.
"""
loss_start = binary_logistic_regression_loss(pred_start, gt_start)
loss_end = binary_logistic_regression_loss(pred_end, gt_end)
loss = loss_start + loss_end
return loss
@staticmethod
def pem_reg_loss(pred_score, gt_iou_map, mask,
high_temporal_iou_threshold=0.7, low_temporal_iou_threshold=0.3):
"""Calculate Proposal Evaluation Module Regression Loss.
Args:
pred_score (torch.Tensor): Predicted temporal_iou score by BMN.
gt_iou_map (torch.Tensor): Groundtruth temporal_iou score.
mask (torch.Tensor): Boundary-Matching mask.
high_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.7.
low_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.3.
Returns:
torch.Tensor: Proposal evalutaion regression loss.
"""
u_hmask = (gt_iou_map > high_temporal_iou_threshold).float()
u_mmask = ((gt_iou_map <= high_temporal_iou_threshold) & (
gt_iou_map > low_temporal_iou_threshold)).float()
u_lmask = ((gt_iou_map <= low_temporal_iou_threshold) & (gt_iou_map >
0.0)).float()
u_lmask = u_lmask * mask
num_h = torch.sum(u_hmask)
num_m = torch.sum(u_mmask)
num_l = torch.sum(u_lmask)
r_m = num_h / num_m
u_smmask = torch.rand_like(gt_iou_map)
u_smmask = u_mmask * u_smmask
u_smmask = (u_smmask > 1.0 - r_m).float()
r_l = num_h / num_l
u_slmask = torch.rand_like(gt_iou_map)
u_slmask = u_lmask * u_slmask
u_slmask = (u_slmask > 1.0 - r_l).float()
weights = u_hmask + u_smmask + u_slmask
loss = F.mse_loss(pred_score * weights, gt_iou_map * weights)
loss = 0.5 * torch.sum(loss * torch.ones_like(weights)) / torch.sum(
weights)
return loss
@staticmethod
def pem_cls_loss(pred_score, gt_iou_map, mask, threshold=0.9,
ratio_range=(1.05, 21), eps=1e-05):
"""Calculate Proposal Evaluation Module Classification Loss.
Args:
pred_score (torch.Tensor): Predicted temporal_iou score by BMN.
gt_iou_map (torch.Tensor): Groundtruth temporal_iou score.
mask (torch.Tensor): Boundary-Matching mask.
threshold (float): Threshold of temporal_iou for positive
instances. Default: 0.9.
ratio_range (tuple): Lower bound and upper bound for ratio.
Default: (1.05, 21)
eps (float): Epsilon for small value. Default: 1e-5
Returns:
torch.Tensor: Proposal evalutaion classification loss.
"""
pmask = (gt_iou_map > threshold).float()
nmask = (gt_iou_map <= threshold).float()
nmask = nmask * mask
num_positive = max(torch.sum(pmask), 1)
num_entries = num_positive + torch.sum(nmask)
ratio = num_entries / num_positive
ratio = torch.clamp(ratio, ratio_range[0], ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss_pos = coef_1 * torch.log(pred_score + eps) * pmask
loss_neg = coef_0 * torch.log(1.0 - pred_score + eps) * nmask
loss = -1 * torch.sum(loss_pos + loss_neg) / num_entries
return loss
def forward(self, pred_bm, pred_start, pred_end, gt_iou_map, gt_start,
gt_end, bm_mask, weight_tem=1.0, weight_pem_reg=10.0,
weight_pem_cls=1.0):
"""Calculate Boundary Matching Network Loss.
Args:
pred_bm (torch.Tensor): Predicted confidence score for boundary
matching map.
pred_start (torch.Tensor): Predicted confidence score for start.
pred_end (torch.Tensor): Predicted confidence score for end.
gt_iou_map (torch.Tensor): Groundtruth score for boundary matching
map.
gt_start (torch.Tensor): Groundtruth temporal_iou score for start.
gt_end (torch.Tensor): Groundtruth temporal_iou score for end.
bm_mask (torch.Tensor): Boundary-Matching mask.
weight_tem (float): Weight for tem loss. Default: 1.0.
weight_pem_reg (float): Weight for pem regression loss.
Default: 10.0.
weight_pem_cls (float): Weight for pem classification loss.
Default: 1.0.
Returns:
tuple([torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]):
(loss, tem_loss, pem_reg_loss, pem_cls_loss). Loss is the bmn
loss, tem_loss is the temporal evaluation loss, pem_reg_loss is
the proposal evaluation regression loss, pem_cls_loss is the
proposal evaluation classification loss.
"""
pred_bm_reg = pred_bm[:, 0].contiguous()
pred_bm_cls = pred_bm[:, 1].contiguous()
gt_iou_map = gt_iou_map * bm_mask
pem_reg_loss = self.pem_reg_loss(pred_bm_reg, gt_iou_map, bm_mask)
pem_cls_loss = self.pem_cls_loss(pred_bm_cls, gt_iou_map, bm_mask)
tem_loss = self.tem_loss(pred_start, pred_end, gt_start, gt_end)
loss = (weight_tem * tem_loss + weight_pem_reg * pem_reg_loss +
weight_pem_cls * pem_cls_loss)
return loss, tem_loss, pem_reg_loss, pem_cls_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]),
torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch import device
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0(
in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr12, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = rindex // 16 % 4
tmp0 = tl.load(in_ptr0 + r0, None)
tmp19 = tl.load(in_ptr1 + r0, None)
tmp36 = tl.load(in_ptr2 + r0, None)
tmp37 = tl.load(in_ptr3 + r0, None)
tmp62 = tl.load(in_ptr4 + r0, None)
tmp69 = tl.load(in_out_ptr0 + r0, None)
tmp76 = tl.load(in_ptr5 + (r1 + 64 * r2), None, eviction_policy=
'evict_last')
tmp110 = tl.load(in_ptr5 + (16 + r1 + 64 * r2), None, eviction_policy=
'evict_last')
tmp126 = tl.load(in_ptr6 + r0, None)
tmp139 = tl.load(in_ptr7 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 1.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 256.0
tmp12 = tmp10 * tmp11
tmp13 = 1.05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = 21.0
tmp16 = triton_helpers.minimum(tmp14, tmp15)
tmp17 = tmp16 * tmp1
tmp18 = tmp17 * tmp3
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = tl_math.log(tmp21)
tmp23 = tmp18 * tmp22
tmp24 = tmp16 - tmp7
tmp25 = tmp17 / tmp24
tmp26 = tmp7 - tmp3
tmp27 = tmp25 * tmp26
tmp28 = tmp7 - tmp19
tmp29 = tmp28 + tmp20
tmp30 = tl_math.log(tmp29)
tmp31 = tmp27 * tmp30
tmp32 = tmp23 + tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp38 = tmp36 * tmp37
tmp39 = 0.7
tmp40 = tmp38 > tmp39
tmp41 = tmp40.to(tl.float32)
tmp42 = tl.broadcast_to(tmp41, [RBLOCK])
tmp44 = triton_helpers.promote_to_tensor(tl.sum(tmp42, 0))
tmp45 = tmp38 <= tmp39
tmp46 = 0.3
tmp47 = tmp38 > tmp46
tmp48 = tmp45 & tmp47
tmp49 = tmp48.to(tl.float32)
tmp50 = tl.broadcast_to(tmp49, [RBLOCK])
tmp52 = triton_helpers.promote_to_tensor(tl.sum(tmp50, 0))
tmp53 = tmp38 <= tmp46
tmp54 = 0.0
tmp55 = tmp38 > tmp54
tmp56 = tmp53 & tmp55
tmp57 = tmp56.to(tl.float32)
tmp58 = tmp57 * tmp37
tmp59 = tl.broadcast_to(tmp58, [RBLOCK])
tmp61 = triton_helpers.promote_to_tensor(tl.sum(tmp59, 0))
tmp63 = tmp49 * tmp62
tmp64 = tmp44 / tmp52
tmp65 = tmp7 - tmp64
tmp66 = tmp63 > tmp65
tmp67 = tmp66.to(tl.float32)
tmp68 = tmp41 + tmp67
tmp70 = tmp58 * tmp69
tmp71 = tmp44 / tmp61
tmp72 = tmp7 - tmp71
tmp73 = tmp70 > tmp72
tmp74 = tmp73.to(tl.float32)
tmp75 = tmp68 + tmp74
tmp77 = tmp76 * tmp75
tmp78 = tmp38 * tmp75
tmp79 = tmp77 - tmp78
tmp80 = tmp79 * tmp79
tmp81 = tl.broadcast_to(tmp80, [RBLOCK])
tmp83 = triton_helpers.promote_to_tensor(tl.sum(tmp81, 0))
tmp84 = 0.9
tmp85 = tmp38 > tmp84
tmp86 = tmp85.to(tl.float32)
tmp87 = tl.broadcast_to(tmp86, [RBLOCK])
tmp89 = triton_helpers.promote_to_tensor(tl.sum(tmp87, 0))
tmp90 = tmp38 <= tmp84
tmp91 = tmp90.to(tl.float32)
tmp92 = tmp91 * tmp37
tmp93 = tl.broadcast_to(tmp92, [RBLOCK])
tmp95 = triton_helpers.promote_to_tensor(tl.sum(tmp93, 0))
tmp96 = tl.broadcast_to(tmp75, [RBLOCK])
tmp98 = triton_helpers.promote_to_tensor(tl.sum(tmp96, 0))
tmp99 = tmp83 / tmp11
tmp100 = tmp99 * tmp7
tmp101 = tl.broadcast_to(tmp100, [RBLOCK])
tmp103 = triton_helpers.promote_to_tensor(tl.sum(tmp101, 0))
tmp104 = triton_helpers.maximum(tmp89, tmp7)
tmp105 = tmp104 + tmp95
tmp106 = tmp105 / tmp104
tmp107 = triton_helpers.maximum(tmp106, tmp13)
tmp108 = triton_helpers.minimum(tmp107, tmp15)
tmp109 = tmp108 * tmp1
tmp111 = tmp110 + tmp20
tmp112 = tl_math.log(tmp111)
tmp113 = tmp109 * tmp112
tmp114 = tmp113 * tmp86
tmp115 = tmp108 - tmp7
tmp116 = tmp109 / tmp115
tmp117 = tmp7 - tmp110
tmp118 = tmp117 + tmp20
tmp119 = tl_math.log(tmp118)
tmp120 = tmp116 * tmp119
tmp121 = tmp120 * tmp92
tmp122 = tmp114 + tmp121
tmp123 = tl.broadcast_to(tmp122, [RBLOCK])
tmp125 = triton_helpers.promote_to_tensor(tl.sum(tmp123, 0))
tmp127 = tmp126 > tmp1
tmp128 = tmp127.to(tl.float32)
tmp129 = tl.broadcast_to(tmp128, [RBLOCK])
tmp131 = triton_helpers.promote_to_tensor(tl.sum(tmp129, 0))
tmp132 = triton_helpers.maximum(tmp131, tmp7)
tmp133 = tmp9 / tmp132
tmp134 = tmp133 * tmp11
tmp135 = triton_helpers.maximum(tmp134, tmp13)
tmp136 = triton_helpers.minimum(tmp135, tmp15)
tmp137 = tmp136 * tmp1
tmp138 = tmp137 * tmp128
tmp140 = tmp139 + tmp20
tmp141 = tl_math.log(tmp140)
tmp142 = tmp138 * tmp141
tmp143 = tmp136 - tmp7
tmp144 = tmp137 / tmp143
tmp145 = tmp7 - tmp128
tmp146 = tmp144 * tmp145
tmp147 = tmp7 - tmp139
tmp148 = tmp147 + tmp20
tmp149 = tl_math.log(tmp148)
tmp150 = tmp146 * tmp149
tmp151 = tmp142 + tmp150
tmp152 = tl.broadcast_to(tmp151, [RBLOCK])
tmp154 = triton_helpers.promote_to_tensor(tl.sum(tmp152, 0))
tmp155 = tmp35 / tmp11
tmp156 = -tmp155
tmp157 = tmp154 / tmp11
tmp158 = -tmp157
tmp159 = tmp156 + tmp158
tmp160 = tmp103 * tmp1
tmp161 = tmp160 / tmp98
tmp162 = -1.0
tmp163 = tmp125 * tmp162
tmp164 = tmp163 / tmp105
tmp165 = tmp159 * tmp7
tmp166 = 10.0
tmp167 = tmp161 * tmp166
tmp168 = tmp165 + tmp167
tmp169 = tmp164 * tmp7
tmp170 = tmp168 + tmp169
tl.debug_barrier()
tl.store(in_out_ptr2 + tl.full([1], 0, tl.int32), tmp159, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp161, None)
tl.debug_barrier()
tl.store(in_out_ptr3 + tl.full([1], 0, tl.int32), tmp164, None)
tl.store(out_ptr12 + tl.full([1], 0, tl.int32), tmp170, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf11 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf12 = buf11
del buf11
buf7 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf8 = buf7
del buf7
buf2 = empty_strided_cuda((), (), torch.float32)
buf14 = buf12
del buf12
buf15 = empty_strided_cuda((), (), torch.float32)
buf16 = buf15
del buf15
buf22 = empty_strided_cuda((), (), torch.float32)
buf6 = buf2
del buf2
buf18 = buf16
del buf16
buf23 = buf22
del buf22
buf24 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused__to_copy_add_bitwise_and_clamp_clone_div_gt_le_log_mean_mse_loss_mul_neg_ones_like_reciprocal_rsub_sub_sum_0[
grid(1)](buf14, buf18, buf6, buf23, arg4_1, arg3_1, arg1_1,
arg2_1, buf8, arg0_1, arg6_1, arg5_1, buf24, 1, 256, num_warps=
2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
del arg5_1
del arg6_1
del buf14
del buf8
return buf24, buf6, buf18, buf23
def binary_logistic_regression_loss(reg_score, label, threshold=0.5,
ratio_range=(1.05, 21), eps=1e-05):
"""Binary Logistic Regression Loss."""
label = label.view(-1)
reg_score = reg_score.contiguous().view(-1)
pmask = (label > threshold).float()
num_positive = max(torch.sum(pmask), 1)
num_entries = len(label)
ratio = num_entries / num_positive
ratio = min(max(ratio, ratio_range[0]), ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask
) * torch.log(1.0 - reg_score + eps)
loss = -torch.mean(loss)
return loss
class BMNLossNew(nn.Module):
"""BMN Loss.
From paper https://arxiv.org/abs/1907.09702,
code https://github.com/JJBOY/BMN-Boundary-Matching-Network.
It will calculate loss for BMN Model. This loss is a weighted sum of
1) temporal evaluation loss based on confidence score of start and
end positions.
2) proposal evaluation regression loss based on confidence scores of
candidate proposals.
3) proposal evaluation classification loss based on classification
results of candidate proposals.
"""
@staticmethod
def tem_loss(pred_start, pred_end, gt_start, gt_end):
"""Calculate Temporal Evaluation Module Loss.
This function calculate the binary_logistic_regression_loss for start
and end respectively and returns the sum of their losses.
Args:
pred_start (torch.Tensor): Predicted start score by BMN model.
pred_end (torch.Tensor): Predicted end score by BMN model.
gt_start (torch.Tensor): Groundtruth confidence score for start.
gt_end (torch.Tensor): Groundtruth confidence score for end.
Returns:
torch.Tensor: Returned binary logistic loss.
"""
loss_start = binary_logistic_regression_loss(pred_start, gt_start)
loss_end = binary_logistic_regression_loss(pred_end, gt_end)
loss = loss_start + loss_end
return loss
@staticmethod
def pem_reg_loss(pred_score, gt_iou_map, mask,
high_temporal_iou_threshold=0.7, low_temporal_iou_threshold=0.3):
"""Calculate Proposal Evaluation Module Regression Loss.
Args:
pred_score (torch.Tensor): Predicted temporal_iou score by BMN.
gt_iou_map (torch.Tensor): Groundtruth temporal_iou score.
mask (torch.Tensor): Boundary-Matching mask.
high_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.7.
low_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.3.
Returns:
torch.Tensor: Proposal evalutaion regression loss.
"""
u_hmask = (gt_iou_map > high_temporal_iou_threshold).float()
u_mmask = ((gt_iou_map <= high_temporal_iou_threshold) & (
gt_iou_map > low_temporal_iou_threshold)).float()
u_lmask = ((gt_iou_map <= low_temporal_iou_threshold) & (gt_iou_map >
0.0)).float()
u_lmask = u_lmask * mask
num_h = torch.sum(u_hmask)
num_m = torch.sum(u_mmask)
num_l = torch.sum(u_lmask)
r_m = num_h / num_m
u_smmask = torch.rand_like(gt_iou_map)
u_smmask = u_mmask * u_smmask
u_smmask = (u_smmask > 1.0 - r_m).float()
r_l = num_h / num_l
u_slmask = torch.rand_like(gt_iou_map)
u_slmask = u_lmask * u_slmask
u_slmask = (u_slmask > 1.0 - r_l).float()
weights = u_hmask + u_smmask + u_slmask
loss = F.mse_loss(pred_score * weights, gt_iou_map * weights)
loss = 0.5 * torch.sum(loss * torch.ones_like(weights)) / torch.sum(
weights)
return loss
@staticmethod
def pem_cls_loss(pred_score, gt_iou_map, mask, threshold=0.9,
ratio_range=(1.05, 21), eps=1e-05):
"""Calculate Proposal Evaluation Module Classification Loss.
Args:
pred_score (torch.Tensor): Predicted temporal_iou score by BMN.
gt_iou_map (torch.Tensor): Groundtruth temporal_iou score.
mask (torch.Tensor): Boundary-Matching mask.
threshold (float): Threshold of temporal_iou for positive
instances. Default: 0.9.
ratio_range (tuple): Lower bound and upper bound for ratio.
Default: (1.05, 21)
eps (float): Epsilon for small value. Default: 1e-5
Returns:
torch.Tensor: Proposal evalutaion classification loss.
"""
pmask = (gt_iou_map > threshold).float()
nmask = (gt_iou_map <= threshold).float()
nmask = nmask * mask
num_positive = max(torch.sum(pmask), 1)
num_entries = num_positive + torch.sum(nmask)
ratio = num_entries / num_positive
ratio = torch.clamp(ratio, ratio_range[0], ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss_pos = coef_1 * torch.log(pred_score + eps) * pmask
loss_neg = coef_0 * torch.log(1.0 - pred_score + eps) * nmask
loss = -1 * torch.sum(loss_pos + loss_neg) / num_entries
return loss
def forward(self, input_0, input_1, input_2, input_3, input_4, input_5,
input_6):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
arg4_1 = input_4
arg5_1 = input_5
arg6_1 = input_6
output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1])
return output[0], output[1], output[2], output[3]
| SvipRepetitionCounting/TransRAC | BMNLoss | false | 5,886 | [
"Apache-2.0"
] | 1 | eec12553dfa1e2fde6356b0e2703c633d225feb3 | https://github.com/SvipRepetitionCounting/TransRAC/tree/eec12553dfa1e2fde6356b0e2703c633d225feb3 | import torch
import torch.nn.functional as F
import torch.nn as nn
def binary_logistic_regression_loss(reg_score, label, threshold=0.5,
ratio_range=(1.05, 21), eps=1e-05):
"""Binary Logistic Regression Loss."""
label = label.view(-1)
reg_score = reg_score.contiguous().view(-1)
pmask = (label > threshold).float()
num_positive = max(torch.sum(pmask), 1)
num_entries = len(label)
ratio = num_entries / num_positive
ratio = min(max(ratio, ratio_range[0]), ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask
) * torch.log(1.0 - reg_score + eps)
loss = -torch.mean(loss)
return loss
class Model(nn.Module):
"""BMN Loss.
From paper https://arxiv.org/abs/1907.09702,
code https://github.com/JJBOY/BMN-Boundary-Matching-Network.
It will calculate loss for BMN Model. This loss is a weighted sum of
1) temporal evaluation loss based on confidence score of start and
end positions.
2) proposal evaluation regression loss based on confidence scores of
candidate proposals.
3) proposal evaluation classification loss based on classification
results of candidate proposals.
"""
@staticmethod
def tem_loss(pred_start, pred_end, gt_start, gt_end):
"""Calculate Temporal Evaluation Module Loss.
This function calculate the binary_logistic_regression_loss for start
and end respectively and returns the sum of their losses.
Args:
pred_start (torch.Tensor): Predicted start score by BMN model.
pred_end (torch.Tensor): Predicted end score by BMN model.
gt_start (torch.Tensor): Groundtruth confidence score for start.
gt_end (torch.Tensor): Groundtruth confidence score for end.
Returns:
torch.Tensor: Returned binary logistic loss.
"""
loss_start = binary_logistic_regression_loss(pred_start, gt_start)
loss_end = binary_logistic_regression_loss(pred_end, gt_end)
loss = loss_start + loss_end
return loss
@staticmethod
def pem_reg_loss(pred_score, gt_iou_map, mask,
high_temporal_iou_threshold=0.7, low_temporal_iou_threshold=0.3):
"""Calculate Proposal Evaluation Module Regression Loss.
Args:
pred_score (torch.Tensor): Predicted temporal_iou score by BMN.
gt_iou_map (torch.Tensor): Groundtruth temporal_iou score.
mask (torch.Tensor): Boundary-Matching mask.
high_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.7.
low_temporal_iou_threshold (float): Higher threshold of
temporal_iou. Default: 0.3.
Returns:
torch.Tensor: Proposal evalutaion regression loss.
"""
u_hmask = (gt_iou_map > high_temporal_iou_threshold).float()
u_mmask = ((gt_iou_map <= high_temporal_iou_threshold) & (
gt_iou_map > low_temporal_iou_threshold)).float()
u_lmask = ((gt_iou_map <= low_temporal_iou_threshold) & (gt_iou_map >
0.0)).float()
u_lmask = u_lmask * mask
num_h = torch.sum(u_hmask)
num_m = torch.sum(u_mmask)
num_l = torch.sum(u_lmask)
r_m = num_h / num_m
u_smmask = torch.rand_like(gt_iou_map)
u_smmask = u_mmask * u_smmask
u_smmask = (u_smmask > 1.0 - r_m).float()
r_l = num_h / num_l
u_slmask = torch.rand_like(gt_iou_map)
u_slmask = u_lmask * u_slmask
u_slmask = (u_slmask > 1.0 - r_l).float()
weights = u_hmask + u_smmask + u_slmask
loss = F.mse_loss(pred_score * weights, gt_iou_map * weights)
loss = 0.5 * torch.sum(loss * torch.ones_like(weights)) / torch.sum(
weights)
return loss
@staticmethod
def pem_cls_loss(pred_score, gt_iou_map, mask, thresho
# ... truncated (>4000 chars) for memory efficiency |
L1_Charbonnier_loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2r/c2r4vrcqezcb7b3qaarvj7x5e62di3smzewo2zzbig52lkg5xuq4.py
# Topologically Sorted Source Nodes: [neg, diff, mul, add_1, error, loss], Original ATen: [aten.neg, aten.add, aten.mul, aten.sqrt, aten.sum]
# Source node to ATen node mapping:
# add_1 => add_1
# diff => add
# error => sqrt
# loss => sum_1
# mul => mul
# neg => neg
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %neg), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-06), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sqrt,), kwargs = {})
triton_per_fused_add_mul_neg_sqrt_sum_0 = async_compile.triton('triton_per_fused_add_mul_neg_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_neg_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_neg_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = -tmp1
tmp3 = tmp0 + tmp2
tmp4 = tmp3 * tmp3
tmp5 = 1e-06
tmp6 = tmp4 + tmp5
tmp7 = libdevice.sqrt(tmp6)
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [neg, diff, mul, add_1, error, loss], Original ATen: [aten.neg, aten.add, aten.mul, aten.sqrt, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_mul_neg_sqrt_sum_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class L1_Charbonnier_loss(nn.Module):
"""L1 Charbonnierloss."""
def __init__(self):
super(L1_Charbonnier_loss, self).__init__()
self.eps = 1e-06
def forward(self, X, Y):
diff = torch.add(X, -Y)
error = torch.sqrt(diff * diff + self.eps)
loss = torch.sum(error)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mul_neg_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = -tmp1
tmp3 = tmp0 + tmp2
tmp4 = tmp3 * tmp3
tmp5 = 1e-06
tmp6 = tmp4 + tmp5
tmp7 = libdevice.sqrt(tmp6)
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_mul_neg_sqrt_sum_0[grid(1)](arg1_1, arg0_1,
buf0, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class L1_Charbonnier_lossNew(nn.Module):
"""L1 Charbonnierloss."""
def __init__(self):
super(L1_Charbonnier_lossNew, self).__init__()
self.eps = 1e-06
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Tiger1994/LapSRN | L1_Charbonnier_loss | false | 5,887 | [
"MIT"
] | 1 | 4f2222ebad97ad6730fe352f5a3c8a06f0f61e7a | https://github.com/Tiger1994/LapSRN/tree/4f2222ebad97ad6730fe352f5a3c8a06f0f61e7a | import torch
import torch.nn as nn
class Model(nn.Module):
"""L1 Charbonnierloss."""
def __init__(self):
super().__init__()
self.eps = 1e-06
def forward(self, X, Y):
diff = torch.add(X, -Y)
error = torch.sqrt(diff * diff + self.eps)
loss = torch.sum(error)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
FC2 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/hy/chyn4ucj7uhqavrcrhxk2c5izzfdiw63bn3glmpyn3tpx5bpigdc.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/eb/cebpbupczy3a7z6yffgxybumq5trdt3jp5hxwuoo6w6cunzz7d7h.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu_1
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/nc/cncd5yvgjpjfrvyaveva55remy3ckx5quvuhdmurdt3pp6k3qtux.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_3 => relu_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (128, 16), (16, 1))
assert_size_stride(primals_3, (128, ), (1, ))
assert_size_stride(primals_4, (2, 128), (128, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (4, 2), (2, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (2, 4), (4, 1))
assert_size_stride(primals_9, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 128), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 512, grid=grid(512), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (128, 2), (1, 128), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 8, grid=grid(8), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2, 4), (1, 2), 0), out=buf4)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_2.run(buf5, primals_7, 16, grid=grid(16), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (buf6, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), buf1, buf3, buf5, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class FC2(nn.Module):
""" Neural network definition
"""
def __init__(self, size):
super(FC2, self).__init__()
self.size = size
self.fc1 = nn.Linear(in_features=self.size ** 2, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=2)
self.fc3 = nn.Linear(in_features=2, out_features=4)
self.fc4 = nn.Linear(in_features=4, out_features=2)
def forward(self, x):
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (128, 16), (16, 1))
assert_size_stride(primals_3, (128,), (1,))
assert_size_stride(primals_4, (2, 128), (128, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (4, 2), (2, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (2, 4), (4, 1))
assert_size_stride(primals_9, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), reinterpret_tensor(primals_2, (16, 128), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(512)](buf1, primals_3, 512, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (128, 2), (1,
128), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(8)](buf3, primals_5, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2, 4), (1, 2
), 0), out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_relu_2[grid(16)](buf5, primals_7, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8,
(4, 2), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_9
return buf6, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), buf1, buf3, buf5, primals_8, primals_6, primals_4
class FC2New(nn.Module):
""" Neural network definition
"""
def __init__(self, size):
super(FC2New, self).__init__()
self.size = size
self.fc1 = nn.Linear(in_features=self.size ** 2, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=2)
self.fc3 = nn.Linear(in_features=2, out_features=4)
self.fc4 = nn.Linear(in_features=4, out_features=2)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| Thibaud-Ardoin/Dial-a-Ride | FC2 | false | 5,888 | [
"MIT"
] | 1 | 7d9b3cd904d3194dccad31fec2533e2cf58cad0c | https://github.com/Thibaud-Ardoin/Dial-a-Ride/tree/7d9b3cd904d3194dccad31fec2533e2cf58cad0c | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
""" Neural network definition
"""
def __init__(self, size):
super().__init__()
self.size = size
self.fc1 = nn.Linear(in_features=self.size ** 2, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=2)
self.fc3 = nn.Linear(in_features=2, out_features=4)
self.fc4 = nn.Linear(in_features=4, out_features=2)
def forward(self, x):
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4]
|
NeuralNetMultiplePositionalArguments | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py
# Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add]
# Source node to ATen node mapping:
# model_input => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_4, buf4, 256, grid=grid(256), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_5, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class NeuralNetMultiplePositionalArguments(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArguments, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1, input2):
model_input = input1 + input2
out = self.fc1(model_input)
out = self.relu(out)
out = self.fc2(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(256)](buf2,
primals_4, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_6
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(
buf2, (64, 4), (4, 1), 0), primals_5, buf4
class NeuralNetMultiplePositionalArgumentsNew(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArgumentsNew, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| TingGong1/onnxruntime | NeuralNetMultiplePositionalArguments | false | 5,889 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1, input2):
model_input = input1 + input2
out = self.fc1(model_input)
out = self.relu(out)
out = self.fc2(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
HuggingfaceFastGelu | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/cq/ccqrv5daquzjwissidd23uotfpy5s5jx7uitdgmgmdd6b44oid4b.py
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# tanh => tanh
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.7978845608), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.044715), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %add), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_4,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_mul_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7978845608
tmp4 = tmp0 * tmp3
tmp5 = 0.044715
tmp6 = tmp0 * tmp5
tmp7 = tmp6 * tmp0
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tmp11 = libdevice.tanh(tmp10)
tmp12 = tmp11 + tmp8
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class HuggingfaceFastGelu(torch.nn.Module):
def forward(self, x):
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 +
0.044715 * x * x)))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7978845608
tmp4 = tmp0 * tmp3
tmp5 = 0.044715
tmp6 = tmp0 * tmp5
tmp7 = tmp6 * tmp0
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tmp11 = libdevice.tanh(tmp10)
tmp12 = tmp11 + tmp8
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HuggingfaceFastGeluNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| TingGong1/onnxruntime | HuggingfaceFastGelu | false | 5,890 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(torch.nn.Module):
def forward(self, x):
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 +
0.044715 * x * x)))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
IIDIsotropicGaussianUVLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2l/c2lpbmkah6k7ad7ej2t4cu6gqp3tcq5mzhelfntwzyst66pi6yw6.py
# Topologically Sorted Source Nodes: [softplus, sigma2, log, mul, add_2, sub, pow_1, sub_1, pow_2, delta_t_delta, truediv, add_3, loss, sum_1], Original ATen: [aten.softplus, aten.add, aten.log, aten.mul, aten.sub, aten.pow, aten.div, aten.sum]
# Source node to ATen node mapping:
# add_2 => add_2
# add_3 => add_3
# delta_t_delta => add_1
# log => log
# loss => mul_1
# mul => mul
# pow_1 => pow_1
# pow_2 => pow_2
# sigma2 => add
# softplus => exp, gt, log1p, where
# sub => sub
# sub_1 => sub_1
# sum_1 => sum_1
# truediv => div
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 4), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log, 2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1.8378770664093453), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg2_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg3_1, %arg4_1), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %div), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 0.5), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {})
triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=(6,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp13 = tl.load(in_ptr1 + (r0), None)
tmp14 = tl.load(in_ptr2 + (r0), None)
tmp17 = tl.load(in_ptr3 + (r0), None)
tmp18 = tl.load(in_ptr4 + (r0), None)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = 4.0
tmp7 = tmp5 + tmp6
tmp8 = tl_math.log(tmp7)
tmp9 = 2.0
tmp10 = tmp8 * tmp9
tmp11 = 1.8378770664093453
tmp12 = tmp10 + tmp11
tmp15 = tmp13 - tmp14
tmp16 = tmp15 * tmp15
tmp19 = tmp17 - tmp18
tmp20 = tmp19 * tmp19
tmp21 = tmp16 + tmp20
tmp22 = tmp21 / tmp7
tmp23 = tmp12 + tmp22
tmp24 = 0.5
tmp25 = tmp23 * tmp24
tmp26 = tl.broadcast_to(tmp25, [RBLOCK])
tmp28 = triton_helpers.promote_to_tensor(tl.sum(tmp26, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp28, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [softplus, sigma2, log, mul, add_2, sub, pow_1, sub_1, pow_2, delta_t_delta, truediv, add_3, loss, sum_1], Original ATen: [aten.softplus, aten.add, aten.log, aten.mul, aten.sub, aten.pow, aten.div, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0.run(arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
class IIDIsotropicGaussianUVLoss(nn.Module):
"""
Loss for the case of iid residuals with isotropic covariance:
$Sigma_i = sigma_i^2 I$
The loss (negative log likelihood) is then:
$1/2 sum_{i=1}^n (log(2 pi) + 2 log sigma_i^2 + ||delta_i||^2 / sigma_i^2)$,
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates
difference between estimated and ground truth UV values
For details, see:
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019
"""
def __init__(self, sigma_lower_bound: 'float'):
super(IIDIsotropicGaussianUVLoss, self).__init__()
self.sigma_lower_bound = sigma_lower_bound
self.log2pi = math.log(2 * math.pi)
def forward(self, u: 'torch.Tensor', v: 'torch.Tensor', sigma_u:
'torch.Tensor', target_u: 'torch.Tensor', target_v: 'torch.Tensor'):
sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound
delta_t_delta = (u - target_u) ** 2 + (v - target_v) ** 2
loss = 0.5 * (self.log2pi + 2 * torch.log(sigma2) + delta_t_delta /
sigma2)
return loss.sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'sigma_lower_bound': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp13 = tl.load(in_ptr1 + r0, None)
tmp14 = tl.load(in_ptr2 + r0, None)
tmp17 = tl.load(in_ptr3 + r0, None)
tmp18 = tl.load(in_ptr4 + r0, None)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = 4.0
tmp7 = tmp5 + tmp6
tmp8 = tl_math.log(tmp7)
tmp9 = 2.0
tmp10 = tmp8 * tmp9
tmp11 = 1.8378770664093453
tmp12 = tmp10 + tmp11
tmp15 = tmp13 - tmp14
tmp16 = tmp15 * tmp15
tmp19 = tmp17 - tmp18
tmp20 = tmp19 * tmp19
tmp21 = tmp16 + tmp20
tmp22 = tmp21 / tmp7
tmp23 = tmp12 + tmp22
tmp24 = 0.5
tmp25 = tmp23 * tmp24
tmp26 = tl.broadcast_to(tmp25, [RBLOCK])
tmp28 = triton_helpers.promote_to_tensor(tl.sum(tmp26, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp28, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0[grid(1)](arg0_1
, arg1_1, arg2_1, arg3_1, arg4_1, buf0, 1, 256, num_warps=2,
num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
return buf0,
class IIDIsotropicGaussianUVLossNew(nn.Module):
"""
Loss for the case of iid residuals with isotropic covariance:
$Sigma_i = sigma_i^2 I$
The loss (negative log likelihood) is then:
$1/2 sum_{i=1}^n (log(2 pi) + 2 log sigma_i^2 + ||delta_i||^2 / sigma_i^2)$,
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates
difference between estimated and ground truth UV values
For details, see:
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019
"""
def __init__(self, sigma_lower_bound: 'float'):
super(IIDIsotropicGaussianUVLossNew, self).__init__()
self.sigma_lower_bound = sigma_lower_bound
self.log2pi = math.log(2 * math.pi)
def forward(self, input_0, input_1, input_2, input_3, input_4):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
arg4_1 = input_4
output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1])
return output[0]
| TinBacon/FastAutoAugmentation | IIDIsotropicGaussianUVLoss | false | 5,891 | [
"Apache-2.0"
] | 1 | 011e4e348fd9a937a29df11695dc71410f555d0a | https://github.com/TinBacon/FastAutoAugmentation/tree/011e4e348fd9a937a29df11695dc71410f555d0a | import math
import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Loss for the case of iid residuals with isotropic covariance:
$Sigma_i = sigma_i^2 I$
The loss (negative log likelihood) is then:
$1/2 sum_{i=1}^n (log(2 pi) + 2 log sigma_i^2 + ||delta_i||^2 / sigma_i^2)$,
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates
difference between estimated and ground truth UV values
For details, see:
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019
"""
def __init__(self, sigma_lower_bound: 'float'):
super().__init__()
self.sigma_lower_bound = sigma_lower_bound
self.log2pi = math.log(2 * math.pi)
def forward(self, u: 'torch.Tensor', v: 'torch.Tensor', sigma_u:
'torch.Tensor', target_u: 'torch.Tensor', target_v: 'torch.Tensor'):
sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound
delta_t_delta = (u - target_u) ** 2 + (v - target_v) ** 2
loss = 0.5 * (self.log2pi + 2 * torch.log(sigma2) + delta_t_delta /
sigma2)
return loss.sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
IndepAnisotropicGaussianUVLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2f/c2fihp3eabdoclhz6gdz723nsdjyue5ykxbe3cdbfc2itfhvb5zw.py
# Topologically Sorted Source Nodes: [softplus, sigma2, pow_1, pow_2, r_sqnorm2, add_4, denom2, log, add_5, delta_u, pow_3, delta_v, pow_4, delta_sqnorm, truediv, add_6, delta_u_r_u, delta_v_r_v, delta_r, delta_r_sqnorm, truediv_1, sub_2, loss, sum_1], Original ATen: [aten.softplus, aten.add, aten.pow, aten.mul, aten.log, aten.sub, aten.div, aten.sum]
# Source node to ATen node mapping:
# add_4 => add_4
# add_5 => add_5
# add_6 => add_6
# delta_r => add_3
# delta_r_sqnorm => pow_5
# delta_sqnorm => add_2
# delta_u => sub
# delta_u_r_u => mul
# delta_v => sub_1
# delta_v_r_v => mul_1
# denom2 => mul_2
# log => log
# loss => mul_3
# pow_1 => pow_1
# pow_2 => pow_2
# pow_3 => pow_3
# pow_4 => pow_4
# r_sqnorm2 => add_1
# sigma2 => add
# softplus => exp, gt, log1p, where
# sub_2 => sub_2
# sum_1 => sum_1
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 4), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg2_1, 2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add_1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %add_4), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%mul_2,), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, 1.8378770664093453), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg3_1, %arg4_1), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg5_1, %arg6_1), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_3, %pow_4), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, %add), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %div), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg2_1), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_3, 2), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_5, %mul_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_6, %div_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 0.5), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {})
triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {8: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 9), equal_to_1=(8,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 7, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp8 = tl.load(in_ptr1 + (r0), None)
tmp10 = tl.load(in_ptr2 + (r0), None)
tmp18 = tl.load(in_ptr3 + (r0), None)
tmp19 = tl.load(in_ptr4 + (r0), None)
tmp22 = tl.load(in_ptr5 + (r0), None)
tmp23 = tl.load(in_ptr6 + (r0), None)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = 4.0
tmp7 = tmp5 + tmp6
tmp9 = tmp8 * tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = tmp7 + tmp12
tmp14 = tmp7 * tmp13
tmp15 = tl_math.log(tmp14)
tmp16 = 1.8378770664093453
tmp17 = tmp15 + tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 * tmp20
tmp24 = tmp22 - tmp23
tmp25 = tmp24 * tmp24
tmp26 = tmp21 + tmp25
tmp27 = tmp26 / tmp7
tmp28 = tmp17 + tmp27
tmp29 = tmp20 * tmp8
tmp30 = tmp24 * tmp10
tmp31 = tmp29 + tmp30
tmp32 = tmp31 * tmp31
tmp33 = tmp32 / tmp14
tmp34 = tmp28 - tmp33
tmp35 = 0.5
tmp36 = tmp34 * tmp35
tmp37 = tl.broadcast_to(tmp36, [RBLOCK])
tmp39 = triton_helpers.promote_to_tensor(tl.sum(tmp37, 0))
tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp39, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [softplus, sigma2, pow_1, pow_2, r_sqnorm2, add_4, denom2, log, add_5, delta_u, pow_3, delta_v, pow_4, delta_sqnorm, truediv, add_6, delta_u_r_u, delta_v_r_v, delta_r, delta_r_sqnorm, truediv_1, sub_2, loss, sum_1], Original ATen: [aten.softplus, aten.add, aten.pow, aten.mul, aten.log, aten.sub, aten.div, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0.run(arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, buf1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
del arg5_1
del arg6_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg5_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg6_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
class IndepAnisotropicGaussianUVLoss(nn.Module):
"""
Loss for the case of independent residuals with anisotropic covariances:
$Sigma_i = sigma_i^2 I + r_i r_i^T$
The loss (negative log likelihood) is then:
$1/2 sum_{i=1}^n (log(2 pi)
+ log sigma_i^2 (sigma_i^2 + ||r_i||^2)
+ ||delta_i||^2 / sigma_i^2
- <delta_i, r_i>^2 / (sigma_i^2 * (sigma_i^2 + ||r_i||^2)))$,
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates
difference between estimated and ground truth UV values
For details, see:
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019
"""
def __init__(self, sigma_lower_bound: 'float'):
super(IndepAnisotropicGaussianUVLoss, self).__init__()
self.sigma_lower_bound = sigma_lower_bound
self.log2pi = math.log(2 * math.pi)
def forward(self, u: 'torch.Tensor', v: 'torch.Tensor', sigma_u:
'torch.Tensor', kappa_u_est: 'torch.Tensor', kappa_v_est:
'torch.Tensor', target_u: 'torch.Tensor', target_v: 'torch.Tensor'):
sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound
r_sqnorm2 = kappa_u_est ** 2 + kappa_v_est ** 2
delta_u = u - target_u
delta_v = v - target_v
delta_sqnorm = delta_u ** 2 + delta_v ** 2
delta_u_r_u = delta_u * kappa_u_est
delta_v_r_v = delta_v * kappa_v_est
delta_r = delta_u_r_u + delta_v_r_v
delta_r_sqnorm = delta_r ** 2
denom2 = sigma2 * (sigma2 + r_sqnorm2)
loss = 0.5 * (self.log2pi + torch.log(denom2) + delta_sqnorm /
sigma2 - delta_r_sqnorm / denom2)
return loss.sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]),
torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'sigma_lower_bound': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp8 = tl.load(in_ptr1 + r0, None)
tmp10 = tl.load(in_ptr2 + r0, None)
tmp18 = tl.load(in_ptr3 + r0, None)
tmp19 = tl.load(in_ptr4 + r0, None)
tmp22 = tl.load(in_ptr5 + r0, None)
tmp23 = tl.load(in_ptr6 + r0, None)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = 4.0
tmp7 = tmp5 + tmp6
tmp9 = tmp8 * tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = tmp7 + tmp12
tmp14 = tmp7 * tmp13
tmp15 = tl_math.log(tmp14)
tmp16 = 1.8378770664093453
tmp17 = tmp15 + tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 * tmp20
tmp24 = tmp22 - tmp23
tmp25 = tmp24 * tmp24
tmp26 = tmp21 + tmp25
tmp27 = tmp26 / tmp7
tmp28 = tmp17 + tmp27
tmp29 = tmp20 * tmp8
tmp30 = tmp24 * tmp10
tmp31 = tmp29 + tmp30
tmp32 = tmp31 * tmp31
tmp33 = tmp32 / tmp14
tmp34 = tmp28 - tmp33
tmp35 = 0.5
tmp36 = tmp34 * tmp35
tmp37 = tl.broadcast_to(tmp36, [RBLOCK])
tmp39 = triton_helpers.promote_to_tensor(tl.sum(tmp37, 0))
tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp39, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg6_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_log_mul_pow_softplus_sub_sum_0[grid(1)](arg0_1
, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, buf1, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
del arg5_1
del arg6_1
return buf1,
class IndepAnisotropicGaussianUVLossNew(nn.Module):
"""
Loss for the case of independent residuals with anisotropic covariances:
$Sigma_i = sigma_i^2 I + r_i r_i^T$
The loss (negative log likelihood) is then:
$1/2 sum_{i=1}^n (log(2 pi)
+ log sigma_i^2 (sigma_i^2 + ||r_i||^2)
+ ||delta_i||^2 / sigma_i^2
- <delta_i, r_i>^2 / (sigma_i^2 * (sigma_i^2 + ||r_i||^2)))$,
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates
difference between estimated and ground truth UV values
For details, see:
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019
"""
def __init__(self, sigma_lower_bound: 'float'):
super(IndepAnisotropicGaussianUVLossNew, self).__init__()
self.sigma_lower_bound = sigma_lower_bound
self.log2pi = math.log(2 * math.pi)
def forward(self, input_0, input_1, input_2, input_3, input_4, input_5,
input_6):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
arg4_1 = input_4
arg5_1 = input_5
arg6_1 = input_6
output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1])
return output[0]
| TinBacon/FastAutoAugmentation | IndepAnisotropicGaussianUVLoss | false | 5,892 | [
"Apache-2.0"
] | 1 | 011e4e348fd9a937a29df11695dc71410f555d0a | https://github.com/TinBacon/FastAutoAugmentation/tree/011e4e348fd9a937a29df11695dc71410f555d0a | import math
import torch
import torch.utils.data
from torch import nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Loss for the case of independent residuals with anisotropic covariances:
$Sigma_i = sigma_i^2 I + r_i r_i^T$
The loss (negative log likelihood) is then:
$1/2 sum_{i=1}^n (log(2 pi)
+ log sigma_i^2 (sigma_i^2 + ||r_i||^2)
+ ||delta_i||^2 / sigma_i^2
- <delta_i, r_i>^2 / (sigma_i^2 * (sigma_i^2 + ||r_i||^2)))$,
where $delta_i=(u - u', v - v')$ is a 2D vector containing UV coordinates
difference between estimated and ground truth UV values
For details, see:
N. Neverova, D. Novotny, A. Vedaldi "Correlated Uncertainty for Learning
Dense Correspondences from Noisy Labels", p. 918--926, in Proc. NIPS 2019
"""
def __init__(self, sigma_lower_bound: 'float'):
super().__init__()
self.sigma_lower_bound = sigma_lower_bound
self.log2pi = math.log(2 * math.pi)
def forward(self, u: 'torch.Tensor', v: 'torch.Tensor', sigma_u:
'torch.Tensor', kappa_u_est: 'torch.Tensor', kappa_v_est:
'torch.Tensor', target_u: 'torch.Tensor', target_v: 'torch.Tensor'):
sigma2 = F.softplus(sigma_u) + self.sigma_lower_bound
r_sqnorm2 = kappa_u_est ** 2 + kappa_v_est ** 2
delta_u = u - target_u
delta_v = v - target_v
delta_sqnorm = delta_u ** 2 + delta_v ** 2
delta_u_r_u = delta_u * kappa_u_est
delta_v_r_v = delta_v * kappa_v_est
delta_r = delta_u_r_u + delta_v_r_v
delta_r_sqnorm = delta_r ** 2
denom2 = sigma2 * (sigma2 + r_sqnorm2)
loss = 0.5 * (self.log2pi + torch.log(denom2) + delta_sqnorm /
sigma2 - delta_r_sqnorm / denom2)
return loss.sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]),
torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
BVNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/w2/cw2tk4wuq2lqaw5ouidkubjzk6zrv7ajgyj5jyqr3yffoa5n5m2t.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x4), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/u4/cu4dcn33sgl2ahkb2jwcn4auehbaoshytxhcuib7v4wwlusyrimo.py
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view]
# Source node to ATen node mapping:
# linear_1 => view_5
# Graph fragment:
# %view_5 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_3, [64, 2]), kwargs = {})
triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (2*x1) + (8*((x1 % 4) // 4)) + (32*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6m/c6mfjdig7ut35m7deswr3fle6h6lpdmwl6b6sgilwkylic2ojowj.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_6,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_8, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/36/c366mevtdl3dtf4g4py5tamkbxlhxdcnckbbfzzdmm7gsjksvc3c.py
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.view]
# Source node to ATen node mapping:
# linear_2 => view_10
# Graph fragment:
# %view_10 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_8, [64, 1]), kwargs = {})
triton_poi_fused_view_3 = async_compile.triton('triton_poi_fused_view_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*((x0 % 4) // 4)) + (16*(((4*((x0 // 4) % 4)) + (x0 % 4)) // 16))), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7f/c7fvcoo6azsiwhwddao5vnqh3yx3bsvp2msewnbfi7vatvuran57.py
# Topologically Sorted Source Nodes: [tanh, x_4], Original ATen: [aten.tanh, aten.mul]
# Source node to ATen node mapping:
# tanh => tanh
# x_4 => mul
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_11,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 1.5), kwargs = {})
triton_poi_fused_mul_tanh_4 = async_compile.triton('triton_poi_fused_mul_tanh_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_tanh_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 1.5
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 2), (2, 1))
assert_size_stride(primals_5, (1, ), (1, ))
assert_size_stride(primals_6, (1, 1), (1, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf10, 128, grid=grid(128), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view]
triton_poi_fused_view_1.run(buf1, buf2, 128, grid=grid(128), stream=stream0)
del buf1
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf9, 64, grid=grid(64), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.view]
triton_poi_fused_view_3.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf7 = reinterpret_tensor(buf4, (64, 1), (1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf5, primals_6, alpha=1, beta=1, out=buf7)
del primals_7
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, x_4], Original ATen: [aten.tanh, aten.mul]
triton_poi_fused_mul_tanh_4.run(buf7, buf8, 64, grid=grid(64), stream=stream0)
return (buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf5, buf7, primals_6, buf9, primals_4, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class BVNet(nn.Module):
"""
Baseline REINFORCE - Value Calculating Network
"""
def __init__(self, input_size):
super(BVNet, self).__init__()
self.input_size = input_size
self.fc1 = nn.Linear(input_size, input_size // 2)
self.dr1 = nn.Dropout(0.1)
self.fc2 = nn.Linear(input_size // 2, input_size // 4)
self.dr2 = nn.Dropout(0.1)
self.fc3 = nn.Linear(input_size // 4, 1)
def forward(self, x):
x = F.relu(self.fc1(x), inplace=True)
x = self.dr1(x)
x = F.relu(self.fc2(x), inplace=True)
x = self.dr2(x)
x = torch.tanh(self.fc3(x)) * 1.5
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + x4, tmp6, xmask)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 2 * x1 + 8 * (x1 % 4 // 4) + 32 * ((4 *
(x1 // 4 % 4) + x1 % 4) // 16)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + x0, tmp5, xmask)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * (x0 % 4 // 4) + 16 * ((4 * (x0 // 4 %
4) + x0 % 4) // 16)), xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_mul_tanh_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 1.5
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 2), (2, 1))
assert_size_stride(primals_5, (1,), (1,))
assert_size_stride(primals_6, (1, 1), (1, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf0
buf10 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(128)](buf1,
primals_2, buf10, 128, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
triton_poi_fused_view_1[grid(128)](buf1, buf2, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (2, 1), (1, 2
), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf3
buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(64)](buf4,
primals_5, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused_view_3[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = reinterpret_tensor(buf4, (64, 1), (1, 1), 0)
del buf4
extern_kernels.addmm(primals_7, buf5, primals_6, alpha=1, beta=1,
out=buf7)
del primals_7
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_mul_tanh_4[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, buf5, buf7, primals_6, buf9, primals_4, buf10
class BVNetNew(nn.Module):
"""
Baseline REINFORCE - Value Calculating Network
"""
def __init__(self, input_size):
super(BVNetNew, self).__init__()
self.input_size = input_size
self.fc1 = nn.Linear(input_size, input_size // 2)
self.dr1 = nn.Dropout(0.1)
self.fc2 = nn.Linear(input_size // 2, input_size // 4)
self.dr2 = nn.Dropout(0.1)
self.fc3 = nn.Linear(input_size // 4, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| SpyrosMouselinos/DeltaFormers | BVNet | false | 5,893 | [
"Apache-2.0"
] | 1 | 38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn
class Model(nn.Module):
"""
Baseline REINFORCE - Value Calculating Network
"""
def __init__(self, input_size):
super().__init__()
self.input_size = input_size
self.fc1 = nn.Linear(input_size, input_size // 2)
self.dr1 = nn.Dropout(0.1)
self.fc2 = nn.Linear(input_size // 2, input_size // 4)
self.dr2 = nn.Dropout(0.1)
self.fc3 = nn.Linear(input_size // 4, 1)
def forward(self, x):
x = F.relu(self.fc1(x), inplace=True)
x = self.dr1(x)
x = F.relu(self.fc2(x), inplace=True)
x = self.dr2(x)
x = torch.tanh(self.fc3(x)) * 1.5
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
MegatronFastGelu | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ji/cji2qjd2s4notypk235c2icz2ebwl7bakixf7bgziian5ft7m2cx.py
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# tanh => tanh
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.7978845608028654), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.044715), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %add), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_4,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_mul_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7978845608028654
tmp4 = tmp0 * tmp3
tmp5 = 0.044715
tmp6 = tmp0 * tmp5
tmp7 = tmp6 * tmp0
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tmp11 = libdevice.tanh(tmp10)
tmp12 = tmp11 + tmp8
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class MegatronFastGelu(torch.nn.Module):
def forward(self, x):
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 +
0.044715 * x * x)))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7978845608028654
tmp4 = tmp0 * tmp3
tmp5 = 0.044715
tmp6 = tmp0 * tmp5
tmp7 = tmp6 * tmp0
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tmp11 = libdevice.tanh(tmp10)
tmp12 = tmp11 + tmp8
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MegatronFastGeluNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| TingGong1/onnxruntime | MegatronFastGelu | false | 5,894 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(torch.nn.Module):
def forward(self, x):
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 +
0.044715 * x * x)))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MegatronGelu | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wz/cwzxjbdv6wlz2eluu4zsssyahxeyb63h7yyvazavdjht5bgqof5d.py
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
# Source node to ATen node mapping:
# add => add
# erf => erf
# mul => mul
# mul_1 => mul_1
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1.41421), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_add_div_erf_mul_0 = async_compile.triton('triton_poi_fused_add_div_erf_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071085623775818
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class MegatronGelu(torch.nn.Module):
def forward(self, x):
return x * 0.5 * (torch.erf(x / 1.41421) + 1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071085623775818
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MegatronGeluNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| TingGong1/onnxruntime | MegatronGelu | false | 5,895 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(torch.nn.Module):
def forward(self, x):
return x * 0.5 * (torch.erf(x / 1.41421) + 1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SelfAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/fg/cfg742icmosiwp5ugziye26din5ueqx3v7ntptkkpyackudldrxs.py
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
# Source node to ATen node mapping:
# eq => eq
# Graph fragment:
# %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%primals_7, 0), kwargs = {})
triton_poi_fused_eq_0 = async_compile.triton('triton_poi_fused_eq_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qj/cqjih4pwu4dm7bujxf22gnjibtqmub34ehk2ak4q4x2axdts4nnl.py
# Topologically Sorted Source Nodes: [energy_1, attention], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attention => exp, sum_1
# energy_1 => full_default, where
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %view_9), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [3], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {})
triton_poi_fused__softmax_masked_fill_1 = async_compile.triton('triton_poi_fused__softmax_masked_fill_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + ((4*x2) + (16*y3)), xmask & ymask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (y0 + (16*y1)), ymask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + (4*x2) + (16*y3)), xmask & ymask, eviction_policy='evict_last').to(tl.int1)
tmp9 = tl.load(in_ptr2 + (4 + y0 + (16*y1)), ymask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (2 + (4*x2) + (16*y3)), xmask & ymask, eviction_policy='evict_last').to(tl.int1)
tmp15 = tl.load(in_ptr2 + (8 + y0 + (16*y1)), ymask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (3 + (4*x2) + (16*y3)), xmask & ymask, eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr2 + (12 + y0 + (16*y1)), ymask, eviction_policy='evict_last')
tmp3 = tmp1 * tmp2
tmp4 = -1.0000000200408773e+20
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp10 = tmp1 * tmp9
tmp11 = tl.where(tmp8, tmp4, tmp10)
tmp12 = tmp11 * tmp6
tmp13 = triton_helpers.maximum(tmp7, tmp12)
tmp16 = tmp1 * tmp15
tmp17 = tl.where(tmp14, tmp4, tmp16)
tmp18 = tmp17 * tmp6
tmp19 = triton_helpers.maximum(tmp13, tmp18)
tmp22 = tmp1 * tmp21
tmp23 = tl.where(tmp20, tmp4, tmp22)
tmp24 = tmp23 * tmp6
tmp25 = triton_helpers.maximum(tmp19, tmp24)
tmp26 = tmp7 - tmp25
tmp27 = 0.5
tmp28 = tmp26 * tmp27
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp12 - tmp25
tmp31 = tmp30 * tmp27
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp29 + tmp32
tmp34 = tmp18 - tmp25
tmp35 = tmp34 * tmp27
tmp36 = tl_math.exp(tmp35)
tmp37 = tmp33 + tmp36
tmp38 = tmp24 - tmp25
tmp39 = tmp38 * tmp27
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp37 + tmp40
tl.store(out_ptr0 + (x2 + (4*y3)), tmp25, xmask & ymask)
tl.store(out_ptr1 + (x2 + (4*y3)), tmp41, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jm/cjmepcz4xj5qri3tmkprchzy3sga6hejrzqq6r5xnqpjctta5tca.py
# Topologically Sorted Source Nodes: [energy_1, attention], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attention => div_1, exp
# energy_1 => full_default, where
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %view_9), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_masked_fill_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x0 = xindex % 4
x5 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x4), xmask).to(tl.int1)
tmp1 = tl.load(in_ptr1 + (x2 + (4*x1) + (16*x3)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x2 + (4*x0) + (16*x3)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (x5), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr4 + (x5), xmask, eviction_policy='evict_last')
tmp3 = tmp1 * tmp2
tmp4 = -1.0000000200408773e+20
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp9 = tmp7 - tmp8
tmp10 = 0.5
tmp11 = tmp9 * tmp10
tmp12 = tl_math.exp(tmp11)
tmp14 = tmp12 / tmp13
tl.store(out_ptr0 + (x4), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# einsum_1 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/q4/cq4lrbjfvbivmpg2zkxhkatw7yc2rqarfj625cpqjlxqgfutfyet.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_1 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_16, %primals_9), kwargs = {})
triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_4, (1, 1), (1, 1))
assert_size_stride(primals_5, (1, 1), (1, 1))
assert_size_stride(primals_6, (1, 1), (1, 1))
assert_size_stride(primals_7, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [values_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 1), (1, 1), 0), primals_4, out=buf0)
del primals_4
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [keys_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 1), (1, 1), 0), primals_5, out=buf1)
del primals_5
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [queries], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 1), (1, 1), 0), primals_6, out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_0.run(primals_7, buf3, 256, grid=grid(256), stream=stream0)
del primals_7
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [energy_1, attention], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_1.run(buf3, buf2, buf1, buf4, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [energy_1, attention], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_2.run(buf3, buf2, buf1, buf4, buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf0, buf7, 16, 4, grid=grid(16, 4), stream=stream0)
buf8 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [einsum_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), out=buf8)
buf9 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf8, buf9, 16, 4, grid=grid(16, 4), stream=stream0)
buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf10)
buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.add]
triton_poi_fused_add_4.run(buf11, primals_9, 64, grid=grid(64), stream=stream0)
del primals_9
return (buf11, reinterpret_tensor(primals_2, (64, 1), (1, 1), 0), reinterpret_tensor(primals_3, (64, 1), (1, 1), 0), buf1, reinterpret_tensor(primals_1, (64, 1), (1, 1), 0), buf2, buf3, buf6, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), primals_8, reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert self.head_dim * heads == embed_size, 'Embedding size needs to be divisible by heads'
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
N = query.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1
], query.shape[1]
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
query = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values)
keys = self.keys(keys)
queries = self.queries(query)
energy = torch.einsum('nqhd,nkhd->nhqk', [queries, keys])
if mask is not None:
energy = energy.masked_fill(mask == 0, float('-1e20'))
attention = torch.softmax(energy / self.embed_size ** (1 / 2), dim=3)
out = torch.einsum('nhql,nlhd->nqhd', [attention, values]).reshape(N,
query_len, self.heads * self.head_dim)
out = self.fc_out(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 1]), torch.rand([4, 4, 4, 1]), torch.rand(
[4, 4, 4, 1]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'embed_size': 4, 'heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_eq_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (4 * x2 + 16 * y3), xmask & ymask,
eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * x2 + 16 * y3), xmask & ymask,
eviction_policy='evict_last').to(tl.int1)
tmp9 = tl.load(in_ptr2 + (4 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (2 + 4 * x2 + 16 * y3), xmask & ymask,
eviction_policy='evict_last').to(tl.int1)
tmp15 = tl.load(in_ptr2 + (8 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr0 + (3 + 4 * x2 + 16 * y3), xmask & ymask,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr2 + (12 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp3 = tmp1 * tmp2
tmp4 = -1.0000000200408773e+20
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp10 = tmp1 * tmp9
tmp11 = tl.where(tmp8, tmp4, tmp10)
tmp12 = tmp11 * tmp6
tmp13 = triton_helpers.maximum(tmp7, tmp12)
tmp16 = tmp1 * tmp15
tmp17 = tl.where(tmp14, tmp4, tmp16)
tmp18 = tmp17 * tmp6
tmp19 = triton_helpers.maximum(tmp13, tmp18)
tmp22 = tmp1 * tmp21
tmp23 = tl.where(tmp20, tmp4, tmp22)
tmp24 = tmp23 * tmp6
tmp25 = triton_helpers.maximum(tmp19, tmp24)
tmp26 = tmp7 - tmp25
tmp27 = 0.5
tmp28 = tmp26 * tmp27
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp12 - tmp25
tmp31 = tmp30 * tmp27
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp29 + tmp32
tmp34 = tmp18 - tmp25
tmp35 = tmp34 * tmp27
tmp36 = tl_math.exp(tmp35)
tmp37 = tmp33 + tmp36
tmp38 = tmp24 - tmp25
tmp39 = tmp38 * tmp27
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp37 + tmp40
tl.store(out_ptr0 + (x2 + 4 * y3), tmp25, xmask & ymask)
tl.store(out_ptr1 + (x2 + 4 * y3), tmp41, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x0 = xindex % 4
x5 = xindex // 4
tmp0 = tl.load(in_ptr0 + x4, xmask).to(tl.int1)
tmp1 = tl.load(in_ptr1 + (x2 + 4 * x1 + 16 * x3), xmask,
eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x2 + 4 * x0 + 16 * x3), xmask,
eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + x5, xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr4 + x5, xmask, eviction_policy='evict_last')
tmp3 = tmp1 * tmp2
tmp4 = -1.0000000200408773e+20
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp9 = tmp7 - tmp8
tmp10 = 0.5
tmp11 = tmp9 * tmp10
tmp12 = tl_math.exp(tmp11)
tmp14 = tmp12 / tmp13
tl.store(out_ptr0 + x4, tmp14, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_4, (1, 1), (1, 1))
assert_size_stride(primals_5, (1, 1), (1, 1))
assert_size_stride(primals_6, (1, 1), (1, 1))
assert_size_stride(primals_7, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 1), (1, 1), 0),
primals_4, out=buf0)
del primals_4
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 1), (1, 1), 0),
primals_5, out=buf1)
del primals_5
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 1), (1, 1), 0),
primals_6, out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_eq_0[grid(256)](primals_7, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_masked_fill_1[grid(16, 4)](buf3, buf2,
buf1, buf4, buf5, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1,
num_stages=1)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_masked_fill_2[grid(256)](buf3, buf2, buf1,
buf4, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0)
del buf5
triton_poi_fused_clone_3[grid(16, 4)](buf0, buf7, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), out=buf8)
buf9 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0)
del buf4
triton_poi_fused_clone_3[grid(16, 4)](buf8, buf9, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0)
del buf8
extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf10)
buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0)
del buf10
triton_poi_fused_add_4[grid(64)](buf11, primals_9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_9
return buf11, reinterpret_tensor(primals_2, (64, 1), (1, 1), 0
), reinterpret_tensor(primals_3, (64, 1), (1, 1), 0
), buf1, reinterpret_tensor(primals_1, (64, 1), (1, 1), 0
), buf2, buf3, buf6, reinterpret_tensor(buf9, (16, 4), (4, 1), 0
), primals_8, reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0)
class SelfAttentionNew(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttentionNew, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert self.head_dim * heads == embed_size, 'Embedding size needs to be divisible by heads'
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, input_0, input_1, input_2, input_3):
primals_4 = self.values.weight
primals_5 = self.keys.weight
primals_6 = self.queries.weight
primals_8 = self.fc_out.weight
primals_9 = self.fc_out.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
primals_7 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| Thibaud-Ardoin/Dial-a-Ride | SelfAttention | false | 5,896 | [
"MIT"
] | 1 | 7d9b3cd904d3194dccad31fec2533e2cf58cad0c | https://github.com/Thibaud-Ardoin/Dial-a-Ride/tree/7d9b3cd904d3194dccad31fec2533e2cf58cad0c | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, embed_size, heads):
super().__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert self.head_dim * heads == embed_size, 'Embedding size needs to be divisible by heads'
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
N = query.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1
], query.shape[1]
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
query = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values)
keys = self.keys(keys)
queries = self.queries(query)
energy = torch.einsum('nqhd,nkhd->nhqk', [queries, keys])
if mask is not None:
energy = energy.masked_fill(mask == 0, float('-1e20'))
attention = torch.softmax(energy / self.embed_size ** (1 / 2), dim=3)
out = torch.einsum('nhql,nlhd->nqhd', [attention, values]).reshape(N,
query_len, self.heads * self.head_dim)
out = self.fc_out(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 1]), torch.rand([4, 4, 4, 1]), torch.rand(
[4, 4, 4, 1]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
NeuralNetPartialNoGradModel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/au/cau6qypw2vz4drppp6yr6chutchyhnniousxhhlq2y5r3yu3gep5.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# out => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
del primals_3
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_4
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class NeuralNetPartialNoGradModel(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetPartialNoGradModel, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size).requires_grad_(
False)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, model_input):
out = self.relu(self.fc1(model_input))
out = self.fc2(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
del primals_3
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_4
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0)
class NeuralNetPartialNoGradModelNew(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetPartialNoGradModelNew, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size).requires_grad_(
False)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| TingGong1/onnxruntime | NeuralNetPartialNoGradModel | false | 5,897 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size).requires_grad_(
False)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, model_input):
out = self.relu(self.fc1(model_input))
out = self.fc2(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
KLLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/tq/ctq7r54r557tfzm3m35rr43buaobckway6b4nzp6ohog5lgoxm5l.py
# Topologically Sorted Source Nodes: [kl_div, input_1], Original ATen: [aten.xlogy, aten.log_sigmoid_forward, aten.mul, aten.sub, aten.sum, aten.div]
# Source node to ATen node mapping:
# input_1 => abs_1, exp, full_default, log1p, minimum, neg, sub
# kl_div => div, eq, full_default_1, full_default_2, isnan, log, mul, mul_1, sub_1, sum_1, where, where_1
# Graph fragment:
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg1_1,), kwargs = {})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 0), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %mul_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_2, %where), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {})
triton_per_fused_div_log_sigmoid_forward_mul_sub_sum_xlogy_0 = async_compile.triton('triton_per_fused_div_log_sigmoid_forward_mul_sub_sum_xlogy_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_log_sigmoid_forward_mul_sub_sum_xlogy_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_log_sigmoid_forward_mul_sub_sum_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr1 + (r0), None)
tmp1 = libdevice.isnan(tmp0).to(tl.int1)
tmp2 = 0.0
tmp3 = tmp0 == tmp2
tmp4 = tl_math.log(tmp0)
tmp5 = tmp0 * tmp4
tmp6 = tl.where(tmp3, tmp2, tmp5)
tmp7 = float("nan")
tmp8 = tl.where(tmp1, tmp7, tmp6)
tmp10 = triton_helpers.minimum(tmp2, tmp9)
tmp11 = tl_math.abs(tmp9)
tmp12 = -tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = libdevice.log1p(tmp13)
tmp15 = tmp10 - tmp14
tmp16 = tmp0 * tmp15
tmp17 = tmp8 - tmp16
tmp18 = tl.broadcast_to(tmp17, [RBLOCK])
tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0))
tmp21 = 0.25
tmp22 = tmp20 * tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp22, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [kl_div, input_1], Original ATen: [aten.xlogy, aten.log_sigmoid_forward, aten.mul, aten.sub, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_log_sigmoid_forward_mul_sub_sum_xlogy_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
class KLLoss(torch.nn.KLDivLoss):
def __init__(self, batch_wise=False):
super(KLLoss, self).__init__(reduction='batchmean')
self.batch_wise = batch_wise
def forward(self, input: 'Tensor', target: 'Tensor') ->Tensor:
if self.batch_wise:
n_labels = target.size()[1]
target = target.sum(dim=0)
input = input.argmax(dim=1)
input = torch.Tensor([input.eq(label).sum() for label in range(
n_labels)])
input = torch.nn.LogSigmoid()(input)
return super().forward(input, target)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_log_sigmoid_forward_mul_sub_sum_xlogy_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr1 + r0, None)
tmp1 = libdevice.isnan(tmp0).to(tl.int1)
tmp2 = 0.0
tmp3 = tmp0 == tmp2
tmp4 = tl_math.log(tmp0)
tmp5 = tmp0 * tmp4
tmp6 = tl.where(tmp3, tmp2, tmp5)
tmp7 = float('nan')
tmp8 = tl.where(tmp1, tmp7, tmp6)
tmp10 = triton_helpers.minimum(tmp2, tmp9)
tmp11 = tl_math.abs(tmp9)
tmp12 = -tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = libdevice.log1p(tmp13)
tmp15 = tmp10 - tmp14
tmp16 = tmp0 * tmp15
tmp17 = tmp8 - tmp16
tmp18 = tl.broadcast_to(tmp17, [RBLOCK])
tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0))
tmp21 = 0.25
tmp22 = tmp20 * tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp22, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_log_sigmoid_forward_mul_sub_sum_xlogy_0[grid(1)](
buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class KLLossNew(torch.nn.KLDivLoss):
def __init__(self, batch_wise=False):
super(KLLossNew, self).__init__(reduction='batchmean')
self.batch_wise = batch_wise
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Tomoya-K-0504/deepSELF | KLLoss | false | 5,898 | [
"MIT"
] | 1 | 0e5a7d0169b3e9edcb5c8d9802140a84ce5cb69a | https://github.com/Tomoya-K-0504/deepSELF/tree/0e5a7d0169b3e9edcb5c8d9802140a84ce5cb69a | import torch
from torch import Tensor
class Model(torch.nn.KLDivLoss):
def __init__(self, batch_wise=False):
super().__init__(reduction='batchmean')
self.batch_wise = batch_wise
def forward(self, input: 'Tensor', target: 'Tensor') ->Tensor:
if self.batch_wise:
n_labels = target.size()[1]
target = target.sum(dim=0)
input = input.argmax(dim=1)
input = torch.Tensor([input.eq(label).sum() for label in range(
n_labels)])
input = torch.nn.LogSigmoid()(input)
return super().forward(input, target)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SANet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wq/cwqjlo53uwoff4fujn7cmpq763batlzcci6azg6e6l3beiz2yv5y.py
# Topologically Sorted Source Nodes: [var, mean, sub, normalized_feat], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
# Source node to ATen node mapping:
# mean => mean
# normalized_feat => div
# sub => sub
# var => var
# Graph fragment:
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [2]), kwargs = {correction: 1})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %expand), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %expand_1), kwargs = {})
triton_per_fused_div_mean_sub_var_0 = async_compile.triton('triton_per_fused_div_mean_sub_var_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_sub_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mean_sub_var_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = tmp0 - tmp20
tmp22 = 15.0
tmp23 = tmp16 / tmp22
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp21 / tmp26
tl.store(out_ptr2 + (r1 + (16*x0)), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py
# Topologically Sorted Source Nodes: [F], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# F => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/62/c62nqqevmdtdp3wxfzxcohhsleqbn6wke7ldngntegm5lngsl572.py
# Topologically Sorted Source Nodes: [S_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# S_1 => amax, div_2, exp, sub_2, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3h/c3hcsa6vld2ghjvta5gl35jzn7336vxa57a52bexkyc6tqneznhw.py
# Topologically Sorted Source Nodes: [O_2, O_3], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# O_2 => convolution_3
# O_3 => add_2
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_9, %primals_10, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_3, %primals_1), kwargs = {})
triton_poi_fused_add_convolution_3 = async_compile.triton('triton_poi_fused_add_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var, mean, sub, normalized_feat], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mean_sub_var_0.run(primals_1, buf4, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [F], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 4, 4), (64, 16, 4, 1))
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var_1, mean_1, sub_1, normalized_feat_1], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
triton_per_fused_div_mean_sub_var_0.run(primals_4, buf10, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [H], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(primals_4, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1))
buf13 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [F], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf13, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf14 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf14, primals_6, 256, grid=grid(256), stream=stream0)
del primals_6
buf15 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [S], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf13, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf14, (4, 4, 16), (64, 16, 1), 0), out=buf15)
buf18 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [S_1], Original ATen: [aten._softmax]
triton_per_fused__softmax_2.run(buf15, buf18, 64, 16, grid=grid(64), stream=stream0)
del buf15
buf19 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [H], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf19, primals_8, 256, grid=grid(256), stream=stream0)
del primals_8
buf20 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf19, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf18, (4, 16, 16), (256, 1, 16), 0), out=buf20)
# Topologically Sorted Source Nodes: [O_2], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 4, 4, 4), (64, 16, 4, 1))
buf22 = buf21; del buf21 # reuse
# Topologically Sorted Source Nodes: [O_2, O_3], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_3.run(buf22, primals_10, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_10
return (buf22, primals_2, primals_4, primals_5, primals_7, primals_9, buf4, buf10, buf18, reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf19, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf13, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf14, (4, 16, 4), (64, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.backends.cudnn
def calc_mean_std(feat, eps=1e-05):
size = feat.size()
assert len(size) == 4
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def mean_variance_norm(feat):
size = feat.size()
mean, std = calc_mean_std(feat)
normalized_feat = (feat - mean.expand(size)) / std.expand(size)
return normalized_feat
class SANet(nn.Module):
def __init__(self, in_planes):
super(SANet, self).__init__()
self.f = nn.Conv2d(in_planes, in_planes, (1, 1))
self.g = nn.Conv2d(in_planes, in_planes, (1, 1))
self.h = nn.Conv2d(in_planes, in_planes, (1, 1))
self.sm = nn.Softmax(dim=-1)
self.out_conv = nn.Conv2d(in_planes, in_planes, (1, 1))
def forward(self, content, style):
F = self.f(mean_variance_norm(content))
G = self.g(mean_variance_norm(style))
H = self.h(style)
b, c, h, w = F.size()
F = F.view(b, -1, w * h).permute(0, 2, 1)
b, c, h, w = G.size()
G = G.view(b, -1, w * h)
S = torch.bmm(F, G)
S = self.sm(S)
b, c, h, w = H.size()
H = H.view(b, -1, w * h)
O = torch.bmm(H, S.permute(0, 2, 1))
b, c, h, w = content.size()
O = O.view(b, c, h, w)
O = self.out_conv(O)
O += content
return O
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.backends.cudnn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_div_mean_sub_var_0(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = tmp0 - tmp20
tmp22 = 15.0
tmp23 = tmp16 / tmp22
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp21 / tmp26
tl.store(out_ptr2 + (r1 + 16 * x0), tmp27, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
@triton.jit
def triton_poi_fused_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mean_sub_var_0[grid(16)](primals_1, buf4, 16,
16, XBLOCK=1, num_warps=2, num_stages=1)
buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 4, 4), (64, 16, 4, 1))
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_div_mean_sub_var_0[grid(16)](primals_4, buf10, 16,
16, XBLOCK=1, num_warps=2, num_stages=1)
buf11 = extern_kernels.convolution(buf10, primals_5, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1))
buf12 = extern_kernels.convolution(primals_4, primals_7, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1))
buf13 = buf5
del buf5
triton_poi_fused_convolution_1[grid(256)](buf13, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf14 = buf11
del buf11
triton_poi_fused_convolution_1[grid(256)](buf14, primals_6, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
buf15 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf13, (4, 16, 4), (64, 1, 16
), 0), reinterpret_tensor(buf14, (4, 4, 16), (64, 16, 1), 0),
out=buf15)
buf18 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
triton_per_fused__softmax_2[grid(64)](buf15, buf18, 64, 16, XBLOCK=
8, num_warps=2, num_stages=1)
del buf15
buf19 = buf12
del buf12
triton_poi_fused_convolution_1[grid(256)](buf19, primals_8, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf20 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf19, (4, 4, 16), (64, 16, 1
), 0), reinterpret_tensor(buf18, (4, 16, 16), (256, 1, 16), 0),
out=buf20)
buf21 = extern_kernels.convolution(reinterpret_tensor(buf20, (4, 4,
4, 4), (64, 16, 4, 1), 0), primals_9, stride=(1, 1), padding=(0,
0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf21, (4, 4, 4, 4), (64, 16, 4, 1))
buf22 = buf21
del buf21
triton_poi_fused_add_convolution_3[grid(256)](buf22, primals_10,
primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_10
return (buf22, primals_2, primals_4, primals_5, primals_7, primals_9,
buf4, buf10, buf18, reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16,
4, 1), 0), reinterpret_tensor(buf19, (4, 16, 4), (64, 1, 16), 0),
reinterpret_tensor(buf13, (4, 4, 16), (64, 16, 1), 0),
reinterpret_tensor(buf14, (4, 16, 4), (64, 1, 16), 0))
def calc_mean_std(feat, eps=1e-05):
size = feat.size()
assert len(size) == 4
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def mean_variance_norm(feat):
size = feat.size()
mean, std = calc_mean_std(feat)
normalized_feat = (feat - mean.expand(size)) / std.expand(size)
return normalized_feat
class SANetNew(nn.Module):
def __init__(self, in_planes):
super(SANetNew, self).__init__()
self.f = nn.Conv2d(in_planes, in_planes, (1, 1))
self.g = nn.Conv2d(in_planes, in_planes, (1, 1))
self.h = nn.Conv2d(in_planes, in_planes, (1, 1))
self.sm = nn.Softmax(dim=-1)
self.out_conv = nn.Conv2d(in_planes, in_planes, (1, 1))
def forward(self, input_0, input_1):
primals_2 = self.f.weight
primals_3 = self.f.bias
primals_5 = self.g.weight
primals_6 = self.g.bias
primals_7 = self.h.weight
primals_8 = self.h.bias
primals_9 = self.out_conv.weight
primals_10 = self.out_conv.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
| TimandXiyu/SANet-style-transfer- | SANet | false | 5,899 | [
"MIT"
] | 1 | 91c3dd1344d1dded61aa2e79618240a49345b40e | https://github.com/TimandXiyu/SANet-style-transfer-/tree/91c3dd1344d1dded61aa2e79618240a49345b40e | import torch
import torch.nn as nn
import torch.backends.cudnn
def calc_mean_std(feat, eps=1e-05):
size = feat.size()
assert len(size) == 4
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def mean_variance_norm(feat):
size = feat.size()
mean, std = calc_mean_std(feat)
normalized_feat = (feat - mean.expand(size)) / std.expand(size)
return normalized_feat
class Model(nn.Module):
def __init__(self, in_planes):
super().__init__()
self.f = nn.Conv2d(in_planes, in_planes, (1, 1))
self.g = nn.Conv2d(in_planes, in_planes, (1, 1))
self.h = nn.Conv2d(in_planes, in_planes, (1, 1))
self.sm = nn.Softmax(dim=-1)
self.out_conv = nn.Conv2d(in_planes, in_planes, (1, 1))
def forward(self, content, style):
F = self.f(mean_variance_norm(content))
G = self.g(mean_variance_norm(style))
H = self.h(style)
b, c, h, w = F.size()
F = F.view(b, -1, w * h).permute(0, 2, 1)
b, c, h, w = G.size()
G = G.view(b, -1, w * h)
S = torch.bmm(F, G)
S = self.sm(S)
b, c, h, w = H.size()
H = H.view(b, -1, w * h)
O = torch.bmm(H, S.permute(0, 2, 1))
b, c, h, w = content.size()
O = O.view(b, c, h, w)
O = self.out_conv(O)
O += content
return O
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/uy/cuyz4kqbnpronmfbm3av54novk3nyxmsmt735nqayckadzkv535h.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# y => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 4.0), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = tmp20 + tmp7
tmp22 = libdevice.rsqrt(tmp21)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# y => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 4.0), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_2
del primals_3
return (buf2, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class LayerNorm(nn.Module):
def __init__(self, hidden_size, epsilon, cast_fp16=True, formula=0):
super().__init__()
self.layer_norm = nn.LayerNorm(hidden_size, eps=epsilon)
self.layer_norm.bias.data.normal_(mean=0.0, std=0.1)
self.layer_norm.weight.data.normal_(mean=0.0, std=0.5)
self.cast_fp16 = cast_fp16
self.formula = formula
self.epsilon = epsilon
@staticmethod
def get_fused_op():
return 'LayerNormalization'
def my_layer_norm(self, x):
if self.formula == 0:
return self.layer_norm(x)
x = x.float()
u = x.mean(-1, keepdim=True)
y = x - u
s = y.pow(2).mean(-1, keepdim=True)
z = y / torch.sqrt(s + self.epsilon)
return self.layer_norm.weight.data * z + self.layer_norm.bias.data
def forward(self, x):
if self.cast_fp16 and x.dtype == torch.float16:
y = self.my_layer_norm(x.to(torch.float32))
else:
y = self.my_layer_norm(x)
return y,
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'epsilon': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = tmp20 + tmp7
tmp22 = libdevice.rsqrt(tmp21)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp22, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_1, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_2
del primals_3
return buf2, primals_1
class LayerNormNew(nn.Module):
def __init__(self, hidden_size, epsilon, cast_fp16=True, formula=0):
super().__init__()
self.layer_norm = nn.LayerNorm(hidden_size, eps=epsilon)
self.layer_norm.bias.data.normal_(mean=0.0, std=0.1)
self.layer_norm.weight.data.normal_(mean=0.0, std=0.5)
self.cast_fp16 = cast_fp16
self.formula = formula
self.epsilon = epsilon
@staticmethod
def get_fused_op():
return 'LayerNormalization'
def my_layer_norm(self, x):
if self.formula == 0:
return self.layer_norm(x)
x = x.float()
u = x.mean(-1, keepdim=True)
y = x - u
s = y.pow(2).mean(-1, keepdim=True)
z = y / torch.sqrt(s + self.epsilon)
return self.layer_norm.weight.data * z + self.layer_norm.bias.data
def forward(self, input_0):
primals_2 = self.layer_norm.weight
primals_3 = self.layer_norm.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| TingGong1/onnxruntime | LayerNorm | false | 5,900 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn as nn
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(nn.Module):
def __init__(self, hidden_size, epsilon, cast_fp16=True, formula=0):
super().__init__()
self.layer_norm = nn.LayerNorm(hidden_size, eps=epsilon)
self.layer_norm.bias.data.normal_(mean=0.0, std=0.1)
self.layer_norm.weight.data.normal_(mean=0.0, std=0.5)
self.cast_fp16 = cast_fp16
self.formula = formula
self.epsilon = epsilon
@staticmethod
def get_fused_op():
return 'LayerNormalization'
def my_layer_norm(self, x):
if self.formula == 0:
return self.layer_norm(x)
x = x.float()
u = x.mean(-1, keepdim=True)
y = x - u
s = y.pow(2).mean(-1, keepdim=True)
z = y / torch.sqrt(s + self.epsilon)
return self.layer_norm.weight.data * z + self.layer_norm.bias.data
def forward(self, x):
if self.cast_fp16 and x.dtype == torch.float16:
y = self.my_layer_norm(x.to(torch.float32))
else:
y = self.my_layer_norm(x)
return y,
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
AttentionSeq2Vec | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/vu/cvuv73ijvl45rys2kvk2dud7shg4nznn622fzyldpf7pmxppx3o5.py
# Topologically Sorted Source Nodes: [key_1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# key_1 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3x/c3xofha4qqmlee5fyb5f3isucqozm7lantx7oxuqmlenwkdzt4m7.py
# Topologically Sorted Source Nodes: [exp_vector, masked_vector, sum_1], Original ATen: [aten.exp, aten.mul, aten.sum]
# Source node to ATen node mapping:
# exp_vector => exp
# masked_vector => mul
# sum_1 => sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%squeeze,), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %primals_2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1], True), kwargs = {})
triton_poi_fused_exp_mul_sum_1 = async_compile.triton('triton_poi_fused_exp_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp8 + tmp12
tmp15 = tl_math.exp(tmp14)
tmp17 = tmp15 * tmp16
tmp18 = tmp13 + tmp17
tl.store(out_ptr0 + (x0), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/e7/ce77ixqcx5f2pzrwryx4st3pdytainzy374bkfl2dcz3esslw3n4.py
# Topologically Sorted Source Nodes: [attentioned_value, vector], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# attentioned_value => mul_1
# vector => sum_2
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %unsqueeze), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
triton_poi_fused_mul_sum_2 = async_compile.triton('triton_poi_fused_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 13, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp9 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp17 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr2 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp25 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr2 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp12 / tmp5
tmp14 = tmp8 * tmp13
tmp15 = tmp7 + tmp14
tmp18 = tl_math.exp(tmp17)
tmp20 = tmp18 * tmp19
tmp21 = tmp20 / tmp5
tmp22 = tmp16 * tmp21
tmp23 = tmp15 + tmp22
tmp26 = tl_math.exp(tmp25)
tmp28 = tmp26 * tmp27
tmp29 = tmp28 / tmp5
tmp30 = tmp24 * tmp29
tmp31 = tmp23 + tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [key_1], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_4, 64, grid=grid(64), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [exp_vector, masked_vector, sum_1], Original ATen: [aten.exp, aten.mul, aten.sum]
triton_poi_fused_exp_mul_sum_1.run(buf2, primals_2, buf3, 4, grid=grid(4), stream=stream0)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attentioned_value, vector], Original ATen: [aten.mul, aten.sum]
triton_poi_fused_mul_sum_2.run(primals_1, buf2, primals_2, buf3, buf4, 16, grid=grid(16), stream=stream0)
del buf3
return (buf4, primals_1, primals_2, buf1, buf2, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch.nn import Linear
from typing import Optional
from torch.nn import Tanh
def masked_softmax(vector: 'torch.FloatTensor', mask: 'torch.ByteTensor'):
"""
计算带有 masked 的 softmax
:param vector: shape: (B, seq_len)
:param mask: shape: (B, seq_len),
:return: (B, seq_len)
"""
exp_vector = vector.exp()
masked_vector = exp_vector * mask.float()
return masked_vector / torch.sum(masked_vector, dim=-1, keepdim=True)
class AttentionSeq2Vec(Module):
"""
基于 attention 将 seq2vec. 具体操作如下:
1. sequence: (B, seq_len, input_size)
2. K = WkSeqeunce 将 sequence 进行变换, K shape: (B, seq_len, query_hidden_size)
3. Q = Shape: (query_hidden_size)
4. attention = softmax(KQ), shape: (B, seq_len)
5. V = WvSequence, shape: (B, seq_len, value_hidden_size); 如果 value_hidden_size is None,
shape: (B, seq_len, input_size)
6. sum(V*attention, dim=-1), shape: (B, input_size)
"""
def __init__(self, input_size: 'int', query_hidden_size: 'int',
value_hidden_size: 'Optional[int]'=None):
"""
初始化。遵循 Q K V,计算 attention 方式。
:param input_size: 输入的 sequence token 的 embedding dim
:param query_hidden_size: 将 seqence 变成 Q 的时候,变换后的 token embedding dim.
:param value_hidden_size: 将 seqence 变成 V 的时候, 变换后的 token embedding dim.
如果 value_hidden_size is None, 那么,该模型就与 2016-Hierarchical Attention Networks for Document Classification
是一致的, 最后的输出结果 shape (B, seq_len, input_size);
如果 value_hidden_size 被设置了, 那么,就与 Attention is All your Need 中 变换是一致的, 最后的输出结果
shape (B, seq_len, value_hidden_size)
"""
super().__init__()
self.wk = Linear(in_features=input_size, out_features=
query_hidden_size, bias=True)
self.key_activation = Tanh()
self.attention = Linear(in_features=query_hidden_size, out_features
=1, bias=False)
self.wv = None
if value_hidden_size is not None:
self.wv = Linear(in_features=input_size, out_features=
value_hidden_size, bias=True)
self.reset_parameters()
def reset_parameters(self):
pass
def forward(self, sequence: 'torch.LongTensor', mask:
'Optional[torch.ByteTensor]') ->torch.FloatTensor:
"""
执行 attetion seq2vec
:param sequence: 输入的token 序列, shape: (batch_size, seq_len, input_size)
:param mask: mask shape: (batch_size, seq_len)
:return: attention 编码向量, shape: (batch_size, value_hidden_size or input_size)
"""
assert sequence.dim(
) == 3, 'sequence shape: (batch_size, seq_len, input_size)'
if mask is not None:
assert mask.dim() == 2, 'mask shape: (batch_size, seq_len)'
key = self.wk(sequence)
key = self.key_activation(key)
attention = self.attention(key)
attention = torch.squeeze(attention, dim=-1)
if mask is not None:
attention = masked_softmax(vector=attention, mask=mask)
else:
attention = torch.softmax(attention, dim=-1)
if self.wv is not None:
value = self.wv(sequence)
else:
value = sequence
attentioned_value = value * attention.unsqueeze(dim=-1)
vector = torch.sum(attentioned_value, dim=1)
return vector
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'query_hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn import Module
from torch.nn import Linear
from typing import Optional
from torch.nn import Tanh
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_exp_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = tl_math.exp(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp8 + tmp12
tmp15 = tl_math.exp(tmp14)
tmp17 = tmp15 * tmp16
tmp18 = tmp13 + tmp17
tl.store(out_ptr0 + x0, tmp18, xmask)
@triton.jit
def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp9 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp17 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp24 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp27 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tl_math.exp(tmp1)
tmp4 = tmp2 * tmp3
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 * tmp11
tmp13 = tmp12 / tmp5
tmp14 = tmp8 * tmp13
tmp15 = tmp7 + tmp14
tmp18 = tl_math.exp(tmp17)
tmp20 = tmp18 * tmp19
tmp21 = tmp20 / tmp5
tmp22 = tmp16 * tmp21
tmp23 = tmp15 + tmp22
tmp26 = tl_math.exp(tmp25)
tmp28 = tmp26 * tmp27
tmp29 = tmp28 / tmp5
tmp30 = tmp24 * tmp29
tmp31 = tmp23 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(64)](buf1, primals_4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused_exp_mul_sum_1[grid(4)](buf2, primals_2, buf3, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_sum_2[grid(16)](primals_1, buf2, primals_2,
buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf3
return buf4, primals_1, primals_2, buf1, buf2, primals_5
def masked_softmax(vector: 'torch.FloatTensor', mask: 'torch.ByteTensor'):
"""
计算带有 masked 的 softmax
:param vector: shape: (B, seq_len)
:param mask: shape: (B, seq_len),
:return: (B, seq_len)
"""
exp_vector = vector.exp()
masked_vector = exp_vector * mask.float()
return masked_vector / torch.sum(masked_vector, dim=-1, keepdim=True)
class AttentionSeq2VecNew(Module):
"""
基于 attention 将 seq2vec. 具体操作如下:
1. sequence: (B, seq_len, input_size)
2. K = WkSeqeunce 将 sequence 进行变换, K shape: (B, seq_len, query_hidden_size)
3. Q = Shape: (query_hidden_size)
4. attention = softmax(KQ), shape: (B, seq_len)
5. V = WvSequence, shape: (B, seq_len, value_hidden_size); 如果 value_hidden_size is None,
shape: (B, seq_len, input_size)
6. sum(V*attention, dim=-1), shape: (B, input_size)
"""
def __init__(self, input_size: 'int', query_hidden_size: 'int',
value_hidden_size: 'Optional[int]'=None):
"""
初始化。遵循 Q K V,计算 attention 方式。
:param input_size: 输入的 sequence token 的 embedding dim
:param query_hidden_size: 将 seqence 变成 Q 的时候,变换后的 token embedding dim.
:param value_hidden_size: 将 seqence 变成 V 的时候, 变换后的 token embedding dim.
如果 value_hidden_size is None, 那么,该模型就与 2016-Hierarchical Attention Networks for Document Classification
是一致的, 最后的输出结果 shape (B, seq_len, input_size);
如果 value_hidden_size 被设置了, 那么,就与 Attention is All your Need 中 变换是一致的, 最后的输出结果
shape (B, seq_len, value_hidden_size)
"""
super().__init__()
self.wk = Linear(in_features=input_size, out_features=
query_hidden_size, bias=True)
self.key_activation = Tanh()
self.attention = Linear(in_features=query_hidden_size, out_features
=1, bias=False)
self.wv = None
if value_hidden_size is not None:
self.wv = Linear(in_features=input_size, out_features=
value_hidden_size, bias=True)
self.reset_parameters()
def reset_parameters(self):
pass
def forward(self, input_0, input_1):
primals_2 = self.wk.weight
primals_4 = self.wk.bias
primals_5 = self.attention.weight
primals_1 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Tiffany-HONG/easytext | AttentionSeq2Vec | false | 5,901 | [
"MIT"
] | 1 | 9c717d11240d96fab98b0532084ebb5c093d55bd | https://github.com/Tiffany-HONG/easytext/tree/9c717d11240d96fab98b0532084ebb5c093d55bd | from torch.nn import Module
import torch
from torch.nn import Linear
from typing import Optional
from torch.nn import Tanh
def masked_softmax(vector: 'torch.FloatTensor', mask: 'torch.ByteTensor'):
"""
计算带有 masked 的 softmax
:param vector: shape: (B, seq_len)
:param mask: shape: (B, seq_len),
:return: (B, seq_len)
"""
exp_vector = vector.exp()
masked_vector = exp_vector * mask.float()
return masked_vector / torch.sum(masked_vector, dim=-1, keepdim=True)
class Model(Module):
"""
基于 attention 将 seq2vec. 具体操作如下:
1. sequence: (B, seq_len, input_size)
2. K = WkSeqeunce 将 sequence 进行变换, K shape: (B, seq_len, query_hidden_size)
3. Q = Shape: (query_hidden_size)
4. attention = softmax(KQ), shape: (B, seq_len)
5. V = WvSequence, shape: (B, seq_len, value_hidden_size); 如果 value_hidden_size is None,
shape: (B, seq_len, input_size)
6. sum(V*attention, dim=-1), shape: (B, input_size)
"""
def __init__(self, input_size: 'int', query_hidden_size: 'int',
value_hidden_size: 'Optional[int]'=None):
"""
初始化。遵循 Q K V,计算 attention 方式。
:param input_size: 输入的 sequence token 的 embedding dim
:param query_hidden_size: 将 seqence 变成 Q 的时候,变换后的 token embedding dim.
:param value_hidden_size: 将 seqence 变成 V 的时候, 变换后的 token embedding dim.
如果 value_hidden_size is None, 那么,该模型就与 2016-Hierarchical Attention Networks for Document Classification
是一致的, 最后的输出结果 shape (B, seq_len, input_size);
如果 value_hidden_size 被设置了, 那么,就与 Attention is All your Need 中 变换是一致的, 最后的输出结果
shape (B, seq_len, value_hidden_size)
"""
super().__init__()
self.wk = Linear(in_features=input_size, out_features=
query_hidden_size, bias=True)
self.key_activation = Tanh()
self.attention = Linear(in_features=query_hidden_size, out_features
=1, bias=False)
self.wv = None
if value_hidden_size is not None:
self.wv = Linear(in_features=input_size, out_features=
value_hidden_size, bias=True)
self.reset_parameters()
def reset_parameters(self):
pass
def forward(self, sequence: 'torch.LongTensor', mask:
'Optional[torch.ByteTensor]') ->torch.FloatTensor:
"""
执行 attetion seq2vec
:param sequence: 输入的token 序列, shape: (batch_size, seq_len, input_size)
:param mask: mask shape: (batch_size, seq_len)
:return: attention 编码向量, shape: (batch_size, value_hidden_size or input_size)
"""
assert sequence.dim(
) == 3, 'sequence shape: (batch_size, seq_len, input_size)'
if mask is not None:
assert mask.dim() == 2, 'mask shape: (batch_size, seq_len)'
key = self.wk(sequence)
key = self.key_activation(key)
attention = self.attention(key)
attention = torch.squeeze(attention, dim=-1)
if mask is not None:
attention = masked_softmax(vector=attention, mask=mask)
else:
attention = torch.softmax(attention, dim=-1)
if self.wv is not None:
value = self.wv(sequence)
else:
value = sequence
attentioned_value = value * attention.unsqueeze(dim=-1)
vector = torch.sum(attentioned_value, dim=1)
return vector
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
NeuralNetNonDifferentiableOutput | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/es/cesdgivumahwau3ktpnkfn4fdmvsesqfozw5gmx5z6jgpd2mkntn.py
# Topologically Sorted Source Nodes: [out1, mask1, mask1_1], Original ATen: [aten.relu, aten.gt, aten._to_copy]
# Source node to ATen node mapping:
# mask1 => gt
# mask1_1 => convert_element_type
# out1 => relu
# Graph fragment:
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%relu, 0.01), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.int64), kwargs = {})
triton_poi_fused__to_copy_gt_relu_0 = async_compile.triton('triton_poi_fused__to_copy_gt_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_gt_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_gt_relu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.01
tmp6 = tmp4 > tmp5
tmp7 = tmp6.to(tl.int64)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/db/cdbnihrylojvzpxqsddewcmpwhm3r56pohj377wckbcmu6m4bpxc.py
# Topologically Sorted Source Nodes: [mask2, mask2_1], Original ATen: [aten.lt, aten._to_copy]
# Source node to ATen node mapping:
# mask2 => lt
# mask2_1 => convert_element_type_1
# Graph fragment:
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%view_3, 0.02), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.int64), kwargs = {})
triton_poi_fused__to_copy_lt_1 = async_compile.triton('triton_poi_fused__to_copy_lt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_lt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_lt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.02
tmp2 = tmp0 < tmp1
tmp3 = tmp2.to(tl.int64)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [out1, mask1, mask1_1], Original ATen: [aten.relu, aten.gt, aten._to_copy]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_gt_relu_0.run(buf1, primals_2, buf3, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [mask2, mask2_1], Original ATen: [aten.lt, aten._to_copy]
triton_poi_fused__to_copy_lt_1.run(buf2, buf4, 256, grid=grid(256), stream=stream0)
return (buf1, buf3, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class NeuralNetNonDifferentiableOutput(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetNonDifferentiableOutput, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1):
out = self.fc1(input1)
out1 = self.relu(out)
out2 = self.fc2(out1)
mask1 = torch.gt(out1, 0.01)
mask1 = mask1.long()
mask2 = torch.lt(out2, 0.02)
mask2 = mask2.long()
return out1, mask1, out2, mask2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__to_copy_gt_relu_0(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.01
tmp6 = tmp4 > tmp5
tmp7 = tmp6.to(tl.int64)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_lt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.02
tmp2 = tmp0 < tmp1
tmp3 = tmp2.to(tl.int64)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused__to_copy_gt_relu_0[grid(256)](buf1, primals_2,
buf3, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64)
triton_poi_fused__to_copy_lt_1[grid(256)](buf2, buf4, 256, XBLOCK=
128, num_warps=4, num_stages=1)
return buf1, buf3, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, primals_4
class NeuralNetNonDifferentiableOutputNew(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetNonDifferentiableOutputNew, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1], output[2], output[3]
| TingGong1/onnxruntime | NeuralNetNonDifferentiableOutput | false | 5,902 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1):
out = self.fc1(input1)
out1 = self.relu(out)
out2 = self.fc2(out1)
mask1 = torch.gt(out1, 0.01)
mask1 = mask1.long()
mask2 = torch.lt(out2, 0.02)
mask2 = mask2.long()
return out1, mask1, out2, mask2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Normalize | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/au/cauoqsg2cv2zjgirqxzbpuecwen54i554wu3e7y5ryzy3krptidd.py
# Topologically Sorted Source Nodes: [mean, sub, std, truediv], Original ATen: [aten.mean, aten.sub, aten.std, aten.div]
# Source node to ATen node mapping:
# mean => mean
# std => sqrt, var
# sub => sub
# truediv => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1,), kwargs = {correction: 1.0})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
triton_per_fused_div_mean_std_sub_0 = async_compile.triton('triton_per_fused_div_mean_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp5 = tl.broadcast_to(tmp1, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 256, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp3 / tmp16
tmp18 = tmp0 - tmp17
tmp19 = 255.0
tmp20 = tmp15 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tmp18 / tmp21
tl.store(out_ptr2 + (tl.broadcast_to(r0, [RBLOCK])), tmp22, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sub, std, truediv], Original ATen: [aten.mean, aten.sub, aten.std, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mean_std_sub_0.run(arg0_1, buf4, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
class Normalize(torch.nn.Module):
def forward(self, x: 'Tensor'):
return (x - x.mean()) / x.std()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mean_std_sub_0(in_ptr0, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp5 = tl.broadcast_to(tmp1, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 256, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp3 / tmp16
tmp18 = tmp0 - tmp17
tmp19 = 255.0
tmp20 = tmp15 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tmp18 / tmp21
tl.store(out_ptr2 + tl.broadcast_to(r0, [RBLOCK]), tmp22, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mean_std_sub_0[grid(1)](arg0_1, buf4, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
return buf4,
class NormalizeNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Tomoya-K-0504/deepSELF | Normalize | false | 5,903 | [
"MIT"
] | 1 | 0e5a7d0169b3e9edcb5c8d9802140a84ce5cb69a | https://github.com/Tomoya-K-0504/deepSELF/tree/0e5a7d0169b3e9edcb5c8d9802140a84ce5cb69a | import torch
from torch import Tensor
class Model(torch.nn.Module):
def forward(self, x: 'Tensor'):
return (x - x.mean()) / x.std()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py
# Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add]
# Source node to ATen node mapping:
# model_input => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out1_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out1_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_6
return (buf3, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency(torch.
nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency,
self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.softmax = torch.nn.Softmax(dim=1)
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1, input2):
model_input = input1 + input2
out1 = self.fc1(model_input)
out1 = self.softmax(out1)
out2 = self.fc2(out1)
return out1, out2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0)
del buf2
extern_kernels.addmm(primals_6, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_6
return buf3, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, primals_5
class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew(torch
.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew
, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.softmax = torch.nn.Softmax(dim=1)
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
| TingGong1/onnxruntime | NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency | false | 5,904 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(torch.
nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.softmax = torch.nn.Softmax(dim=1)
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1, input2):
model_input = input1 + input2
out1 = self.fc1(model_input)
out1 = self.softmax(out1)
out2 = self.fc2(out1)
return out1, out2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
PositionalScaledDotProductAttention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/db/cdbvpwij3es3hvx6e56eufnhc2ark7ffetlr353jjxbefbpe6ws4.py
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_k], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf1)
del arg1_1
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4)
del arg2_1
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionalScaledDotProductAttention(nn.Module):
""" Scaled Dot-Product Attention with optional positional encodings """
def __init__(self, temperature, positional_encoding=None, attn_dropout=0.1
):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.positional_encoding = positional_encoding
def forward(self, q, k, v, mask=None, dist_matrices=None):
"""
q: [batch, heads, seq, d_k] queries
k: [batch, heads, seq, d_k] keys
v: [batch, heads, seq, d_v] values
mask: [batch, 1, seq, seq] for each edge, which other edges should be accounted for. "None" means all of them.
mask is important when using local attention, or when the meshes are of different sizes.
rpr: [batch, seq, seq, d_k] positional representations
"""
attn_k = torch.matmul(q / self.temperature, k.transpose(2, 3))
if self.positional_encoding is None:
attn = attn_k
else:
attn_rpr = self.positional_encoding(q / self.temperature,
dist_matrices)
attn = attn_k + attn_rpr
if mask is not None:
attn = attn.masked_fill(mask == 0, -1000000000.0)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'temperature': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf1
)
del arg1_1
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4
)
del arg2_1
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf3
class PositionalScaledDotProductAttentionNew(nn.Module):
""" Scaled Dot-Product Attention with optional positional encodings """
def __init__(self, temperature, positional_encoding=None, attn_dropout=0.1
):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.positional_encoding = positional_encoding
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
| TomerRonen34/MeshCNN | PositionalScaledDotProductAttention | false | 5,905 | [
"MIT"
] | 1 | 8c50f3804c48044b78572d652a42184640e904d9 | https://github.com/TomerRonen34/MeshCNN/tree/8c50f3804c48044b78572d652a42184640e904d9 | import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
""" Scaled Dot-Product Attention with optional positional encodings """
def __init__(self, temperature, positional_encoding=None, attn_dropout=0.1
):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.positional_encoding = positional_encoding
def forward(self, q, k, v, mask=None, dist_matrices=None):
"""
q: [batch, heads, seq, d_k] queries
k: [batch, heads, seq, d_k] keys
v: [batch, heads, seq, d_v] values
mask: [batch, 1, seq, seq] for each edge, which other edges should be accounted for. "None" means all of them.
mask is important when using local attention, or when the meshes are of different sizes.
rpr: [batch, seq, seq, d_k] positional representations
"""
attn_k = torch.matmul(q / self.temperature, k.transpose(2, 3))
if self.positional_encoding is None:
attn = attn_k
else:
attn_rpr = self.positional_encoding(q / self.temperature,
dist_matrices)
attn = attn_k + attn_rpr
if mask is not None:
attn = attn.masked_fill(mask == 0, -1000000000.0)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py
# Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add]
# Source node to ATen node mapping:
# model_input => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# out1_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jb/cjbgncz4c676eiaffzhzycry4zzgpxvotnwyrfhcokm2fybemkoo.py
# Topologically Sorted Source Nodes: [out1_1, out1_2], Original ATen: [aten._softmax, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out1_1 => div, sum_1
# out1_2 => relu
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%div,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused__softmax_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused__softmax_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_relu_threshold_backward_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = 0.0
tmp12 = tmp10 <= tmp11
tl.store(out_ptr0 + (x3), tmp10, xmask)
tl.store(out_ptr1 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out2_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf4, 256, grid=grid(256), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out1_1, out1_2], Original ATen: [aten._softmax, aten.relu, aten.threshold_backward]
triton_poi_fused__softmax_relu_threshold_backward_2.run(buf3, buf5, buf8, 256, grid=grid(256), stream=stream0)
buf6 = buf3; del buf3 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out2_1, out2_2], Original ATen: [aten._softmax, aten.relu, aten.threshold_backward]
triton_poi_fused__softmax_relu_threshold_backward_2.run(buf4, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf4
return (buf5, buf6, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, buf2, buf7, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency(torch
.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency
, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.fc2 = torch.nn.Linear(input_size, hidden_size)
self.softmax1 = torch.nn.Softmax(dim=1)
self.softmax2 = torch.nn.Softmax(dim=1)
self.relu1 = torch.nn.ReLU()
self.relu2 = torch.nn.ReLU()
def forward(self, input1, input2):
model_input = input1 + input2
out1 = self.fc1(model_input)
out2 = self.fc2(model_input)
out1 = self.softmax1(out1)
out2 = self.softmax2(out2)
out1 = self.relu1(out1)
out2 = self.relu2(out2)
return out1, out2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn
import torch.onnx
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_relu_threshold_backward_2(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp11 = 0.0
tmp12 = tmp10 <= tmp11
tl.store(out_ptr0 + x3, tmp10, xmask)
tl.store(out_ptr1 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_3
del primals_4
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(buf0, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf1, buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf2, buf4, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused__softmax_relu_threshold_backward_2[grid(256)](buf3,
buf5, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
buf6 = buf3
del buf3
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused__softmax_relu_threshold_backward_2[grid(256)](buf4,
buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf4
return buf5, buf6, reinterpret_tensor(buf0, (64, 4), (4, 1), 0
), buf1, buf2, buf7, buf8
class NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependencyNew(
torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(
NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependencyNew
, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.fc2 = torch.nn.Linear(input_size, hidden_size)
self.softmax1 = torch.nn.Softmax(dim=1)
self.softmax2 = torch.nn.Softmax(dim=1)
self.relu1 = torch.nn.ReLU()
self.relu2 = torch.nn.ReLU()
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
| TingGong1/onnxruntime | NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency | false | 5,906 | [
"MIT"
] | 1 | 435010ab6873974803591fa22262ed8b3e36e44d | https://github.com/TingGong1/onnxruntime/tree/435010ab6873974803591fa22262ed8b3e36e44d | import torch
import torch.nn
import torch.onnx
import torch.utils.checkpoint
class Model(torch
.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.fc2 = torch.nn.Linear(input_size, hidden_size)
self.softmax1 = torch.nn.Softmax(dim=1)
self.softmax2 = torch.nn.Softmax(dim=1)
self.relu1 = torch.nn.ReLU()
self.relu2 = torch.nn.ReLU()
def forward(self, input1, input2):
model_input = input1 + input2
out1 = self.fc1(model_input)
out2 = self.fc2(model_input)
out1 = self.softmax1(out1)
out2 = self.softmax2(out2)
out1 = self.relu1(out1)
out2 = self.relu2(out2)
return out1, out2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ScaledDotProductAttention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/db/cdbvpwij3es3hvx6e56eufnhc2ark7ffetlr353jjxbefbpe6ws4.py
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf1)
del arg1_1
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4)
del arg2_1
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
class ScaledDotProductAttention(nn.Module):
"""
Scaled Dot-Product Attention
from https://github.com/jadore801120/attention-is-all-you-need-pytorch
by Yu-Hsiang Huang
"""
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1000000000.0)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'temperature': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf1
)
del arg1_1
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4
)
del arg2_1
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf3
class ScaledDotProductAttentionNew(nn.Module):
"""
Scaled Dot-Product Attention
from https://github.com/jadore801120/attention-is-all-you-need-pytorch
by Yu-Hsiang Huang
"""
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
| TomerRonen34/MeshCNN | ScaledDotProductAttention | false | 5,907 | [
"MIT"
] | 1 | 8c50f3804c48044b78572d652a42184640e904d9 | https://github.com/TomerRonen34/MeshCNN/tree/8c50f3804c48044b78572d652a42184640e904d9 | import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""
Scaled Dot-Product Attention
from https://github.com/jadore801120/attention-is-all-you-need-pytorch
by Yu-Hsiang Huang
"""
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1000000000.0)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ConvPredictor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ch/cchk6c3jqzvjndpk5op5gbxxrgbxerw6fus3dv2354al57mwxaty.py
# Topologically Sorted Source Nodes: [sum_1], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# sum_1 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [0]), kwargs = {})
triton_poi_fused_sum_0 = async_compile.triton('triton_poi_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 1), (4, 1, 1), 0), primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1), (4, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sum_1], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_sum_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
return (reinterpret_tensor(buf1, (4, 4), (4, 1), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 1), (4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ConvPredictor(nn.Module):
def __init__(self, input_dim, output_dim, groups):
super(ConvPredictor, self).__init__()
self.feature_maps = input_dim
self.groups = groups
self.output_dim = output_dim
self.conv = nn.Conv1d(in_channels=self.feature_maps, out_channels=
self.groups * self.output_dim, kernel_size=1, groups=self.groups)
def forward(self, x):
x = x.unsqueeze(-1)
outs = torch.stack(torch.split(self.conv(x), self.output_dim, dim=1))
return outs.sum(0).reshape(-1, self.output_dim)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4, 'groups': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4,
4, 1), (4, 1, 1), 0), primals_2, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (4, 4, 1), (4, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_sum_0[grid(16)](buf1, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf1, (4, 4), (4, 1), 0
), primals_2, reinterpret_tensor(primals_1, (4, 4, 1), (4, 1, 1), 0)
class ConvPredictorNew(nn.Module):
def __init__(self, input_dim, output_dim, groups):
super(ConvPredictorNew, self).__init__()
self.feature_maps = input_dim
self.groups = groups
self.output_dim = output_dim
self.conv = nn.Conv1d(in_channels=self.feature_maps, out_channels=
self.groups * self.output_dim, kernel_size=1, groups=self.groups)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| TomScheffers/Residual-Prediction-Networks-using-Pytorch | ConvPredictor | false | 5,908 | [
"MIT"
] | 1 | c0e8b60c188414d71c389a0fd034f50017c24a93 | https://github.com/TomScheffers/Residual-Prediction-Networks-using-Pytorch/tree/c0e8b60c188414d71c389a0fd034f50017c24a93 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_dim, output_dim, groups):
super().__init__()
self.feature_maps = input_dim
self.groups = groups
self.output_dim = output_dim
self.conv = nn.Conv1d(in_channels=self.feature_maps, out_channels=
self.groups * self.output_dim, kernel_size=1, groups=self.groups)
def forward(self, x):
x = x.unsqueeze(-1)
outs = torch.stack(torch.split(self.conv(x), self.output_dim, dim=1))
return outs.sum(0).reshape(-1, self.output_dim)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 1]
|
L2Norm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/kg/ckgdcfuuoqdso3rh662ilocjsoyn7wbigkhmyto66dmkn7bwc4be.py
# Topologically Sorted Source Nodes: [x, out], Original ATen: [aten.div, aten.mul]
# Source node to ATen node mapping:
# out => mul
# x => div
# Graph fragment:
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand_1, %div), kwargs = {})
# %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%primals_1, %div), kwargs = {})
triton_poi_fused_div_mul_0 = async_compile.triton('triton_poi_fused_div_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x5 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 4
x3 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x5), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-10
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tmp17 = tmp16 * tmp15
tl.store(out_ptr0 + (x5), tmp15, xmask)
tl.store(out_ptr1 + (x5), tmp17, xmask)
tl.store(out_ptr2 + (x5), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, out], Original ATen: [aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_div_mul_0.run(primals_1, primals_2, buf0, buf1, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.init as init
import torch.utils.data
from numpy.random import *
class L2Norm(nn.Module):
def __init__(self, n_channels, scale):
super(L2Norm, self).__init__()
self.n_channels = n_channels
self.gamma = scale or None
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.reset_parameters()
def reset_parameters(self):
init.constant(self.weight, self.gamma)
def forward(self, x):
norm = x.pow(2).sum(1).sqrt() + self.eps
x /= norm.expand_as(x)
out = self.weight.unsqueeze(0).expand_as(x) * x
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_channels': 4, 'scale': 1.0}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.init as init
import torch.utils.data
from numpy.random import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x5 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 4
x3 = xindex % 4
tmp0 = tl.load(in_ptr0 + x5, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-10
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tmp17 = tmp16 * tmp15
tl.store(out_ptr0 + x5, tmp15, xmask)
tl.store(out_ptr1 + x5, tmp17, xmask)
tl.store(out_ptr2 + x5, tmp15, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_mul_0[grid(256)](primals_1, primals_2, buf0,
buf1, primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf1, buf0
class L2NormNew(nn.Module):
def __init__(self, n_channels, scale):
super(L2NormNew, self).__init__()
self.n_channels = n_channels
self.gamma = scale or None
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.reset_parameters()
def reset_parameters(self):
init.constant(self.weight, self.gamma)
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| Tony-Khor/PyTorch-From-Zero-to-All | L2Norm | false | 5,909 | [
"MIT"
] | 1 | d8f9b6d81fe390dee93a887f342dc818553e61b3 | https://github.com/Tony-Khor/PyTorch-From-Zero-to-All/tree/d8f9b6d81fe390dee93a887f342dc818553e61b3 | import torch
import torch.nn as nn
import torch.nn.init as init
import torch.utils.data
from numpy.random import *
class Model(nn.Module):
def __init__(self, n_channels, scale):
super().__init__()
self.n_channels = n_channels
self.gamma = scale or None
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.reset_parameters()
def reset_parameters(self):
init.constant(self.weight, self.gamma)
def forward(self, x):
norm = x.pow(2).sum(1).sqrt() + self.eps
x /= norm.expand_as(x)
out = self.weight.unsqueeze(0).expand_as(x) * x
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 1.0]
|
Pooling | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/je/cje3udpfj5nwaq4lakytobuhk4kwgcmkt62m7sy65mea2frdue7u.py
# Topologically Sorted Source Nodes: [avg_pool2d, sub], Original ATen: [aten.avg_pool2d, aten.sub]
# Source node to ATen node mapping:
# avg_pool2d => avg_pool2d
# sub => sub
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [3, 3], [1, 1], [1, 1], False, False), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %arg0_1), kwargs = {})
triton_poi_fused_avg_pool2d_sub_0 = async_compile.triton('triton_poi_fused_avg_pool2d_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x3 = xindex
tmp54 = tl.load(in_ptr0 + (x3), xmask)
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + x3), tmp10 & xmask, other=0.0)
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + x3), tmp16 & xmask, other=0.0)
tmp18 = tmp17 + tmp11
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + x3), tmp23 & xmask, other=0.0)
tmp25 = tmp24 + tmp18
tmp26 = x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-1) + x3), tmp30 & xmask, other=0.0)
tmp32 = tmp31 + tmp25
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x3), tmp33 & xmask, other=0.0)
tmp35 = tmp34 + tmp32
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + x3), tmp36 & xmask, other=0.0)
tmp38 = tmp37 + tmp35
tmp39 = 1 + x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + x3), tmp43 & xmask, other=0.0)
tmp45 = tmp44 + tmp38
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + x3), tmp46 & xmask, other=0.0)
tmp48 = tmp47 + tmp45
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + x3), tmp49 & xmask, other=0.0)
tmp51 = tmp50 + tmp48
tmp52 = (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))*((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) + (((4) * ((4) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (4)))*((4) * ((4) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))*((4) * ((4) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))*((4) * ((4) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (4))))
tmp53 = tmp51 / tmp52
tmp55 = tmp53 - tmp54
tl.store(in_out_ptr0 + (x3), tmp55, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [avg_pool2d, sub], Original ATen: [aten.avg_pool2d, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_sub_0.run(buf1, arg0_1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Pooling(nn.Module):
"""
Implementation of pooling for PoolFormer
--pool_size: pooling size
"""
def __init__(self, pool_size=3):
super().__init__()
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size //
2, count_include_pad=False)
def forward(self, x):
return self.pool(x) - x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_avg_pool2d_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x3 = xindex
tmp54 = tl.load(in_ptr0 + x3, xmask)
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + x3), tmp10 & xmask, other=0.0)
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + x3), tmp16 & xmask, other=0.0)
tmp18 = tmp17 + tmp11
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + x3), tmp23 & xmask, other=0.0)
tmp25 = tmp24 + tmp18
tmp26 = x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + x3), tmp30 & xmask, other=0.0)
tmp32 = tmp31 + tmp25
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + x3, tmp33 & xmask, other=0.0)
tmp35 = tmp34 + tmp32
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + x3), tmp36 & xmask, other=0.0)
tmp38 = tmp37 + tmp35
tmp39 = 1 + x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + x3), tmp43 & xmask, other=0.0)
tmp45 = tmp44 + tmp38
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + x3), tmp46 & xmask, other=0.0)
tmp48 = tmp47 + tmp45
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + x3), tmp49 & xmask, other=0.0)
tmp51 = tmp50 + tmp48
tmp52 = (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -
1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (4 * (4 <= 2 + x0) + (2 + x0
) * (2 + x0 < 4)) * (4 * (4 <= 2 + x1) + (2 + x1) * (2 + x1 < 4)
) + -1 * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (4 * (4 <=
2 + x1) + (2 + x1) * (2 + x1 < 4)) + -1 * (0 * (0 >= -1 + x1) + (-1 +
x1) * (-1 + x1 > 0)) * (4 * (4 <= 2 + x0) + (2 + x0) * (2 + x0 < 4))
tmp53 = tmp51 / tmp52
tmp55 = tmp53 - tmp54
tl.store(in_out_ptr0 + x3, tmp55, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_avg_pool2d_sub_0[grid(256)](buf1, arg0_1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf1,
class PoolingNew(nn.Module):
"""
Implementation of pooling for PoolFormer
--pool_size: pooling size
"""
def __init__(self, pool_size=3):
super().__init__()
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size //
2, count_include_pad=False)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| TranNhiem/MVAR_SSL | Pooling | false | 5,910 | [
"MIT"
] | 1 | 339964db4d40f06a92866675ff99ef67cd968cca | https://github.com/TranNhiem/MVAR_SSL/tree/339964db4d40f06a92866675ff99ef67cd968cca | import torch
import torch.nn as nn
class Model(nn.Module):
"""
Implementation of pooling for PoolFormer
--pool_size: pooling size
"""
def __init__(self, pool_size=3):
super().__init__()
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size //
2, count_include_pad=False)
def forward(self, x):
return self.pool(x) - x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Transform | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/be/cbe6und4oyafjomihl7hx4u6mxaezp442banf3eb6jxys25priaw.py
# Topologically Sorted Source Nodes: [var, mean, sub, normalized_feat], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
# Source node to ATen node mapping:
# mean => mean
# normalized_feat => div
# sub => sub
# var => var
# Graph fragment:
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [2]), kwargs = {correction: 1})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %expand), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %expand_1), kwargs = {})
triton_per_fused_div_mean_sub_var_0 = async_compile.triton('triton_per_fused_div_mean_sub_var_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_sub_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mean_sub_var_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp18 / tmp19
tmp21 = tmp0 - tmp20
tmp22 = 63.0
tmp23 = tmp16 / tmp22
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp21 / tmp26
tl.store(out_ptr2 + (r1 + (64*x0)), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6i/c6iudyv74ptvla42nlkylzu5vverhwgz4mjohicyd5xurthhrw2l.py
# Topologically Sorted Source Nodes: [var_1, mean_1, sub_1, normalized_feat_1], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
# Source node to ATen node mapping:
# mean_1 => mean_1
# normalized_feat_1 => div_1
# sub_1 => sub_1
# var_1 => var_1
# Graph fragment:
# %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view_4, [2]), kwargs = {correction: 1})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_4, [2]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_4, %expand_2), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %expand_3), kwargs = {})
triton_per_fused_div_mean_sub_var_1 = async_compile.triton('triton_per_fused_div_mean_sub_var_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_sub_var_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mean_sub_var_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = tmp0 - tmp20
tmp22 = 15.0
tmp23 = tmp16 / tmp22
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp21 / tmp26
tl.store(out_ptr2 + (r1 + (16*x0)), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cr/ccri7cffjdxhdcglzfvzhu4wpte5acu3pxionui5nbusnbkkpvyl.py
# Topologically Sorted Source Nodes: [F], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# F => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lo/clothqivkwnemsgxm25a4sma7vuvwypmzugcwyh3spfaf3gzzubx.py
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# G => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div_1, %primals_5, %primals_6, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/5j/c5j5obqbapksd2zesfulgkcyuq6dbxgszjdirumlkofwohwxnd3r.py
# Topologically Sorted Source Nodes: [S_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# S_1 => amax, div_2, exp, sub_2, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_4 = async_compile.triton('triton_per_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kc/ckcnctenfgytg5ezjhlhipt2ifk4rcjk4n7karpfba7h2nb365ck.py
# Topologically Sorted Source Nodes: [S_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# S_3 => amax_1, div_5, exp_1, sub_5, sum_2
# Graph fragment:
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm_2, [-1], True), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm_2, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_5,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
# %div_5 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
triton_per_fused__softmax_5 = async_compile.triton('triton_per_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/eu/ceuifvulaeqawi4tlido3ehw3n55einpau4junoldpmfbbkzbmxo.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# interpolate => add_6, add_7, convert_element_type, convert_element_type_1, iota, mul, mul_1
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_6, torch.float32), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, 0.5), kwargs = {})
# %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_6 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_6(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kz/ckzm6bejwkzme2k7mem2pmlqezhlwrqlbtkibo5wm5fnsiytj335.py
# Topologically Sorted Source Nodes: [O_2, O_3, O_6, O_7, interpolate, add_4, pad], Original ATen: [aten.convolution, aten.add, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# O_2 => convolution_3
# O_3 => add_2
# O_6 => convolution_7
# O_7 => add_5
# add_4 => add_10
# interpolate => _unsafe_index
# pad => _unsafe_index_1, _unsafe_index_2
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_11, %primals_9, %primals_10, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_3, %primals_1), kwargs = {})
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_23, %primals_19, %primals_20, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_7, %primals_11), kwargs = {})
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%add_5, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %_unsafe_index), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%add_10, [None, None, %sub_7, None]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_1, [None, None, None, %sub_7]), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_reflection_pad2d_7 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_reflection_pad2d_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i64', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_reflection_pad2d_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_reflection_pad2d_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 10
x1 = (xindex // 10) % 10
x4 = (xindex // 100)
x2 = (xindex // 100) % 4
x7 = xindex
tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr5 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tl.full([XBLOCK], 4, tl.int32)
tmp7 = tmp5 + tmp6
tmp8 = tmp5 < 0
tmp9 = tl.where(tmp8, tmp7, tmp5)
tmp11 = tmp10 + tmp6
tmp12 = tmp10 < 0
tmp13 = tl.where(tmp12, tmp11, tmp10)
tmp14 = tl.load(in_ptr4 + (tmp13 + (4*tmp9) + (16*x4)), xmask, eviction_policy='evict_last')
tmp16 = tmp14 + tmp15
tmp17 = tl.load(in_ptr6 + (tmp13 + (4*tmp9) + (16*x4)), xmask, eviction_policy='evict_last')
tmp18 = tmp16 + tmp17
tmp19 = tmp4 + tmp18
tl.store(out_ptr0 + (x7), tmp19, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_12, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_15, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_18, (4, ), (1, ))
assert_size_stride(primals_19, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_20, (4, ), (1, ))
assert_size_stride(primals_21, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_22, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [var, mean, sub, normalized_feat], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mean_sub_var_0.run(primals_1, buf4, 16, 64, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [F], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 8, 8), (256, 64, 8, 1))
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var_1, mean_1, sub_1, normalized_feat_1], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
triton_per_fused_div_mean_sub_var_1.run(primals_4, buf10, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [H], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(primals_4, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1))
buf13 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [F], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf13, primals_3, 1024, grid=grid(1024), stream=stream0)
del primals_3
buf14 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf14, primals_6, 256, grid=grid(256), stream=stream0)
del primals_6
buf15 = empty_strided_cuda((4, 64, 16), (1024, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [S], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf13, (4, 64, 4), (256, 1, 64), 0), reinterpret_tensor(buf14, (4, 4, 16), (64, 16, 1), 0), out=buf15)
buf18 = empty_strided_cuda((4, 64, 16), (1024, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [S_1], Original ATen: [aten._softmax]
triton_per_fused__softmax_4.run(buf15, buf18, 256, 16, grid=grid(256), stream=stream0)
del buf15
buf19 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [H], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf19, primals_8, 256, grid=grid(256), stream=stream0)
del primals_8
buf20 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf19, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf18, (4, 16, 64), (1024, 1, 16), 0), out=buf20)
# Topologically Sorted Source Nodes: [O_2], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(reinterpret_tensor(buf20, (4, 4, 8, 8), (256, 64, 8, 1), 0), primals_9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 4, 8, 8), (256, 64, 8, 1))
buf26 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var_2, mean_2, sub_2, normalized_feat_2], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
triton_per_fused_div_mean_sub_var_1.run(primals_11, buf26, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [F_2], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 4, 4), (64, 16, 4, 1))
buf32 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var_3, mean_3, sub_3, normalized_feat_3], Original ATen: [aten.var, aten.mean, aten.sub, aten.div]
triton_per_fused_div_mean_sub_var_1.run(primals_14, buf32, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [G_2], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, primals_15, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [H_2], Original ATen: [aten.convolution]
buf34 = extern_kernels.convolution(primals_14, primals_17, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf34, (4, 4, 4, 4), (64, 16, 4, 1))
buf35 = buf27; del buf27 # reuse
# Topologically Sorted Source Nodes: [F_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf35, primals_13, 256, grid=grid(256), stream=stream0)
del primals_13
buf36 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [G_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf36, primals_16, 256, grid=grid(256), stream=stream0)
del primals_16
buf37 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [S_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf35, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf36, (4, 4, 16), (64, 16, 1), 0), out=buf37)
buf40 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [S_3], Original ATen: [aten._softmax]
triton_per_fused__softmax_5.run(buf37, buf40, 64, 16, grid=grid(64), stream=stream0)
del buf37
buf41 = buf34; del buf34 # reuse
# Topologically Sorted Source Nodes: [H_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf41, primals_18, 256, grid=grid(256), stream=stream0)
del primals_18
buf42 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [O_4], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf41, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf40, (4, 16, 16), (256, 1, 16), 0), out=buf42)
# Topologically Sorted Source Nodes: [O_6], Original ATen: [aten.convolution]
buf43 = extern_kernels.convolution(reinterpret_tensor(buf42, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_19, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 4, 4, 4), (64, 16, 4, 1))
buf44 = empty_strided_cuda((8, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_6.run(buf44, 8, grid=grid(8), stream=stream0)
buf45 = empty_strided_cuda((4, 4, 10, 10), (400, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [O_2, O_3, O_6, O_7, interpolate, add_4, pad], Original ATen: [aten.convolution, aten.add, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_add_convolution_reflection_pad2d_7.run(buf21, primals_10, primals_1, buf44, buf43, primals_20, primals_11, buf45, 1600, grid=grid(1600), stream=stream0)
del buf21
del buf43
del primals_1
del primals_10
del primals_11
del primals_20
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf46 = extern_kernels.convolution(buf45, primals_21, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 4, 8, 8), (256, 64, 8, 1))
buf47 = buf46; del buf46 # reuse
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf47, primals_22, 1024, grid=grid(1024), stream=stream0)
del primals_22
return (buf47, primals_2, primals_4, primals_5, primals_7, primals_9, primals_12, primals_14, primals_15, primals_17, primals_19, primals_21, buf4, buf10, buf18, reinterpret_tensor(buf20, (4, 4, 8, 8), (256, 64, 8, 1), 0), buf26, buf32, buf40, reinterpret_tensor(buf42, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf44, buf45, reinterpret_tensor(buf41, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf35, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf36, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf19, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf13, (4, 4, 64), (256, 64, 1), 0), reinterpret_tensor(buf14, (4, 16, 4), (64, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.backends.cudnn
def calc_mean_std(feat, eps=1e-05):
size = feat.size()
assert len(size) == 4
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def mean_variance_norm(feat):
size = feat.size()
mean, std = calc_mean_std(feat)
normalized_feat = (feat - mean.expand(size)) / std.expand(size)
return normalized_feat
class SANet(nn.Module):
def __init__(self, in_planes):
super(SANet, self).__init__()
self.f = nn.Conv2d(in_planes, in_planes, (1, 1))
self.g = nn.Conv2d(in_planes, in_planes, (1, 1))
self.h = nn.Conv2d(in_planes, in_planes, (1, 1))
self.sm = nn.Softmax(dim=-1)
self.out_conv = nn.Conv2d(in_planes, in_planes, (1, 1))
def forward(self, content, style):
F = self.f(mean_variance_norm(content))
G = self.g(mean_variance_norm(style))
H = self.h(style)
b, c, h, w = F.size()
F = F.view(b, -1, w * h).permute(0, 2, 1)
b, c, h, w = G.size()
G = G.view(b, -1, w * h)
S = torch.bmm(F, G)
S = self.sm(S)
b, c, h, w = H.size()
H = H.view(b, -1, w * h)
O = torch.bmm(H, S.permute(0, 2, 1))
b, c, h, w = content.size()
O = O.view(b, c, h, w)
O = self.out_conv(O)
O += content
return O
class Transform(nn.Module):
def __init__(self, in_planes):
super(Transform, self).__init__()
self.sanet4_1 = SANet(in_planes=in_planes)
self.sanet5_1 = SANet(in_planes=in_planes)
self.upsample5_1 = nn.Upsample(scale_factor=2, mode='nearest')
self.merge_conv_pad = nn.ReflectionPad2d((1, 1, 1, 1))
self.merge_conv = nn.Conv2d(in_planes, in_planes, (3, 3))
def forward(self, content4_1, style4_1, content5_1, style5_1):
return self.merge_conv(self.merge_conv_pad(self.sanet4_1(content4_1,
style4_1) + self.upsample5_1(self.sanet5_1(content5_1, style5_1))))
def get_inputs():
return [torch.rand([4, 4, 8, 8]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.backends.cudnn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_div_mean_sub_var_0(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp18 / tmp19
tmp21 = tmp0 - tmp20
tmp22 = 63.0
tmp23 = tmp16 / tmp22
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp21 / tmp26
tl.store(out_ptr2 + (r1 + 64 * x0), tmp27, xmask)
@triton.jit
def triton_per_fused_div_mean_sub_var_1(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = tmp0 - tmp20
tmp22 = 15.0
tmp23 = tmp16 / tmp22
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp21 / tmp26
tl.store(out_ptr2 + (r1 + 16 * x0), tmp27, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
@triton.jit
def triton_per_fused__softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_6(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_reflection_pad2d_7(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 10
x1 = xindex // 10 % 10
x4 = xindex // 100
x2 = xindex // 100 % 4
x7 = xindex
tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 +
x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4),
xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 +
x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4),
xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1
))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 +
x0))), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tl.full([XBLOCK], 4, tl.int32)
tmp7 = tmp5 + tmp6
tmp8 = tmp5 < 0
tmp9 = tl.where(tmp8, tmp7, tmp5)
tmp11 = tmp10 + tmp6
tmp12 = tmp10 < 0
tmp13 = tl.where(tmp12, tmp11, tmp10)
tmp14 = tl.load(in_ptr4 + (tmp13 + 4 * tmp9 + 16 * x4), xmask,
eviction_policy='evict_last')
tmp16 = tmp14 + tmp15
tmp17 = tl.load(in_ptr6 + (tmp13 + 4 * tmp9 + 16 * x4), xmask,
eviction_policy='evict_last')
tmp18 = tmp16 + tmp17
tmp19 = tmp4 + tmp18
tl.store(out_ptr0 + x7, tmp19, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_12, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_15, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_18, (4,), (1,))
assert_size_stride(primals_19, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_20, (4,), (1,))
assert_size_stride(primals_21, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_22, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mean_sub_var_0[grid(16)](primals_1, buf4, 16,
64, XBLOCK=8, num_warps=4, num_stages=1)
buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 8, 8), (256, 64, 8, 1))
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_div_mean_sub_var_1[grid(16)](primals_4, buf10, 16,
16, XBLOCK=1, num_warps=2, num_stages=1)
buf11 = extern_kernels.convolution(buf10, primals_5, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1))
buf12 = extern_kernels.convolution(primals_4, primals_7, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1))
buf13 = buf5
del buf5
triton_poi_fused_convolution_2[grid(1024)](buf13, primals_3, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf14 = buf11
del buf11
triton_poi_fused_convolution_3[grid(256)](buf14, primals_6, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
buf15 = empty_strided_cuda((4, 64, 16), (1024, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf13, (4, 64, 4), (256, 1,
64), 0), reinterpret_tensor(buf14, (4, 4, 16), (64, 16, 1), 0),
out=buf15)
buf18 = empty_strided_cuda((4, 64, 16), (1024, 16, 1), torch.float32)
triton_per_fused__softmax_4[grid(256)](buf15, buf18, 256, 16,
XBLOCK=8, num_warps=2, num_stages=1)
del buf15
buf19 = buf12
del buf12
triton_poi_fused_convolution_3[grid(256)](buf19, primals_8, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf20 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf19, (4, 4, 16), (64, 16, 1
), 0), reinterpret_tensor(buf18, (4, 16, 64), (1024, 1, 16), 0),
out=buf20)
buf21 = extern_kernels.convolution(reinterpret_tensor(buf20, (4, 4,
8, 8), (256, 64, 8, 1), 0), primals_9, stride=(1, 1), padding=(
0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf21, (4, 4, 8, 8), (256, 64, 8, 1))
buf26 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_div_mean_sub_var_1[grid(16)](primals_11, buf26, 16,
16, XBLOCK=1, num_warps=2, num_stages=1)
buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 4, 4), (64, 16, 4, 1))
buf32 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_div_mean_sub_var_1[grid(16)](primals_14, buf32, 16,
16, XBLOCK=1, num_warps=2, num_stages=1)
buf33 = extern_kernels.convolution(buf32, primals_15, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 4, 4, 4), (64, 16, 4, 1))
buf34 = extern_kernels.convolution(primals_14, primals_17, stride=(
1, 1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf34, (4, 4, 4, 4), (64, 16, 4, 1))
buf35 = buf27
del buf27
triton_poi_fused_convolution_3[grid(256)](buf35, primals_13, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
buf36 = buf33
del buf33
triton_poi_fused_convolution_3[grid(256)](buf36, primals_16, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_16
buf37 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf35, (4, 16, 4), (64, 1, 16
), 0), reinterpret_tensor(buf36, (4, 4, 16), (64, 16, 1), 0),
out=buf37)
buf40 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
triton_per_fused__softmax_5[grid(64)](buf37, buf40, 64, 16, XBLOCK=
32, num_warps=4, num_stages=1)
del buf37
buf41 = buf34
del buf34
triton_poi_fused_convolution_3[grid(256)](buf41, primals_18, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_18
buf42 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf41, (4, 4, 16), (64, 16, 1
), 0), reinterpret_tensor(buf40, (4, 16, 16), (256, 1, 16), 0),
out=buf42)
buf43 = extern_kernels.convolution(reinterpret_tensor(buf42, (4, 4,
4, 4), (64, 16, 4, 1), 0), primals_19, stride=(1, 1), padding=(
0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf43, (4, 4, 4, 4), (64, 16, 4, 1))
buf44 = empty_strided_cuda((8,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_6[grid(8)](buf44, 8,
XBLOCK=8, num_warps=1, num_stages=1)
buf45 = empty_strided_cuda((4, 4, 10, 10), (400, 100, 10, 1), torch
.float32)
triton_poi_fused__unsafe_index_add_convolution_reflection_pad2d_7[grid
(1600)](buf21, primals_10, primals_1, buf44, buf43, primals_20,
primals_11, buf45, 1600, XBLOCK=256, num_warps=4, num_stages=1)
del buf21
del buf43
del primals_1
del primals_10
del primals_11
del primals_20
buf46 = extern_kernels.convolution(buf45, primals_21, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 4, 8, 8), (256, 64, 8, 1))
buf47 = buf46
del buf46
triton_poi_fused_convolution_2[grid(1024)](buf47, primals_22, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_22
return (buf47, primals_2, primals_4, primals_5, primals_7, primals_9,
primals_12, primals_14, primals_15, primals_17, primals_19,
primals_21, buf4, buf10, buf18, reinterpret_tensor(buf20, (4, 4, 8,
8), (256, 64, 8, 1), 0), buf26, buf32, buf40, reinterpret_tensor(
buf42, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf44, buf45,
reinterpret_tensor(buf41, (4, 16, 4), (64, 1, 16), 0),
reinterpret_tensor(buf35, (4, 4, 16), (64, 16, 1), 0),
reinterpret_tensor(buf36, (4, 16, 4), (64, 1, 16), 0),
reinterpret_tensor(buf19, (4, 16, 4), (64, 1, 16), 0),
reinterpret_tensor(buf13, (4, 4, 64), (256, 64, 1), 0),
reinterpret_tensor(buf14, (4, 16, 4), (64, 1, 16), 0))
def calc_mean_std(feat, eps=1e-05):
size = feat.size()
assert len(size) == 4
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def mean_variance_norm(feat):
size = feat.size()
mean, std = calc_mean_std(feat)
normalized_feat = (feat - mean.expand(size)) / std.expand(size)
return normalized_feat
class SANet(nn.Module):
def __init__(self, in_planes):
super(SANet, self).__init__()
self.f = nn.Conv2d(in_planes, in_planes, (1, 1))
self.g = nn.Conv2d(in_planes, in_planes, (1, 1))
self.h = nn.Conv2d(in_planes, in_planes, (1, 1))
self.sm = nn.Softmax(dim=-1)
self.out_conv = nn.Conv2d(in_planes, in_planes, (1, 1))
def forward(self, content, style):
F = self.f(mean_variance_norm(content))
G = self.g(mean_variance_norm(style))
H = self.h(style)
b, c, h, w = F.size()
F = F.view(b, -1, w * h).permute(0, 2, 1)
b, c, h, w = G.size()
G = G.view(b, -1, w * h)
S = torch.bmm(F, G)
S = self.sm(S)
b, c, h, w = H.size()
H = H.view(b, -1, w * h)
O = torch.bmm(H, S.permute(0, 2, 1))
b, c, h, w = content.size()
O = O.view(b, c, h, w)
O = self.out_conv(O)
O += content
return O
class TransformNew(nn.Module):
def __init__(self, in_planes):
super(TransformNew, self).__init__()
self.sanet4_1 = SANet(in_planes=in_planes)
self.sanet5_1 = SANet(in_planes=in_planes)
self.upsample5_1 = nn.Upsample(scale_factor=2, mode='nearest')
self.merge_conv_pad = nn.ReflectionPad2d((1, 1, 1, 1))
self.merge_conv = nn.Conv2d(in_planes, in_planes, (3, 3))
def forward(self, input_0, input_1, input_2, input_3):
primals_2 = self.sanet4_1.f.weight
primals_3 = self.sanet4_1.f.bias
primals_5 = self.sanet4_1.g.weight
primals_6 = self.sanet4_1.g.bias
primals_7 = self.sanet4_1.h.weight
primals_8 = self.sanet4_1.h.bias
primals_9 = self.sanet4_1.out_conv.weight
primals_10 = self.sanet4_1.out_conv.bias
primals_12 = self.sanet5_1.f.weight
primals_13 = self.sanet5_1.f.bias
primals_15 = self.sanet5_1.g.weight
primals_16 = self.sanet5_1.g.bias
primals_17 = self.sanet5_1.h.weight
primals_18 = self.sanet5_1.h.bias
primals_19 = self.sanet5_1.out_conv.weight
primals_20 = self.sanet5_1.out_conv.bias
primals_21 = self.merge_conv.weight
primals_22 = self.merge_conv.bias
primals_1 = input_0
primals_4 = input_1
primals_11 = input_2
primals_14 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22])
return output[0]
| TimandXiyu/SANet-style-transfer- | Transform | false | 5,911 | [
"MIT"
] | 1 | 91c3dd1344d1dded61aa2e79618240a49345b40e | https://github.com/TimandXiyu/SANet-style-transfer-/tree/91c3dd1344d1dded61aa2e79618240a49345b40e | import torch
import torch.nn as nn
import torch.backends.cudnn
def calc_mean_std(feat, eps=1e-05):
size = feat.size()
assert len(size) == 4
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def mean_variance_norm(feat):
size = feat.size()
mean, std = calc_mean_std(feat)
normalized_feat = (feat - mean.expand(size)) / std.expand(size)
return normalized_feat
class SANet(nn.Module):
def __init__(self, in_planes):
super().__init__()
self.f = nn.Conv2d(in_planes, in_planes, (1, 1))
self.g = nn.Conv2d(in_planes, in_planes, (1, 1))
self.h = nn.Conv2d(in_planes, in_planes, (1, 1))
self.sm = nn.Softmax(dim=-1)
self.out_conv = nn.Conv2d(in_planes, in_planes, (1, 1))
def forward(self, content, style):
F = self.f(mean_variance_norm(content))
G = self.g(mean_variance_norm(style))
H = self.h(style)
b, c, h, w = F.size()
F = F.view(b, -1, w * h).permute(0, 2, 1)
b, c, h, w = G.size()
G = G.view(b, -1, w * h)
S = torch.bmm(F, G)
S = self.sm(S)
b, c, h, w = H.size()
H = H.view(b, -1, w * h)
O = torch.bmm(H, S.permute(0, 2, 1))
b, c, h, w = content.size()
O = O.view(b, c, h, w)
O = self.out_conv(O)
O += content
return O
class Model(nn.Module):
def __init__(self, in_planes):
super().__init__()
self.sanet4_1 = SANet(in_planes=in_planes)
self.sanet5_1 = SANet(in_planes=in_planes)
self.upsample5_1 = nn.Upsample(scale_factor=2, mode='nearest')
self.merge_conv_pad = nn.ReflectionPad2d((1, 1, 1, 1))
self.merge_conv = nn.Conv2d(in_planes, in_planes, (3, 3))
def forward(self, content4_1, style4_1, content5_1, style5_1):
return self.merge_conv(self.merge_conv_pad(self.sanet4_1(content4_1,
style4_1) + self.upsample5_1(self.sanet5_1(content5_1, style5_1))))
def get_inputs():
return [torch.rand([4, 4, 8, 8]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
VGG16 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/rn/crng7m5mguccwv3xvtgv4yl47k24ov5e26h7ejsq2geg3uuvz5og.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lf/clf45mspfcg7t5x4om2snxq42eoe4jywsisc72sbpggbkipki6jb.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qn/cqnvlz36e5n74qbwjehi6cgr4dntmtxxsduqflrrittcgu3yf256.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/rw/crwxihz2xdn6vknnrjr5if7hyms65a7dv6ub7vsls72ck5xfuwfz.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 65536
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7v/c7vlmp4ptmjjinootrsb47fer72573dvgxb4w77hrarddids2b3i.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 131072
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yl/cylsyrzru64h3777bghq4brfo5xznorpgywpstgksyzpqwzecdey.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ge/cget5nqcqgmfplthkcx4uyh5p3254jiox3fz5gndtsq6x3tz7htc.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 524288
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/is/cisv67wbtayxvweq3zuup7vz5ggkyk7ogfqvdtcenxk32kuw2gah.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dh/cdhxbkfmhejdlidurhhj3sinjzrczc4tfowdrhosuvb6ilr3gfwp.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_8 = async_compile.triton('triton_poi_fused_convolution_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/rv/crv3uzu52jbc4u62gio2klk6cj5xhjt7yazr75tq67kvtteddsn5.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ln/cln6ukrvrwq2yidze6n7xij67rihdsxpkkrbbuf6ni5zieakmtkx.py
# Topologically Sorted Source Nodes: [conv2d, x, conv2d_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# conv2d_1 => convolution_1
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lu/clux7aevgdsnhtjtdkdp6pwanzhifldlf6muiuvqh227hizpvw4x.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 2048) % 32
x1 = (xindex // 64) % 32
x0 = xindex % 64
x5 = (xindex // 2048)
x6 = xindex
tmp0 = (-1) + (2*x2)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x1)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-4160) + x0 + (128*x1) + (8192*x5)), tmp10, other=float("-inf"))
tmp12 = 2*x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4096) + x0 + (128*x1) + (8192*x5)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x1)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-4032) + x0 + (128*x1) + (8192*x5)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-64) + x0 + (128*x1) + (8192*x5)), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x5)), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x5)), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x2)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (4032 + x0 + (128*x1) + (8192*x5)), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x5)), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x5)), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tl.store(out_ptr0 + (x6), tmp51, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/n3/cn34mbt2rtob3eeqb7butchvtwaa2lxs5ritiirymjwyzcwqeits.py
# Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_3 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xi/cxidc4r5nvzmgqw6uydniyux5jy6pcxtdrc4ndkkyvb55hucusew.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_5 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_13 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 2048) % 16
x1 = (xindex // 128) % 16
x0 = xindex % 128
x5 = (xindex // 2048)
x6 = xindex
tmp0 = (-1) + (2*x2)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x1)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-4224) + x0 + (256*x1) + (8192*x5)), tmp10, other=float("-inf"))
tmp12 = 2*x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4096) + x0 + (256*x1) + (8192*x5)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x1)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3968) + x0 + (256*x1) + (8192*x5)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-128) + x0 + (256*x1) + (8192*x5)), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + (256*x1) + (8192*x5)), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (8192*x5)), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x2)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3968 + x0 + (256*x1) + (8192*x5)), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + (256*x1) + (8192*x5)), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4224 + x0 + (256*x1) + (8192*x5)), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + (x6), tmp51, None)
tl.store(out_ptr1 + (x6), tmp76, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/r4/cr4cxr5slxie5num5fkjya5y6p2mpesokrymomcbss4ipccdadwk.py
# Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_6 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/fc/cfc56xho3taq6zxujkrbo5vrqblszxprdkpvj7o2qq5rmj57gmwd.py
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_9 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_15 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 2048) % 8
x1 = (xindex // 256) % 8
x0 = xindex % 256
x5 = (xindex // 2048)
x6 = xindex
tmp0 = (-1) + (2*x2)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x1)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-4352) + x0 + (512*x1) + (8192*x5)), tmp10, other=float("-inf"))
tmp12 = 2*x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4096) + x0 + (512*x1) + (8192*x5)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x1)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3840) + x0 + (512*x1) + (8192*x5)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-256) + x0 + (512*x1) + (8192*x5)), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + (512*x1) + (8192*x5)), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (8192*x5)), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x2)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3840 + x0 + (512*x1) + (8192*x5)), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (8192*x5)), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4352 + x0 + (512*x1) + (8192*x5)), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + (x6), tmp51, None)
tl.store(out_ptr1 + (x6), tmp76, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/63/c63ymadmqa5pewt6lz2e5vbnqla654yqubhkwemi5viikn2tjwlb.py
# Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_7 => convolution_7
# x_10 => relu_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
triton_poi_fused_convolution_relu_16 = async_compile.triton('triton_poi_fused_convolution_relu_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hg/chg3owxajpnnkaztbgulow7nugph3ijagbis6kvfqyk742lqf6wt.py
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_13 => getitem_6, getitem_7
# Graph fragment:
# %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_17 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_17(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 4096) % 8
x1 = (xindex // 512) % 8
x6 = xindex
tmp0 = (-1) + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 8, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-4608) + x6), tmp10, other=float("-inf"))
tmp12 = x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4096) + x6), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3584) + x6), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-512) + x6), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x6), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (512 + x6), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3584 + x6), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x6), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4608 + x6), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + (x6), tmp51, None)
tl.store(out_ptr1 + (x6), tmp76, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/4o/c4oe7fptqnoo5uqexm4ny5m22bxvkxe45quom2tjrbsipnjsg6vt.py
# Topologically Sorted Source Nodes: [conv2d_13, x_17], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_13 => convolution_13
# x_17 => relu_13
# Graph fragment:
# %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_12, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {})
triton_poi_fused_convolution_relu_18 = async_compile.triton('triton_poi_fused_convolution_relu_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_18', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/do/cdoh2i4r6c75ujuvztesjcjyisrddwubb2w27jifo7k5b5co2p7x.py
# Topologically Sorted Source Nodes: [conv2d_14, x_19], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_14 => convolution_14
# x_19 => relu_14
# Graph fragment:
# %convolution_14 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_13, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_14 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_14,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_14, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_19 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 64], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 1024
y1 = (yindex // 1024)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (1024*x2) + (65536*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (64*y3)), tmp4, xmask)
tl.store(out_ptr1 + (y0 + (1024*x2) + (65536*y1)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31 = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256, ), (1, ))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256, ), (1, ))
assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (512, ), (1, ))
assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (512, ), (1, ))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512, ), (1, ))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512, ), (1, ))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512, ), (1, ))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512, ), (1, ))
assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (1024, ), (1, ))
assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_31, (1024, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_6, buf0, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_6
buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_8, buf1, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_8
buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_10, buf2, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_10
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_12, buf3, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_12
buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_14, buf4, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_14
buf5 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_16, buf5, 131072, 9, grid=grid(131072, 9), stream=stream0)
del primals_16
buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_18, buf6, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_18
buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_20, buf7, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_20
buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_22, buf8, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_22
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_24, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_24
buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_26, buf10, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_26
buf11 = empty_strided_cuda((1024, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_6.run(primals_28, buf11, 524288, 9, grid=grid(524288, 9), stream=stream0)
del primals_28
buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(primals_3, buf12, 12, 4096, grid=grid(12, 4096), stream=stream0)
del primals_3
buf13 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_8.run(primals_1, buf13, 192, 9, grid=grid(192, 9), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf12, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64))
del buf12
del buf13
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf15, primals_2, 1048576, grid=grid(1048576), stream=stream0)
del primals_2
buf16 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x, conv2d_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(primals_4, buf16, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d, x, conv2d_1], Original ATen: [aten.convolution, aten.relu]
buf17 = extern_kernels.convolution(buf15, buf16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 64, 64), (262144, 1, 4096, 64))
del buf15
del buf16
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [conv2d, x, conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf18, primals_5, 1048576, grid=grid(1048576), stream=stream0)
del primals_5
buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_11.run(buf18, buf19, 262144, grid=grid(262144), stream=stream0)
del buf18
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf19, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf21 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf21, primals_7, 524288, grid=grid(524288), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf23 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf23, primals_9, 524288, grid=grid(524288), stream=stream0)
del primals_9
buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32)
buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_13.run(buf23, buf24, buf25, 131072, grid=grid(131072), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf24, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf27, primals_11, 262144, grid=grid(262144), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf29 = buf28; del buf28 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf29, primals_13, 262144, grid=grid(262144), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf30 = extern_kernels.convolution(buf29, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf31 = buf30; del buf30 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_14.run(buf31, primals_15, 262144, grid=grid(262144), stream=stream0)
del primals_15
buf32 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32)
buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_15.run(buf31, buf32, buf33, 65536, grid=grid(65536), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf34 = extern_kernels.convolution(buf32, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf34, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf35 = buf34; del buf34 # reuse
# Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf35, primals_17, 131072, grid=grid(131072), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf36 = extern_kernels.convolution(buf35, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf37 = buf36; del buf36 # reuse
# Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf37, primals_19, 131072, grid=grid(131072), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf38 = extern_kernels.convolution(buf37, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf39 = buf38; del buf38 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, x_12], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf39, primals_21, 131072, grid=grid(131072), stream=stream0)
del primals_21
buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.int8)
# Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_17.run(buf39, buf40, buf41, 131072, grid=grid(131072), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution]
buf42 = extern_kernels.convolution(buf40, buf8, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf43 = buf42; del buf42 # reuse
# Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf43, primals_23, 131072, grid=grid(131072), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf44 = extern_kernels.convolution(buf43, buf9, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf44, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf45 = buf44; del buf44 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf45, primals_25, 131072, grid=grid(131072), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution]
buf46 = extern_kernels.convolution(buf45, buf10, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf47 = buf46; del buf46 # reuse
# Topologically Sorted Source Nodes: [conv2d_12, x_16], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_16.run(buf47, primals_27, 131072, grid=grid(131072), stream=stream0)
del primals_27
# Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution]
buf48 = extern_kernels.convolution(buf47, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf49 = buf48; del buf48 # reuse
# Topologically Sorted Source Nodes: [conv2d_13, x_17], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_18.run(buf49, primals_29, 262144, grid=grid(262144), stream=stream0)
del primals_29
# Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution]
buf50 = extern_kernels.convolution(buf49, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf50, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf51 = empty_strided_cuda((4, 1024, 8, 8), (65536, 64, 8, 1), torch.float32)
buf52 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_14, x_19], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_19.run(buf50, primals_31, buf51, buf52, 4096, 64, grid=grid(4096, 64), stream=stream0)
del buf50
del primals_31
return (buf51, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, primals_30, buf19, buf21, buf23, buf24, buf25, buf27, buf29, buf31, buf32, buf33, buf35, buf37, buf39, buf40, buf41, buf43, buf45, buf47, buf49, buf52, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((1024, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((1024, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.nn.functional as F
class Normalize:
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.mean = mean
self.std = std
def undo(self, imgarr):
proc_img = imgarr.copy()
proc_img[..., 0] = (self.std[0] * imgarr[..., 0] + self.mean[0]
) * 255.0
proc_img[..., 1] = (self.std[1] * imgarr[..., 1] + self.mean[1]
) * 255.0
proc_img[..., 2] = (self.std[2] * imgarr[..., 2] + self.mean[2]
) * 255.0
return proc_img
def __call__(self, img):
imgarr = np.asarray(img)
proc_img = np.empty_like(imgarr, np.float32)
proc_img[..., 0] = (imgarr[..., 0] / 255.0 - self.mean[0]) / self.std[0
]
proc_img[..., 1] = (imgarr[..., 1] / 255.0 - self.mean[1]) / self.std[1
]
proc_img[..., 2] = (imgarr[..., 2] / 255.0 - self.mean[2]) / self.std[2
]
return proc_img
class BaseNet(nn.Module):
def __init__(self):
super().__init__()
self.normalize = Normalize()
self.NormLayer = nn.BatchNorm2d
self.not_training = []
self.bn_frozen = []
self.from_scratch_layers = []
def _init_weights(self, path_to_weights):
None
weights_dict = torch.load(path_to_weights)
self.load_state_dict(weights_dict, strict=False)
def fan_out(self):
raise NotImplementedError
def fixed_layers(self):
return self.not_training
def _fix_running_stats(self, layer, fix_params=False):
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
if fix_params and layer not in self.not_training:
self.not_training.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_running_stats(m, fix_params)
else:
for m in layer.children():
self._fix_running_stats(m, fix_params)
def _fix_params(self, layer):
if isinstance(layer, nn.Conv2d) or isinstance(layer, self.NormLayer
) or isinstance(layer, nn.Linear):
self.not_training.append(layer)
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_params(m)
elif isinstance(layer, nn.Module):
if hasattr(layer, 'weight') or hasattr(layer, 'bias'):
None
for m in layer.children():
self._fix_params(m)
def _freeze_bn(self, layer):
if isinstance(layer, self.NormLayer):
layer.eval()
elif isinstance(layer, nn.Module):
for m in layer.children():
self._freeze_bn(m)
def train(self, mode=True):
super().train(mode)
for layer in self.not_training:
if hasattr(layer, 'weight') and layer.weight is not None:
layer.weight.requires_grad = False
if hasattr(layer, 'bias') and layer.bias is not None:
layer.bias.requires_grad = False
elif isinstance(layer, torch.nn.Module):
None
for bn_layer in self.bn_frozen:
self._freeze_bn(bn_layer)
def _lr_mult(self):
return 1.0, 2.0, 10.0, 20
def parameter_groups(self, base_lr, wd):
w_old, b_old, w_new, b_new = self._lr_mult()
groups = {'params': [], 'weight_decay': wd, 'lr': w_old * base_lr}, {
'params': [], 'weight_decay': 0.0, 'lr': b_old * base_lr}, {
'params': [], 'weight_decay': wd, 'lr': w_new * base_lr}, {'params'
: [], 'weight_decay': 0.0, 'lr': b_new * base_lr}
fixed_layers = self.fixed_layers()
for m in self.modules():
if m in fixed_layers:
continue
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear
) or isinstance(m, self.NormLayer):
if m.weight is not None:
if m in self.from_scratch_layers:
groups[2]['params'].append(m.weight)
else:
groups[0]['params'].append(m.weight)
if m.bias is not None:
if m in self.from_scratch_layers:
groups[3]['params'].append(m.bias)
else:
groups[1]['params'].append(m.bias)
elif hasattr(m, 'weight'):
None
for i, g in enumerate(groups):
None
return groups
class VGG16(BaseNet):
def __init__(self, fc6_dilation=1):
super(VGG16, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.fc6 = nn.Conv2d(512, 1024, 3, padding=fc6_dilation, dilation=
fc6_dilation)
self.drop6 = nn.Dropout2d(p=0.5)
self.fc7 = nn.Conv2d(1024, 1024, 1)
self._fix_params([self.conv1_1, self.conv1_2])
def fan_out(self):
return 1024
def forward(self, x):
return self.forward_as_dict(x)['conv6']
def forward_as_dict(self, x):
x = F.relu(self.conv1_1(x), inplace=True)
x = F.relu(self.conv1_2(x), inplace=True)
x = self.pool1(x)
x = F.relu(self.conv2_1(x), inplace=True)
x = F.relu(self.conv2_2(x), inplace=True)
x = self.pool2(x)
x = F.relu(self.conv3_1(x), inplace=True)
x = F.relu(self.conv3_2(x), inplace=True)
x = F.relu(self.conv3_3(x), inplace=True)
conv3 = x
x = self.pool3(x)
x = F.relu(self.conv4_1(x), inplace=True)
x = F.relu(self.conv4_2(x), inplace=True)
x = F.relu(self.conv4_3(x), inplace=True)
x = self.pool4(x)
x = F.relu(self.conv5_1(x), inplace=True)
x = F.relu(self.conv5_2(x), inplace=True)
x = F.relu(self.conv5_3(x), inplace=True)
x = F.relu(self.fc6(x), inplace=True)
x = self.drop6(x)
x = F.relu(self.fc7(x), inplace=True)
conv6 = x
return dict({'conv3': conv3, 'conv6': conv6})
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_convolution_8(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 2048 % 32
x1 = xindex // 64 % 32
x0 = xindex % 64
x5 = xindex // 2048
x6 = xindex
tmp0 = -1 + 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-4160 + x0 + 128 * x1 + 8192 * x5), tmp10,
other=float('-inf'))
tmp12 = 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4096 + x0 + 128 * x1 + 8192 * x5), tmp16,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-4032 + x0 + 128 * x1 + 8192 * x5), tmp23,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-64 + x0 + 128 * x1 + 8192 * x5), tmp30,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x5), tmp33, other=
float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x5), tmp36,
other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (4032 + x0 + 128 * x1 + 8192 * x5), tmp43,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x5), tmp46,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x5), tmp49,
other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tl.store(out_ptr0 + x6, tmp51, None)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_13(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 2048 % 16
x1 = xindex // 128 % 16
x0 = xindex % 128
x5 = xindex // 2048
x6 = xindex
tmp0 = -1 + 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-4224 + x0 + 256 * x1 + 8192 * x5), tmp10,
other=float('-inf'))
tmp12 = 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4096 + x0 + 256 * x1 + 8192 * x5), tmp16,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3968 + x0 + 256 * x1 + 8192 * x5), tmp23,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-128 + x0 + 256 * x1 + 8192 * x5), tmp30,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + 256 * x1 + 8192 * x5), tmp33, other=
float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 8192 * x5), tmp36,
other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3968 + x0 + 256 * x1 + 8192 * x5), tmp43,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + 256 * x1 + 8192 * x5), tmp46,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4224 + x0 + 256 * x1 + 8192 * x5), tmp49,
other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + x6, tmp51, None)
tl.store(out_ptr1 + x6, tmp76, None)
@triton.jit
def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_15(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 2048 % 8
x1 = xindex // 256 % 8
x0 = xindex % 256
x5 = xindex // 2048
x6 = xindex
tmp0 = -1 + 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-4352 + x0 + 512 * x1 + 8192 * x5), tmp10,
other=float('-inf'))
tmp12 = 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4096 + x0 + 512 * x1 + 8192 * x5), tmp16,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3840 + x0 + 512 * x1 + 8192 * x5), tmp23,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-256 + x0 + 512 * x1 + 8192 * x5), tmp30,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + 512 * x1 + 8192 * x5), tmp33, other=
float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 8192 * x5), tmp36,
other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3840 + x0 + 512 * x1 + 8192 * x5), tmp43,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 8192 * x5), tmp46,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4352 + x0 + 512 * x1 + 8192 * x5), tmp49,
other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + x6, tmp51, None)
tl.store(out_ptr1 + x6, tmp76, None)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_17(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 4096 % 8
x1 = xindex // 512 % 8
x6 = xindex
tmp0 = -1 + x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 8, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-4608 + x6), tmp10, other=float('-inf'))
tmp12 = x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4096 + x6), tmp16, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3584 + x6), tmp23, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-512 + x6), tmp30, other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + x6, tmp33, other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (512 + x6), tmp36, other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3584 + x6), tmp43, other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4096 + x6), tmp46, other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (4608 + x6), tmp49, other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + x6, tmp51, None)
tl.store(out_ptr1 + x6, tmp76, None)
@triton.jit
def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 1024
y1 = yindex // 1024
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 1024 * x2 + 65536 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 64 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 1024 * x2 + 65536 * y1), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31) = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (512,), (1,))
assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (512,), (1,))
assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_21, (512,), (1,))
assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_23, (512,), (1,))
assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_25, (512,), (1,))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512,), (1,))
assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (1024,), (1,))
assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_31, (1024,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(8192, 9)](primals_6, buf0, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_1[grid(16384, 9)](primals_8, buf1, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_2[grid(32768, 9)](primals_10, buf2, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_3[grid(65536, 9)](primals_12, buf3, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_12
buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_3[grid(65536, 9)](primals_14, buf4, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_14
buf5 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_4[grid(131072, 9)](primals_16, buf5, 131072, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_16
buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_18, buf6, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_18
buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_20, buf7, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_20
buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_22, buf8, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_22
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_24, buf9, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_24
buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_5[grid(262144, 9)](primals_26, buf10, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_26
buf11 = empty_strided_cuda((1024, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_6[grid(524288, 9)](primals_28, buf11, 524288, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_28
buf12 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3),
torch.float32)
triton_poi_fused_convolution_7[grid(12, 4096)](primals_3, buf12, 12,
4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf13 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32)
triton_poi_fused_convolution_8[grid(192, 9)](primals_1, buf13, 192,
9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf14 = extern_kernels.convolution(buf12, buf13, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64))
del buf12
del buf13
buf15 = buf14
del buf14
triton_poi_fused_convolution_relu_9[grid(1048576)](buf15, primals_2,
1048576, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf16 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_convolution_relu_10[grid(4096, 9)](primals_4,
buf16, 4096, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf17 = extern_kernels.convolution(buf15, buf16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 64, 64), (262144, 1, 4096, 64))
del buf15
del buf16
buf18 = buf17
del buf17
triton_poi_fused_convolution_relu_9[grid(1048576)](buf18, primals_5,
1048576, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_11[grid(262144)](buf18,
buf19, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del buf18
buf20 = extern_kernels.convolution(buf19, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf21 = buf20
del buf20
triton_poi_fused_convolution_relu_12[grid(524288)](buf21, primals_7,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf22 = extern_kernels.convolution(buf21, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf23 = buf22
del buf22
triton_poi_fused_convolution_relu_12[grid(524288)](buf23, primals_9,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128),
torch.float32)
buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_13[grid(131072)](buf23,
buf24, buf25, 131072, XBLOCK=512, num_warps=8, num_stages=1)
buf26 = extern_kernels.convolution(buf24, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf27 = buf26
del buf26
triton_poi_fused_convolution_relu_14[grid(262144)](buf27,
primals_11, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_11
buf28 = extern_kernels.convolution(buf27, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf29 = buf28
del buf28
triton_poi_fused_convolution_relu_14[grid(262144)](buf29,
primals_13, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_13
buf30 = extern_kernels.convolution(buf29, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf31 = buf30
del buf30
triton_poi_fused_convolution_relu_14[grid(262144)](buf31,
primals_15, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_15
buf32 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256),
torch.float32)
buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_15[grid(65536)](buf31,
buf32, buf33, 65536, XBLOCK=256, num_warps=4, num_stages=1)
buf34 = extern_kernels.convolution(buf32, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf34, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf35 = buf34
del buf34
triton_poi_fused_convolution_relu_16[grid(131072)](buf35,
primals_17, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_17
buf36 = extern_kernels.convolution(buf35, buf6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf37 = buf36
del buf36
triton_poi_fused_convolution_relu_16[grid(131072)](buf37,
primals_19, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_19
buf38 = extern_kernels.convolution(buf37, buf7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf39 = buf38
del buf38
triton_poi_fused_convolution_relu_16[grid(131072)](buf39,
primals_21, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_21
buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_17[grid(131072)](buf39,
buf40, buf41, 131072, XBLOCK=512, num_warps=8, num_stages=1)
buf42 = extern_kernels.convolution(buf40, buf8, stride=(1, 1),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf43 = buf42
del buf42
triton_poi_fused_convolution_relu_16[grid(131072)](buf43,
primals_23, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_23
buf44 = extern_kernels.convolution(buf43, buf9, stride=(1, 1),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf44, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf45 = buf44
del buf44
triton_poi_fused_convolution_relu_16[grid(131072)](buf45,
primals_25, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_25
buf46 = extern_kernels.convolution(buf45, buf10, stride=(1, 1),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf47 = buf46
del buf46
triton_poi_fused_convolution_relu_16[grid(131072)](buf47,
primals_27, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_27
buf48 = extern_kernels.convolution(buf47, buf11, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf49 = buf48
del buf48
triton_poi_fused_convolution_relu_18[grid(262144)](buf49,
primals_29, 262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_29
buf50 = extern_kernels.convolution(buf49, primals_30, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf50, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf51 = empty_strided_cuda((4, 1024, 8, 8), (65536, 64, 8, 1),
torch.float32)
buf52 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_19[grid(4096, 64)
](buf50, primals_31, buf51, buf52, 4096, 64, XBLOCK=32, YBLOCK=
32, num_warps=4, num_stages=1)
del buf50
del primals_31
return (buf51, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8,
buf9, buf10, buf11, primals_30, buf19, buf21, buf23, buf24, buf25,
buf27, buf29, buf31, buf32, buf33, buf35, buf37, buf39, buf40,
buf41, buf43, buf45, buf47, buf49, buf52)
class Normalize:
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.mean = mean
self.std = std
def undo(self, imgarr):
proc_img = imgarr.copy()
proc_img[..., 0] = (self.std[0] * imgarr[..., 0] + self.mean[0]
) * 255.0
proc_img[..., 1] = (self.std[1] * imgarr[..., 1] + self.mean[1]
) * 255.0
proc_img[..., 2] = (self.std[2] * imgarr[..., 2] + self.mean[2]
) * 255.0
return proc_img
def __call__(self, img):
imgarr = np.asarray(img)
proc_img = np.empty_like(imgarr, np.float32)
proc_img[..., 0] = (imgarr[..., 0] / 255.0 - self.mean[0]) / self.std[0
]
proc_img[..., 1] = (imgarr[..., 1] / 255.0 - self.mean[1]) / self.std[1
]
proc_img[..., 2] = (imgarr[..., 2] / 255.0 - self.mean[2]) / self.std[2
]
return proc_img
class BaseNet(nn.Module):
def __init__(self):
super().__init__()
self.normalize = Normalize()
self.NormLayer = nn.BatchNorm2d
self.not_training = []
self.bn_frozen = []
self.from_scratch_layers = []
def _init_weights(self, path_to_weights):
None
weights_dict = torch.load(path_to_weights)
self.load_state_dict(weights_dict, strict=False)
def fan_out(self):
raise NotImplementedError
def fixed_layers(self):
return self.not_training
def _fix_running_stats(self, layer, fix_params=False):
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
if fix_params and layer not in self.not_training:
self.not_training.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_running_stats(m, fix_params)
else:
for m in layer.children():
self._fix_running_stats(m, fix_params)
def _fix_params(self, layer):
if isinstance(layer, nn.Conv2d) or isinstance(layer, self.NormLayer
) or isinstance(layer, nn.Linear):
self.not_training.append(layer)
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_params(m)
elif isinstance(layer, nn.Module):
if hasattr(layer, 'weight') or hasattr(layer, 'bias'):
None
for m in layer.children():
self._fix_params(m)
def _freeze_bn(self, layer):
if isinstance(layer, self.NormLayer):
layer.eval()
elif isinstance(layer, nn.Module):
for m in layer.children():
self._freeze_bn(m)
def train(self, mode=True):
super().train(mode)
for layer in self.not_training:
if hasattr(layer, 'weight') and layer.weight is not None:
layer.weight.requires_grad = False
if hasattr(layer, 'bias') and layer.bias is not None:
layer.bias.requires_grad = False
elif isinstance(layer, torch.nn.Module):
None
for bn_layer in self.bn_frozen:
self._freeze_bn(bn_layer)
def _lr_mult(self):
return 1.0, 2.0, 10.0, 20
def parameter_groups(self, base_lr, wd):
w_old, b_old, w_new, b_new = self._lr_mult()
groups = {'params': [], 'weight_decay': wd, 'lr': w_old * base_lr}, {
'params': [], 'weight_decay': 0.0, 'lr': b_old * base_lr}, {
'params': [], 'weight_decay': wd, 'lr': w_new * base_lr}, {'params'
: [], 'weight_decay': 0.0, 'lr': b_new * base_lr}
fixed_layers = self.fixed_layers()
for m in self.modules():
if m in fixed_layers:
continue
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear
) or isinstance(m, self.NormLayer):
if m.weight is not None:
if m in self.from_scratch_layers:
groups[2]['params'].append(m.weight)
else:
groups[0]['params'].append(m.weight)
if m.bias is not None:
if m in self.from_scratch_layers:
groups[3]['params'].append(m.bias)
else:
groups[1]['params'].append(m.bias)
elif hasattr(m, 'weight'):
None
for i, g in enumerate(groups):
None
return groups
class VGG16New(BaseNet):
def __init__(self, fc6_dilation=1):
super(VGG16New, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_2 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.conv5_3 = nn.Conv2d(512, 512, 3, padding=2, dilation=2)
self.fc6 = nn.Conv2d(512, 1024, 3, padding=fc6_dilation, dilation=
fc6_dilation)
self.drop6 = nn.Dropout2d(p=0.5)
self.fc7 = nn.Conv2d(1024, 1024, 1)
self._fix_params([self.conv1_1, self.conv1_2])
def fan_out(self):
return 1024
def forward_as_dict(self, x):
x = F.relu(self.conv1_1(x), inplace=True)
x = F.relu(self.conv1_2(x), inplace=True)
x = self.pool1(x)
x = F.relu(self.conv2_1(x), inplace=True)
x = F.relu(self.conv2_2(x), inplace=True)
x = self.pool2(x)
x = F.relu(self.conv3_1(x), inplace=True)
x = F.relu(self.conv3_2(x), inplace=True)
x = F.relu(self.conv3_3(x), inplace=True)
conv3 = x
x = self.pool3(x)
x = F.relu(self.conv4_1(x), inplace=True)
x = F.relu(self.conv4_2(x), inplace=True)
x = F.relu(self.conv4_3(x), inplace=True)
x = self.pool4(x)
x = F.relu(self.conv5_1(x), inplace=True)
x = F.relu(self.conv5_2(x), inplace=True)
x = F.relu(self.conv5_3(x), inplace=True)
x = F.relu(self.fc6(x), inplace=True)
x = self.drop6(x)
x = F.relu(self.fc7(x), inplace=True)
conv6 = x
return dict({'conv3': conv3, 'conv6': conv6})
def forward(self, input_0):
primals_1 = self.conv1_1.weight
primals_2 = self.conv1_1.bias
primals_4 = self.conv1_2.weight
primals_5 = self.conv1_2.bias
primals_6 = self.conv2_1.weight
primals_7 = self.conv2_1.bias
primals_8 = self.conv2_2.weight
primals_9 = self.conv2_2.bias
primals_10 = self.conv3_1.weight
primals_11 = self.conv3_1.bias
primals_12 = self.conv3_2.weight
primals_13 = self.conv3_2.bias
primals_14 = self.conv3_3.weight
primals_15 = self.conv3_3.bias
primals_16 = self.conv4_1.weight
primals_17 = self.conv4_1.bias
primals_18 = self.conv4_2.weight
primals_19 = self.conv4_2.bias
primals_20 = self.conv4_3.weight
primals_21 = self.conv4_3.bias
primals_22 = self.conv5_1.weight
primals_23 = self.conv5_1.bias
primals_24 = self.conv5_2.weight
primals_25 = self.conv5_2.bias
primals_26 = self.conv5_3.weight
primals_27 = self.conv5_3.bias
primals_28 = self.fc6.weight
primals_29 = self.fc6.bias
primals_30 = self.fc7.weight
primals_31 = self.fc7.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31])
return output[0]
| SharhadBashar/1-stage-wseg | VGG16 | false | 5,913 | [
"Apache-2.0"
] | 1 | 83bf13444f5039ffed2de1605f09b3f90b525586 | https://github.com/SharhadBashar/1-stage-wseg/tree/83bf13444f5039ffed2de1605f09b3f90b525586 | import torch
import numpy as np
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.nn.functional as F
class Normalize:
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.mean = mean
self.std = std
def undo(self, imgarr):
proc_img = imgarr.copy()
proc_img[..., 0] = (self.std[0] * imgarr[..., 0] + self.mean[0]
) * 255.0
proc_img[..., 1] = (self.std[1] * imgarr[..., 1] + self.mean[1]
) * 255.0
proc_img[..., 2] = (self.std[2] * imgarr[..., 2] + self.mean[2]
) * 255.0
return proc_img
def __call__(self, img):
imgarr = np.asarray(img)
proc_img = np.empty_like(imgarr, np.float32)
proc_img[..., 0] = (imgarr[..., 0] / 255.0 - self.mean[0]) / self.std[0
]
proc_img[..., 1] = (imgarr[..., 1] / 255.0 - self.mean[1]) / self.std[1
]
proc_img[..., 2] = (imgarr[..., 2] / 255.0 - self.mean[2]) / self.std[2
]
return proc_img
class BaseNet(nn.Module):
def __init__(self):
super().__init__()
self.normalize = Normalize()
self.NormLayer = nn.BatchNorm2d
self.not_training = []
self.bn_frozen = []
self.from_scratch_layers = []
def _init_weights(self, path_to_weights):
None
weights_dict = torch.load(path_to_weights)
self.load_state_dict(weights_dict, strict=False)
def fan_out(self):
raise NotImplementedError
def fixed_layers(self):
return self.not_training
def _fix_running_stats(self, layer, fix_params=False):
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
if fix_params and layer not in self.not_training:
self.not_training.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_running_stats(m, fix_params)
else:
for m in layer.children():
self._fix_running_stats(m, fix_params)
def _fix_params(self, layer):
if isinstance(layer, nn.Conv2d) or isinstance(layer, self.NormLayer
) or isinstance(layer, nn.Linear):
self.not_training.append(layer)
if isinstance(layer, self.NormLayer):
self.bn_frozen.append(layer)
elif isinstance(layer, list):
for m in layer:
self._fix_params(m)
elif isinstance(layer, nn.Module):
if hasattr(layer, 'weight') or hasattr(layer, 'bias'):
None
for m in layer.children():
self._fix_params(m)
def _freeze_bn(self, layer):
if isinstance(layer, self.NormLayer):
layer.eval()
elif isinstance(layer, nn.Module):
for m in layer.children():
self._freeze_bn(m)
def train(self, mode=True):
super().train(mode)
for layer in self.not_training:
if hasattr(layer, 'weight') and layer.weight is not None:
layer.weight.requires_grad = False
if hasattr(layer, 'bias') and layer.bias is not None:
layer.bias.requires_grad = False
elif isinstance(layer, torch.nn.Module):
None
for bn_layer in self.bn_frozen:
self._freeze_bn(bn_layer)
def _lr_mult(self):
return 1.0, 2.0, 10.0, 20
def parameter_groups(self, base_lr, wd):
w_old, b_old, w_new, b_new = self._lr_mult()
groups = {'params': [], 'weight_decay': wd, 'lr': w_old * base_lr}, {
'params': [], 'weight_decay': 0.0, 'lr': b_old * base_lr}, {
'params': [], 'weight_decay': wd, 'lr': w_new * base_lr}, {'params'
: [], 'weight_decay': 0.0, 'lr': b_new * base_lr}
fixed_layers = self.fixed_layers()
for m in self.modules():
if m in fixed_layers:
co
# ... truncated (>4000 chars) for memory efficiency |
L2Norm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6a/c6a35is5xc4yuuudhk35ynyzeik2yzsihpcsqzmdwl6cptcbwppk.py
# Topologically Sorted Source Nodes: [mul, pow_1, sum_1, clamp, rsqrt, mul_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.clamp, aten.rsqrt]
# Source node to ATen node mapping:
# clamp => clamp_min
# mul => mul
# mul_1 => mul_1
# pow_1 => pow_1
# rsqrt => rsqrt
# sum_1 => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %primals_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_1, 1e-09), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%clamp_min,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %rsqrt), kwargs = {})
triton_poi_fused_clamp_mul_pow_rsqrt_sum_0 = async_compile.triton('triton_poi_fused_clamp_mul_pow_rsqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_mul_pow_rsqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_mul_pow_rsqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp3 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = 1e-09
tmp15 = triton_helpers.maximum(tmp13, tmp14)
tmp16 = libdevice.rsqrt(tmp15)
tmp17 = tmp2 * tmp16
tl.store(out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, pow_1, sum_1, clamp, rsqrt, mul_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.clamp, aten.rsqrt]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_mul_pow_rsqrt_sum_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class L2Norm(nn.Module):
"""Channel-wise L2 normalization."""
def __init__(self, in_channels):
super(L2Norm, self).__init__()
self.weight = nn.Parameter(torch.randn(in_channels))
def forward(self, x):
"""out = weight * x / sqrt(\\sum x_i^2)"""
unsqueezed_weight = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3)
return unsqueezed_weight * x * x.pow(2).sum(1, keepdim=True).clamp(min
=1e-09).rsqrt()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_mul_pow_rsqrt_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp3 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = 1e-09
tmp15 = triton_helpers.maximum(tmp13, tmp14)
tmp16 = libdevice.rsqrt(tmp15)
tmp17 = tmp2 * tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_mul_pow_rsqrt_sum_0[grid(256)](primals_1,
primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class L2NormNew(nn.Module):
"""Channel-wise L2 normalization."""
def __init__(self, in_channels):
super(L2NormNew, self).__init__()
self.weight = nn.Parameter(torch.randn(in_channels))
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| TropComplique/ssd-pytorch | L2Norm | false | 5,914 | [
"MIT"
] | 1 | e91af875c65dc64a21b838a6645fc803ef690dcf | https://github.com/TropComplique/ssd-pytorch/tree/e91af875c65dc64a21b838a6645fc803ef690dcf | import torch
import torch.nn as nn
class Model(nn.Module):
"""Channel-wise L2 normalization."""
def __init__(self, in_channels):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_channels))
def forward(self, x):
"""out = weight * x / sqrt(\\sum x_i^2)"""
unsqueezed_weight = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3)
return unsqueezed_weight * x * x.pow(2).sum(1, keepdim=True).clamp(min
=1e-09).rsqrt()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
UnitNorm | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/fh/cfhnguw4v6uy4ysjg54ojclakwi3bj2lte6oqizl4rpf4lcxpiyp.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.div]
# Source node to ATen node mapping:
# x => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x3), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class UnitNorm(nn.Module):
def forward(self, x):
x = nn.functional.normalize(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class UnitNormNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| UMBCvision/CMSF | UnitNorm | false | 5,915 | [
"MIT"
] | 1 | 4aaac1833a0c8cfd67aa05762e43478983d74c08 | https://github.com/UMBCvision/CMSF/tree/4aaac1833a0c8cfd67aa05762e43478983d74c08 | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class Model(nn.Module):
def forward(self, x):
x = nn.functional.normalize(x, dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Whitening2d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/pz/cpz2ab5bxm2jrtozlay24l6x3u34xfoykzic62oanlphvhbhsmqq.py
# Topologically Sorted Source Nodes: [xn], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# xn => sub
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_1, %view_1), kwargs = {})
triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = 1.0
tmp11 = tmp9 / tmp10
tmp12 = tmp0 - tmp11
tl.store(out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/26/c26zwauaaytxanohrf6qcchljjpi4s5jhwcytcndqna5l35tfj5a.py
# Topologically Sorted Source Nodes: [contiguous, T], Original ATen: [aten.clone, aten.view]
# Source node to ATen node mapping:
# T => view_2
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1]), kwargs = {})
triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hp/chpqt2szom5jgqscppfvmprzb6esy645vi4ngfkax5vxbvcpriac.py
# Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add]
# Source node to ATen node mapping:
# eye => eq, full_default, full_default_1, iota_1, where
# eye_1 => device_put
# f_cov => div
# f_cov_shrinked => add
# mul => mul
# mul_1 => mul_1
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mm, 3), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1.0), kwargs = {})
# %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cpu, requires_grad: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze_2, %iota_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %full_default_1), kwargs = {})
# %device_put : [num_users=2] = call_function[target=torch.ops.prims.device_put.default](args = (%where, cuda:0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%device_put, 0.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused__to_copy_add_div_eye_mul_2 = async_compile.triton('triton_poi_fused__to_copy_add_div_eye_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_div_eye_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_div_eye_mul_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = 0.3333333333333333
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = x1
tmp6 = x0
tmp7 = tmp5 == tmp6
tmp8 = 0.0
tmp9 = tl.where(tmp7, tmp3, tmp8)
tmp10 = tmp9 * tmp8
tmp11 = tmp4 + tmp10
tl.store(in_out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/am/camagq7vaatmgdqo7yb5xw5letqk3v3jhganlmizmzy3sx2xi7gu.py
# Topologically Sorted Source Nodes: [eye, eye_1], Original ATen: [aten.eye, aten._to_copy]
# Source node to ATen node mapping:
# eye => eq, full_default, full_default_1, iota_1, where
# eye_1 => device_put
# Graph fragment:
# %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cpu, requires_grad: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze_2, %iota_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %full_default_1), kwargs = {})
# %device_put : [num_users=2] = call_function[target=torch.ops.prims.device_put.default](args = (%where, cuda:0), kwargs = {})
triton_poi_fused__to_copy_eye_3 = async_compile.triton('triton_poi_fused__to_copy_eye_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_eye_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_eye_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [xn], Original ATen: [aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_sub_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous, T], Original ATen: [aten.clone, aten.view]
triton_poi_fused_clone_view_1.run(buf0, buf1, 4, 4, grid=grid(4, 4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
del buf1
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add]
triton_poi_fused__to_copy_add_div_eye_mul_2.run(buf3, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked, cholesky], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add, aten.cholesky]
buf4 = torch.ops.aten.cholesky.default(buf3)
buf5 = buf4
del buf4
buf6 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [eye, eye_1], Original ATen: [aten.eye, aten._to_copy]
triton_poi_fused__to_copy_eye_3.run(buf6, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [eye, eye_1, triangular_solve], Original ATen: [aten.eye, aten._to_copy, aten.triangular_solve]
buf7 = torch.ops.aten.triangular_solve.default(buf6, buf5, False)
del buf5
buf8 = buf7[0]
del buf7
buf10 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
triton_poi_fused_clone_view_1.run(buf8, buf10, 4, 4, grid=grid(4, 4), stream=stream0)
del buf8
# Topologically Sorted Source Nodes: [decorrelated], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf0, reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 1, 1), (4, 1, 1, 1))
del buf0
del buf10
return (reinterpret_tensor(buf11, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.cuda.amp import custom_fwd
from torch.nn.functional import conv2d
class Whitening2d(nn.Module):
def __init__(self, output_dim: 'int', eps: 'float'=0.0):
"""Layer that computes hard whitening for W-MSE using the Cholesky decomposition.
Args:
output_dim (int): number of dimension of projected features.
eps (float, optional): eps for numerical stability in Cholesky decomposition. Defaults
to 0.0.
"""
super(Whitening2d, self).__init__()
self.output_dim = output_dim
self.eps = eps
@custom_fwd(cast_inputs=torch.float32)
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
"""Performs whitening using the Cholesky decomposition.
Args:
x (torch.Tensor): a batch or slice of projected features.
Returns:
torch.Tensor: a batch or slice of whitened features.
"""
x = x.unsqueeze(2).unsqueeze(3)
m = x.mean(0).view(self.output_dim, -1).mean(-1).view(1, -1, 1, 1)
xn = x - m
T = xn.permute(1, 0, 2, 3).contiguous().view(self.output_dim, -1)
f_cov = torch.mm(T, T.permute(1, 0)) / (T.shape[-1] - 1)
eye = torch.eye(self.output_dim).type(f_cov.type())
f_cov_shrinked = (1 - self.eps) * f_cov + self.eps * eye
inv_sqrt = torch.triangular_solve(eye, torch.cholesky(
f_cov_shrinked), upper=False)[0]
inv_sqrt = inv_sqrt.contiguous().view(self.output_dim, self.
output_dim, 1, 1)
decorrelated = conv2d(xn, inv_sqrt)
return decorrelated.squeeze(2).squeeze(2)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = 1.0
tmp11 = tmp9 / tmp10
tmp12 = tmp0 - tmp11
tl.store(out_ptr0 + x2, tmp12, xmask)
@triton.jit
def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__to_copy_add_div_eye_mul_2(in_out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = 0.3333333333333333
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = x1
tmp6 = x0
tmp7 = tmp5 == tmp6
tmp8 = 0.0
tmp9 = tl.where(tmp7, tmp3, tmp8)
tmp10 = tmp9 * tmp8
tmp11 = tmp4 + tmp10
tl.store(in_out_ptr0 + x2, tmp11, xmask)
@triton.jit
def triton_poi_fused__to_copy_eye_3(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + x2, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_sub_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_clone_view_1[grid(4, 4)](buf0, buf1, 4, 4, XBLOCK=
4, YBLOCK=4, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0),
out=buf2)
del buf1
buf3 = buf2
del buf2
triton_poi_fused__to_copy_add_div_eye_mul_2[grid(16)](buf3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf4 = torch.ops.aten.cholesky.default(buf3)
buf5 = buf4
del buf4
buf6 = buf3
del buf3
triton_poi_fused__to_copy_eye_3[grid(16)](buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf7 = torch.ops.aten.triangular_solve.default(buf6, buf5, False)
del buf5
buf8 = buf7[0]
del buf7
buf10 = buf6
del buf6
triton_poi_fused_clone_view_1[grid(4, 4)](buf8, buf10, 4, 4, XBLOCK
=4, YBLOCK=4, num_warps=1, num_stages=1)
del buf8
buf11 = extern_kernels.convolution(buf0, reinterpret_tensor(buf10,
(4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 1, 1), (4, 1, 1, 1))
del buf0
del buf10
return reinterpret_tensor(buf11, (4, 4), (4, 1), 0),
class Whitening2dNew(nn.Module):
def __init__(self, output_dim: 'int', eps: 'float'=0.0):
"""Layer that computes hard whitening for W-MSE using the Cholesky decomposition.
Args:
output_dim (int): number of dimension of projected features.
eps (float, optional): eps for numerical stability in Cholesky decomposition. Defaults
to 0.0.
"""
super(Whitening2dNew, self).__init__()
self.output_dim = output_dim
self.eps = eps
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| TranNhiem/MVAR_SSL | Whitening2d | false | 5,916 | [
"MIT"
] | 1 | 339964db4d40f06a92866675ff99ef67cd968cca | https://github.com/TranNhiem/MVAR_SSL/tree/339964db4d40f06a92866675ff99ef67cd968cca | import torch
import torch.nn as nn
from torch.cuda.amp import custom_fwd
from torch.nn.functional import conv2d
class Model(nn.Module):
def __init__(self, output_dim: 'int', eps: 'float'=0.0):
"""Layer that computes hard whitening for W-MSE using the Cholesky decomposition.
Args:
output_dim (int): number of dimension of projected features.
eps (float, optional): eps for numerical stability in Cholesky decomposition. Defaults
to 0.0.
"""
super().__init__()
self.output_dim = output_dim
self.eps = eps
@custom_fwd(cast_inputs=torch.float32)
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
"""Performs whitening using the Cholesky decomposition.
Args:
x (torch.Tensor): a batch or slice of projected features.
Returns:
torch.Tensor: a batch or slice of whitened features.
"""
x = x.unsqueeze(2).unsqueeze(3)
m = x.mean(0).view(self.output_dim, -1).mean(-1).view(1, -1, 1, 1)
xn = x - m
T = xn.permute(1, 0, 2, 3).contiguous().view(self.output_dim, -1)
f_cov = torch.mm(T, T.permute(1, 0)) / (T.shape[-1] - 1)
eye = torch.eye(self.output_dim).type(f_cov.type())
f_cov_shrinked = (1 - self.eps) * f_cov + self.eps * eye
inv_sqrt = torch.triangular_solve(eye, torch.cholesky(
f_cov_shrinked), upper=False)[0]
inv_sqrt = inv_sqrt.contiguous().view(self.output_dim, self.
output_dim, 1, 1)
decorrelated = conv2d(xn, inv_sqrt)
return decorrelated.squeeze(2).squeeze(2)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
UpsampleConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2p/c2p2g6z5cnwgmcytmn6bd4uzzitkx4ci3mw5ixnkeko52nzsgidt.py
# Topologically Sorted Source Nodes: [x, pad], Original ATen: [aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index_1, _unsafe_index_2
# x => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_1, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused__unsafe_index_reflection_pad2d_0 = async_compile.triton('triton_poi_fused__unsafe_index_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 24) % 24
x0 = xindex % 24
x2 = (xindex // 576)
x5 = xindex
tmp0 = 15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-4) + x1)))))
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.25
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = 15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-4) + x0)))))
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x5), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jc/cjcbfhcw6kiucyihurc5yanxtc3clpjklncxxzwn6c5byglh5ccd.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_2, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7056
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 441) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 24, 24), (2304, 576, 24, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, pad], Original ATen: [aten._unsafe_index, aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_reflection_pad2d_0.run(primals_1, buf0, 9216, grid=grid(9216), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 21, 21), (1764, 441, 21, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 7056, grid=grid(7056), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class UpsampleConv2d(nn.Module):
"""
Avoid checkerboard patterns by upsampling the image and convolving.
https://distill.pub/2016/deconv-checkerboard/
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, upsample):
"""Set parameters for upsampling."""
super(UpsampleConv2d, self).__init__()
self.upsample = upsample
self.padding = nn.ReflectionPad2d(padding)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
"""
Upsample then convolve the image.
"We’ve had our best results with nearest-neighbor interpolation, and
had difficulty making bilinear resize work. This may simply mean that,
for our models, the nearest-neighbor happened to work well with
hyper-parameters optimized for deconvolution. It might also point at
trickier issues with naively using bilinear interpolation, where it
resists high-frequency image features too strongly. We don’t
necessarily think that either approach is the final solution to
upsampling, but they do fix the checkerboard artifacts."
(https://distill.pub/2016/deconv-checkerboard/)
"""
x = F.interpolate(x, mode='nearest', scale_factor=self.upsample)
return self.conv(self.padding(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'stride': 1, 'padding': 4, 'upsample': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_reflection_pad2d_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 24 % 24
x0 = xindex % 24
x2 = xindex // 576
x5 = xindex
tmp0 = 15 + -1 * tl_math.abs(-15 + tl_math.abs(-4 + x1))
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.25
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = 15 + -1 * tl_math.abs(-15 + tl_math.abs(-4 + x0))
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x5, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 7056
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 441 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 24, 24), (2304, 576, 24, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_reflection_pad2d_0[grid(9216)](primals_1
, buf0, 9216, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 21, 21), (1764, 441, 21, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(7056)](buf2, primals_3, 7056,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0
class UpsampleConv2dNew(nn.Module):
"""
Avoid checkerboard patterns by upsampling the image and convolving.
https://distill.pub/2016/deconv-checkerboard/
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, upsample):
"""Set parameters for upsampling."""
super(UpsampleConv2dNew, self).__init__()
self.upsample = upsample
self.padding = nn.ReflectionPad2d(padding)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_3 = self.conv.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| TrueMatthewKirkham/face-preserving-style-transfer | UpsampleConv2d | false | 5,917 | [
"MIT"
] | 1 | ae8a9509570227ea52776fba85658022124c886c | https://github.com/TrueMatthewKirkham/face-preserving-style-transfer/tree/ae8a9509570227ea52776fba85658022124c886c | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
"""
Avoid checkerboard patterns by upsampling the image and convolving.
https://distill.pub/2016/deconv-checkerboard/
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, upsample):
"""Set parameters for upsampling."""
super().__init__()
self.upsample = upsample
self.padding = nn.ReflectionPad2d(padding)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
"""
Upsample then convolve the image.
"We’ve had our best results with nearest-neighbor interpolation, and
had difficulty making bilinear resize work. This may simply mean that,
for our models, the nearest-neighbor happened to work well with
hyper-parameters optimized for deconvolution. It might also point at
trickier issues with naively using bilinear interpolation, where it
resists high-frequency image features too strongly. We don’t
necessarily think that either approach is the final solution to
upsampling, but they do fix the checkerboard artifacts."
(https://distill.pub/2016/deconv-checkerboard/)
"""
x = F.interpolate(x, mode='nearest', scale_factor=self.upsample)
return self.conv(self.padding(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'stride': 1, 'padding': 4, 'upsample': 4}]
|
LayerNormChannel | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/zf/czfnaeipqg4a3qzttb2l6zy5ng44vshk3lfmp25jc2er665hxsmw.py
# Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub]
# Source node to ATen node mapping:
# sub => sub
# u => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xv/cxvd7z437vxfpacdwxehqwb4b4td64d2z3gex2vzjg46iitryrpn.py
# Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# pow_1 => pow_1
# s => mean_1
# sqrt => sqrt
# x => div
# x_1 => add_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_1, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %unsqueeze_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + (x3), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
del primals_3
return (buf1, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class LayerNormChannel(nn.Module):
"""
LayerNorm only for Channel Dimension.
Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, eps=1e-05):
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x):
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight.unsqueeze(-1).unsqueeze(-1) * x + self.bias.unsqueeze(
-1).unsqueeze(-1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + x3, tmp21, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(256)](primals_2,
buf0, primals_3, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
del primals_3
return buf1, primals_1
class LayerNormChannelNew(nn.Module):
"""
LayerNorm only for Channel Dimension.
Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, eps=1e-05):
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| TranNhiem/MVAR_SSL | LayerNormChannel | false | 5,918 | [
"MIT"
] | 1 | 339964db4d40f06a92866675ff99ef67cd968cca | https://github.com/TranNhiem/MVAR_SSL/tree/339964db4d40f06a92866675ff99ef67cd968cca | import torch
import torch.nn as nn
class Model(nn.Module):
"""
LayerNorm only for Channel Dimension.
Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, eps=1e-05):
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x):
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight.unsqueeze(-1).unsqueeze(-1) * x + self.bias.unsqueeze(
-1).unsqueeze(-1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
MarginRankingLearningLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sc/cscajnmzdrm7d2dvn5f4jrby62rwvhgtbjggn7cxaiyxnxwgt2do.py
# Topologically Sorted Source Nodes: [sub, final_target, margin_ranking_loss], Original ATen: [aten.sub, aten.sign, aten.neg, aten.mul, aten.add, aten.clamp_min, aten.mean]
# Source node to ATen node mapping:
# final_target => sign
# margin_ranking_loss => add, clamp_min, mean, mul, neg, sub_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_4), kwargs = {})
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sign,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_1, %slice_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sub_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%mul, 1.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min,), kwargs = {})
triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0 = async_compile.triton('triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 2],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 2
RBLOCK: tl.constexpr = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp7 = tl.load(in_ptr0 + (2 + r0), None)
tmp22 = tl.load(in_ptr2 + (r0), None)
tmp23 = tl.load(in_ptr2 + (2 + r0), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (tmp4), None, eviction_policy='evict_last')
tmp8 = tmp7 + tmp1
tmp9 = tmp7 < 0
tmp10 = tl.where(tmp9, tmp8, tmp7)
tl.device_assert((0 <= tmp10) & (tmp10 < 4), "index out of bounds: 0 <= tmp10 < 4")
tmp12 = tl.load(in_ptr1 + (tmp10), None, eviction_policy='evict_last')
tmp13 = tmp6 - tmp12
tmp14 = tl.full([1, 1], 0, tl.int32)
tmp15 = tmp14 < tmp13
tmp16 = tmp15.to(tl.int8)
tmp17 = tmp13 < tmp14
tmp18 = tmp17.to(tl.int8)
tmp19 = tmp16 - tmp18
tmp20 = tmp19.to(tmp13.dtype)
tmp21 = -tmp20
tmp24 = tmp22 - tmp23
tmp25 = tmp21 * tmp24
tmp26 = 1.0
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK])
tmp32 = tl.sum(tmp30, 1)[:, None]
tmp33 = 2.0
tmp34 = tmp32 / tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp34, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 1), (1, 1))
assert_size_stride(arg1_1, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [random], Original ATen: [aten.randperm]
buf0 = torch.ops.aten.randperm.default(4, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [sub, final_target, margin_ranking_loss], Original ATen: [aten.sub, aten.sign, aten.neg, aten.mul, aten.add, aten.clamp_min, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0.run(buf3, buf1, arg1_1, arg0_1, 1, 2, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
class MarginRankingLearningLoss(nn.Module):
def __init__(self, margin=1.0):
super(MarginRankingLearningLoss, self).__init__()
self.margin = margin
def forward(self, inputs, targets):
random = torch.randperm(inputs.size(0))
inputs[random]
pred_lossi = inputs[:inputs.size(0) // 2]
pred_lossj = inputs[inputs.size(0) // 2:]
target_loss = targets.reshape(inputs.size(0), 1)
target_loss = target_loss[random]
target_lossi = target_loss[:inputs.size(0) // 2]
target_lossj = target_loss[inputs.size(0) // 2:]
final_target = torch.sign(target_lossi - target_lossj)
return F.margin_ranking_loss(pred_lossi, pred_lossj, final_target,
margin=self.margin, reduction='mean')
def get_inputs():
return [torch.rand([4, 1]), torch.rand([4, 1])]
def get_init_inputs():
return [[], {}]
| import torch
from torch import device
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 2
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp7 = tl.load(in_ptr0 + (2 + r0), None)
tmp22 = tl.load(in_ptr2 + r0, None)
tmp23 = tl.load(in_ptr2 + (2 + r0), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + tmp4, None, eviction_policy='evict_last')
tmp8 = tmp7 + tmp1
tmp9 = tmp7 < 0
tmp10 = tl.where(tmp9, tmp8, tmp7)
tl.device_assert((0 <= tmp10) & (tmp10 < 4),
'index out of bounds: 0 <= tmp10 < 4')
tmp12 = tl.load(in_ptr1 + tmp10, None, eviction_policy='evict_last')
tmp13 = tmp6 - tmp12
tmp14 = tl.full([1, 1], 0, tl.int32)
tmp15 = tmp14 < tmp13
tmp16 = tmp15.to(tl.int8)
tmp17 = tmp13 < tmp14
tmp18 = tmp17.to(tl.int8)
tmp19 = tmp16 - tmp18
tmp20 = tmp19.to(tmp13.dtype)
tmp21 = -tmp20
tmp24 = tmp22 - tmp23
tmp25 = tmp21 * tmp24
tmp26 = 1.0
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK])
tmp32 = tl.sum(tmp30, 1)[:, None]
tmp33 = 2.0
tmp34 = tmp32 / tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp34, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 1), (1, 1))
assert_size_stride(arg1_1, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.randperm.default(4, device=device(type='cuda',
index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
get_raw_stream(0)
triton_per_fused_add_clamp_min_mean_mul_neg_sign_sub_0[grid(1)](buf3,
buf1, arg1_1, arg0_1, 1, 2, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del buf1
return buf3,
class MarginRankingLearningLossNew(nn.Module):
def __init__(self, margin=1.0):
super(MarginRankingLearningLossNew, self).__init__()
self.margin = margin
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| VKCOM/TopicsDataset | MarginRankingLearningLoss | false | 5,919 | [
"MIT"
] | 1 | 149919321ba61a8f17b22f62f60f4aedec43d72b | https://github.com/VKCOM/TopicsDataset/tree/149919321ba61a8f17b22f62f60f4aedec43d72b | import torch
from torch import nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, margin=1.0):
super().__init__()
self.margin = margin
def forward(self, inputs, targets):
random = torch.randperm(inputs.size(0))
inputs[random]
pred_lossi = inputs[:inputs.size(0) // 2]
pred_lossj = inputs[inputs.size(0) // 2:]
target_loss = targets.reshape(inputs.size(0), 1)
target_loss = target_loss[random]
target_lossi = target_loss[:inputs.size(0) // 2]
target_lossj = target_loss[inputs.size(0) // 2:]
final_target = torch.sign(target_lossi - target_lossj)
return F.margin_ranking_loss(pred_lossi, pred_lossj, final_target,
margin=self.margin, reduction='mean')
def get_inputs():
return [torch.rand([4, 1]), torch.rand([4, 1])]
def get_init_inputs():
return []
|
GumbelQuantizer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3c/c3cxuxrkufhtjpkanb7bmjh4miaeayjksucdjglrpsjmm7iwflss.py
# Topologically Sorted Source Nodes: [soft_one_hot], Original ATen: [aten.log, aten.neg, aten.add, aten._softmax]
# Source node to ATen node mapping:
# soft_one_hot => add, exp, log, neg, sum_1
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%exponential,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %neg), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_poi_fused__softmax_add_log_neg_1 = async_compile.triton('triton_poi_fused__softmax_add_log_neg_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_log_neg_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask)
tmp7 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp8 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask)
tmp14 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp15 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask)
tmp21 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp22 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask)
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tmp0 + tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp9 = tl_math.log(tmp8)
tmp10 = -tmp9
tmp11 = tmp7 + tmp10
tmp12 = tmp11 * tmp5
tmp13 = triton_helpers.maximum(tmp6, tmp12)
tmp16 = tl_math.log(tmp15)
tmp17 = -tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp18 * tmp5
tmp20 = triton_helpers.maximum(tmp13, tmp19)
tmp23 = tl_math.log(tmp22)
tmp24 = -tmp23
tmp25 = tmp21 + tmp24
tmp26 = tmp25 * tmp5
tmp27 = triton_helpers.maximum(tmp20, tmp26)
tmp28 = tmp6 - tmp27
tmp29 = tmp28 * tmp5
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp12 - tmp27
tmp32 = tmp31 * tmp5
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp30 + tmp33
tmp35 = tmp19 - tmp27
tmp36 = tmp35 * tmp5
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp34 + tmp37
tmp39 = tmp26 - tmp27
tmp40 = tmp39 * tmp5
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp38 + tmp41
tl.store(out_ptr0 + (x2), tmp27, xmask)
tl.store(out_ptr1 + (x2), tmp42, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ca/ccaf5kb4lzhk7zvtpgvsqruuov5rticohcxtbx2ug2773kvirhsx.py
# Topologically Sorted Source Nodes: [soft_one_hot, q_z], Original ATen: [aten.log, aten.neg, aten.add, aten._softmax]
# Source node to ATen node mapping:
# q_z => amax_1, exp_1, sub_1
# soft_one_hot => add, div_1, exp, log, neg
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%exponential,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %neg), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution, [1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_add_log_neg_2 = async_compile.triton('triton_poi_fused__softmax_add_log_neg_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_log_neg_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp7 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tmp0 + tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp8 = tmp6 - tmp7
tmp9 = tmp8 * tmp5
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 / tmp11
tmp15 = triton_helpers.maximum(tmp13, tmp14)
tmp17 = triton_helpers.maximum(tmp15, tmp16)
tmp19 = triton_helpers.maximum(tmp17, tmp18)
tmp20 = tmp0 - tmp19
tmp21 = tl_math.exp(tmp20)
tl.store(in_out_ptr0 + (x3), tmp12, xmask)
tl.store(out_ptr0 + (x3), tmp21, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2s/c2s3zo6qtbodb6bdwv46ozxj4nxxymp76igm7emvdafvrj3673sn.py
# Topologically Sorted Source Nodes: [z_q], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# z_q => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/u7/cu7ffzplxrjnumdhgwnhmfftk3s6t7gc5vwgldniafzjdoyhvfef.py
# Topologically Sorted Source Nodes: [q_z], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# q_z => div_2, sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sh/csh7rygsl4sm54vpl5kx4pe5bgguz6hjabikoyrau3tjgb75xh4n.py
# Topologically Sorted Source Nodes: [mul, add, log, mul_1, sum_1, kl], Original ATen: [aten.mul, aten.add, aten.log, aten.sum, aten.mean]
# Source node to ATen node mapping:
# add => add_1
# kl => mean
# log => log_1
# mul => mul
# mul_1 => mul_1
# sum_1 => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, 4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-10), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %log_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {})
triton_per_fused_add_log_mean_mul_sum_5 = async_compile.triton('triton_per_fused_add_log_mean_mul_sum_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mean_mul_sum_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_log_mean_mul_sum_5(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp7 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp19 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp1 = 4.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-10
tmp4 = tmp2 + tmp3
tmp5 = tl_math.log(tmp4)
tmp6 = tmp0 * tmp5
tmp8 = tmp7 * tmp1
tmp9 = tmp8 + tmp3
tmp10 = tl_math.log(tmp9)
tmp11 = tmp7 * tmp10
tmp12 = tmp6 + tmp11
tmp14 = tmp13 * tmp1
tmp15 = tmp14 + tmp3
tmp16 = tl_math.log(tmp15)
tmp17 = tmp13 * tmp16
tmp18 = tmp12 + tmp17
tmp20 = tmp19 * tmp1
tmp21 = tmp20 + tmp3
tmp22 = tl_math.log(tmp21)
tmp23 = tmp19 * tmp22
tmp24 = tmp18 + tmp23
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp28 = 64.0
tmp29 = tmp27 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [soft_one_hot], Original ATen: [aten.exponential]
buf3 = torch.ops.aten.exponential.default(buf2)
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [soft_one_hot], Original ATen: [aten.log, aten.neg, aten.add, aten._softmax]
triton_poi_fused__softmax_add_log_neg_1.run(buf1, buf4, buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = buf4; del buf4 # reuse
buf10 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [soft_one_hot, q_z], Original ATen: [aten.log, aten.neg, aten.add, aten._softmax]
triton_poi_fused__softmax_add_log_neg_2.run(buf7, buf1, buf5, buf6, buf10, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [z_q], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf7, buf8, 64, 4, grid=grid(64, 4), stream=stream0)
buf9 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z_q], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (1, 64, 4), (0, 4, 1), 0), reinterpret_tensor(primals_4, (1, 4, 4), (16, 4, 1), 0), out=buf9)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [q_z], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf10, buf11, 256, grid=grid(256), stream=stream0)
del buf10
buf12 = empty_strided_cuda((), (), torch.float32)
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [mul, add, log, mul_1, sum_1, kl], Original ATen: [aten.mul, aten.add, aten.log, aten.sum, aten.mean]
triton_per_fused_add_log_mean_mul_sum_5.run(buf13, buf11, 1, 64, grid=grid(1), stream=stream0)
del buf11
return (reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf13, primals_1, primals_3, buf1, buf7, reinterpret_tensor(buf8, (1, 4, 64), (256, 1, 4), 0), reinterpret_tensor(primals_4, (1, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import functional as F
class GumbelQuantizer(nn.Module):
def __init__(self, input_dim, num_latents, embedding_dim):
super().__init__()
self.embedding_dim = embedding_dim
self.num_latents = num_latents
self.proj = nn.Conv2d(input_dim, num_latents, 1)
self.embed = nn.Embedding(num_latents, embedding_dim)
def forward(self, x):
x = self.proj(x)
soft_one_hot = F.gumbel_softmax(x, dim=1, hard=False, tau=1.0)
z_q = torch.einsum('b n h w, n d -> b d h w', soft_one_hot, self.
embed.weight)
q_z = F.softmax(x, dim=1)
kl = torch.sum(q_z * torch.log(q_z * self.num_latents + 1e-10), dim=1
).mean()
return z_q, kl
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'num_latents': 4, 'embedding_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask)
tmp7 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp8 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask)
tmp14 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp15 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask)
tmp21 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp22 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask)
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tmp0 + tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp9 = tl_math.log(tmp8)
tmp10 = -tmp9
tmp11 = tmp7 + tmp10
tmp12 = tmp11 * tmp5
tmp13 = triton_helpers.maximum(tmp6, tmp12)
tmp16 = tl_math.log(tmp15)
tmp17 = -tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp18 * tmp5
tmp20 = triton_helpers.maximum(tmp13, tmp19)
tmp23 = tl_math.log(tmp22)
tmp24 = -tmp23
tmp25 = tmp21 + tmp24
tmp26 = tmp25 * tmp5
tmp27 = triton_helpers.maximum(tmp20, tmp26)
tmp28 = tmp6 - tmp27
tmp29 = tmp28 * tmp5
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp12 - tmp27
tmp32 = tmp31 * tmp5
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp30 + tmp33
tmp35 = tmp19 - tmp27
tmp36 = tmp35 * tmp5
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp34 + tmp37
tmp39 = tmp26 - tmp27
tmp40 = tmp39 * tmp5
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp38 + tmp41
tl.store(out_ptr0 + x2, tmp27, xmask)
tl.store(out_ptr1 + x2, tmp42, xmask)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp7 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tmp0 + tmp3
tmp5 = 1.0
tmp6 = tmp4 * tmp5
tmp8 = tmp6 - tmp7
tmp9 = tmp8 * tmp5
tmp10 = tl_math.exp(tmp9)
tmp12 = tmp10 / tmp11
tmp15 = triton_helpers.maximum(tmp13, tmp14)
tmp17 = triton_helpers.maximum(tmp15, tmp16)
tmp19 = triton_helpers.maximum(tmp17, tmp18)
tmp20 = tmp0 - tmp19
tmp21 = tl_math.exp(tmp20)
tl.store(in_out_ptr0 + x3, tmp12, xmask)
tl.store(out_ptr0 + x3, tmp21, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused_add_log_mean_mul_sum_5(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp7 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp19 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp1 = 4.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-10
tmp4 = tmp2 + tmp3
tmp5 = tl_math.log(tmp4)
tmp6 = tmp0 * tmp5
tmp8 = tmp7 * tmp1
tmp9 = tmp8 + tmp3
tmp10 = tl_math.log(tmp9)
tmp11 = tmp7 * tmp10
tmp12 = tmp6 + tmp11
tmp14 = tmp13 * tmp1
tmp15 = tmp14 + tmp3
tmp16 = tl_math.log(tmp15)
tmp17 = tmp13 * tmp16
tmp18 = tmp12 + tmp17
tmp20 = tmp19 * tmp1
tmp21 = tmp20 + tmp3
tmp22 = tl_math.log(tmp21)
tmp23 = tmp19 * tmp22
tmp24 = tmp18 + tmp23
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp28 = 64.0
tmp29 = tmp27 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp29, None)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = torch.ops.aten.exponential.default(buf2)
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
triton_poi_fused__softmax_add_log_neg_1[grid(64)](buf1, buf4, buf5,
buf6, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf7 = buf4
del buf4
buf10 = buf2
del buf2
triton_poi_fused__softmax_add_log_neg_2[grid(256)](buf7, buf1, buf5,
buf6, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch
.float32)
triton_poi_fused_clone_3[grid(64, 4)](buf7, buf8, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf9 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf8, (1, 64, 4), (0, 4, 1),
0), reinterpret_tensor(primals_4, (1, 4, 4), (16, 4, 1), 0),
out=buf9)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_4[grid(256)](buf10, buf11, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del buf10
buf12 = empty_strided_cuda((), (), torch.float32)
buf13 = buf12
del buf12
triton_per_fused_add_log_mean_mul_sum_5[grid(1)](buf13, buf11, 1,
64, XBLOCK=1, num_warps=2, num_stages=1)
del buf11
return reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 1, 16, 4), 0
), buf13, primals_1, primals_3, buf1, buf7, reinterpret_tensor(buf8,
(1, 4, 64), (256, 1, 4), 0), reinterpret_tensor(primals_4, (1, 4, 4
), (16, 1, 4), 0)
class GumbelQuantizerNew(nn.Module):
def __init__(self, input_dim, num_latents, embedding_dim):
super().__init__()
self.embedding_dim = embedding_dim
self.num_latents = num_latents
self.proj = nn.Conv2d(input_dim, num_latents, 1)
self.embed = nn.Embedding(num_latents, embedding_dim)
def forward(self, input_0):
primals_1 = self.proj.weight
primals_2 = self.proj.bias
primals_4 = self.embed.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
| TobiasNorlund/vq-vae | GumbelQuantizer | false | 5,920 | [
"Apache-2.0"
] | 1 | bdfc35f35491e8d4877a13f7f84d6cbdcc69daa0 | https://github.com/TobiasNorlund/vq-vae/tree/bdfc35f35491e8d4877a13f7f84d6cbdcc69daa0 | import torch
import torch.nn as nn
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self, input_dim, num_latents, embedding_dim):
super().__init__()
self.embedding_dim = embedding_dim
self.num_latents = num_latents
self.proj = nn.Conv2d(input_dim, num_latents, 1)
self.embed = nn.Embedding(num_latents, embedding_dim)
def forward(self, x):
x = self.proj(x)
soft_one_hot = F.gumbel_softmax(x, dim=1, hard=False, tau=1.0)
z_q = torch.einsum('b n h w, n d -> b d h w', soft_one_hot, self.
embed.weight)
q_z = F.softmax(x, dim=1)
kl = torch.sum(q_z * torch.log(q_z * self.num_latents + 1e-10), dim=1
).mean()
return z_q, kl
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.