entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
sequencelengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
| pytorch_code
stringlengths 200
4.05k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
MemoryEfficientMish | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nt/cnt242zndfm3n4oylofk2hfby6qwsvn3dgogtgqskjur3zjntaph.py
# Topologically Sorted Source Nodes: [softplus, tanh, mul], Original ATen: [aten.softplus, aten.tanh, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# softplus => exp, gt, log1p, where
# tanh => tanh
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%where,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %tanh), kwargs = {})
triton_poi_fused_mul_softplus_tanh_0 = async_compile.triton('triton_poi_fused_mul_softplus_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_softplus_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp0 * tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus, tanh, mul], Original ATen: [aten.softplus, aten.tanh, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_softplus_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class MemoryEfficientMish(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x)))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
def forward(self, x):
return self.F.apply(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp0 * tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_softplus_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MemoryEfficientMishNew(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x)))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AkshayGanesh/yolov5processor | MemoryEfficientMish | false | 4,805 | [
"MIT"
] | 1 | 788accfa93798729c002b2c9b4f943284ff97cad | https://github.com/AkshayGanesh/yolov5processor/tree/788accfa93798729c002b2c9b4f943284ff97cad | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x)))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
def forward(self, x):
return self.F.apply(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
EqualLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/fl/cflw6zjzdk2wqtau7m6nsei5vavjfijzxhb37zaa3xp4yxpw5yb2.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 1), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, linear], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, lr_mul=1, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim))
self.lr_mul = lr_mul
def forward(self, input):
return F.linear(input, self.weight * self.lr_mul, bias=self.bias *
self.lr_mul)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4, 'out_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.model_zoo
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), (
4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1,
beta=1, out=buf2)
del buf0
del buf1
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class EqualLinearNew(nn.Module):
def __init__(self, in_dim, out_dim, lr_mul=1, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim))
self.lr_mul = lr_mul
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Aitical/ADspeech2face | EqualLinear | false | 4,806 | [
"MIT"
] | 1 | 2e811ff8cc7333729f4b77d1b1067296253e8e38 | https://github.com/Aitical/ADspeech2face/tree/2e811ff8cc7333729f4b77d1b1067296253e8e38 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo
class Model(nn.Module):
def __init__(self, in_dim, out_dim, lr_mul=1, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim))
self.lr_mul = lr_mul
def forward(self, input):
return F.linear(input, self.weight * self.lr_mul, bias=self.bias *
self.lr_mul)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
BCEBlurWithLogitsLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6d/c6dyebqciiqelxutevln3jrr6ejxbak6nijla5hzjl7sfewrng52.py
# Topologically Sorted Source Nodes: [loss, pred, dx, sub_1, truediv, exp, alpha_factor, loss_1, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.sigmoid, aten.sub, aten.div, aten.exp, aten.rsub, aten.mul, aten.mean]
# Source node to ATen node mapping:
# alpha_factor => sub_5
# dx => sub_3
# exp => exp_1
# loss => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# loss_1 => mul_1
# mean => mean
# pred => sigmoid
# sub_1 => sub_4
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg1_1,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, %arg0_1), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_3, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_4, 0.050100000000000006), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %sub_5), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused_binary_cross_entropy_with_logits_div_exp_mean_mul_rsub_sigmoid_sub_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_div_exp_mean_mul_rsub_sigmoid_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_div_exp_mean_mul_rsub_sigmoid_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_div_exp_mean_mul_rsub_sigmoid_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.sigmoid(tmp3)
tmp14 = tmp13 - tmp0
tmp15 = tmp14 - tmp1
tmp16 = 19.96007984031936
tmp17 = tmp15 * tmp16
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp1 - tmp18
tmp20 = tmp12 * tmp19
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tmp24 = 256.0
tmp25 = tmp23 / tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp25, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss, pred, dx, sub_1, truediv, exp, alpha_factor, loss_1, mean], Original ATen: [aten.binary_cross_entropy_with_logits, aten.sigmoid, aten.sub, aten.div, aten.exp, aten.rsub, aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_div_exp_mean_mul_rsub_sigmoid_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class BCEBlurWithLogitsLoss(nn.Module):
def __init__(self, alpha=0.05):
super(BCEBlurWithLogitsLoss, self).__init__()
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')
self.alpha = alpha
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
pred = torch.sigmoid(pred)
dx = pred - true
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 0.0001))
loss *= alpha_factor
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_div_exp_mean_mul_rsub_sigmoid_sub_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.sigmoid(tmp3)
tmp14 = tmp13 - tmp0
tmp15 = tmp14 - tmp1
tmp16 = 19.96007984031936
tmp17 = tmp15 * tmp16
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp1 - tmp18
tmp20 = tmp12 * tmp19
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tmp24 = 256.0
tmp25 = tmp23 / tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp25, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_div_exp_mean_mul_rsub_sigmoid_sub_0[
grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class BCEBlurWithLogitsLossNew(nn.Module):
def __init__(self, alpha=0.05):
super(BCEBlurWithLogitsLossNew, self).__init__()
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')
self.alpha = alpha
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| AkshayGanesh/yolov5processor | BCEBlurWithLogitsLoss | false | 4,807 | [
"MIT"
] | 1 | 788accfa93798729c002b2c9b4f943284ff97cad | https://github.com/AkshayGanesh/yolov5processor/tree/788accfa93798729c002b2c9b4f943284ff97cad | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, alpha=0.05):
super().__init__()
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')
self.alpha = alpha
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
pred = torch.sigmoid(pred)
dx = pred - true
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 0.0001))
loss *= alpha_factor
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Sum | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/3n/c3nsxs3ge5j4meuwmimcituu5g5fkwyjrcs4loqlfmknmkhovm7j.py
# Topologically Sorted Source Nodes: [y_1, y_2, y_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# y_1 => add
# y_2 => add_1
# y_3 => add_2
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select, %select_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %select_2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %select_3), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_1, y_2, y_3], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Sum(nn.Module):
def __init__(self, n, weight=False):
super(Sum, self).__init__()
self.weight = weight
self.iter = range(n - 1)
if weight:
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True
)
def forward(self, x):
y = x[0]
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class SumNew(nn.Module):
def __init__(self, n, weight=False):
super(SumNew, self).__init__()
self.weight = weight
self.iter = range(n - 1)
if weight:
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True
)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AkshayGanesh/yolov5processor | Sum | false | 4,808 | [
"MIT"
] | 1 | 788accfa93798729c002b2c9b4f943284ff97cad | https://github.com/AkshayGanesh/yolov5processor/tree/788accfa93798729c002b2c9b4f943284ff97cad | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n, weight=False):
super().__init__()
self.weight = weight
self.iter = range(n - 1)
if weight:
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True
)
def forward(self, x):
y = x[0]
if self.weight:
w = torch.sigmoid(self.w) * 2
for i in self.iter:
y = y + x[i + 1] * w[i]
else:
for i in self.iter:
y = y + x[i + 1]
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
StyleBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wz/cwznwckxjekzcxlkjcgq2jhezeju57iivq5nhdjaezb3fvcxcau2.py
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# pow_1 => pow_1
# sigma_inv => rsqrt
# sum_1 => sum_1
# weights_1 => mul_2
# weights_2 => mul_3
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_3, %unsqueeze_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %rsqrt), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_1 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 9)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (36*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (36*x4)), tmp13, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ra/cray4k4us3bbwyahj4pt3p7tsuiw557n7abg5krmhhniiqoibtti.py
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, leaky_relu], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add_2 => add_2
# leaky_relu => gt, mul_5, where
# mul_4 => mul_4
# x_3 => add_1
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_6, %primals_6), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %mul_4), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %unsqueeze_9), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_2, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_2, %mul_5), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + (x3), tmp12, xmask)
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0); del buf0 # reuse
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_1.run(buf3, primals_5, buf1, buf4, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, leaky_relu], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2.run(buf6, primals_7, primals_6, primals_8, buf7, 256, grid=grid(256), stream=stream0)
del primals_7
del primals_8
return (buf6, primals_3, primals_5, primals_6, buf1, buf3, reinterpret_tensor(primals_4, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
from typing import List
from typing import Optional
import torch.autograd
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights]($equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlock(nn.Module):
"""
<a id="style_block"></a>
### Style Block

*<small>$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).</small>*
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Optional[torch.Tensor]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tensor of shape `[batch_size, 1, height, width]`
"""
s = self.to_style(w)
x = self.conv(x, s)
if noise is not None:
x = x + self.scale_noise[None, :, None, None] * noise
return self.activation(x + self.bias[None, :, None, None])
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_latent': 4, 'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
from typing import List
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = rindex // 9
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 36 * x0), rmask & xmask, eviction_policy
='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), rmask & xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 36 * x4), tmp13, rmask & xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + x3, tmp12, xmask)
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(buf0,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0)
del buf0
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_1[grid(16)](buf3, primals_5,
buf1, buf4, 16, 36, XBLOCK=1, num_warps=2, num_stages=1)
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4,
3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2[grid(256)](
buf6, primals_7, primals_6, primals_8, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
del primals_8
return (buf6, primals_3, primals_5, primals_6, buf1, buf3,
reinterpret_tensor(primals_4, (1, 16, 4, 4), (256, 16, 4, 1), 0),
reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), buf7)
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights]($equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlockNew(nn.Module):
"""
<a id="style_block"></a>
### Style Block

*<small>$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).</small>*
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, input_0, input_1, input_2):
primals_7 = self.scale_noise
primals_2 = self.bias
primals_8 = self.to_style.bias
primals_1 = self.to_style.weight.weight
primals_5 = self.conv.weight.weight
primals_4 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| Aarsh2001/annotated_deep_learning_paper_implementations | StyleBlock | false | 4,809 | [
"MIT"
] | 1 | ff0d5c065da1a46769f5f66fddc252c178f8fa37 | https://github.com/Aarsh2001/annotated_deep_learning_paper_implementations/tree/ff0d5c065da1a46769f5f66fddc252c178f8fa37 | import math
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
from typing import List
from typing import Optional
import torch.autograd
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights]($equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights
# ... truncated (>4000 chars) for memory efficiency |
MultiHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => exp
# Graph fragment:
# %mul_tensor_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_3, [-1], True), kwargs = {})
# %sub_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_3, %amax_default_3), kwargs = {})
# %div_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_3, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_3,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/mk/cmkim2hc4ksxhatli3y5cu7hoqofxcbzqrrxvnlhmswdt4cgww25.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %bmm_3, %bmm_5, %bmm_7], -1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr3 + (x1), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [query], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [key], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [value], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_products], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 0), out=buf6)
buf7 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [dot_products_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_0.run(buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf8, buf9, 64, grid=grid(64), stream=stream0)
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_3], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 1), out=buf10)
buf11 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [dot_products_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_0.run(buf11, buf12, 64, grid=grid(64), stream=stream0)
buf13 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf12, buf13, 64, grid=grid(64), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_5], Original ATen: [aten.bmm]
extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 2), out=buf14)
buf15 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [dot_products_3], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_0.run(buf15, buf16, 64, grid=grid(64), stream=stream0)
buf17 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf16, buf17, 64, grid=grid(64), stream=stream0)
buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_7], Original ATen: [aten.bmm]
extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 3), out=buf18)
buf19 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf6, buf10, buf14, buf18, buf19, 64, grid=grid(64), stream=stream0)
del buf10
del buf14
del buf18
del buf6
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf20)
return (reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf5, buf9, buf13, buf17, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), primals_7, reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.nn import functional as F
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super(Attention, self).__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = torch.bmm(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri
dot_products.data.sub_(tri.unsqueeze(0))
return torch.bmm(self.dropout(F.softmax(dot_products / self.scale,
dim=-1)), value)
class MultiHead(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super(MultiHead, self).__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, query, key, value):
query, key, value = self.wq(query), self.wk(key), self.wv(value)
query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key,
value))
return self.wo(torch.cat([self.attention(q, k, v) for q, k, v in
zip(query, key, value)], -1))
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'d_key': 4, 'd_value': 4, 'n_heads': 4, 'drop_ratio': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + x1, tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + x1, tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 4, tl.int64)
tmp19 = tl.load(in_ptr3 + x1, tmp16 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = buf3
del buf3
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4,
1), 0), out=buf6)
buf7 = buf4
del buf4
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_1[grid(64)](buf8, buf9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4,
1), 1), out=buf10)
buf11 = buf8
del buf8
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf11, buf12, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf13 = buf11
del buf11
triton_poi_fused__softmax_1[grid(64)](buf12, buf13, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16,
4, 1), 2), out=buf14)
buf15 = buf12
del buf12
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf15, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = buf15
del buf15
triton_poi_fused__softmax_1[grid(64)](buf16, buf17, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16,
4, 1), 3), out=buf18)
buf19 = buf16
del buf16
triton_poi_fused_cat_2[grid(64)](buf6, buf10, buf14, buf18, buf19,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf10
del buf14
del buf18
del buf6
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf20)
return reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf5, buf9, buf13, buf17, reinterpret_tensor(buf19, (16, 4), (4,
1), 0), primals_7, reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 3
), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3
), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3
), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2
), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2
), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2
), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1
), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1
), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1
), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0
), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0
), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0)
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super(Attention, self).__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = torch.bmm(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri
dot_products.data.sub_(tri.unsqueeze(0))
return torch.bmm(self.dropout(F.softmax(dot_products / self.scale,
dim=-1)), value)
class MultiHeadNew(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super(MultiHeadNew, self).__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, input_0, input_1, input_2):
primals_1 = self.wq.weight
primals_3 = self.wk.weight
primals_5 = self.wv.weight
primals_7 = self.wo.weight
primals_2 = input_0
primals_4 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Adelashl6/mask_transformers | MultiHead | false | 4,810 | [
"MIT"
] | 1 | 2a2e4d1b40ae3ed546cb850d041af246806b63e7 | https://github.com/Adelashl6/mask_transformers/tree/2a2e4d1b40ae3ed546cb850d041af246806b63e7 | import math
import torch
from torch import nn
from torch.nn import functional as F
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super().__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = torch.bmm(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri
dot_products.data.sub_(tri.unsqueeze(0))
return torch.bmm(self.dropout(F.softmax(dot_products / self.scale,
dim=-1)), value)
class Model(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super().__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, query, key, value):
query, key, value = self.wq(query), self.wk(key), self.wv(value)
query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key,
value))
return self.wo(torch.cat([self.attention(q, k, v) for q, k, v in
zip(query, key, value)], -1))
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [4, 4, 4, 0.5]
|
Hardswish | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py
# Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
# Source node to ATen node mapping:
# add => add
# hardtanh => clamp_max, clamp_min
# mul => mul
# truediv => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6.0), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = 0.16666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Hardswish(nn.Module):
@staticmethod
def forward(x):
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = 0.16666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HardswishNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AkshayGanesh/yolov5processor | Hardswish | false | 4,811 | [
"MIT"
] | 1 | 788accfa93798729c002b2c9b4f943284ff97cad | https://github.com/AkshayGanesh/yolov5processor/tree/788accfa93798729c002b2c9b4f943284ff97cad | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
@staticmethod
def forward(x):
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
SEModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dv/cdv4qmhbronnvlfedec6wf2u757xxim2rrcxixauamfjkccvlhcu.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xn/cxnpie6wemy7uacyfqmxuw22lmj4fbp5lpj4ual7647ci2bfkl3t.py
# Topologically Sorted Source Nodes: [x_4, mul], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# x_4 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_mul_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, 1, 1, 1), (1, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, 4, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4, mul], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_2.run(primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0)
return (buf5, primals_1, primals_2, primals_3, buf1, buf3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import torch
from torch.nn import Conv2d
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch.nn import AdaptiveAvgPool2d
import torch.utils.model_zoo
class SEModule(Module):
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1,
padding=0, bias=False)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1,
padding=0, bias=False)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'reduction': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
from torch.nn import Conv2d
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch.nn import AdaptiveAvgPool2d
import torch.utils.model_zoo
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, 1, 1, 1), (1, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(4)](buf3, 4, XBLOCK=4, num_warps=1,
num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_2[grid(256)](primals_1, buf4, buf5,
256, XBLOCK=128, num_warps=4, num_stages=1)
return buf5, primals_1, primals_2, primals_3, buf1, buf3, buf4
class SEModuleNew(Module):
def __init__(self, channels, reduction):
super(SEModuleNew, self).__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1,
padding=0, bias=False)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1,
padding=0, bias=False)
self.sigmoid = Sigmoid()
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc2.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Aitical/ADspeech2face | SEModule | false | 4,812 | [
"MIT"
] | 1 | 2e811ff8cc7333729f4b77d1b1067296253e8e38 | https://github.com/Aitical/ADspeech2face/tree/2e811ff8cc7333729f4b77d1b1067296253e8e38 | from torch.nn import Module
import torch
from torch.nn import Conv2d
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch.nn import AdaptiveAvgPool2d
import torch.utils.model_zoo
class Model(Module):
def __init__(self, channels, reduction):
super().__init__()
self.avg_pool = AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1,
padding=0, bias=False)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1,
padding=0, bias=False)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Classify | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
return (reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [(x // 2) for x in k]
return p
class Flatten(nn.Module):
@staticmethod
def forward(x):
return x.view(x.size(0), -1)
class Classify(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
super(Classify, self).__init__()
self.aap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False
)
self.flat = Flatten()
def forward(self, x):
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else
[x])], 1)
return self.flat(self.conv(z))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'c1': 4, 'c2': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
return reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_2, buf1
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [(x // 2) for x in k]
return p
class Flatten(nn.Module):
@staticmethod
def forward(x):
return x.view(x.size(0), -1)
class ClassifyNew(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
super(ClassifyNew, self).__init__()
self.aap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False
)
self.flat = Flatten()
def forward(self, input_0):
primals_2 = self.conv.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| AkshayGanesh/yolov5processor | Classify | false | 4,813 | [
"MIT"
] | 1 | 788accfa93798729c002b2c9b4f943284ff97cad | https://github.com/AkshayGanesh/yolov5processor/tree/788accfa93798729c002b2c9b4f943284ff97cad | import torch
import torch.nn as nn
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [(x // 2) for x in k]
return p
class Flatten(nn.Module):
@staticmethod
def forward(x):
return x.view(x.size(0), -1)
class Model(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
super().__init__()
self.aap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False
)
self.flat = Flatten()
def forward(self, x):
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else
[x])], 1)
return self.flat(self.conv(z))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
VAE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sr/csrxdjbtbkq5mhx4lx76hdeti625uy52jalpuc5xjwghomvl635m.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ez/ceztobygf5essmzvewpzrqmyjudhdyx544g5o4kv24svt3edt7ho.py
# Topologically Sorted Source Nodes: [sigma, mul, z], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# sigma => exp
# z => add
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_7,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_5), kwargs = {})
triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask)
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xu/cxumxlwfsjttpymgclelijugt7vsd7q33fi23c6apfmh2szgsxcy.py
# Topologically Sorted Source Nodes: [x_4, reconstruction], Original ATen: [aten.relu, aten.sigmoid, aten.threshold_backward]
# Source node to ATen node mapping:
# reconstruction => sigmoid
# x_4 => relu_4
# Graph fragment:
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_14,), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%relu_4,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_relu_sigmoid_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_sigmoid_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_sigmoid_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_sigmoid_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.sigmoid(tmp4)
tmp6 = 0.0
tmp7 = tmp4 <= tmp6
tl.store(out_ptr0 + (x2), tmp5, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200, ), (1, ))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 200), (200, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (200, 4), (4, 1))
assert_size_stride(primals_11, (200, ), (1, ))
assert_size_stride(primals_12, (200, 200), (200, 1))
assert_size_stride(primals_13, (200, ), (1, ))
assert_size_stride(primals_14, (4, 200), (200, 1))
assert_size_stride(primals_15, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf0 # reuse
buf19 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf19, 12800, grid=grid(12800), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf2 # reuse
buf18 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf18, 12800, grid=grid(12800), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logsigma], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 200), (200, 1), 0), reinterpret_tensor(primals_8, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf5)
del primals_9
# Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like]
buf6 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigma, mul, z], Original ATen: [aten.exp, aten.mul, aten.add]
triton_poi_fused_add_exp_mul_1.run(buf7, buf5, buf4, buf8, 256, grid=grid(256), stream=stream0)
buf9 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 200), (1, 4), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf9 # reuse
buf17 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf10, primals_11, buf17, 12800, grid=grid(12800), stream=stream0)
del primals_11
buf11 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf10, (64, 200), (200, 1), 0), reinterpret_tensor(primals_12, (200, 200), (1, 200), 0), out=buf11)
buf12 = reinterpret_tensor(buf11, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf11 # reuse
buf16 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf12, primals_13, buf16, 12800, grid=grid(12800), stream=stream0)
del primals_13
buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf12, (64, 200), (200, 1), 0), reinterpret_tensor(primals_14, (200, 4), (1, 200), 0), out=buf13)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_4, reconstruction], Original ATen: [aten.relu, aten.sigmoid, aten.threshold_backward]
triton_poi_fused_relu_sigmoid_threshold_backward_2.run(buf13, primals_15, buf14, buf15, 256, grid=grid(256), stream=stream0)
del buf13
del primals_15
return (buf14, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(buf3, (64, 200), (200, 1), 0), reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf7, reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(buf10, (64, 200), (200, 1), 0), reinterpret_tensor(buf12, (64, 200), (200, 1), 0), buf14, buf15, primals_14, buf16, primals_12, buf17, primals_10, primals_8, primals_6, buf18, primals_4, buf19, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((200, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((200, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
from torch.nn import functional as F
import torch.utils.data
class Decoder(nn.Module):
""" VAE decoder """
def __init__(self, in_channels, latent_size):
super(Decoder, self).__init__()
self.latent_size = latent_size
self.in_channels = in_channels
self.fc_dec1 = nn.Linear(latent_size, 200)
self.fc_dec2 = nn.Linear(200, 200)
self.fc_dec3 = nn.Linear(200, self.in_channels)
def forward(self, x):
x = F.relu(self.fc_dec1(x))
x = F.relu(self.fc_dec2(x))
x = F.relu(self.fc_dec3(x))
reconstruction = F.sigmoid(x)
return reconstruction
class Encoder(nn.Module):
""" VAE encoder """
def __init__(self, in_channels, latent_size):
super(Encoder, self).__init__()
self.latent_size = latent_size
self.in_channels = in_channels
self.fc_enc1 = nn.Linear(self.in_channels, 200)
self.fc_enc2 = nn.Linear(200, 200)
self.fc_mu = nn.Linear(200, latent_size)
self.fc_logsigma = nn.Linear(200, latent_size)
def forward(self, x):
x = F.relu(self.fc_enc1(x))
x = F.relu(self.fc_enc2(x))
mu = self.fc_mu(x)
logsigma = self.fc_logsigma(x)
return mu, logsigma
class VAE(nn.Module):
""" Variational Autoencoder """
def __init__(self, in_channels, latent_size):
super(VAE, self).__init__()
self.encoder = Encoder(in_channels, latent_size)
self.decoder = Decoder(in_channels, latent_size)
def forward(self, x):
mu, logsigma = self.encoder(x)
sigma = logsigma.exp()
eps = torch.randn_like(sigma)
z = eps.mul(sigma).add_(mu)
recon_x = self.decoder(z)
return recon_x, mu, logsigma
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'latent_size': 4}]
| import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.nn import functional as F
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask)
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_relu_sigmoid_threshold_backward_2(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tl.sigmoid(tmp4)
tmp6 = 0.0
tmp7 = tmp4 <= tmp6
tl.store(out_ptr0 + x2, tmp5, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200,), (1,))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 200), (200, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (200, 4), (4, 1))
assert_size_stride(primals_11, (200,), (1,))
assert_size_stride(primals_12, (200, 200), (200, 1))
assert_size_stride(primals_13, (200,), (1,))
assert_size_stride(primals_14, (4, 200), (200, 1))
assert_size_stride(primals_15, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 200), (3200, 800, 200, 1), 0)
del buf0
buf19 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(12800)](buf1,
primals_2, buf19, 12800, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 200), (3200, 800, 200, 1), 0)
del buf2
buf18 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(12800)](buf3,
primals_5, buf18, 12800, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 200),
(200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200),
0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 200),
(200, 1), 0), reinterpret_tensor(primals_8, (200, 4), (1, 200),
0), alpha=1, beta=1, out=buf5)
del primals_9
buf6 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_exp_mul_1[grid(256)](buf7, buf5, buf4, buf8,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf9 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_10, (4, 200), (1, 4), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 4, 200), (3200, 800, 200, 1), 0
)
del buf9
buf17 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(12800)](buf10,
primals_11, buf17, 12800, XBLOCK=128, num_warps=4, num_stages=1)
del primals_11
buf11 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf10, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_12, (200, 200), (1, 200), 0), out=buf11)
buf12 = reinterpret_tensor(buf11, (4, 4, 4, 200), (3200, 800, 200,
1), 0)
del buf11
buf16 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(12800)](buf12,
primals_13, buf16, 12800, XBLOCK=128, num_warps=4, num_stages=1)
del primals_13
buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf12, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_14, (200, 4), (1, 200), 0), out=buf13)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_sigmoid_threshold_backward_2[grid(256)](buf13,
primals_15, buf14, buf15, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf13
del primals_15
return (buf14, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0),
reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(buf1, (64, 200), (200, 1), 0),
reinterpret_tensor(buf3, (64, 200), (200, 1), 0),
reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf7,
reinterpret_tensor(buf8, (64, 4), (4, 1), 0), reinterpret_tensor(
buf10, (64, 200), (200, 1), 0), reinterpret_tensor(buf12, (64, 200),
(200, 1), 0), buf14, buf15, primals_14, buf16, primals_12, buf17,
primals_10, primals_8, primals_6, buf18, primals_4, buf19)
class Decoder(nn.Module):
""" VAE decoder """
def __init__(self, in_channels, latent_size):
super(Decoder, self).__init__()
self.latent_size = latent_size
self.in_channels = in_channels
self.fc_dec1 = nn.Linear(latent_size, 200)
self.fc_dec2 = nn.Linear(200, 200)
self.fc_dec3 = nn.Linear(200, self.in_channels)
def forward(self, x):
x = F.relu(self.fc_dec1(x))
x = F.relu(self.fc_dec2(x))
x = F.relu(self.fc_dec3(x))
reconstruction = F.sigmoid(x)
return reconstruction
class Encoder(nn.Module):
""" VAE encoder """
def __init__(self, in_channels, latent_size):
super(Encoder, self).__init__()
self.latent_size = latent_size
self.in_channels = in_channels
self.fc_enc1 = nn.Linear(self.in_channels, 200)
self.fc_enc2 = nn.Linear(200, 200)
self.fc_mu = nn.Linear(200, latent_size)
self.fc_logsigma = nn.Linear(200, latent_size)
def forward(self, x):
x = F.relu(self.fc_enc1(x))
x = F.relu(self.fc_enc2(x))
mu = self.fc_mu(x)
logsigma = self.fc_logsigma(x)
return mu, logsigma
class VAENew(nn.Module):
""" Variational Autoencoder """
def __init__(self, in_channels, latent_size):
super(VAENew, self).__init__()
self.encoder = Encoder(in_channels, latent_size)
self.decoder = Decoder(in_channels, latent_size)
def forward(self, input_0):
primals_1 = self.encoder.fc_enc1.weight
primals_2 = self.encoder.fc_enc1.bias
primals_4 = self.encoder.fc_enc2.weight
primals_5 = self.encoder.fc_enc2.bias
primals_6 = self.encoder.fc_mu.weight
primals_7 = self.encoder.fc_mu.bias
primals_8 = self.encoder.fc_logsigma.weight
primals_9 = self.encoder.fc_logsigma.bias
primals_10 = self.decoder.fc_dec1.weight
primals_11 = self.decoder.fc_dec1.bias
primals_12 = self.decoder.fc_dec2.weight
primals_13 = self.decoder.fc_dec2.bias
primals_14 = self.decoder.fc_dec3.weight
primals_15 = self.decoder.fc_dec3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1], output[2]
| Adwaver4157/WorldModel_for_FinRL | VAE | false | 4,814 | [
"MIT"
] | 1 | 0aa0a984aadffe0f6f2e83e55678c0e9304fba05 | https://github.com/Adwaver4157/WorldModel_for_FinRL/tree/0aa0a984aadffe0f6f2e83e55678c0e9304fba05 | import torch
from torch import nn
from torch.nn import functional as F
import torch.utils.data
class Decoder(nn.Module):
""" VAE decoder """
def __init__(self, in_channels, latent_size):
super().__init__()
self.latent_size = latent_size
self.in_channels = in_channels
self.fc_dec1 = nn.Linear(latent_size, 200)
self.fc_dec2 = nn.Linear(200, 200)
self.fc_dec3 = nn.Linear(200, self.in_channels)
def forward(self, x):
x = F.relu(self.fc_dec1(x))
x = F.relu(self.fc_dec2(x))
x = F.relu(self.fc_dec3(x))
reconstruction = F.sigmoid(x)
return reconstruction
class Encoder(nn.Module):
""" VAE encoder """
def __init__(self, in_channels, latent_size):
super().__init__()
self.latent_size = latent_size
self.in_channels = in_channels
self.fc_enc1 = nn.Linear(self.in_channels, 200)
self.fc_enc2 = nn.Linear(200, 200)
self.fc_mu = nn.Linear(200, latent_size)
self.fc_logsigma = nn.Linear(200, latent_size)
def forward(self, x):
x = F.relu(self.fc_enc1(x))
x = F.relu(self.fc_enc2(x))
mu = self.fc_mu(x)
logsigma = self.fc_logsigma(x)
return mu, logsigma
class Model(nn.Module):
""" Variational Autoencoder """
def __init__(self, in_channels, latent_size):
super().__init__()
self.encoder = Encoder(in_channels, latent_size)
self.decoder = Decoder(in_channels, latent_size)
def forward(self, x):
mu, logsigma = self.encoder(x)
sigma = logsigma.exp()
eps = torch.randn_like(sigma)
z = eps.mul(sigma).add_(mu)
recon_x = self.decoder(z)
return recon_x, mu, logsigma
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
MLPNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nq/cnqjufcqn3ur3s7xvlb2i747nyf24md4zaiatlwgkasynplfjstu.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (64, 4), (4, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf6, 4096, grid=grid(4096), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 4096, grid=grid(4096), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 64), (64, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class MLPNetwork(nn.Module):
"""
MLP network (can be used as value or policy)
"""
def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F.relu,
constrain_out=False, norm_in=False, discrete_action=True):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super(MLPNetwork, self).__init__()
if norm_in:
self.in_fn = nn.BatchNorm1d(input_dim)
self.in_fn.weight.data.fill_(1)
self.in_fn.bias.data.fill_(0)
else:
self.in_fn = lambda x: x
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, out_dim)
self.nonlin = nonlin
if constrain_out and not discrete_action:
self.fc3.weight.data.uniform_(-0.003, 0.003)
self.out_fn = torch.tanh
else:
self.out_fn = lambda x: x
def forward(self, X):
"""
Inputs:
X (PyTorch Matrix): Batch of observations
Outputs:
out (PyTorch Matrix): Output of network (actions, values, etc)
"""
h1 = self.nonlin(self.fc1(self.in_fn(X)))
h2 = self.nonlin(self.fc2(h1))
out = self.out_fn(self.fc3(h2))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'out_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (64, 4), (4, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1,
primals_3, buf6, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf3,
primals_5, buf5, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(
buf3, (64, 64), (64, 1), 0), primals_6, buf5, primals_4, buf6
class MLPNetworkNew(nn.Module):
"""
MLP network (can be used as value or policy)
"""
def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F.relu,
constrain_out=False, norm_in=False, discrete_action=True):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super(MLPNetworkNew, self).__init__()
if norm_in:
self.in_fn = nn.BatchNorm1d(input_dim)
self.in_fn.weight.data.fill_(1)
self.in_fn.bias.data.fill_(0)
else:
self.in_fn = lambda x: x
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, out_dim)
self.nonlin = nonlin
if constrain_out and not discrete_action:
self.fc3.weight.data.uniform_(-0.003, 0.003)
self.out_fn = torch.tanh
else:
self.out_fn = lambda x: x
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Aks-Dmv/maddpg-pytorch | MLPNetwork | false | 4,815 | [
"MIT"
] | 1 | 8afe2448875824cf5aee69c5d0314a3e00777b6f | https://github.com/Aks-Dmv/maddpg-pytorch/tree/8afe2448875824cf5aee69c5d0314a3e00777b6f | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
"""
MLP network (can be used as value or policy)
"""
def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F.relu,
constrain_out=False, norm_in=False, discrete_action=True):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super().__init__()
if norm_in:
self.in_fn = nn.BatchNorm1d(input_dim)
self.in_fn.weight.data.fill_(1)
self.in_fn.bias.data.fill_(0)
else:
self.in_fn = lambda x: x
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, out_dim)
self.nonlin = nonlin
if constrain_out and not discrete_action:
self.fc3.weight.data.uniform_(-0.003, 0.003)
self.out_fn = torch.tanh
else:
self.out_fn = lambda x: x
def forward(self, X):
"""
Inputs:
X (PyTorch Matrix): Batch of observations
Outputs:
out (PyTorch Matrix): Output of network (actions, values, etc)
"""
h1 = self.nonlin(self.fc1(self.in_fn(X)))
h2 = self.nonlin(self.fc2(h1))
out = self.out_fn(self.fc3(h2))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Fp32LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# output => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# output => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_2
del primals_3
return (buf2, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class Fp32LayerNorm(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.layer_norm(input.float(), self.normalized_shape, self.
weight.float() if self.weight is not None else None, self.bias.
float() if self.bias is not None else None, self.eps)
return output.type_as(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'normalized_shape': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_1, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_2
del primals_3
return buf2, primals_1
class Fp32LayerNormNew(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AbhilashMathews/adahessian | Fp32LayerNorm | false | 4,819 | [
"MIT"
] | 1 | bacccecc7a078c3e9e72aa55b17d8e46d21dc9c9 | https://github.com/AbhilashMathews/adahessian/tree/bacccecc7a078c3e9e72aa55b17d8e46d21dc9c9 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class Model(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.layer_norm(input.float(), self.normalized_shape, self.
weight.float() if self.weight is not None else None, self.bias.
float() if self.bias is not None else None, self.eps)
return output.type_as(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
GeneratorBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wz/cwznwckxjekzcxlkjcgq2jhezeju57iivq5nhdjaezb3fvcxcau2.py
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# pow_1 => pow_1
# sigma_inv => rsqrt
# sum_1 => sum_1
# weights_1 => mul_2
# weights_2 => mul_3
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_3, %unsqueeze_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %rsqrt), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_1 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 9)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (36*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (36*x4)), tmp13, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/mk/cmk6aftvifk5vtxtg2lvcslfabqnrroho76zhtuahfdwmzysuwiw.py
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, x_4], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add_2 => add_2
# mul_4 => mul_4
# x_3 => add_1
# x_4 => gt, mul_5, where
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_6, %select), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %mul_4), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %unsqueeze_9), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_2, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_2, %mul_5), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (x4), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cy/ccy6r6r4kfbnktjfnh5b72535yhbr4r6gtvhdjage2wywifwywz3.py
# Topologically Sorted Source Nodes: [mul_9, x_8, add_5, x_9], Original ATen: [aten.mul, aten.add, aten.leaky_relu]
# Source node to ATen node mapping:
# add_5 => add_5
# mul_9 => mul_10
# x_8 => add_4
# x_9 => gt_1, mul_11, where_1
# Graph fragment:
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_16, %select_1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_6, %mul_10), kwargs = {})
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %unsqueeze_19), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_5, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_5, %mul_11), kwargs = {})
triton_poi_fused_add_leaky_relu_mul_3 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tx/ctxhwgwusrrp4juzika66nlcnovoipxygsfsg3yjbj3mt4mcuato.py
# Topologically Sorted Source Nodes: [weights_9], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# weights_9 => mul_14
# Graph fragment:
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_23, %unsqueeze_22), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/q6/cq6266xbhcci7slv2fgafadqumjuzj6rlg3czend3eybumfoaegp.py
# Topologically Sorted Source Nodes: [add_6, rgb], Original ATen: [aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add_6 => add_6
# rgb => gt_2, mul_15, where_2
# Graph fragment:
# %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %unsqueeze_26), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_6, 0), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 0.2), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_6, %mul_15), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_2, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (1, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (3, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_17, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0); del buf0 # reuse
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_1.run(buf3, primals_6, buf1, buf4, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_5], Original ATen: [aten.mul]
triton_poi_fused_mul_0.run(primals_9, buf6, 16, grid=grid(16), stream=stream0)
del primals_9
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, primals_4, reinterpret_tensor(buf6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_10
buf8 = reinterpret_tensor(buf6, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0); del buf6 # reuse
buf9 = reinterpret_tensor(buf8, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0); del buf8 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_5, pow_2, sum_2, add_3, sigma_inv_1, weights_6], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_1.run(buf9, primals_11, buf7, buf10, 16, 36, grid=grid(16), stream=stream0)
buf11 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, x_4], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2.run(buf11, primals_7, primals_1, primals_8, buf20, 256, grid=grid(256), stream=stream0)
del primals_7
del primals_8
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (1, 16, 4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf12, (1, 16, 4, 4), (256, 16, 4, 1))
buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf12 # reuse
# Topologically Sorted Source Nodes: [mul_9, x_8, add_5, x_9], Original ATen: [aten.mul, aten.add, aten.leaky_relu]
triton_poi_fused_add_leaky_relu_mul_3.run(buf13, primals_12, primals_1, primals_13, 256, grid=grid(256), stream=stream0)
del primals_12
del primals_13
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_10], Original ATen: [aten.mul]
triton_poi_fused_mul_0.run(primals_14, buf14, 16, grid=grid(16), stream=stream0)
del primals_14
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [style], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_15, primals_4, reinterpret_tensor(buf14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del buf14
del primals_15
buf16 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_9], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(primals_16, buf15, buf16, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf17, (1, 12, 4, 4), (192, 16, 4, 1))
buf18 = reinterpret_tensor(buf17, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf17 # reuse
buf19 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [add_6, rgb], Original ATen: [aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5.run(buf18, primals_17, buf19, 192, grid=grid(192), stream=stream0)
del primals_17
return (buf13, buf18, primals_4, primals_6, primals_11, primals_16, reinterpret_tensor(primals_1, (4, ), (1, ), 0), buf1, buf3, reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(primals_1, (4, ), (1, ), 4), buf7, buf9, reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(buf11, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf13, buf15, reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 1, 1), 0), buf19, buf20, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((3, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
from torch import nn
from typing import Tuple
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
from typing import List
from typing import Optional
import torch.autograd
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights]($equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlock(nn.Module):
"""
<a id="style_block"></a>
### Style Block

*<small>$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).</small>*
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Optional[torch.Tensor]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tensor of shape `[batch_size, 1, height, width]`
"""
s = self.to_style(w)
x = self.conv(x, s)
if noise is not None:
x = x + self.scale_noise[None, :, None, None] * noise
return self.activation(x + self.bias[None, :, None, None])
class ToRGB(nn.Module):
"""
<a id="to_rgb"></a>
### To RGB

*<small>$A$ denotes a linear layer.</small>*
Generates an RGB image from a feature map using $1 imes 1$ convolution.
"""
def __init__(self, d_latent: 'int', features: 'int'):
"""
* `d_latent` is the dimensionality of $w$
* `features` is the number of features in the feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, features, bias=1.0)
self.conv = Conv2dWeightModulate(features, 3, kernel_size=1,
demodulate=False)
self.bias = nn.Parameter(torch.zeros(3))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
"""
style = self.to_style(w)
x = self.conv(x, style)
return self.activation(x + self.bias[None, :, None, None])
class GeneratorBlock(nn.Module):
"""
<a id="generator_block"></a>
### Generator Block

*<small>$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is a single channel).
[*toRGB*](#to_rgb) also has a style modulation which is not shown in the diagram to keep it simple.</small>*
The generator block consists of two [style blocks](#style_block) ($3 imes 3$ convolutions with style modulation)
and an RGB output.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.style_block1 = StyleBlock(d_latent, in_features, out_features)
self.style_block2 = StyleBlock(d_latent, out_features, out_features)
self.to_rgb = ToRGB(d_latent, out_features)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tuple of two noise tensors of shape `[batch_size, 1, height, width]`
"""
x = self.style_block1(x, w, noise[0])
x = self.style_block2(x, w, noise[1])
rgb = self.to_rgb(x, w)
return x, rgb
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_latent': 4, 'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
from typing import List
from typing import Optional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = rindex // 9
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 36 * x0), rmask & xmask, eviction_policy
='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), rmask & xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 36 * x4), tmp13, rmask & xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + x4, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tl.store(in_out_ptr0 + x4, tmp12, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_5(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + x3, tmp7, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (1,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (3, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_17, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(buf0,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0)
del buf0
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_1[grid(16)](buf3, primals_6,
buf1, buf4, 16, 36, XBLOCK=1, num_warps=2, num_stages=1)
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_5, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4,
3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_0[grid(16)](primals_9, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_9
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, primals_4, reinterpret_tensor(buf6,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_10
buf8 = reinterpret_tensor(buf6, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0)
del buf6
buf9 = reinterpret_tensor(buf8, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0)
del buf8
buf10 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_1[grid(16)](buf9, primals_11,
buf7, buf10, 16, 36, XBLOCK=1, num_warps=2, num_stages=1)
buf11 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2[grid(256)](
buf11, primals_7, primals_1, primals_8, buf20, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
del primals_8
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (1, 16,
4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 3,
3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=
(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias
=None)
assert_size_stride(buf12, (1, 16, 4, 4), (256, 16, 4, 1))
buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf12
triton_poi_fused_add_leaky_relu_mul_3[grid(256)](buf13, primals_12,
primals_1, primals_13, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_12
del primals_13
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_0[grid(16)](primals_14, buf14, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_14
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_15, primals_4, reinterpret_tensor(
buf14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del buf14
del primals_15
buf16 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch
.float32)
triton_poi_fused_mul_4[grid(48)](primals_16, buf15, buf16, 48,
XBLOCK=64, num_warps=1, num_stages=1)
buf17 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 16,
4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf16, (12, 4, 1,
1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(
1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None
)
assert_size_stride(buf17, (1, 12, 4, 4), (192, 16, 4, 1))
buf18 = reinterpret_tensor(buf17, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf17
buf19 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5[grid(192)](buf18,
primals_17, buf19, 192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_17
return (buf13, buf18, primals_4, primals_6, primals_11, primals_16,
reinterpret_tensor(primals_1, (4,), (1,), 0), buf1, buf3,
reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0),
reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0),
reinterpret_tensor(primals_1, (4,), (1,), 4), buf7, buf9,
reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0),
reinterpret_tensor(buf11, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf13,
buf15, reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 1, 1), 0),
buf19, buf20)
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights]($equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlock(nn.Module):
"""
<a id="style_block"></a>
### Style Block

*<small>$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).</small>*
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Optional[torch.Tensor]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tensor of shape `[batch_size, 1, height, width]`
"""
s = self.to_style(w)
x = self.conv(x, s)
if noise is not None:
x = x + self.scale_noise[None, :, None, None] * noise
return self.activation(x + self.bias[None, :, None, None])
class ToRGB(nn.Module):
"""
<a id="to_rgb"></a>
### To RGB

*<small>$A$ denotes a linear layer.</small>*
Generates an RGB image from a feature map using $1 imes 1$ convolution.
"""
def __init__(self, d_latent: 'int', features: 'int'):
"""
* `d_latent` is the dimensionality of $w$
* `features` is the number of features in the feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, features, bias=1.0)
self.conv = Conv2dWeightModulate(features, 3, kernel_size=1,
demodulate=False)
self.bias = nn.Parameter(torch.zeros(3))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
"""
style = self.to_style(w)
x = self.conv(x, style)
return self.activation(x + self.bias[None, :, None, None])
class GeneratorBlockNew(nn.Module):
"""
<a id="generator_block"></a>
### Generator Block

*<small>$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is a single channel).
[*toRGB*](#to_rgb) also has a style modulation which is not shown in the diagram to keep it simple.</small>*
The generator block consists of two [style blocks](#style_block) ($3 imes 3$ convolutions with style modulation)
and an RGB output.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.style_block1 = StyleBlock(d_latent, in_features, out_features)
self.style_block2 = StyleBlock(d_latent, out_features, out_features)
self.to_rgb = ToRGB(d_latent, out_features)
def forward(self, input_0, input_1, input_2):
primals_7 = self.style_block1.scale_noise
primals_3 = self.style_block1.bias
primals_8 = self.style_block1.to_style.bias
primals_1 = self.style_block1.to_style.weight.weight
primals_6 = self.style_block1.conv.weight.weight
primals_12 = self.style_block2.scale_noise
primals_10 = self.style_block2.bias
primals_13 = self.style_block2.to_style.bias
primals_2 = self.style_block2.to_style.weight.weight
primals_11 = self.style_block2.conv.weight.weight
primals_17 = self.to_rgb.bias
primals_15 = self.to_rgb.to_style.bias
primals_4 = self.to_rgb.to_style.weight.weight
primals_16 = self.to_rgb.conv.weight.weight
primals_5 = input_0
primals_9 = input_1
primals_14 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0], output[1]
| Aarsh2001/annotated_deep_learning_paper_implementations | GeneratorBlock | false | 4,821 | [
"MIT"
] | 1 | ff0d5c065da1a46769f5f66fddc252c178f8fa37 | https://github.com/Aarsh2001/annotated_deep_learning_paper_implementations/tree/ff0d5c065da1a46769f5f66fddc252c178f8fa37 | import math
import torch
import numpy as np
from torch import nn
from typing import Tuple
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
from typing import List
from typing import Optional
import torch.autograd
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights]($equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weig
# ... truncated (>4000 chars) for memory efficiency |
HighwayLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py
# Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# gate_output => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ln/clnagoyz3cauqnx3uxib3ikp6vd4zabtsvlhtc24rayt3qg4yaom.py
# Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, type_as, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten._to_copy, aten.sub, aten.add]
# Source node to ATen node mapping:
# add => add
# carry_part => mul_1
# gate_output => div, sum_1
# sub => sub_1
# transform_output => relu
# transformation_part => mul
# type_as => full_default
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %div), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%full_default, %div), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1 = async_compile.triton('triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (x3), xmask)
tmp15 = tl.load(in_ptr2 + (x3), xmask)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp10 = tl.full([1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 * tmp8
tmp13 = 1.0
tmp14 = tmp13 - tmp8
tmp16 = tmp14 * tmp15
tmp17 = tmp12 + tmp16
tl.store(in_out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gate_output], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [transform_output, gate_output, transformation_part, type_as, sub, carry_part, add], Original ATen: [aten.relu, aten._softmax, aten.mul, aten._to_copy, aten.sub, aten.add]
triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1.run(buf4, buf2, buf0, primals_3, 256, grid=grid(256), stream=stream0)
del buf2
return (buf4, primals_3, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
class HighwayLayer(nn.Module):
def __init__(self, input_dim, transform_activation=F.relu,
gate_activation=F.softmax, gate_bias=-2):
super().__init__()
self.highway_transform_activation = transform_activation
self.highway_gate_activation = gate_activation
self.highway_transform = nn.Linear(input_dim, input_dim)
self.highway_gate = nn.Linear(input_dim, input_dim)
self.highway_gate.bias.data.fill_(gate_bias)
def forward(self, x):
transform_output = self.highway_transform_activation(self.
highway_transform(x))
gate_output = self.highway_gate_activation(self.highway_gate(x))
transformation_part = torch.mul(transform_output, gate_output)
carry_part = torch.mul(torch.FloatTensor([1.0]).type_as(gate_output
) - gate_output, x)
return torch.add(transformation_part, carry_part)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr1 + x3, xmask)
tmp15 = tl.load(in_ptr2 + x3, xmask)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp10 = tl.full([1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tmp11 * tmp8
tmp13 = 1.0
tmp14 = tmp13 - tmp8
tmp16 = tmp14 * tmp15
tmp17 = tmp12 + tmp16
tl.store(in_out_ptr0 + x3, tmp17, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = buf3
del buf3
triton_poi_fused__softmax__to_copy_add_mul_relu_sub_1[grid(256)](buf4,
buf2, buf0, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf2
return buf4, primals_3, buf0, buf1
class HighwayLayerNew(nn.Module):
def __init__(self, input_dim, transform_activation=F.relu,
gate_activation=F.softmax, gate_bias=-2):
super().__init__()
self.highway_transform_activation = transform_activation
self.highway_gate_activation = gate_activation
self.highway_transform = nn.Linear(input_dim, input_dim)
self.highway_gate = nn.Linear(input_dim, input_dim)
self.highway_gate.bias.data.fill_(gate_bias)
def forward(self, input_0):
primals_1 = self.highway_transform.weight
primals_2 = self.highway_transform.bias
primals_4 = self.highway_gate.weight
primals_5 = self.highway_gate.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Acidburn0zzz/translate-1 | HighwayLayer | false | 4,822 | [
"BSD-3-Clause"
] | 1 | 8385a3c95de397fec8ca7a032fe1c215fa4e31f9 | https://github.com/Acidburn0zzz/translate-1/tree/8385a3c95de397fec8ca7a032fe1c215fa4e31f9 | import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
class Model(nn.Module):
def __init__(self, input_dim, transform_activation=F.relu,
gate_activation=F.softmax, gate_bias=-2):
super().__init__()
self.highway_transform_activation = transform_activation
self.highway_gate_activation = gate_activation
self.highway_transform = nn.Linear(input_dim, input_dim)
self.highway_gate = nn.Linear(input_dim, input_dim)
self.highway_gate.bias.data.fill_(gate_bias)
def forward(self, x):
transform_output = self.highway_transform_activation(self.
highway_transform(x))
gate_output = self.highway_gate_activation(self.highway_gate(x))
transformation_part = torch.mul(transform_output, gate_output)
carry_part = torch.mul(torch.FloatTensor([1.0]).type_as(gate_output
) - gate_output, x)
return torch.add(transformation_part, carry_part)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimilarityMatrix | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/qy/cqymekkq7rsf7633rd2qbrxvyapcb52mdt4zzzx3nx42kjqconp2.py
# Topologically Sorted Source Nodes: [eq_1, eq, nul, a_denom, b_denom, mul, sim, sim_1, sim_2], Original ATen: [aten.eq, aten.zeros_like, aten.add, aten.mul, aten.div, aten.where]
# Source node to ATen node mapping:
# a_denom => add
# b_denom => add_1
# eq => eq
# eq_1 => eq_1
# mul => mul
# nul => full_default
# sim => div
# sim_1 => where
# sim_2 => where_1
# Graph fragment:
# %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%expand_3, 0), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%expand_2, 0), kwargs = {})
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, 1e-09), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 1e-09), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %add_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, %mul), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default, %where), kwargs = {})
triton_poi_fused_add_div_eq_mul_where_zeros_like_0 = async_compile.triton('triton_poi_fused_add_div_eq_mul_where_zeros_like_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_eq_mul_where_zeros_like_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_eq_mul_where_zeros_like_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 4)
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (4*x4), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x4)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x4)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x4)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-09
tmp14 = tmp12 + tmp13
tmp16 = tmp15 * tmp15
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp24 = tmp23 * tmp23
tmp25 = tmp22 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp26 + tmp13
tmp28 = tmp14 * tmp27
tmp29 = tmp0 / tmp28
tmp31 = 0.0
tmp32 = tmp30 == tmp31
tmp34 = tmp33 == tmp31
tmp35 = tl.where(tmp34, tmp31, tmp29)
tmp36 = tl.where(tmp32, tmp31, tmp35)
tl.store(in_out_ptr0 + (x3), tmp36, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
assert_size_stride(arg3_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(arg0_1, reinterpret_tensor(arg1_1, (4, 4, 4), (16, 1, 4), 0), out=buf0)
buf1 = buf0; del buf0 # reuse
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [eq_1, eq, nul, a_denom, b_denom, mul, sim, sim_1, sim_2], Original ATen: [aten.eq, aten.zeros_like, aten.add, aten.mul, aten.div, aten.where]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_eq_mul_where_zeros_like_0.run(buf2, arg0_1, arg1_1, arg3_1, arg2_1, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (reinterpret_tensor(buf2, (4, 1, 4, 4), (16, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
class SimilarityMatrix(torch.nn.Module):
def __init__(self, padding=0):
super().__init__()
self.padding = padding
def forward(self, query_embed, doc_embed, query_tok, doc_tok):
simmat = []
assert type(query_embed) == type(doc_embed)
if not isinstance(query_embed, list):
query_embed, doc_embed = [query_embed], [doc_embed]
for a_emb, b_emb in zip(query_embed, doc_embed):
BAT, A, B = a_emb.shape[0], a_emb.shape[1], b_emb.shape[1]
if a_emb is None and b_emb is None:
sim = query_tok.reshape(BAT, A, 1).expand(BAT, A, B
) == doc_tok.reshape(BAT, 1, B).expand(BAT, A, B).float()
else:
a_denom = a_emb.norm(p=2, dim=2).reshape(BAT, A, 1).expand(BAT,
A, B) + 1e-09
b_denom = b_emb.norm(p=2, dim=2).reshape(BAT, 1, B).expand(BAT,
A, B) + 1e-09
perm = b_emb.permute(0, 2, 1)
sim = a_emb.bmm(perm) / (a_denom * b_denom)
nul = torch.zeros_like(sim)
sim = torch.where(query_tok.reshape(BAT, A, 1).expand(BAT, A, B
) == self.padding, nul, sim)
sim = torch.where(doc_tok.reshape(BAT, 1, B).expand(BAT, A, B) ==
self.padding, nul, sim)
simmat.append(sim)
return torch.stack(simmat, dim=1)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4]
), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_eq_mul_where_zeros_like_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 4
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x4, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x4), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x4), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x4), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (4 * x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr1 + (1 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (2 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (3 + 4 * x0 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy=
'evict_last')
tmp33 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-09
tmp14 = tmp12 + tmp13
tmp16 = tmp15 * tmp15
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp24 = tmp23 * tmp23
tmp25 = tmp22 + tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = tmp26 + tmp13
tmp28 = tmp14 * tmp27
tmp29 = tmp0 / tmp28
tmp31 = 0.0
tmp32 = tmp30 == tmp31
tmp34 = tmp33 == tmp31
tmp35 = tl.where(tmp34, tmp31, tmp29)
tmp36 = tl.where(tmp32, tmp31, tmp35)
tl.store(in_out_ptr0 + x3, tmp36, xmask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
assert_size_stride(arg3_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg0_1, reinterpret_tensor(arg1_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
buf1 = buf0
del buf0
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_div_eq_mul_where_zeros_like_0[grid(64)](buf2,
arg0_1, arg1_1, arg3_1, arg2_1, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return reinterpret_tensor(buf2, (4, 1, 4, 4), (16, 16, 4, 1), 0),
class SimilarityMatrixNew(torch.nn.Module):
def __init__(self, padding=0):
super().__init__()
self.padding = padding
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| AlexWang000/capreolus | SimilarityMatrix | false | 4,823 | [
"Apache-2.0"
] | 1 | 00b0bf471ea0eb116ab973254ea61b0492405c54 | https://github.com/AlexWang000/capreolus/tree/00b0bf471ea0eb116ab973254ea61b0492405c54 | import torch
import torch.utils.data
class Model(torch.nn.Module):
def __init__(self, padding=0):
super().__init__()
self.padding = padding
def forward(self, query_embed, doc_embed, query_tok, doc_tok):
simmat = []
assert type(query_embed) == type(doc_embed)
if not isinstance(query_embed, list):
query_embed, doc_embed = [query_embed], [doc_embed]
for a_emb, b_emb in zip(query_embed, doc_embed):
BAT, A, B = a_emb.shape[0], a_emb.shape[1], b_emb.shape[1]
if a_emb is None and b_emb is None:
sim = query_tok.reshape(BAT, A, 1).expand(BAT, A, B
) == doc_tok.reshape(BAT, 1, B).expand(BAT, A, B).float()
else:
a_denom = a_emb.norm(p=2, dim=2).reshape(BAT, A, 1).expand(BAT,
A, B) + 1e-09
b_denom = b_emb.norm(p=2, dim=2).reshape(BAT, 1, B).expand(BAT,
A, B) + 1e-09
perm = b_emb.permute(0, 2, 1)
sim = a_emb.bmm(perm) / (a_denom * b_denom)
nul = torch.zeros_like(sim)
sim = torch.where(query_tok.reshape(BAT, A, 1).expand(BAT, A, B
) == self.padding, nul, sim)
sim = torch.where(doc_tok.reshape(BAT, 1, B).expand(BAT, A, B) ==
self.padding, nul, sim)
simmat.append(sim)
return torch.stack(simmat, dim=1)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4]
), torch.rand([4, 4])]
def get_init_inputs():
return []
|
Hswish | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py
# Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
# Source node to ATen node mapping:
# add => add
# mul => mul
# relu6 => clamp_max, clamp_min
# truediv => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6.0), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = 0.16666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import functional as F
class Hswish(nn.Module):
def __init__(self, inplace=True):
super(Hswish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = 0.16666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HswishNew(nn.Module):
def __init__(self, inplace=True):
super(HswishNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Alterith/masters_code | Hswish | false | 4,824 | [
"MIT"
] | 1 | 65d0f2d26698cc8f7a5ffb564936113e2bbec201 | https://github.com/Alterith/masters_code/tree/65d0f2d26698cc8f7a5ffb564936113e2bbec201 | import torch
import torch.nn as nn
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self, inplace=True):
super().__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Hsigmoid | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/gl/cgljna3wfarubemgd6d2p3bgazvfhdxtrcu7luu5yza3rrfkty2s.py
# Topologically Sorted Source Nodes: [add, relu6, truediv], Original ATen: [aten.add, aten.hardtanh, aten.div]
# Source node to ATen node mapping:
# add => add
# relu6 => clamp_max, clamp_min
# truediv => div
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
triton_poi_fused_add_div_hardtanh_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, relu6, truediv], Original ATen: [aten.add, aten.hardtanh, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import functional as F
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3.0, inplace=self.inplace) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HsigmoidNew(nn.Module):
def __init__(self, inplace=True):
super(HsigmoidNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Alterith/Dense_Video_Captioning_Feature_Extraction_Model_Choice | Hsigmoid | false | 4,826 | [
"MIT"
] | 1 | 65d0f2d26698cc8f7a5ffb564936113e2bbec201 | https://github.com/Alterith/Dense_Video_Captioning_Feature_Extraction_Model_Choice/tree/65d0f2d26698cc8f7a5ffb564936113e2bbec201 | import torch
import torch.nn as nn
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self, inplace=True):
super().__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3.0, inplace=self.inplace) / 6.0
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
PACRRConvMax2dModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xw/cxwrk2fodabatoqbpxcl5eb2ifidbtfcttbbx5hhgzol35c2myr4.py
# Topologically Sorted Source Nodes: [simmat], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# simmat => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [0, 3, 0, 3], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 7) % 7
x0 = xindex % 7
x2 = (xindex // 49)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = x0
tmp4 = tmp3 < tmp1
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp5 & xmask, other=0.0)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ch/cchl3etcboj5jw4xggmrhxdnvzhxcggabe4regsbgagybypkwnfy.py
# Topologically Sorted Source Nodes: [conv2d, conv, max_1], Original ATen: [aten.convolution, aten.relu, aten.max]
# Source node to ATen node mapping:
# conv => relu
# conv2d => convolution
# max_1 => max_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%relu, 1), kwargs = {})
triton_poi_fused_convolution_max_relu_1 = async_compile.triton('triton_poi_fused_convolution_max_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_max_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_max_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp7 = tl.load(in_ptr1 + (1))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp26 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp27 = tl.load(in_ptr1 + (2))
tmp28 = tl.broadcast_to(tmp27, [XBLOCK])
tmp45 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp46 = tl.load(in_ptr1 + (3))
tmp47 = tl.broadcast_to(tmp46, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp9 = tmp6 + tmp8
tmp10 = triton_helpers.maximum(tmp4, tmp9)
tmp11 = tmp5 > tmp10
tmp12 = tmp5 == tmp10
tmp13 = tmp5 != tmp5
tmp14 = tmp10 != tmp10
tmp15 = tmp13 > tmp14
tmp16 = tmp11 | tmp15
tmp17 = tmp13 & tmp14
tmp18 = tmp12 | tmp17
tmp19 = tl.full([1], 0, tl.int64)
tmp20 = tl.full([1], 1, tl.int64)
tmp21 = tmp19 < tmp20
tmp22 = tmp18 & tmp21
tmp23 = tmp16 | tmp22
tmp24 = tl.where(tmp23, tmp5, tmp10)
tmp25 = tl.where(tmp23, tmp19, tmp20)
tmp29 = tmp26 + tmp28
tmp30 = triton_helpers.maximum(tmp4, tmp29)
tmp31 = tmp24 > tmp30
tmp32 = tmp24 == tmp30
tmp33 = tmp24 != tmp24
tmp34 = tmp30 != tmp30
tmp35 = tmp33 > tmp34
tmp36 = tmp31 | tmp35
tmp37 = tmp33 & tmp34
tmp38 = tmp32 | tmp37
tmp39 = tl.full([1], 2, tl.int64)
tmp40 = tmp25 < tmp39
tmp41 = tmp38 & tmp40
tmp42 = tmp36 | tmp41
tmp43 = tl.where(tmp42, tmp24, tmp30)
tmp44 = tl.where(tmp42, tmp25, tmp39)
tmp48 = tmp45 + tmp47
tmp49 = triton_helpers.maximum(tmp4, tmp48)
tmp50 = tmp43 > tmp49
tmp51 = tmp43 == tmp49
tmp52 = tmp43 != tmp43
tmp53 = tmp49 != tmp49
tmp54 = tmp52 > tmp53
tmp55 = tmp50 | tmp54
tmp56 = tmp52 & tmp53
tmp57 = tmp51 | tmp56
tmp58 = tl.full([1], 3, tl.int64)
tmp59 = tmp44 < tmp58
tmp60 = tmp57 & tmp59
tmp61 = tmp55 | tmp60
tmp62 = tl.where(tmp61, tmp43, tmp49)
tmp63 = tl.where(tmp61, tmp44, tmp58)
tmp64 = triton_helpers.maximum(tmp5, tmp10)
tmp65 = triton_helpers.maximum(tmp64, tmp30)
tmp66 = triton_helpers.maximum(tmp65, tmp49)
tl.store(out_ptr0 + (x2), tmp63, xmask)
tl.store(out_ptr1 + (x2), tmp66, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/35/c35vxy5oullorpkglb324ij376h6o5mbjsqjoykh7yiskiyinasn.py
# Topologically Sorted Source Nodes: [conv2d, conv], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv => relu
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [simmat], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 784, grid=grid(784), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, conv, max_1], Original ATen: [aten.convolution, aten.relu, aten.max]
triton_poi_fused_convolution_max_relu_1.run(buf1, primals_3, buf2, buf3, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d, conv, max_1, topk], Original ATen: [aten.convolution, aten.relu, aten.max, aten.topk]
buf4 = torch.ops.aten.topk.default(buf3, 4, 2)
del buf3
buf5 = buf4[0]
buf6 = buf4[1]
del buf4
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, conv], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_2.run(buf1, primals_3, buf7, 256, grid=grid(256), stream=stream0)
del buf1
del primals_3
return (buf5, primals_2, buf0, buf6, reinterpret_tensor(buf2, (4, 1, 4, 4), (16, 16, 4, 1), 0), buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
class PACRRConvMax2dModule(torch.nn.Module):
def __init__(self, shape, n_filters, k, channels):
super().__init__()
self.shape = shape
if shape != 1:
self.pad = torch.nn.ConstantPad2d((0, shape - 1, 0, shape - 1), 0)
else:
self.pad = None
self.conv = torch.nn.Conv2d(channels, n_filters, shape)
self.activation = torch.nn.ReLU()
self.k = k
self.shape = shape
self.channels = channels
def forward(self, simmat):
BATCH, _CHANNELS, QLEN, _DLEN = simmat.shape
if self.pad:
simmat = self.pad(simmat)
conv = self.activation(self.conv(simmat))
top_filters, _ = conv.max(dim=1)
top_toks, _ = top_filters.topk(self.k, dim=2)
result = top_toks.reshape(BATCH, QLEN, self.k)
return result
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'shape': 4, 'n_filters': 4, 'k': 4, 'channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 7 % 7
x0 = xindex % 7
x2 = xindex // 49
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 4, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = x0
tmp4 = tmp3 < tmp1
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp5 & xmask, other=0.0)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_max_relu_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp7 = tl.load(in_ptr1 + 1)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp26 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp27 = tl.load(in_ptr1 + 2)
tmp28 = tl.broadcast_to(tmp27, [XBLOCK])
tmp45 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp46 = tl.load(in_ptr1 + 3)
tmp47 = tl.broadcast_to(tmp46, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp9 = tmp6 + tmp8
tmp10 = triton_helpers.maximum(tmp4, tmp9)
tmp11 = tmp5 > tmp10
tmp12 = tmp5 == tmp10
tmp13 = tmp5 != tmp5
tmp14 = tmp10 != tmp10
tmp15 = tmp13 > tmp14
tmp16 = tmp11 | tmp15
tmp17 = tmp13 & tmp14
tmp18 = tmp12 | tmp17
tmp19 = tl.full([1], 0, tl.int64)
tmp20 = tl.full([1], 1, tl.int64)
tmp21 = tmp19 < tmp20
tmp22 = tmp18 & tmp21
tmp23 = tmp16 | tmp22
tmp24 = tl.where(tmp23, tmp5, tmp10)
tmp25 = tl.where(tmp23, tmp19, tmp20)
tmp29 = tmp26 + tmp28
tmp30 = triton_helpers.maximum(tmp4, tmp29)
tmp31 = tmp24 > tmp30
tmp32 = tmp24 == tmp30
tmp33 = tmp24 != tmp24
tmp34 = tmp30 != tmp30
tmp35 = tmp33 > tmp34
tmp36 = tmp31 | tmp35
tmp37 = tmp33 & tmp34
tmp38 = tmp32 | tmp37
tmp39 = tl.full([1], 2, tl.int64)
tmp40 = tmp25 < tmp39
tmp41 = tmp38 & tmp40
tmp42 = tmp36 | tmp41
tmp43 = tl.where(tmp42, tmp24, tmp30)
tmp44 = tl.where(tmp42, tmp25, tmp39)
tmp48 = tmp45 + tmp47
tmp49 = triton_helpers.maximum(tmp4, tmp48)
tmp50 = tmp43 > tmp49
tmp51 = tmp43 == tmp49
tmp52 = tmp43 != tmp43
tmp53 = tmp49 != tmp49
tmp54 = tmp52 > tmp53
tmp55 = tmp50 | tmp54
tmp56 = tmp52 & tmp53
tmp57 = tmp51 | tmp56
tmp58 = tl.full([1], 3, tl.int64)
tmp59 = tmp44 < tmp58
tmp60 = tmp57 & tmp59
tmp61 = tmp55 | tmp60
tl.where(tmp61, tmp43, tmp49)
tmp63 = tl.where(tmp61, tmp44, tmp58)
tmp64 = triton_helpers.maximum(tmp5, tmp10)
tmp65 = triton_helpers.maximum(tmp64, tmp30)
tmp66 = triton_helpers.maximum(tmp65, tmp49)
tl.store(out_ptr0 + x2, tmp63, xmask)
tl.store(out_ptr1 + x2, tmp66, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_2(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(784)](primals_1, buf0, 784,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_convolution_max_relu_1[grid(64)](buf1, primals_3,
buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf4 = torch.ops.aten.topk.default(buf3, 4, 2)
del buf3
buf5 = buf4[0]
buf6 = buf4[1]
del buf4
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_2[grid(256)](buf1,
primals_3, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_3
return buf5, primals_2, buf0, buf6, reinterpret_tensor(buf2, (4, 1, 4,
4), (16, 16, 4, 1), 0), buf7
class PACRRConvMax2dModuleNew(torch.nn.Module):
def __init__(self, shape, n_filters, k, channels):
super().__init__()
self.shape = shape
if shape != 1:
self.pad = torch.nn.ConstantPad2d((0, shape - 1, 0, shape - 1), 0)
else:
self.pad = None
self.conv = torch.nn.Conv2d(channels, n_filters, shape)
self.activation = torch.nn.ReLU()
self.k = k
self.shape = shape
self.channels = channels
def forward(self, input_0):
primals_1 = self.conv.weight
primals_3 = self.conv.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AlexWang000/capreolus | PACRRConvMax2dModule | false | 4,827 | [
"Apache-2.0"
] | 1 | 00b0bf471ea0eb116ab973254ea61b0492405c54 | https://github.com/AlexWang000/capreolus/tree/00b0bf471ea0eb116ab973254ea61b0492405c54 | import torch
import torch.utils.data
class Model(torch.nn.Module):
def __init__(self, shape, n_filters, k, channels):
super().__init__()
self.shape = shape
if shape != 1:
self.pad = torch.nn.ConstantPad2d((0, shape - 1, 0, shape - 1), 0)
else:
self.pad = None
self.conv = torch.nn.Conv2d(channels, n_filters, shape)
self.activation = torch.nn.ReLU()
self.k = k
self.shape = shape
self.channels = channels
def forward(self, simmat):
BATCH, _CHANNELS, QLEN, _DLEN = simmat.shape
if self.pad:
simmat = self.pad(simmat)
conv = self.activation(self.conv(simmat))
top_filters, _ = conv.max(dim=1)
top_toks, _ = top_filters.topk(self.k, dim=2)
result = top_toks.reshape(BATCH, QLEN, self.k)
return result
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4, 4]
|
MLP_Qnet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xc/cxcj5l7s6w5ttrq2fk2nirlbp44yesw6n2m2dnxtpcjjmym2njhr.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (64, 8), (8, 1))
assert_size_stride(primals_4, (64, ), (1, ))
assert_size_stride(primals_5, (64, 64), (64, 1))
assert_size_stride(primals_6, (64, ), (1, ))
assert_size_stride(primals_7, (1, 64), (64, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (64, 8), (8, 1))
assert_size_stride(primals_10, (64, ), (1, ))
assert_size_stride(primals_11, (64, 64), (64, 1))
assert_size_stride(primals_12, (64, ), (1, ))
assert_size_stride(primals_13, (1, 64), (64, 1))
assert_size_stride(primals_14, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 64), (1, 8), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf1 # reuse
buf16 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_4, buf16, 4096, grid=grid(4096), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 64), (64, 1), 0), reinterpret_tensor(primals_5, (64, 64), (1, 64), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf3 # reuse
buf15 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf4, primals_6, buf15, 4096, grid=grid(4096), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (64, 64), (64, 1), 0), reinterpret_tensor(primals_7, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_9, (8, 64), (1, 8), 0), out=buf7)
del primals_9
buf8 = reinterpret_tensor(buf7, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf7 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [h1_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf8, primals_10, buf14, 4096, grid=grid(4096), stream=stream0)
del primals_10
buf9 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf8, (64, 64), (64, 1), 0), reinterpret_tensor(primals_11, (64, 64), (1, 64), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf9 # reuse
buf13 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [h2_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf10, primals_12, buf13, 4096, grid=grid(4096), stream=stream0)
del primals_12
buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, reinterpret_tensor(buf10, (64, 64), (64, 1), 0), reinterpret_tensor(primals_13, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(buf2, (64, 64), (64, 1), 0), reinterpret_tensor(buf4, (64, 64), (64, 1), 0), reinterpret_tensor(buf8, (64, 64), (64, 1), 0), reinterpret_tensor(buf10, (64, 64), (64, 1), 0), primals_13, buf13, primals_11, buf14, primals_7, buf15, primals_5, buf16, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class MLPNetwork(nn.Module):
"""
MLP network (can be used as value or policy)
"""
def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F.relu,
constrain_out=False, norm_in=False, discrete_action=True):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super(MLPNetwork, self).__init__()
if norm_in:
self.in_fn = nn.BatchNorm1d(input_dim)
self.in_fn.weight.data.fill_(1)
self.in_fn.bias.data.fill_(0)
else:
self.in_fn = lambda x: x
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, out_dim)
self.nonlin = nonlin
if constrain_out and not discrete_action:
self.fc3.weight.data.uniform_(-0.003, 0.003)
self.out_fn = torch.tanh
else:
self.out_fn = lambda x: x
def forward(self, X):
"""
Inputs:
X (PyTorch Matrix): Batch of observations
Outputs:
out (PyTorch Matrix): Output of network (actions, values, etc)
"""
h1 = self.nonlin(self.fc1(self.in_fn(X)))
h2 = self.nonlin(self.fc2(h1))
out = self.out_fn(self.fc3(h2))
return out
class MLP_Qnet(nn.Module):
"""
MLP_Qnet network
"""
def __init__(self, input_dim, act_dim, hidden_dim=64):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super(MLP_Qnet, self).__init__()
self.critic1 = MLPNetwork(input_dim + act_dim, 1, hidden_dim=
hidden_dim, constrain_out=False)
self.critic2 = MLPNetwork(input_dim + act_dim, 1, hidden_dim=
hidden_dim, constrain_out=False)
def forward(self, inputs, pi_act):
q1 = self.critic1(torch.cat([inputs, pi_act], dim=-1))
q2 = self.critic2(torch.cat([inputs, pi_act], dim=-1))
return q1, q2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'act_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn.functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (64, 8), (8, 1))
assert_size_stride(primals_4, (64,), (1,))
assert_size_stride(primals_5, (64, 64), (64, 1))
assert_size_stride(primals_6, (64,), (1,))
assert_size_stride(primals_7, (1, 64), (64, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (64, 8), (8, 1))
assert_size_stride(primals_10, (64,), (1,))
assert_size_stride(primals_11, (64, 64), (64, 1))
assert_size_stride(primals_12, (64,), (1,))
assert_size_stride(primals_13, (1, 64), (64, 1))
assert_size_stride(primals_14, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 64), (1, 8), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf1
buf16 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.bool)
triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf2,
primals_4, buf16, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_5, (64, 64), (1, 64), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf3
buf15 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.bool)
triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf4,
primals_6, buf15, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_7, (64, 1), (1, 64), 0),
alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0),
reinterpret_tensor(primals_9, (8, 64), (1, 8), 0), out=buf7)
del primals_9
buf8 = reinterpret_tensor(buf7, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf7
buf14 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.bool)
triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf8,
primals_10, buf14, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_10
buf9 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_11, (64, 64), (1, 64), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf9
buf13 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.bool)
triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf10,
primals_12, buf13, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_12
buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_14, reinterpret_tensor(buf10, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_13, (64, 1), (1, 64), 0
), alpha=1, beta=1, out=buf12)
del primals_14
return reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(
buf2, (64, 64), (64, 1), 0), reinterpret_tensor(buf4, (64, 64), (64,
1), 0), reinterpret_tensor(buf8, (64, 64), (64, 1), 0
), reinterpret_tensor(buf10, (64, 64), (64, 1), 0
), primals_13, buf13, primals_11, buf14, primals_7, buf15, primals_5, buf16
class MLPNetwork(nn.Module):
"""
MLP network (can be used as value or policy)
"""
def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F.relu,
constrain_out=False, norm_in=False, discrete_action=True):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super(MLPNetwork, self).__init__()
if norm_in:
self.in_fn = nn.BatchNorm1d(input_dim)
self.in_fn.weight.data.fill_(1)
self.in_fn.bias.data.fill_(0)
else:
self.in_fn = lambda x: x
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, out_dim)
self.nonlin = nonlin
if constrain_out and not discrete_action:
self.fc3.weight.data.uniform_(-0.003, 0.003)
self.out_fn = torch.tanh
else:
self.out_fn = lambda x: x
def forward(self, X):
"""
Inputs:
X (PyTorch Matrix): Batch of observations
Outputs:
out (PyTorch Matrix): Output of network (actions, values, etc)
"""
h1 = self.nonlin(self.fc1(self.in_fn(X)))
h2 = self.nonlin(self.fc2(h1))
out = self.out_fn(self.fc3(h2))
return out
class MLP_QnetNew(nn.Module):
"""
MLP_Qnet network
"""
def __init__(self, input_dim, act_dim, hidden_dim=64):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super(MLP_QnetNew, self).__init__()
self.critic1 = MLPNetwork(input_dim + act_dim, 1, hidden_dim=
hidden_dim, constrain_out=False)
self.critic2 = MLPNetwork(input_dim + act_dim, 1, hidden_dim=
hidden_dim, constrain_out=False)
def forward(self, input_0, input_1):
primals_3 = self.critic1.fc1.weight
primals_4 = self.critic1.fc1.bias
primals_5 = self.critic1.fc2.weight
primals_6 = self.critic1.fc2.bias
primals_7 = self.critic1.fc3.weight
primals_8 = self.critic1.fc3.bias
primals_9 = self.critic2.fc1.weight
primals_10 = self.critic2.fc1.bias
primals_11 = self.critic2.fc2.weight
primals_12 = self.critic2.fc2.bias
primals_13 = self.critic2.fc3.weight
primals_14 = self.critic2.fc3.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0], output[1]
| Aks-Dmv/maddpg-pytorch | MLP_Qnet | false | 4,828 | [
"MIT"
] | 1 | 8afe2448875824cf5aee69c5d0314a3e00777b6f | https://github.com/Aks-Dmv/maddpg-pytorch/tree/8afe2448875824cf5aee69c5d0314a3e00777b6f | import torch
import torch.nn.functional as F
import torch.nn as nn
class MLPNetwork(nn.Module):
"""
MLP network (can be used as value or policy)
"""
def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F.relu,
constrain_out=False, norm_in=False, discrete_action=True):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super().__init__()
if norm_in:
self.in_fn = nn.BatchNorm1d(input_dim)
self.in_fn.weight.data.fill_(1)
self.in_fn.bias.data.fill_(0)
else:
self.in_fn = lambda x: x
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, out_dim)
self.nonlin = nonlin
if constrain_out and not discrete_action:
self.fc3.weight.data.uniform_(-0.003, 0.003)
self.out_fn = torch.tanh
else:
self.out_fn = lambda x: x
def forward(self, X):
"""
Inputs:
X (PyTorch Matrix): Batch of observations
Outputs:
out (PyTorch Matrix): Output of network (actions, values, etc)
"""
h1 = self.nonlin(self.fc1(self.in_fn(X)))
h2 = self.nonlin(self.fc2(h1))
out = self.out_fn(self.fc3(h2))
return out
class Model(nn.Module):
"""
MLP_Qnet network
"""
def __init__(self, input_dim, act_dim, hidden_dim=64):
"""
Inputs:
input_dim (int): Number of dimensions in input
out_dim (int): Number of dimensions in output
hidden_dim (int): Number of hidden dimensions
nonlin (PyTorch function): Nonlinearity to apply to hidden layers
"""
super().__init__()
self.critic1 = MLPNetwork(input_dim + act_dim, 1, hidden_dim=
hidden_dim, constrain_out=False)
self.critic2 = MLPNetwork(input_dim + act_dim, 1, hidden_dim=
hidden_dim, constrain_out=False)
def forward(self, inputs, pi_act):
q1 = self.critic1(torch.cat([inputs, pi_act], dim=-1))
q2 = self.critic2(torch.cat([inputs, pi_act], dim=-1))
return q1, q2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
JointsMSELoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ik/cik3daggkczn6yw5fhxreelmv4f7337qr27ccf6o2xrjfrel5wsp.py
# Topologically Sorted Source Nodes: [mul, mul_1, mse_loss, mul_2, loss, mul_3, mul_4, mse_loss_1, mul_5, loss_1, mul_6, mul_7, mse_loss_2, mul_8, loss_2, mul_9, mul_10, mse_loss_3, mul_11, loss_3, truediv], Original ATen: [aten.mul, aten.mse_loss, aten.add, aten.div]
# Source node to ATen node mapping:
# loss => add
# loss_1 => add_1
# loss_2 => add_2
# loss_3 => add_3
# mse_loss => mean, pow_1, sub
# mse_loss_1 => mean_1, pow_2, sub_1
# mse_loss_2 => mean_2, pow_3, sub_2
# mse_loss_3 => mean_3, pow_4, sub_3
# mul => mul
# mul_1 => mul_1
# mul_10 => mul_10
# mul_11 => mul_11
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# mul_6 => mul_6
# mul_7 => mul_7
# mul_8 => mul_8
# mul_9 => mul_9
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %select), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, %select_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, %select_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, %select_3), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %mul_4), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_5), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, %select_4), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_5, %select_5), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, %mul_7), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 0.5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_8), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_6, %select_6), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_7, %select_7), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_9, %mul_10), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_4,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_3, 0.5), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_11), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {})
triton_per_fused_add_div_mse_loss_mul_0 = async_compile.triton('triton_per_fused_add_div_mse_loss_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp12 = tmp10 * tmp11
tmp14 = tmp13 * tmp11
tmp15 = tmp12 - tmp14
tmp16 = tmp15 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.sum(tmp17, 1)[:, None]
tmp22 = tmp20 * tmp21
tmp24 = tmp23 * tmp21
tmp25 = tmp22 - tmp24
tmp26 = tmp25 * tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp32 = tmp30 * tmp31
tmp34 = tmp33 * tmp31
tmp35 = tmp32 - tmp34
tmp36 = tmp35 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = tl.sum(tmp37, 1)[:, None]
tmp40 = 4.0
tmp41 = tmp9 / tmp40
tmp42 = 0.5
tmp43 = tmp41 * tmp42
tmp44 = 0.0
tmp45 = tmp43 + tmp44
tmp46 = tmp19 / tmp40
tmp47 = tmp46 * tmp42
tmp48 = tmp45 + tmp47
tmp49 = tmp29 / tmp40
tmp50 = tmp49 * tmp42
tmp51 = tmp48 + tmp50
tmp52 = tmp39 / tmp40
tmp53 = tmp52 * tmp42
tmp54 = tmp51 + tmp53
tmp55 = 0.25
tmp56 = tmp54 * tmp55
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp56, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, mul_1, mse_loss, mul_2, loss, mul_3, mul_4, mse_loss_1, mul_5, loss_1, mul_6, mul_7, mse_loss_2, mul_8, loss_2, mul_9, mul_10, mse_loss_3, mul_11, loss_3, truediv], Original ATen: [aten.mul, aten.mse_loss, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mse_loss_mul_0.run(buf4, arg0_1, arg2_1, arg1_1, 1, 4, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class JointsMSELoss(nn.Module):
def __init__(self, use_target_weight):
super(JointsMSELoss, self).__init__()
self.criterion = nn.MSELoss(size_average=True)
self.use_target_weight = use_target_weight
def forward(self, output, target, target_weight):
batch_size = output.size(0)
num_joints = output.size(1)
heatmaps_pred = output.reshape((batch_size, num_joints, -1)).split(1, 1
)
heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1)
loss = 0
for idx in range(num_joints):
heatmap_pred = heatmaps_pred[idx].squeeze()
heatmap_gt = heatmaps_gt[idx].squeeze()
if self.use_target_weight:
loss += 0.5 * self.criterion(heatmap_pred.mul(target_weight
[:, idx]), heatmap_gt.mul(target_weight[:, idx]))
else:
loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt)
return loss / num_joints
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'use_target_weight': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp12 = tmp10 * tmp11
tmp14 = tmp13 * tmp11
tmp15 = tmp12 - tmp14
tmp16 = tmp15 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.sum(tmp17, 1)[:, None]
tmp22 = tmp20 * tmp21
tmp24 = tmp23 * tmp21
tmp25 = tmp22 - tmp24
tmp26 = tmp25 * tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp32 = tmp30 * tmp31
tmp34 = tmp33 * tmp31
tmp35 = tmp32 - tmp34
tmp36 = tmp35 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = tl.sum(tmp37, 1)[:, None]
tmp40 = 4.0
tmp41 = tmp9 / tmp40
tmp42 = 0.5
tmp43 = tmp41 * tmp42
tmp44 = 0.0
tmp45 = tmp43 + tmp44
tmp46 = tmp19 / tmp40
tmp47 = tmp46 * tmp42
tmp48 = tmp45 + tmp47
tmp49 = tmp29 / tmp40
tmp50 = tmp49 * tmp42
tmp51 = tmp48 + tmp50
tmp52 = tmp39 / tmp40
tmp53 = tmp52 * tmp42
tmp54 = tmp51 + tmp53
tmp55 = 0.25
tmp56 = tmp54 * tmp55
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp56, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mse_loss_mul_0[grid(1)](buf4, arg0_1,
arg2_1, arg1_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf4,
class JointsMSELossNew(nn.Module):
def __init__(self, use_target_weight):
super(JointsMSELossNew, self).__init__()
self.criterion = nn.MSELoss(size_average=True)
self.use_target_weight = use_target_weight
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| AlongRide/Py3torch_HigherHRNet | JointsMSELoss | false | 4,829 | [
"MIT"
] | 1 | 62c455b62c0ac6d1de482fd3740dc947033e9e9a | https://github.com/AlongRide/Py3torch_HigherHRNet/tree/62c455b62c0ac6d1de482fd3740dc947033e9e9a | import torch
import torch.nn as nn
import torch.utils.data
class Model(nn.Module):
def __init__(self, use_target_weight):
super().__init__()
self.criterion = nn.MSELoss(size_average=True)
self.use_target_weight = use_target_weight
def forward(self, output, target, target_weight):
batch_size = output.size(0)
num_joints = output.size(1)
heatmaps_pred = output.reshape((batch_size, num_joints, -1)).split(1, 1
)
heatmaps_gt = target.reshape((batch_size, num_joints, -1)).split(1, 1)
loss = 0
for idx in range(num_joints):
heatmap_pred = heatmaps_pred[idx].squeeze()
heatmap_gt = heatmaps_gt[idx].squeeze()
if self.use_target_weight:
loss += 0.5 * self.criterion(heatmap_pred.mul(target_weight
[:, idx]), heatmap_gt.mul(target_weight[:, idx]))
else:
loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt)
return loss / num_joints
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
tofp16 | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/gg/cgg2lz2wuuy6qgbuk5zv4566ho2fdd6s6yu5fodcermkh5pqvwvv.py
# Topologically Sorted Source Nodes: [half], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# half => convert_element_type
# Graph fragment:
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%arg0_1, torch.float16), kwargs = {})
triton_poi_fused__to_copy_0 = async_compile.triton('triton_poi_fused__to_copy_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0.to(tl.float32)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float16)
# Topologically Sorted Source Nodes: [half], Original ATen: [aten._to_copy]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class tofp16(nn.Module):
"""
Model wrapper that implements::
def forward(self, input):
return input.half()
"""
def __init__(self):
super(tofp16, self).__init__()
def forward(self, input):
return input.half()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0.to(tl.float32)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float16)
get_raw_stream(0)
triton_poi_fused__to_copy_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class tofp16New(nn.Module):
"""
Model wrapper that implements::
def forward(self, input):
return input.half()
"""
def __init__(self):
super(tofp16New, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AlongRide/Py3torch_HigherHRNet | tofp16 | false | 4,830 | [
"MIT"
] | 1 | 62c455b62c0ac6d1de482fd3740dc947033e9e9a | https://github.com/AlongRide/Py3torch_HigherHRNet/tree/62c455b62c0ac6d1de482fd3740dc947033e9e9a | import torch
import torch.nn as nn
import torch.utils.data
class Model(nn.Module):
"""
Model wrapper that implements::
def forward(self, input):
return input.half()
"""
def __init__(self):
super().__init__()
def forward(self, input):
return input.half()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MultiheadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_attn => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_attn => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf11)
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), buf7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
def combine_heads(X):
"""
Combine heads (the inverse of split heads):
1) Transpose X from (batch size, nheads, sequence length, d_head) to
(batch size, sequence length, nheads, d_head)
2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model)
Inputs:
X : [batch size * nheads, sequence length, d_head]
nheads : integer
d_head : integer
Outputs:
[batch_size, seq_len, d_model]
"""
X = X.transpose(1, 2)
nheads, d_head = X.shape[-2:]
return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head])
def create_src_lengths_mask(batch_size, src_lengths):
max_srclen = src_lengths.max()
src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths)
src_indices = src_indices.expand(batch_size, max_srclen)
src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen)
return (src_indices < src_lengths).int().detach()
def apply_masks(scores, batch_size, unseen_mask, src_lengths):
seq_len = scores.shape[-1]
sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int()
if unseen_mask:
sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0
).unsqueeze(0).int()
if src_lengths is not None:
src_lengths_mask = create_src_lengths_mask(batch_size=batch_size,
src_lengths=src_lengths).unsqueeze(-2)
sequence_mask = sequence_mask & src_lengths_mask
sequence_mask = sequence_mask.unsqueeze(1)
scores = scores.masked_fill(sequence_mask == 0, -np.inf)
return scores
def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None
):
"""
Scaled Dot Product Attention
Implements equation:
Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V
Inputs:
query : [batch size, nheads, sequence length, d_k]
key : [batch size, nheads, sequence length, d_k]
value : [batch size, nheads, sequence length, d_v]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Outputs:
attn: [batch size, sequence length, d_v]
Note that in this implementation d_q = d_k = d_v = dim
"""
d_k = query.shape[-1]
scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k)
if unseen_mask or src_lengths is not None:
scores = apply_masks(scores=scores, batch_size=query.shape[0],
unseen_mask=unseen_mask, src_lengths=src_lengths)
p_attn = F.softmax(scores, dim=-1)
return torch.matmul(p_attn, value), p_attn
def split_heads(X, nheads):
"""
Split heads:
1) Split (reshape) last dimension (size d_model) into nheads, d_head
2) Transpose X from (batch size, sequence length, nheads, d_head) to
(batch size, nheads, sequence length, d_head)
Inputs:
X : [batch size, sequence length, nheads * d_head]
nheads : integer
Outputs:
[batch size, nheads, sequence length, d_head]
"""
last_dim = X.shape[-1]
assert last_dim % nheads == 0
X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads]
)
return X_last_dim_split.transpose(1, 2)
class MultiheadAttention(nn.Module):
"""
Multiheaded Scaled Dot Product Attention
Implements equation:
MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O
where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
Similarly to the above, d_k = d_v = d_model / h
Inputs
init:
nheads : integer # of attention heads
d_model : model dimensionality
d_head : dimensionality of a single head
forward:
query : [batch size, sequence length, d_model]
key: [batch size, sequence length, d_model]
value: [batch size, sequence length, d_model]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Output
result : [batch_size, sequence length, d_model]
"""
def __init__(self, nheads, d_model):
"""Take in model size and number of heads."""
super(MultiheadAttention, self).__init__()
assert d_model % nheads == 0
self.d_head = d_model // nheads
self.nheads = nheads
self.Q_fc = nn.Linear(d_model, d_model, bias=False)
self.K_fc = nn.Linear(d_model, d_model, bias=False)
self.V_fc = nn.Linear(d_model, d_model, bias=False)
self.output_fc = nn.Linear(d_model, d_model, bias=False)
self.attn = None
def forward(self, query, key, value, unseen_mask=False, src_lengths=None):
query = split_heads(self.Q_fc(query), self.nheads)
key = split_heads(self.K_fc(key), self.nheads)
value = split_heads(self.V_fc(value), self.nheads)
x, self.attn = scaled_dot_prod_attn(query=query, key=key, value=
value, unseen_mask=unseen_mask, src_lengths=src_lengths)
x = combine_heads(x)
return self.output_fc(x)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'nheads': 4, 'd_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, buf3, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_clone_0[grid(16, 4)](buf2, buf8, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf11)
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), buf7, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0
), primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
def combine_heads(X):
"""
Combine heads (the inverse of split heads):
1) Transpose X from (batch size, nheads, sequence length, d_head) to
(batch size, sequence length, nheads, d_head)
2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model)
Inputs:
X : [batch size * nheads, sequence length, d_head]
nheads : integer
d_head : integer
Outputs:
[batch_size, seq_len, d_model]
"""
X = X.transpose(1, 2)
nheads, d_head = X.shape[-2:]
return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head])
def create_src_lengths_mask(batch_size, src_lengths):
max_srclen = src_lengths.max()
src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths)
src_indices = src_indices.expand(batch_size, max_srclen)
src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen)
return (src_indices < src_lengths).int().detach()
def apply_masks(scores, batch_size, unseen_mask, src_lengths):
seq_len = scores.shape[-1]
sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int()
if unseen_mask:
sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0
).unsqueeze(0).int()
if src_lengths is not None:
src_lengths_mask = create_src_lengths_mask(batch_size=batch_size,
src_lengths=src_lengths).unsqueeze(-2)
sequence_mask = sequence_mask & src_lengths_mask
sequence_mask = sequence_mask.unsqueeze(1)
scores = scores.masked_fill(sequence_mask == 0, -np.inf)
return scores
def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None
):
"""
Scaled Dot Product Attention
Implements equation:
Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V
Inputs:
query : [batch size, nheads, sequence length, d_k]
key : [batch size, nheads, sequence length, d_k]
value : [batch size, nheads, sequence length, d_v]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Outputs:
attn: [batch size, sequence length, d_v]
Note that in this implementation d_q = d_k = d_v = dim
"""
d_k = query.shape[-1]
scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k)
if unseen_mask or src_lengths is not None:
scores = apply_masks(scores=scores, batch_size=query.shape[0],
unseen_mask=unseen_mask, src_lengths=src_lengths)
p_attn = F.softmax(scores, dim=-1)
return torch.matmul(p_attn, value), p_attn
def split_heads(X, nheads):
"""
Split heads:
1) Split (reshape) last dimension (size d_model) into nheads, d_head
2) Transpose X from (batch size, sequence length, nheads, d_head) to
(batch size, nheads, sequence length, d_head)
Inputs:
X : [batch size, sequence length, nheads * d_head]
nheads : integer
Outputs:
[batch size, nheads, sequence length, d_head]
"""
last_dim = X.shape[-1]
assert last_dim % nheads == 0
X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads]
)
return X_last_dim_split.transpose(1, 2)
class MultiheadAttentionNew(nn.Module):
"""
Multiheaded Scaled Dot Product Attention
Implements equation:
MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O
where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
Similarly to the above, d_k = d_v = d_model / h
Inputs
init:
nheads : integer # of attention heads
d_model : model dimensionality
d_head : dimensionality of a single head
forward:
query : [batch size, sequence length, d_model]
key: [batch size, sequence length, d_model]
value: [batch size, sequence length, d_model]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Output
result : [batch_size, sequence length, d_model]
"""
def __init__(self, nheads, d_model):
"""Take in model size and number of heads."""
super(MultiheadAttentionNew, self).__init__()
assert d_model % nheads == 0
self.d_head = d_model // nheads
self.nheads = nheads
self.Q_fc = nn.Linear(d_model, d_model, bias=False)
self.K_fc = nn.Linear(d_model, d_model, bias=False)
self.V_fc = nn.Linear(d_model, d_model, bias=False)
self.output_fc = nn.Linear(d_model, d_model, bias=False)
self.attn = None
def forward(self, input_0, input_1, input_2):
primals_1 = self.Q_fc.weight
primals_3 = self.K_fc.weight
primals_5 = self.V_fc.weight
primals_7 = self.output_fc.weight
primals_2 = input_0
primals_4 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Acidburn0zzz/translate-1 | MultiheadAttention | false | 4,831 | [
"BSD-3-Clause"
] | 1 | 8385a3c95de397fec8ca7a032fe1c215fa4e31f9 | https://github.com/Acidburn0zzz/translate-1/tree/8385a3c95de397fec8ca7a032fe1c215fa4e31f9 | import math
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
def combine_heads(X):
"""
Combine heads (the inverse of split heads):
1) Transpose X from (batch size, nheads, sequence length, d_head) to
(batch size, sequence length, nheads, d_head)
2) Combine (reshape) last 2 dimensions (nheads, d_head) into 1 (d_model)
Inputs:
X : [batch size * nheads, sequence length, d_head]
nheads : integer
d_head : integer
Outputs:
[batch_size, seq_len, d_model]
"""
X = X.transpose(1, 2)
nheads, d_head = X.shape[-2:]
return X.contiguous().view(list(X.shape[:-2]) + [nheads * d_head])
def create_src_lengths_mask(batch_size, src_lengths):
max_srclen = src_lengths.max()
src_indices = torch.arange(0, max_srclen).unsqueeze(0).type_as(src_lengths)
src_indices = src_indices.expand(batch_size, max_srclen)
src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen)
return (src_indices < src_lengths).int().detach()
def apply_masks(scores, batch_size, unseen_mask, src_lengths):
seq_len = scores.shape[-1]
sequence_mask = torch.ones(seq_len, seq_len).unsqueeze(0).int()
if unseen_mask:
sequence_mask = torch.tril(torch.ones(seq_len, seq_len), diagonal=0
).unsqueeze(0).int()
if src_lengths is not None:
src_lengths_mask = create_src_lengths_mask(batch_size=batch_size,
src_lengths=src_lengths).unsqueeze(-2)
sequence_mask = sequence_mask & src_lengths_mask
sequence_mask = sequence_mask.unsqueeze(1)
scores = scores.masked_fill(sequence_mask == 0, -np.inf)
return scores
def scaled_dot_prod_attn(query, key, value, unseen_mask=False, src_lengths=None
):
"""
Scaled Dot Product Attention
Implements equation:
Attention(Q, K, V) = softmax(QK^T/\\sqrt{d_k})V
Inputs:
query : [batch size, nheads, sequence length, d_k]
key : [batch size, nheads, sequence length, d_k]
value : [batch size, nheads, sequence length, d_v]
unseen_mask: if True, only attend to previous sequence positions
src_lengths_mask: if True, mask padding based on src_lengths
Outputs:
attn: [batch size, sequence length, d_v]
Note that in this implementation d_q = d_k = d_v = dim
"""
d_k = query.shape[-1]
scores = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(d_k)
if unseen_mask or src_lengths is not None:
scores = apply_masks(scores=scores, batch_size=query.shape[0],
unseen_mask=unseen_mask, src_lengths=src_lengths)
p_attn = F.softmax(scores, dim=-1)
return torch.matmul(p_attn, value), p_attn
def split_heads(X, nheads):
"""
Split heads:
1) Split (reshape) last dimension (size d_model) into nheads, d_head
2) Transpose X from (batch size, sequence length, nheads, d_head) to
(batch size, nheads, sequence length, d_head)
Inputs:
X : [batch size, sequence length, nheads * d_head]
nheads : integer
Outputs:
[batch size, nheads, sequence length, d_head]
"""
last_dim = X.shape[-1]
assert last_dim % nheads == 0
X_last_dim_split = X.view(list(X.shape[:-1]) + [nheads, last_dim // nheads]
)
return X_last_dim_split.transpose(1, 2)
class Model(nn.Module):
"""
Multiheaded Scaled Dot Product Attention
Implements equation:
MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O
where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)
Similarly to the above, d_k = d_v = d_model / h
Inputs
init:
nheads : integer # of attention heads
d_model : model dimensionality
d_head : dimensionality of a single head
forward:
query : [batch size, sequence length, d_model]
key: [batch size, sequence length, d_model]
value: [batch size, sequence length, d_model]
unseen_mask: if True,
# ... truncated (>4000 chars) for memory efficiency |
SimCLRLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/p7/cp76hkbjjz2jdkas7tdu32sl6rpjyrps4pgdlpuwisqcemaemj6f.py
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
# Source node to ATen node mapping:
# cosine_similarity => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand_1, %clamp_min), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand, %clamp_min_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {})
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex % 16
x1 = (xindex // 4) % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + (x4), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hx/chx3gwrmc25lbwfd76ito5jmotizhy7ktyu3jjyw7sktlc7pg4m4.py
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# cosine_similarity => sum_3
# Graph fragment:
# %sum_3 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
triton_poi_fused_sum_1 = async_compile.triton('triton_poi_fused_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 * tmp7
tmp17 = triton_helpers.maximum(tmp8, tmp16)
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 * tmp7
tmp26 = triton_helpers.maximum(tmp17, tmp25)
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 * tmp7
tmp35 = triton_helpers.maximum(tmp26, tmp34)
tl.store(out_ptr0 + (x0), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/62/c62jy6v3opderdbb4odtpcjc73sqzaolwdfikhsiz4elxxul4ck3.py
# Topologically Sorted Source Nodes: [cross_entropy_1], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# cross_entropy_1 => amax_1, clone_2
# Graph fragment:
# %clone_2 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_2, [1], True), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (16 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (17 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (18 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (19 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (32 + (4*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (33 + (4*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (34 + (4*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (35 + (4*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (48 + (4*x0)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (49 + (4*x0)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (50 + (4*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (51 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 * tmp7
tmp17 = triton_helpers.maximum(tmp8, tmp16)
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 * tmp7
tmp26 = triton_helpers.maximum(tmp17, tmp25)
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 * tmp7
tmp35 = triton_helpers.maximum(tmp26, tmp34)
tl.store(out_ptr0 + (x0), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dv/cdvb362ojkbtkishyu4cqizfwftfzazuakrlf6a2y3lhv5p5vjw4.py
# Topologically Sorted Source Nodes: [cosine_similarity, cross_entropy_1], Original ATen: [aten.sum, aten._log_softmax]
# Source node to ATen node mapping:
# cosine_similarity => sum_3
# cross_entropy_1 => clone_2, sub_2
# Graph fragment:
# %sum_3 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, 1), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 4), kwargs = {})
# %clone_2 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_2, %amax_1), kwargs = {})
triton_poi_fused__log_softmax_sum_3 = async_compile.triton('triton_poi_fused__log_softmax_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_sum_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp10 = tmp8 - tmp9
tmp11 = 0.25
tmp12 = tmp10 * tmp11
tmp13 = tmp6 * tmp11
tmp15 = tmp13 - tmp14
tl.store(out_ptr0 + (x2), tmp12, xmask)
tl.store(out_ptr1 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ig/cigrvadnvweekwtgmcoa5tujfd5vshnbqlcakxjd5a3u5phi5udn.py
# Topologically Sorted Source Nodes: [label, cross_entropy, cross_entropy_1, loss, mul], Original ATen: [aten.arange, aten.nll_loss_forward, aten.add, aten.mul]
# Source node to ATen node mapping:
# cross_entropy => convert_element_type, div_3, full_default_1, ne_1, ne_2, neg, sum_5, sum_6, where_1
# cross_entropy_1 => convert_element_type_1, div_4, full_default_3, ne_4, ne_5, neg_1, sum_8, sum_9, where_3
# label => iota
# loss => add
# mul => mul_1
# Graph fragment:
# %iota : [num_users=8] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%iota, -100), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {})
# %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%iota, -100), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_2,), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_5, torch.float32), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_6, %convert_element_type), kwargs = {})
# %ne_4 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%iota, -100), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze_1,), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_4, %neg_1, %full_default_3), kwargs = {})
# %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_3,), kwargs = {})
# %ne_5 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%iota, -100), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_5,), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_8, torch.float32), kwargs = {})
# %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_9, %convert_element_type_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_3, %div_4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
triton_per_fused_add_arange_mul_nll_loss_forward_4 = async_compile.triton('triton_per_fused_add_arange_mul_nll_loss_forward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_arange_mul_nll_loss_forward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_arange_mul_nll_loss_forward_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp6 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (r0), None)
tmp28 = tl.load(in_ptr1 + (4 + r0), None)
tmp31 = tl.load(in_ptr1 + (8 + r0), None)
tmp34 = tl.load(in_ptr1 + (12 + r0), None)
tmp0 = r0
tmp1 = tl.full([1, 1], -100, tl.int64)
tmp2 = tmp0 != tmp1
tmp3 = tl.full([1, 1], 0, tl.int64)
tmp4 = tl.where(tmp2, tmp0, tmp3)
tmp5 = tl.load(in_ptr0 + (tmp4 + (4*r0)), None, eviction_policy='evict_last')
tmp7 = tl_math.exp(tmp6)
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tl_math.log(tmp16)
tmp18 = tmp5 - tmp17
tmp19 = -tmp18
tmp20 = 0.0
tmp21 = tl.where(tmp2, tmp19, tmp20)
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = tl.load(in_ptr1 + (r0 + (4*tmp4)), None)
tmp27 = tl_math.exp(tmp26)
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tmp37 = tl_math.log(tmp36)
tmp38 = tmp25 - tmp37
tmp39 = -tmp38
tmp40 = tl.where(tmp2, tmp39, tmp20)
tmp41 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK])
tmp43 = tl.sum(tmp41, 1)[:, None]
tmp44 = tmp2.to(tl.int64)
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = tl.sum(tmp45, 1)[:, None]
tmp48 = tmp47.to(tl.float32)
tmp49 = tmp24 / tmp48
tmp50 = tmp43 / tmp48
tmp51 = tmp49 + tmp50
tmp52 = 0.5
tmp53 = tmp51 * tmp52
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp53, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.sum]
triton_poi_fused_sum_1.run(buf0, buf1, 4, grid=grid(4), stream=stream0)
buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [cross_entropy_1], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf0, buf5, 4, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [cosine_similarity, cross_entropy_1], Original ATen: [aten.sum, aten._log_softmax]
triton_poi_fused__log_softmax_sum_3.run(buf0, buf1, buf5, buf2, buf6, 16, grid=grid(16), stream=stream0)
del buf0
del buf1
del buf5
buf3 = empty_strided_cuda((), (), torch.float32)
buf9 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [label, cross_entropy, cross_entropy_1, loss, mul], Original ATen: [aten.arange, aten.nll_loss_forward, aten.add, aten.mul]
triton_per_fused_add_arange_mul_nll_loss_forward_4.run(buf9, buf2, buf6, 1, 4, grid=grid(1), stream=stream0)
del buf2
del buf6
return (buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn as nn
import torch.utils.model_zoo
class SimCLRLoss(nn.Module):
def __init__(self, temperature):
super(SimCLRLoss, self).__init__()
self.T = temperature
self.ce = nn.CrossEntropyLoss()
self.norm = nn.functional.normalize
self.softmax = nn.functional.softmax
self.cosine = nn.CosineSimilarity(dim=-1)
self.kl = nn.KLDivLoss(reduction='batchmean')
self.mse = nn.MSELoss()
def _get_correlated_mask(self, batch_size):
diag = np.eye(2 * batch_size)
l1 = np.eye(2 * batch_size, 2 * batch_size, k=-batch_size)
l2 = np.eye(2 * batch_size, 2 * batch_size, k=batch_size)
mask = diag + l1 + l2
return mask
def forward(self, f1, f2):
batch_size = f1.shape[0]
sim_matrix = self.cosine(f1.unsqueeze(1), f2.unsqueeze(0)) / self.T
label = torch.arange(0, batch_size, device=sim_matrix.device)
loss = self.ce(sim_matrix, label) + self.ce(sim_matrix.t(), label)
return loss * 0.5
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'temperature': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
import torch.nn as nn
import torch.utils.model_zoo
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex % 16
x1 = xindex // 4 % 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + x4, tmp31, xmask)
@triton.jit
def triton_poi_fused_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp30 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 * tmp7
tmp17 = triton_helpers.maximum(tmp8, tmp16)
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 * tmp7
tmp26 = triton_helpers.maximum(tmp17, tmp25)
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 * tmp7
tmp35 = triton_helpers.maximum(tmp26, tmp34)
tl.store(out_ptr0 + x0, tmp35, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (16 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr0 + (17 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr0 + (18 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (19 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr0 + (32 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (33 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (34 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (35 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (48 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr0 + (49 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp30 = tl.load(in_ptr0 + (50 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp32 = tl.load(in_ptr0 + (51 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 * tmp7
tmp17 = triton_helpers.maximum(tmp8, tmp16)
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 * tmp7
tmp26 = triton_helpers.maximum(tmp17, tmp25)
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 * tmp7
tmp35 = triton_helpers.maximum(tmp26, tmp34)
tl.store(out_ptr0 + x0, tmp35, xmask)
@triton.jit
def triton_poi_fused__log_softmax_sum_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp10 = tmp8 - tmp9
tmp11 = 0.25
tmp12 = tmp10 * tmp11
tmp13 = tmp6 * tmp11
tmp15 = tmp13 - tmp14
tl.store(out_ptr0 + x2, tmp12, xmask)
tl.store(out_ptr1 + x2, tmp15, xmask)
@triton.jit
def triton_per_fused_add_arange_mul_nll_loss_forward_4(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp6 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + r0, None)
tmp28 = tl.load(in_ptr1 + (4 + r0), None)
tmp31 = tl.load(in_ptr1 + (8 + r0), None)
tmp34 = tl.load(in_ptr1 + (12 + r0), None)
tmp0 = r0
tmp1 = tl.full([1, 1], -100, tl.int64)
tmp2 = tmp0 != tmp1
tmp3 = tl.full([1, 1], 0, tl.int64)
tmp4 = tl.where(tmp2, tmp0, tmp3)
tmp5 = tl.load(in_ptr0 + (tmp4 + 4 * r0), None, eviction_policy=
'evict_last')
tmp7 = tl_math.exp(tmp6)
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tl_math.log(tmp16)
tmp18 = tmp5 - tmp17
tmp19 = -tmp18
tmp20 = 0.0
tmp21 = tl.where(tmp2, tmp19, tmp20)
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = tl.load(in_ptr1 + (r0 + 4 * tmp4), None)
tmp27 = tl_math.exp(tmp26)
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp33 + tmp35
tmp37 = tl_math.log(tmp36)
tmp38 = tmp25 - tmp37
tmp39 = -tmp38
tmp40 = tl.where(tmp2, tmp39, tmp20)
tmp41 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK])
tmp43 = tl.sum(tmp41, 1)[:, None]
tmp44 = tmp2.to(tl.int64)
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = tl.sum(tmp45, 1)[:, None]
tmp48 = tmp47.to(tl.float32)
tmp49 = tmp24 / tmp48
tmp50 = tmp43 / tmp48
tmp51 = tmp49 + tmp50
tmp52 = 0.5
tmp53 = tmp51 * tmp52
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp53, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(64)](
arg0_1, arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused_sum_1[grid(4)](buf0, buf1, 4, XBLOCK=4, num_warps=
1, num_stages=1)
buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused__log_softmax_2[grid(4)](buf0, buf5, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4), (1, 4), torch.float32)
triton_poi_fused__log_softmax_sum_3[grid(16)](buf0, buf1, buf5,
buf2, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf0
del buf1
del buf5
buf3 = empty_strided_cuda((), (), torch.float32)
buf9 = buf3
del buf3
triton_per_fused_add_arange_mul_nll_loss_forward_4[grid(1)](buf9,
buf2, buf6, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf2
del buf6
return buf9,
class SimCLRLossNew(nn.Module):
def __init__(self, temperature):
super(SimCLRLossNew, self).__init__()
self.T = temperature
self.ce = nn.CrossEntropyLoss()
self.norm = nn.functional.normalize
self.softmax = nn.functional.softmax
self.cosine = nn.CosineSimilarity(dim=-1)
self.kl = nn.KLDivLoss(reduction='batchmean')
self.mse = nn.MSELoss()
def _get_correlated_mask(self, batch_size):
diag = np.eye(2 * batch_size)
l1 = np.eye(2 * batch_size, 2 * batch_size, k=-batch_size)
l2 = np.eye(2 * batch_size, 2 * batch_size, k=batch_size)
mask = diag + l1 + l2
return mask
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Aitical/ADspeech2face | SimCLRLoss | false | 4,832 | [
"MIT"
] | 1 | 2e811ff8cc7333729f4b77d1b1067296253e8e38 | https://github.com/Aitical/ADspeech2face/tree/2e811ff8cc7333729f4b77d1b1067296253e8e38 | import torch
import numpy as np
import torch.nn as nn
import torch.utils.model_zoo
class Model(nn.Module):
def __init__(self, temperature):
super().__init__()
self.T = temperature
self.ce = nn.CrossEntropyLoss()
self.norm = nn.functional.normalize
self.softmax = nn.functional.softmax
self.cosine = nn.CosineSimilarity(dim=-1)
self.kl = nn.KLDivLoss(reduction='batchmean')
self.mse = nn.MSELoss()
def _get_correlated_mask(self, batch_size):
diag = np.eye(2 * batch_size)
l1 = np.eye(2 * batch_size, 2 * batch_size, k=-batch_size)
l2 = np.eye(2 * batch_size, 2 * batch_size, k=batch_size)
mask = diag + l1 + l2
return mask
def forward(self, f1, f2):
batch_size = f1.shape[0]
sim_matrix = self.cosine(f1.unsqueeze(1), f2.unsqueeze(0)) / self.T
label = torch.arange(0, batch_size, device=sim_matrix.device)
loss = self.ce(sim_matrix, label) + self.ce(sim_matrix.t(), label)
return loss * 0.5
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4]
|
ZeroPad1d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/zg/czgid72b6fkrabkbzh6dovarzeothmiqpqb7azoiz6xeuyfhgius.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# pad => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [4, 4], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = (-4) + x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + ((-4) + x0 + (4*x1)), tmp5 & xmask, other=0.0)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 768, grid=grid(768), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class ZeroPad1d(nn.Module):
def __init__(self, pad_left, pad_right):
super().__init__()
self.pad_left = pad_left
self.pad_right = pad_right
def forward(self, x):
return F.pad(x, (self.pad_left, self.pad_right))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'pad_left': 4, 'pad_right': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = -4 + x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1), tmp5 & xmask, other=0.0)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(768)](arg0_1, buf0, 768,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ZeroPad1dNew(nn.Module):
def __init__(self, pad_left, pad_right):
super().__init__()
self.pad_left = pad_left
self.pad_right = pad_right
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AbhilashMathews/adahessian | ZeroPad1d | false | 4,833 | [
"MIT"
] | 1 | bacccecc7a078c3e9e72aa55b17d8e46d21dc9c9 | https://github.com/AbhilashMathews/adahessian/tree/bacccecc7a078c3e9e72aa55b17d8e46d21dc9c9 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class Model(nn.Module):
def __init__(self, pad_left, pad_right):
super().__init__()
self.pad_left = pad_left
self.pad_right = pad_right
def forward(self, x):
return F.pad(x, (self.pad_left, self.pad_right))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
CrossEntropyLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/57/c572rujtphach6djeurlg5nv3rt5e37ifechqsganatcxbygg5m5.py
# Topologically Sorted Source Nodes: [loss, loss_1, loss_cls], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean]
# Source node to ATen node mapping:
# loss => exp, log, mul, neg, sub_1, sum_1, sum_2
# loss_1 => mean
# loss_cls => mul_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.sum(tmp28, 1)[:, None]
tmp31 = 64.0
tmp32 = tmp30 / tmp31
tmp33 = 1.0
tmp34 = tmp32 * tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp34, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [loss, loss_1, loss_cls], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean]
triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf2, buf0, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg1_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
bin_label_weights = label_weights.view(-1, 1).expand(label_weights.size
(0), label_channels)
return bin_labels, bin_label_weights
def binary_cross_entropy(pred, label, weight=None, reduction='mean',
avg_factor=None):
if pred.dim() != label.dim():
label, weight = _expand_binary_labels(label, weight, pred.size(-1))
if weight is not None:
weight = weight.float()
loss = F.binary_cross_entropy_with_logits(pred, label.float(), weight,
reduction='none')
loss = weight_reduce_loss(loss, reduction=reduction, avg_factor=avg_factor)
return loss
def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None):
loss = F.cross_entropy(pred, label, reduction='none')
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(loss, weight=weight, reduction=reduction,
avg_factor=avg_factor)
return loss
def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None):
assert reduction == 'mean' and avg_factor is None
num_rois = pred.size()[0]
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
pred_slice = pred[inds, label].squeeze(1)
return F.binary_cross_entropy_with_logits(pred_slice, target, reduction
='mean')[None]
class CrossEntropyLoss(nn.Module):
def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean',
loss_weight=1.0):
super(CrossEntropyLoss, self).__init__()
assert use_sigmoid is False or use_mask is False
self.use_sigmoid = use_sigmoid
self.use_mask = use_mask
self.reduction = reduction
self.loss_weight = loss_weight
if self.use_sigmoid:
self.cls_criterion = binary_cross_entropy
elif self.use_mask:
self.cls_criterion = mask_cross_entropy
else:
self.cls_criterion = cross_entropy
def forward(self, cls_score, label, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
loss_cls = self.loss_weight * self.cls_criterion(cls_score, label,
weight, reduction=reduction, avg_factor=avg_factor, **kwargs)
return loss_cls
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.sum(tmp28, 1)[:, None]
tmp31 = 64.0
tmp32 = tmp30 / tmp31
tmp33 = 1.0
tmp34 = tmp32 * tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp34, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf2,
buf0, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg1_1
del buf0
return buf2,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
bin_label_weights = label_weights.view(-1, 1).expand(label_weights.size
(0), label_channels)
return bin_labels, bin_label_weights
def binary_cross_entropy(pred, label, weight=None, reduction='mean',
avg_factor=None):
if pred.dim() != label.dim():
label, weight = _expand_binary_labels(label, weight, pred.size(-1))
if weight is not None:
weight = weight.float()
loss = F.binary_cross_entropy_with_logits(pred, label.float(), weight,
reduction='none')
loss = weight_reduce_loss(loss, reduction=reduction, avg_factor=avg_factor)
return loss
def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None):
loss = F.cross_entropy(pred, label, reduction='none')
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(loss, weight=weight, reduction=reduction,
avg_factor=avg_factor)
return loss
def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None):
assert reduction == 'mean' and avg_factor is None
num_rois = pred.size()[0]
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
pred_slice = pred[inds, label].squeeze(1)
return F.binary_cross_entropy_with_logits(pred_slice, target, reduction
='mean')[None]
class CrossEntropyLossNew(nn.Module):
def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean',
loss_weight=1.0):
super(CrossEntropyLossNew, self).__init__()
assert use_sigmoid is False or use_mask is False
self.use_sigmoid = use_sigmoid
self.use_mask = use_mask
self.reduction = reduction
self.loss_weight = loss_weight
if self.use_sigmoid:
self.cls_criterion = binary_cross_entropy
elif self.use_mask:
self.cls_criterion = mask_cross_entropy
else:
self.cls_criterion = cross_entropy
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| AlphaLFC/mmdetection | CrossEntropyLoss | false | 4,834 | [
"Apache-2.0"
] | 1 | 45619c5b8aca0ca3e6ddc211210a8946c94694d8 | https://github.com/AlphaLFC/mmdetection/tree/45619c5b8aca0ca3e6ddc211210a8946c94694d8 | import torch
import torch.nn as nn
import torch.nn.functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
bin_label_weights = label_weights.view(-1, 1).expand(label_weights.size
(0), label_channels)
return bin_labels, bin_label_weights
def binary_cross_entropy(pred, label, weight=None, reduction='mean',
avg_factor=None):
if pred.dim() != label.dim():
label, weight = _expand_binary_labels(label, weight, pred.size(-1))
if weight is not None:
weight = weight.float()
loss = F.binary_cross_entropy_with_logits(pred, label.float(), weight,
reduction='none')
loss = weight_reduce_loss(loss, reduction=reduction, avg_factor=avg_factor)
return loss
def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None):
loss = F.cross_entropy(pred, label, reduction='none')
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(loss, weight=weight, reduction=reduction,
avg_factor=avg_factor)
return loss
def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None):
assert reduction == 'mean' and avg_factor is None
num_rois = pred.size()[0]
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
pred_slice = pred[inds, label].squeeze(1)
return F.binary_cross_entropy_with_logits(pred_slice, target, reduction
='mean')[None]
class Model(nn.Module):
def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean',
loss_weight=1.0):
super().__init__()
assert use_sigmoid is False or use_mask is False
self.use_sigmoid = use_sigmoid
self.use_mask = use_mask
self.reduction = reduction
self.loss_weight = loss_weight
if self.use_sigmoid:
self.cls_criterion = binary_cross_entropy
elif self.use_mask:
self.cls_criterion = mask_cross_entropy
else:
self.cls_criterion = cross_entropy
def forward(self, cls_score, label, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
loss_cls = self.loss_weight * self.cls_criterion(cls_score, label,
weight, reduction=reduction, avg_factor=avg_factor, **kwargs)
return loss_cls
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return
# ... truncated (>4000 chars) for memory efficiency |
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_1
del primals_2
return (buf2, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import numbers
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.init as init
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class LayerNorm(nn.Module):
"""Applies Layer Normalization over a mini-batch of inputs as described in
the paper `Layer Normalization`_ .
.. math::
y = \\frac{x - \\mathrm{E}[x]}{ \\sqrt{\\mathrm{Var}[x] + \\epsilon}} * \\gamma + \\beta
The mean and standard-deviation are calculated separately over the last
certain number dimensions which have to be of the shape specified by
:attr:`normalized_shape`.
:math:`\\gamma` and :math:`\\beta` are learnable affine transform parameters of
:attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
.. note::
Unlike Batch Normalization and Instance Normalization, which applies
scalar scale and bias for each entire channel/plane with the
:attr:`affine` option, Layer Normalization applies per-element scale and
bias with :attr:`elementwise_affine`.
This layer uses statistics computed from input data in both training and
evaluation modes.
Args:
normalized_shape (int or list or torch.Size): input shape from an expected input
of size
.. math::
[* \\times \\text{normalized\\_shape}[0] \\times \\text{normalized\\_shape}[1]
\\times \\ldots \\times \\text{normalized\\_shape}[-1]]
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps: a value added to the denominator for numerical stability. Default: 1e-5
elementwise_affine: a boolean value that when set to ``True``, this module
has learnable per-element affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
Shape:
- Input: :math:`(N, *)`
- Output: :math:`(N, *)` (same shape as input)
Examples::
>>> input = torch.randn(20, 5, 10, 10)
>>> # With Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:])
>>> # Without Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
>>> # Normalize over last two dimensions
>>> m = nn.LayerNorm([10, 10])
>>> # Normalize over last dimension of size 10
>>> m = nn.LayerNorm(10)
>>> # Activating the module
>>> output = m(input)
.. _`Layer Normalization`: https://arxiv.org/abs/1607.06450
"""
__constants__ = ['normalized_shape', 'weight', 'bias', 'eps',
'elementwise_affine']
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True):
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = normalized_shape,
self.normalized_shape = tuple(normalized_shape)
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.Tensor(*normalized_shape))
self.bias = nn.Parameter(torch.Tensor(*normalized_shape))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.elementwise_affine:
init.ones_(self.weight)
init.zeros_(self.bias)
def forward(self, input, pad_mask=None, is_encoder=False):
return F.layer_norm(input, self.normalized_shape, self.weight, self
.bias, self.eps)
def extra_repr(self):
return (
'{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}'
.format(**self.__dict__))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'normalized_shape': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import numbers
import torch.nn as nn
import torch.utils.data
import torch.nn.init as init
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
return buf2, primals_3
class LayerNormNew(nn.Module):
"""Applies Layer Normalization over a mini-batch of inputs as described in
the paper `Layer Normalization`_ .
.. math::
y = \\frac{x - \\mathrm{E}[x]}{ \\sqrt{\\mathrm{Var}[x] + \\epsilon}} * \\gamma + \\beta
The mean and standard-deviation are calculated separately over the last
certain number dimensions which have to be of the shape specified by
:attr:`normalized_shape`.
:math:`\\gamma` and :math:`\\beta` are learnable affine transform parameters of
:attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
.. note::
Unlike Batch Normalization and Instance Normalization, which applies
scalar scale and bias for each entire channel/plane with the
:attr:`affine` option, Layer Normalization applies per-element scale and
bias with :attr:`elementwise_affine`.
This layer uses statistics computed from input data in both training and
evaluation modes.
Args:
normalized_shape (int or list or torch.Size): input shape from an expected input
of size
.. math::
[* \\times \\text{normalized\\_shape}[0] \\times \\text{normalized\\_shape}[1]
\\times \\ldots \\times \\text{normalized\\_shape}[-1]]
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps: a value added to the denominator for numerical stability. Default: 1e-5
elementwise_affine: a boolean value that when set to ``True``, this module
has learnable per-element affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
Shape:
- Input: :math:`(N, *)`
- Output: :math:`(N, *)` (same shape as input)
Examples::
>>> input = torch.randn(20, 5, 10, 10)
>>> # With Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:])
>>> # Without Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
>>> # Normalize over last two dimensions
>>> m = nn.LayerNorm([10, 10])
>>> # Normalize over last dimension of size 10
>>> m = nn.LayerNorm(10)
>>> # Activating the module
>>> output = m(input)
.. _`Layer Normalization`: https://arxiv.org/abs/1607.06450
"""
__constants__ = ['normalized_shape', 'weight', 'bias', 'eps',
'elementwise_affine']
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True):
super(LayerNormNew, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = normalized_shape,
self.normalized_shape = tuple(normalized_shape)
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.Tensor(*normalized_shape))
self.bias = nn.Parameter(torch.Tensor(*normalized_shape))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.elementwise_affine:
init.ones_(self.weight)
init.zeros_(self.bias)
def extra_repr(self):
return (
'{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}'
.format(**self.__dict__))
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AbhilashMathews/adahessian | LayerNorm | false | 4,835 | [
"MIT"
] | 1 | bacccecc7a078c3e9e72aa55b17d8e46d21dc9c9 | https://github.com/AbhilashMathews/adahessian/tree/bacccecc7a078c3e9e72aa55b17d8e46d21dc9c9 | import numbers
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.init as init
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class Model(nn.Module):
"""Applies Layer Normalization over a mini-batch of inputs as described in
the paper `Layer Normalization`_ .
.. math::
y = \\frac{x - \\mathrm{E}[x]}{ \\sqrt{\\mathrm{Var}[x] + \\epsilon}} * \\gamma + \\beta
The mean and standard-deviation are calculated separately over the last
certain number dimensions which have to be of the shape specified by
:attr:`normalized_shape`.
:math:`\\gamma` and :math:`\\beta` are learnable affine transform parameters of
:attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
.. note::
Unlike Batch Normalization and Instance Normalization, which applies
scalar scale and bias for each entire channel/plane with the
:attr:`affine` option, Layer Normalization applies per-element scale and
bias with :attr:`elementwise_affine`.
This layer uses statistics computed from input data in both training and
evaluation modes.
Args:
normalized_shape (int or list or torch.Size): input shape from an expected input
of size
.. math::
[* \\times \\text{normalized\\_shape}[0] \\times \\text{normalized\\_shape}[1]
\\times \\ldots \\times \\text{normalized\\_shape}[-1]]
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps: a value added to the denominator for numerical stability. Default: 1e-5
elementwise_affine: a boolean value that when set to ``True``, this module
has learnable per-element affine parameters initialized to ones (for weights)
and zeros (for biases). Default: ``True``.
Shape:
- Input: :math:`(N, *)`
- Output: :math:`(N, *)` (same shape as input)
Examples::
>>> input = torch.randn(20, 5, 10, 10)
>>> # With Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:])
>>> # Without Learnable Parameters
>>> m = nn.LayerNorm(input.size()[1:], elementwise_affine=False)
>>> # Normalize over last two dimensions
>>> m = nn.LayerNorm([10, 10])
>>> # Normalize over last dimension of size 10
>>> m = nn.LayerNorm(10)
>>> # Activating the module
>>> output = m(input)
.. _`Layer Normalization`: https://arxiv.org/abs/1607.06450
"""
__constants__ = ['normalized_shape', 'weight', 'bias', 'eps',
'elementwise_affine']
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True):
super().__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = normalized_shape,
self.normalized_shape = tuple(normalized_shape)
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.Tensor(*normalized_shape))
self.bias = nn.Parameter(torch.Tensor(*normalized_shape))
else:
self.register_parameter('weight', None)
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
if self.elementwise_affine:
init.ones_(self.weight)
init.zeros_(self.bias)
def forward(self, input, pad_mask=None, is_encoder=False):
return F.layer_norm(input, self.normalized_shape, self.weight, self
.bias, self.eps)
def extra_repr(self):
return (
'{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}'
.format(**self.__dict__))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def
# ... truncated (>4000 chars) for memory efficiency |
Fp32GroupNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/dr/cdrbbq25gaacwdmuqqn76ytppvbzlwbqwo7aazovogwtjetsi3kf.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# output => add, add_1, mul_1, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
triton_per_fused_native_group_norm_0 = async_compile.triton('triton_per_fused_native_group_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tl.store(out_ptr2 + (r1 + (64*x0)), tmp27, xmask)
tl.store(out_ptr3 + (x0), tmp22, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_group_norm]
stream0 = get_raw_stream(0)
triton_per_fused_native_group_norm_0.run(primals_1, primals_2, primals_3, buf0, buf3, buf4, 4, 64, grid=grid(4), stream=stream0)
del primals_2
del primals_3
return (buf3, primals_1, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf4, (4, 1, 1), (1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class Fp32GroupNorm(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.group_norm(input.float(), self.num_groups, self.weight.
float() if self.weight is not None else None, self.bias.float() if
self.bias is not None else None, self.eps)
return output.type_as(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_groups': 1, 'num_channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tl.store(out_ptr2 + (r1 + 64 * x0), tmp27, xmask)
tl.store(out_ptr3 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
get_raw_stream(0)
triton_per_fused_native_group_norm_0[grid(4)](primals_1, primals_2,
primals_3, buf0, buf3, buf4, 4, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del primals_2
del primals_3
return buf3, primals_1, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0
), reinterpret_tensor(buf4, (4, 1, 1), (1, 1, 1), 0)
class Fp32GroupNormNew(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AbhilashMathews/adahessian | Fp32GroupNorm | false | 4,836 | [
"MIT"
] | 1 | bacccecc7a078c3e9e72aa55b17d8e46d21dc9c9 | https://github.com/AbhilashMathews/adahessian/tree/bacccecc7a078c3e9e72aa55b17d8e46d21dc9c9 | import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
class Model(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.group_norm(input.float(), self.num_groups, self.weight.
float() if self.weight is not None else None, self.bias.float() if
self.bias is not None else None, self.eps)
return output.type_as(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [1, 4]
|
Generator | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nu/cnuuaznpt4szfn74bn46qfjkdypvlkfa5x44ywjpperdjt2a66rj.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 10), (10, 1))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 640, grid=grid(640), stream=stream0)
del primals_2
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 10), (10, 1), 0), reinterpret_tensor(primals_4, (10, 1), (1, 10), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as f
class Generator(nn.Module):
def __init__(self, nz):
super(Generator, self).__init__()
self.fc1 = nn.Linear(nz, 10)
self.fc2 = nn.Linear(10, 1)
def forward(self, x):
x = f.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'nz': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 10), (10, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 10), (160, 40, 10, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(640)](buf1,
primals_2, buf4, 640, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 10),
(10, 1), 0), reinterpret_tensor(primals_4, (10, 1), (1, 10), 0),
alpha=1, beta=1, out=buf3)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 10), (10, 1), 0), primals_4, buf4
class GeneratorNew(nn.Module):
def __init__(self, nz):
super(GeneratorNew, self).__init__()
self.fc1 = nn.Linear(nz, 10)
self.fc2 = nn.Linear(10, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Anas-Alamri/vegans | Generator | false | 4,837 | [
"MIT"
] | 1 | 2e8513c9cbebf18d0125cebdc7d924dd6345883a | https://github.com/Anas-Alamri/vegans/tree/2e8513c9cbebf18d0125cebdc7d924dd6345883a | import torch
from torch import nn
import torch.nn.functional as f
class Model(nn.Module):
def __init__(self, nz):
super().__init__()
self.fc1 = nn.Linear(nz, 10)
self.fc2 = nn.Linear(10, 1)
def forward(self, x):
x = f.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Swish | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2u/c2uzxklzsbiemtrcl7via4yz7hqy7l5noylwtycrzffjpd453ape.py
# Topologically Sorted Source Nodes: [mul, sigmoid, mul_1], Original ATen: [aten.mul, aten.sigmoid]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# sigmoid => sigmoid
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sigmoid, mul_1], Original ATen: [aten.mul, aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.nn as nn
class Swish(nn.Module):
"""Applies the element-wise function:
.. math::
\\text{Swish}(x) = x * \\text{Sigmoid}(\\alpha * x) for constant value alpha.
Citation: Searching for Activation Functions, Ramachandran et al., 2017, https://arxiv.org/abs/1710.05941.
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
Examples::
>>> m = Act['swish']()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, input: 'torch.Tensor') ->torch.Tensor:
return input * torch.sigmoid(self.alpha * input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SwishNew(nn.Module):
"""Applies the element-wise function:
.. math::
\\text{Swish}(x) = x * \\text{Sigmoid}(\\alpha * x) for constant value alpha.
Citation: Searching for Activation Functions, Ramachandran et al., 2017, https://arxiv.org/abs/1710.05941.
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
Examples::
>>> m = Act['swish']()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Alxaline/MONAI | Swish | false | 4,838 | [
"Apache-2.0"
] | 1 | 6b8fdf9db7f13ed7d88d605155a0463840abcbf2 | https://github.com/Alxaline/MONAI/tree/6b8fdf9db7f13ed7d88d605155a0463840abcbf2 | import torch
import torch.nn
import torch.nn as nn
class Model(nn.Module):
"""Applies the element-wise function:
.. math::
\\text{Swish}(x) = x * \\text{Sigmoid}(\\alpha * x) for constant value alpha.
Citation: Searching for Activation Functions, Ramachandran et al., 2017, https://arxiv.org/abs/1710.05941.
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
Examples::
>>> m = Act['swish']()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, input: 'torch.Tensor') ->torch.Tensor:
return input * torch.sigmoid(self.alpha * input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
BalancedL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/u6/cu6ipcdjut3ad56lbzon6ze3sumzrsa4berzrqmooidtonkrrxbp.py
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, add, mul_1, mul_2, truediv, add_1, log, mul_3, mul_4, sub_1, mul_5, add_2, sub_2, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.add, aten.div, aten.log, aten.where, aten.mean]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# diff => abs_1
# log => log
# loss => where
# loss_1 => mean
# loss_bbox => mul_6
# lt => lt
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=5] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 19.085536923187664), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.02619784824562798), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 19.085536923187664), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, 1.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %mul_4), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 1.5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 0.07859354473688394), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %sub_1, %sub_2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0 = async_compile.triton('triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 19.085536923187664
tmp7 = tmp3 * tmp6
tmp8 = tmp7 + tmp4
tmp9 = 0.02619784824562798
tmp10 = tmp8 * tmp9
tmp11 = tmp7 * tmp4
tmp12 = tmp11 + tmp4
tmp13 = tl_math.log(tmp12)
tmp14 = tmp10 * tmp13
tmp15 = 0.5
tmp16 = tmp3 * tmp15
tmp17 = tmp14 - tmp16
tmp18 = 1.5
tmp19 = tmp3 * tmp18
tmp20 = 0.07859354473688394
tmp21 = tmp19 + tmp20
tmp22 = tmp21 - tmp15
tmp23 = tl.where(tmp5, tmp17, tmp22)
tmp24 = tl.broadcast_to(tmp23, [RBLOCK])
tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0))
tmp27 = 256.0
tmp28 = tmp26 / tmp27
tmp29 = tmp28 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, add, mul_1, mul_2, truediv, add_1, log, mul_3, mul_4, sub_1, mul_5, add_2, sub_2, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.add, aten.div, aten.log, aten.where, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import functools
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5,
reduction='mean'):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
b = np.e ** (gamma / alpha) - 1
loss = torch.where(diff < beta, alpha / b * (b * diff + 1) * torch.log(
b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b -
alpha * beta)
return loss
class BalancedL1Loss(nn.Module):
"""Balanced L1 Loss
arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019)
"""
def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean',
loss_weight=1.0):
super(BalancedL1Loss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
loss_bbox = self.loss_weight * balanced_l1_loss(pred, target,
weight, alpha=self.alpha, gamma=self.gamma, beta=self.beta,
reduction=reduction, avg_factor=avg_factor, **kwargs)
return loss_bbox
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import functools
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 19.085536923187664
tmp7 = tmp3 * tmp6
tmp8 = tmp7 + tmp4
tmp9 = 0.02619784824562798
tmp10 = tmp8 * tmp9
tmp11 = tmp7 * tmp4
tmp12 = tmp11 + tmp4
tmp13 = tl_math.log(tmp12)
tmp14 = tmp10 * tmp13
tmp15 = 0.5
tmp16 = tmp3 * tmp15
tmp17 = tmp14 - tmp16
tmp18 = 1.5
tmp19 = tmp3 * tmp18
tmp20 = 0.07859354473688394
tmp21 = tmp19 + tmp20
tmp22 = tmp21 - tmp15
tmp23 = tl.where(tmp5, tmp17, tmp22)
tmp24 = tl.broadcast_to(tmp23, [RBLOCK])
tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0))
tmp27 = 256.0
tmp28 = tmp26 / tmp27
tmp29 = tmp28 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_add_div_log_lt_mean_mul_sub_where_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5,
reduction='mean'):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
b = np.e ** (gamma / alpha) - 1
loss = torch.where(diff < beta, alpha / b * (b * diff + 1) * torch.log(
b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b -
alpha * beta)
return loss
class BalancedL1LossNew(nn.Module):
"""Balanced L1 Loss
arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019)
"""
def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean',
loss_weight=1.0):
super(BalancedL1LossNew, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| AlphaLFC/mmdetection | BalancedL1Loss | false | 4,839 | [
"Apache-2.0"
] | 1 | 45619c5b8aca0ca3e6ddc211210a8946c94694d8 | https://github.com/AlphaLFC/mmdetection/tree/45619c5b8aca0ca3e6ddc211210a8946c94694d8 | import functools
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5,
reduction='mean'):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
b = np.e ** (gamma / alpha) - 1
loss = torch.where(diff < beta, alpha / b * (b * diff + 1) * torch.log(
b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b -
alpha * beta)
return loss
class Model(nn.Module):
"""Balanced L1 Loss
arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019)
"""
def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean',
loss_weight=1.0):
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
loss_bbox = self.loss_weight * balanced_l1_loss(pred, target,
weight, alpha=self.alpha, gamma=self.gamma, beta=self.beta,
reduction=reduction, avg_factor=avg_factor, **kwargs)
return loss_bbox
def get_inputs():
# ... truncated (>4000 chars) for memory efficiency |
Clump | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/a7/ca7k7l2tdms6jmraxn7q7kmsqcfcd3kfl2qcpyavk3yys6qtpvn2.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# x => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, -50), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 50), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -50.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 50.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class Clump(nn.Module):
"""Clipping input tensor."""
def __init__(self, min_v: 'int'=-50, max_v: 'int'=50):
"""Class for preparing input for DL model with mixed data.
Args:
min_v: Min value.
max_v: Max value.
"""
super(Clump, self).__init__()
self.min_v = min_v
self.max_v = max_v
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
x = torch.clamp(x, self.min_v, self.max_v)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -50.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 50.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ClumpNew(nn.Module):
"""Clipping input tensor."""
def __init__(self, min_v: 'int'=-50, max_v: 'int'=50):
"""Class for preparing input for DL model with mixed data.
Args:
min_v: Min value.
max_v: Max value.
"""
super(ClumpNew, self).__init__()
self.min_v = min_v
self.max_v = max_v
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Andrey-Nikitin/LightAutoML | Clump | false | 4,840 | [
"Apache-2.0"
] | 1 | fe58d98d1ab05e177f0b9dea918fef8b922ae922 | https://github.com/Andrey-Nikitin/LightAutoML/tree/fe58d98d1ab05e177f0b9dea918fef8b922ae922 | import torch
from torch import nn
class Model(nn.Module):
"""Clipping input tensor."""
def __init__(self, min_v: 'int'=-50, max_v: 'int'=50):
"""Class for preparing input for DL model with mixed data.
Args:
min_v: Min value.
max_v: Max value.
"""
super().__init__()
self.min_v = min_v
self.max_v = max_v
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
x = torch.clamp(x, self.min_v, self.max_v)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
L2Norm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/gj/cgj7f4rogjebeuosz3asgun5w2hregxq3ziitg4vtnz4jtcqfmau.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, mul, truediv], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.mul, aten.div]
# Source node to ATen node mapping:
# mul => mul
# norm => add
# pow_1 => pow_1
# sqrt => sqrt
# sum_1 => sum_1
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-10), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %primals_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp3 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 1e-10
tmp16 = tmp14 + tmp15
tmp17 = tmp2 / tmp16
tl.store(out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, mul, truediv], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class L2Norm(nn.Module):
def __init__(self, n_dims, scale=20.0, eps=1e-10):
super(L2Norm, self).__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale
def forward(self, x):
x_float = x.float()
norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
return (self.weight[None, :, None, None].float().expand_as(x_float) *
x_float / norm).type_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_dims': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp3 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 1e-10
tmp16 = tmp14 + tmp15
tmp17 = tmp2 / tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_2,
primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf0, primals_1
class L2NormNew(nn.Module):
def __init__(self, n_dims, scale=20.0, eps=1e-10):
super(L2NormNew, self).__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| AlphaLFC/mmdetection | L2Norm | false | 4,841 | [
"Apache-2.0"
] | 1 | 45619c5b8aca0ca3e6ddc211210a8946c94694d8 | https://github.com/AlphaLFC/mmdetection/tree/45619c5b8aca0ca3e6ddc211210a8946c94694d8 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, n_dims, scale=20.0, eps=1e-10):
super().__init__()
self.n_dims = n_dims
self.weight = nn.Parameter(torch.Tensor(self.n_dims))
self.eps = eps
self.scale = scale
def forward(self, x):
x_float = x.float()
norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
return (self.weight[None, :, None, None].float().expand_as(x_float) *
x_float / norm).type_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
EncoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => exp
# Graph fragment:
# %mul_tensor_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_3, [-1], True), kwargs = {})
# %sub_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_3, %amax_default_3), kwargs = {})
# %div_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_3, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_3,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/mk/cmkim2hc4ksxhatli3y5cu7hoqofxcbzqrrxvnlhmswdt4cgww25.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %bmm_3, %bmm_5, %bmm_7], -1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr3 + (x1), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7f/c7fwok6q7j5rvjs3ob32s2cth5xjbedhynzb5ozchylog57bhmxv.py
# Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std]
# Source node to ATen node mapping:
# add => add
# mean => mean
# std => var
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %view_7), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add, [-1]), kwargs = {correction: 1.0, keepdim: True})
triton_poi_fused_add_mean_std_3 = async_compile.triton('triton_poi_fused_add_mean_std_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + (x0), tmp29, xmask)
tl.store(out_ptr0 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dw/cdwd24bmovp4kvuenv3jq6ffpahgl34iziauouexc57lxivmzubp.py
# Topologically Sorted Source Nodes: [add, mean, std, sub, mul, add_1, truediv_4, add_2], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.mul, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# mean => mean
# mul => mul
# std => sqrt
# sub => sub_4
# truediv_4 => div_8
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %view_7), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_6, %sub_4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {})
# %div_8 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_8, %primals_7), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_4 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x2), xmask)
tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp6 = tmp0 * tmp5
tmp8 = libdevice.sqrt(tmp7)
tmp9 = 1e-06
tmp10 = tmp8 + tmp9
tmp11 = tmp6 / tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/va/cvayouropyisaprtjrhemadbdvsels72axdjsrgmbayknhu335yc.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dg/cdg2dxfjk7prchu44e4cgkid2y4524hl5vpyijgt6dwrnsrwzz2k.py
# Topologically Sorted Source Nodes: [add_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_3 => add_3
# Graph fragment:
# %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_11), kwargs = {})
triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/j4/cj4wrybpym5umgwi5ropl654n64ptcknq2hunhzirmo6b5jmhqyj.py
# Topologically Sorted Source Nodes: [mean_2, std_2, sub_1, mul_1, add_4, truediv_5, add_5], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add_4 => add_4
# add_5 => add_5
# mean_2 => mean_1
# mul_1 => mul_1
# std_2 => sqrt_1, var_1
# sub_1 => sub_5
# truediv_5 => div_9
# Graph fragment:
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_3, [-1], True), kwargs = {})
# %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add_3, [-1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_1,), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %mean_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_12, %sub_5), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt_1, 1e-06), kwargs = {})
# %div_9 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_4), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_9, %primals_13), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_7 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = 3.0
tmp25 = tmp23 / tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = 1e-06
tmp28 = tmp26 + tmp27
tmp29 = tmp12 / tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [query], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [key], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [value], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_products], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 0), out=buf6)
buf7 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [dot_products_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_0.run(buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf8, buf9, 64, grid=grid(64), stream=stream0)
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_3], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 1), out=buf10)
buf11 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [dot_products_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_0.run(buf11, buf12, 64, grid=grid(64), stream=stream0)
buf13 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf12, buf13, 64, grid=grid(64), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_5], Original ATen: [aten.bmm]
extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 2), out=buf14)
buf15 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [dot_products_3], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_0.run(buf15, buf16, 64, grid=grid(64), stream=stream0)
buf17 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf16, buf17, 64, grid=grid(64), stream=stream0)
buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm_7], Original ATen: [aten.bmm]
extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 3), out=buf18)
buf19 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf6, buf10, buf14, buf18, buf19, 64, grid=grid(64), stream=stream0)
del buf10
del buf14
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf20)
buf21 = reinterpret_tensor(buf6, (4, 4, 1), (4, 1, 16), 0); del buf6 # reuse
buf22 = buf21; del buf21 # reuse
buf23 = reinterpret_tensor(buf18, (4, 4, 1), (4, 1, 16), 0); del buf18 # reuse
# Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std]
triton_poi_fused_add_mean_std_3.run(buf22, primals_2, buf20, buf23, 16, grid=grid(16), stream=stream0)
buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, mean, std, sub, mul, add_1, truediv_4, add_2], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.mul, aten.div]
triton_poi_fused_add_div_mean_mul_std_sub_4.run(primals_6, primals_2, buf20, buf23, buf22, primals_7, buf24, 64, grid=grid(64), stream=stream0)
del buf22
del buf23
del primals_7
buf25 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf24, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf25)
buf26 = reinterpret_tensor(buf25, (4, 4, 4), (16, 4, 1), 0); del buf25 # reuse
buf30 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_5.run(buf26, primals_9, buf30, 64, grid=grid(64), stream=stream0)
del primals_9
buf27 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf26, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf27)
buf28 = reinterpret_tensor(buf27, (4, 4, 4), (16, 4, 1), 0); del buf27 # reuse
# Topologically Sorted Source Nodes: [add_3], Original ATen: [aten.add]
triton_poi_fused_add_6.run(buf28, buf24, primals_11, 64, grid=grid(64), stream=stream0)
del primals_11
buf29 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean_2, std_2, sub_1, mul_1, add_4, truediv_5, add_5], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
triton_poi_fused_add_div_mean_mul_std_sub_7.run(primals_12, buf28, primals_13, buf29, 64, grid=grid(64), stream=stream0)
del primals_13
return (buf29, primals_2, primals_6, primals_12, buf5, buf9, buf13, buf17, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), buf20, reinterpret_tensor(buf24, (16, 4), (4, 1), 0), reinterpret_tensor(buf26, (16, 4), (4, 1), 0), buf28, primals_10, buf30, primals_8, primals_5, reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.nn import functional as F
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-06):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
class ResidualBlock(nn.Module):
def __init__(self, layer, d_model, drop_ratio):
super(ResidualBlock, self).__init__()
self.layer = layer
self.dropout = nn.Dropout(drop_ratio)
self.layernorm = LayerNorm(d_model)
def forward(self, *x):
return self.layernorm(x[0] + self.dropout(self.layer(*x)))
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super(Attention, self).__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = torch.bmm(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri
dot_products.data.sub_(tri.unsqueeze(0))
return torch.bmm(self.dropout(F.softmax(dot_products / self.scale,
dim=-1)), value)
class MultiHead(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super(MultiHead, self).__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, query, key, value):
query, key, value = self.wq(query), self.wk(key), self.wv(value)
query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key,
value))
return self.wo(torch.cat([self.attention(q, k, v) for q, k, v in
zip(query, key, value)], -1))
class FeedForward(nn.Module):
def __init__(self, d_model, d_hidden):
super(FeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, d_hidden)
self.linear2 = nn.Linear(d_hidden, d_model)
def forward(self, x):
return self.linear2(F.relu(self.linear1(x)))
class EncoderLayer(nn.Module):
def __init__(self, d_model, d_hidden, n_heads, drop_ratio):
super(EncoderLayer, self).__init__()
self.selfattn = ResidualBlock(MultiHead(d_model, d_model, n_heads,
drop_ratio, causal=False), d_model, drop_ratio)
self.feedforward = ResidualBlock(FeedForward(d_model, d_hidden),
d_model, drop_ratio)
def forward(self, x):
return self.feedforward(self.selfattn(x, x, x))
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'd_hidden': 4, 'n_heads': 4, 'drop_ratio': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + x1, tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + x1, tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 4, tl.int64)
tmp19 = tl.load(in_ptr3 + x1, tmp16 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + x0, tmp29, xmask)
tl.store(out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_4(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x2, xmask)
tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp6 = tmp0 * tmp5
tmp8 = libdevice.sqrt(tmp7)
tmp9 = 1e-06
tmp10 = tmp8 + tmp9
tmp11 = tmp6 / tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_7(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = 3.0
tmp25 = tmp23 / tmp24
tmp26 = libdevice.sqrt(tmp25)
tmp27 = 1e-06
tmp28 = tmp26 + tmp27
tmp29 = tmp12 / tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = buf3
del buf3
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4,
1), 0), out=buf6)
buf7 = buf4
del buf4
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_1[grid(64)](buf8, buf9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4,
1), 1), out=buf10)
buf11 = buf8
del buf8
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf11, buf12, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf13 = buf11
del buf11
triton_poi_fused__softmax_1[grid(64)](buf12, buf13, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16,
4, 1), 2), out=buf14)
buf15 = buf12
del buf12
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf15, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = buf15
del buf15
triton_poi_fused__softmax_1[grid(64)](buf16, buf17, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16,
4, 1), 3), out=buf18)
buf19 = buf16
del buf16
triton_poi_fused_cat_2[grid(64)](buf6, buf10, buf14, buf18, buf19,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf10
del buf14
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf20)
buf21 = reinterpret_tensor(buf6, (4, 4, 1), (4, 1, 16), 0)
del buf6
buf22 = buf21
del buf21
buf23 = reinterpret_tensor(buf18, (4, 4, 1), (4, 1, 16), 0)
del buf18
triton_poi_fused_add_mean_std_3[grid(16)](buf22, primals_2, buf20,
buf23, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_std_sub_4[grid(64)](primals_6,
primals_2, buf20, buf23, buf22, primals_7, buf24, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf22
del buf23
del primals_7
buf25 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf24, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf25)
buf26 = reinterpret_tensor(buf25, (4, 4, 4), (16, 4, 1), 0)
del buf25
buf30 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_5[grid(64)](buf26,
primals_9, buf30, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_9
buf27 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf26, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf27)
buf28 = reinterpret_tensor(buf27, (4, 4, 4), (16, 4, 1), 0)
del buf27
triton_poi_fused_add_6[grid(64)](buf28, buf24, primals_11, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_11
buf29 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_std_sub_7[grid(64)](primals_12,
buf28, primals_13, buf29, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_13
return (buf29, primals_2, primals_6, primals_12, buf5, buf9, buf13,
buf17, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), buf20,
reinterpret_tensor(buf24, (16, 4), (4, 1), 0), reinterpret_tensor(
buf26, (16, 4), (4, 1), 0), buf28, primals_10, buf30, primals_8,
primals_5, reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 3),
reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3),
reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3),
reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2),
reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2),
reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2),
reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1),
reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1),
reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1),
reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0),
reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0),
reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0))
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-06):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
class ResidualBlock(nn.Module):
def __init__(self, layer, d_model, drop_ratio):
super(ResidualBlock, self).__init__()
self.layer = layer
self.dropout = nn.Dropout(drop_ratio)
self.layernorm = LayerNorm(d_model)
def forward(self, *x):
return self.layernorm(x[0] + self.dropout(self.layer(*x)))
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super(Attention, self).__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = torch.bmm(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri
dot_products.data.sub_(tri.unsqueeze(0))
return torch.bmm(self.dropout(F.softmax(dot_products / self.scale,
dim=-1)), value)
class MultiHead(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super(MultiHead, self).__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, query, key, value):
query, key, value = self.wq(query), self.wk(key), self.wv(value)
query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key,
value))
return self.wo(torch.cat([self.attention(q, k, v) for q, k, v in
zip(query, key, value)], -1))
class FeedForward(nn.Module):
def __init__(self, d_model, d_hidden):
super(FeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, d_hidden)
self.linear2 = nn.Linear(d_hidden, d_model)
def forward(self, x):
return self.linear2(F.relu(self.linear1(x)))
class EncoderLayerNew(nn.Module):
def __init__(self, d_model, d_hidden, n_heads, drop_ratio):
super(EncoderLayerNew, self).__init__()
self.selfattn = ResidualBlock(MultiHead(d_model, d_model, n_heads,
drop_ratio, causal=False), d_model, drop_ratio)
self.feedforward = ResidualBlock(FeedForward(d_model, d_hidden),
d_model, drop_ratio)
def forward(self, input_0):
primals_1 = self.selfattn.layer.wq.weight
primals_3 = self.selfattn.layer.wk.weight
primals_4 = self.selfattn.layer.wv.weight
primals_5 = self.selfattn.layer.wo.weight
primals_6 = self.selfattn.layernorm.gamma
primals_7 = self.selfattn.layernorm.beta
primals_8 = self.feedforward.layer.linear1.weight
primals_9 = self.feedforward.layer.linear1.bias
primals_10 = self.feedforward.layer.linear2.weight
primals_11 = self.feedforward.layer.linear2.bias
primals_12 = self.feedforward.layernorm.gamma
primals_13 = self.feedforward.layernorm.beta
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
| Adelashl6/mask_transformers | EncoderLayer | false | 4,842 | [
"MIT"
] | 1 | 2a2e4d1b40ae3ed546cb850d041af246806b63e7 | https://github.com/Adelashl6/mask_transformers/tree/2a2e4d1b40ae3ed546cb850d041af246806b63e7 | import math
import torch
from torch import nn
from torch.nn import functional as F
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-06):
super().__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
class ResidualBlock(nn.Module):
def __init__(self, layer, d_model, drop_ratio):
super().__init__()
self.layer = layer
self.dropout = nn.Dropout(drop_ratio)
self.layernorm = LayerNorm(d_model)
def forward(self, *x):
return self.layernorm(x[0] + self.dropout(self.layer(*x)))
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super().__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = torch.bmm(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri
dot_products.data.sub_(tri.unsqueeze(0))
return torch.bmm(self.dropout(F.softmax(dot_products / self.scale,
dim=-1)), value)
class MultiHead(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super().__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, query, key, value):
query, key, value = self.wq(query), self.wk(key), self.wv(value)
query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key,
value))
return self.wo(torch.cat([self.attention(q, k, v) for q, k, v in
zip(query, key, value)], -1))
class FeedForward(nn.Module):
def __init__(self, d_model, d_hidden):
super().__init__()
self.linear1 = nn.Linear(d_model, d_hidden)
self.linear2 = nn.Linear(d_hidden, d_model)
def forward(self, x):
return self.linear2(F.relu(self.linear1(x)))
class Model(nn.Module):
def __init__(self, d_model, d_hidden, n_heads, drop_ratio):
super().__init__()
self.selfattn = ResidualBlock(MultiHead(d_model, d_model, n_heads,
drop_ratio, causal=False), d_model, drop_ratio)
self.feedforward = ResidualBlock(FeedForward(d_model, d_hidden),
d_model, drop_ratio)
def forward(self, x):
return self.feedforward(self.selfattn(x, x, x))
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4, 0.5]
|
WordPredictor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/dp/cdpfrqskwwuqnfeupok3qgc45wzitvxhdnpcf5uabibiblorlnoa.py
# Topologically Sorted Source Nodes: [hidden, mean_hidden, max_1, add], Original ATen: [aten.relu, aten.mean, aten.max, aten.add]
# Source node to ATen node mapping:
# add => add
# hidden => relu
# max_1 => max_1
# mean_hidden => mean
# Graph fragment:
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu, [0]), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%relu, 0), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %getitem), kwargs = {})
triton_poi_fused_add_max_mean_relu_0 = async_compile.triton('triton_poi_fused_add_max_mean_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_mean_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_max_mean_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x2), xmask)
tmp23 = tl.load(in_ptr0 + (32 + x2), xmask)
tmp40 = tl.load(in_ptr0 + (48 + x2), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp5 + tmp1
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tmp8 = tmp4 > tmp7
tmp9 = tmp4 == tmp7
tmp10 = tmp4 != tmp4
tmp11 = tmp7 != tmp7
tmp12 = tmp10 > tmp11
tmp13 = tmp8 | tmp12
tmp14 = tmp10 & tmp11
tmp15 = tmp9 | tmp14
tmp16 = tl.full([1], 0, tl.int64)
tmp17 = tl.full([1], 1, tl.int64)
tmp18 = tmp16 < tmp17
tmp19 = tmp15 & tmp18
tmp20 = tmp13 | tmp19
tmp21 = tl.where(tmp20, tmp4, tmp7)
tmp22 = tl.where(tmp20, tmp16, tmp17)
tmp24 = tmp23 + tmp1
tmp25 = triton_helpers.maximum(tmp3, tmp24)
tmp26 = tmp21 > tmp25
tmp27 = tmp21 == tmp25
tmp28 = tmp21 != tmp21
tmp29 = tmp25 != tmp25
tmp30 = tmp28 > tmp29
tmp31 = tmp26 | tmp30
tmp32 = tmp28 & tmp29
tmp33 = tmp27 | tmp32
tmp34 = tl.full([1], 2, tl.int64)
tmp35 = tmp22 < tmp34
tmp36 = tmp33 & tmp35
tmp37 = tmp31 | tmp36
tmp38 = tl.where(tmp37, tmp21, tmp25)
tmp39 = tl.where(tmp37, tmp22, tmp34)
tmp41 = tmp40 + tmp1
tmp42 = triton_helpers.maximum(tmp3, tmp41)
tmp43 = tmp38 > tmp42
tmp44 = tmp38 == tmp42
tmp45 = tmp38 != tmp38
tmp46 = tmp42 != tmp42
tmp47 = tmp45 > tmp46
tmp48 = tmp43 | tmp47
tmp49 = tmp45 & tmp46
tmp50 = tmp44 | tmp49
tmp51 = tl.full([1], 3, tl.int64)
tmp52 = tmp39 < tmp51
tmp53 = tmp50 & tmp52
tmp54 = tmp48 | tmp53
tmp55 = tl.where(tmp54, tmp38, tmp42)
tmp56 = tl.where(tmp54, tmp39, tmp51)
tmp57 = tmp4 + tmp7
tmp58 = tmp57 + tmp25
tmp59 = tmp58 + tmp42
tmp60 = 4.0
tmp61 = tmp59 / tmp60
tmp62 = triton_helpers.maximum(tmp4, tmp7)
tmp63 = triton_helpers.maximum(tmp62, tmp25)
tmp64 = triton_helpers.maximum(tmp63, tmp42)
tmp65 = tmp61 + tmp64
tl.store(out_ptr0 + (x2), tmp56, xmask)
tl.store(out_ptr1 + (x2), tmp65, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/i3/ci32bshm7vv6yycmhvqgk6df7gy4rk2dkcyol7iwwj7ttakuvnhx.py
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# hidden => relu
# Graph fragment:
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden, mean_hidden, max_1, add], Original ATen: [aten.relu, aten.mean, aten.max, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_max_mean_relu_0.run(buf0, primals_3, buf1, buf2, 16, grid=grid(16), stream=stream0)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf0, primals_3, buf4, 64, grid=grid(64), stream=stream0)
del buf0
del primals_3
return (buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf2, primals_4, reinterpret_tensor(buf1, (1, 4, 4), (16, 4, 1), 0), buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
class WordPredictor(nn.Module):
def __init__(self, encoder_output_dim, hidden_dim, output_dim,
topk_labels_per_source_token=None, use_self_attention=False):
super().__init__()
self.encoder_output_dim = encoder_output_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.topk_labels_per_source_token = topk_labels_per_source_token
self.use_self_attention = use_self_attention
if self.use_self_attention:
self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim)
self.attn_layer = nn.Linear(2 * encoder_output_dim, 1)
self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
else:
self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
def forward(self, encoder_output):
encoder_hiddens, *_ = encoder_output
assert encoder_hiddens.dim()
if self.use_self_attention:
init_state = self._get_init_state(encoder_hiddens)
attn_scores = self._attention(encoder_hiddens, init_state)
attned_state = (encoder_hiddens * attn_scores).sum(0)
pred_input = torch.cat([init_state, attned_state], 1)
pred_hidden = F.relu(self.hidden_layer(pred_input))
logits = self.output_layer(pred_hidden)
else:
hidden = F.relu(self.hidden_layer(encoder_hiddens))
mean_hidden = torch.mean(hidden, 0)
max_hidden = torch.max(hidden, 0)[0]
logits = self.output_layer(mean_hidden + max_hidden)
return logits
def _get_init_state(self, encoder_hiddens):
x = torch.mean(encoder_hiddens, 0)
x = F.relu(self.init_layer(x))
return x
def _attention(self, encoder_hiddens, init_state):
init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens)
attn_input = torch.cat([init_state, encoder_hiddens], 2)
attn_scores = F.relu(self.attn_layer(attn_input))
attn_scores = F.softmax(attn_scores, 0)
return attn_scores
def get_normalized_probs(self, net_output, log_probs):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = net_output
if log_probs:
return F.log_softmax(logits, dim=1)
else:
return F.softmax(logits, dim=1)
def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs:
'bool'):
"""
Get self.topk_labels_per_source_token top predicted words for vocab
reduction (per source token).
"""
assert isinstance(self.topk_labels_per_source_token, int
) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None'
k = src_tokens.size(1) * self.topk_labels_per_source_token
probs = self.get_normalized_probs(net_output, log_probs)
_, topk_indices = torch.topk(probs, k, dim=1)
return topk_indices
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'encoder_output_dim': 4, 'hidden_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_max_mean_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x2), xmask)
tmp23 = tl.load(in_ptr0 + (32 + x2), xmask)
tmp40 = tl.load(in_ptr0 + (48 + x2), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp5 + tmp1
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tmp8 = tmp4 > tmp7
tmp9 = tmp4 == tmp7
tmp10 = tmp4 != tmp4
tmp11 = tmp7 != tmp7
tmp12 = tmp10 > tmp11
tmp13 = tmp8 | tmp12
tmp14 = tmp10 & tmp11
tmp15 = tmp9 | tmp14
tmp16 = tl.full([1], 0, tl.int64)
tmp17 = tl.full([1], 1, tl.int64)
tmp18 = tmp16 < tmp17
tmp19 = tmp15 & tmp18
tmp20 = tmp13 | tmp19
tmp21 = tl.where(tmp20, tmp4, tmp7)
tmp22 = tl.where(tmp20, tmp16, tmp17)
tmp24 = tmp23 + tmp1
tmp25 = triton_helpers.maximum(tmp3, tmp24)
tmp26 = tmp21 > tmp25
tmp27 = tmp21 == tmp25
tmp28 = tmp21 != tmp21
tmp29 = tmp25 != tmp25
tmp30 = tmp28 > tmp29
tmp31 = tmp26 | tmp30
tmp32 = tmp28 & tmp29
tmp33 = tmp27 | tmp32
tmp34 = tl.full([1], 2, tl.int64)
tmp35 = tmp22 < tmp34
tmp36 = tmp33 & tmp35
tmp37 = tmp31 | tmp36
tmp38 = tl.where(tmp37, tmp21, tmp25)
tmp39 = tl.where(tmp37, tmp22, tmp34)
tmp41 = tmp40 + tmp1
tmp42 = triton_helpers.maximum(tmp3, tmp41)
tmp43 = tmp38 > tmp42
tmp44 = tmp38 == tmp42
tmp45 = tmp38 != tmp38
tmp46 = tmp42 != tmp42
tmp47 = tmp45 > tmp46
tmp48 = tmp43 | tmp47
tmp49 = tmp45 & tmp46
tmp50 = tmp44 | tmp49
tmp51 = tl.full([1], 3, tl.int64)
tmp52 = tmp39 < tmp51
tmp53 = tmp50 & tmp52
tmp54 = tmp48 | tmp53
tl.where(tmp54, tmp38, tmp42)
tmp56 = tl.where(tmp54, tmp39, tmp51)
tmp57 = tmp4 + tmp7
tmp58 = tmp57 + tmp25
tmp59 = tmp58 + tmp42
tmp60 = 4.0
tmp61 = tmp59 / tmp60
tmp62 = triton_helpers.maximum(tmp4, tmp7)
tmp63 = triton_helpers.maximum(tmp62, tmp25)
tmp64 = triton_helpers.maximum(tmp63, tmp42)
tmp65 = tmp61 + tmp64
tl.store(out_ptr0 + x2, tmp56, xmask)
tl.store(out_ptr1 + x2, tmp65, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_max_mean_relu_0[grid(16)](buf0, primals_3,
buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(64)](buf0,
primals_3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_3
return buf3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf2, primals_4, reinterpret_tensor(buf1, (1, 4, 4), (16, 4, 1), 0
), buf4
class WordPredictorNew(nn.Module):
def __init__(self, encoder_output_dim, hidden_dim, output_dim,
topk_labels_per_source_token=None, use_self_attention=False):
super().__init__()
self.encoder_output_dim = encoder_output_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.topk_labels_per_source_token = topk_labels_per_source_token
self.use_self_attention = use_self_attention
if self.use_self_attention:
self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim)
self.attn_layer = nn.Linear(2 * encoder_output_dim, 1)
self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
else:
self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
def _get_init_state(self, encoder_hiddens):
x = torch.mean(encoder_hiddens, 0)
x = F.relu(self.init_layer(x))
return x
def _attention(self, encoder_hiddens, init_state):
init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens)
attn_input = torch.cat([init_state, encoder_hiddens], 2)
attn_scores = F.relu(self.attn_layer(attn_input))
attn_scores = F.softmax(attn_scores, 0)
return attn_scores
def get_normalized_probs(self, net_output, log_probs):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = net_output
if log_probs:
return F.log_softmax(logits, dim=1)
else:
return F.softmax(logits, dim=1)
def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs:
'bool'):
"""
Get self.topk_labels_per_source_token top predicted words for vocab
reduction (per source token).
"""
assert isinstance(self.topk_labels_per_source_token, int
) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None'
k = src_tokens.size(1) * self.topk_labels_per_source_token
probs = self.get_normalized_probs(net_output, log_probs)
_, topk_indices = torch.topk(probs, k, dim=1)
return topk_indices
def forward(self, input_0):
primals_2 = self.hidden_layer.weight
primals_3 = self.hidden_layer.bias
primals_4 = self.output_layer.weight
primals_5 = self.output_layer.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Acidburn0zzz/translate-1 | WordPredictor | false | 4,843 | [
"BSD-3-Clause"
] | 1 | 8385a3c95de397fec8ca7a032fe1c215fa4e31f9 | https://github.com/Acidburn0zzz/translate-1/tree/8385a3c95de397fec8ca7a032fe1c215fa4e31f9 | import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.jit
import torch.onnx.operators
class Model(nn.Module):
def __init__(self, encoder_output_dim, hidden_dim, output_dim,
topk_labels_per_source_token=None, use_self_attention=False):
super().__init__()
self.encoder_output_dim = encoder_output_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.topk_labels_per_source_token = topk_labels_per_source_token
self.use_self_attention = use_self_attention
if self.use_self_attention:
self.init_layer = nn.Linear(encoder_output_dim, encoder_output_dim)
self.attn_layer = nn.Linear(2 * encoder_output_dim, 1)
self.hidden_layer = nn.Linear(2 * encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
else:
self.hidden_layer = nn.Linear(encoder_output_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, output_dim)
def forward(self, encoder_output):
encoder_hiddens, *_ = encoder_output
assert encoder_hiddens.dim()
if self.use_self_attention:
init_state = self._get_init_state(encoder_hiddens)
attn_scores = self._attention(encoder_hiddens, init_state)
attned_state = (encoder_hiddens * attn_scores).sum(0)
pred_input = torch.cat([init_state, attned_state], 1)
pred_hidden = F.relu(self.hidden_layer(pred_input))
logits = self.output_layer(pred_hidden)
else:
hidden = F.relu(self.hidden_layer(encoder_hiddens))
mean_hidden = torch.mean(hidden, 0)
max_hidden = torch.max(hidden, 0)[0]
logits = self.output_layer(mean_hidden + max_hidden)
return logits
def _get_init_state(self, encoder_hiddens):
x = torch.mean(encoder_hiddens, 0)
x = F.relu(self.init_layer(x))
return x
def _attention(self, encoder_hiddens, init_state):
init_state = init_state.unsqueeze(0).expand_as(encoder_hiddens)
attn_input = torch.cat([init_state, encoder_hiddens], 2)
attn_scores = F.relu(self.attn_layer(attn_input))
attn_scores = F.softmax(attn_scores, 0)
return attn_scores
def get_normalized_probs(self, net_output, log_probs):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = net_output
if log_probs:
return F.log_softmax(logits, dim=1)
else:
return F.softmax(logits, dim=1)
def get_topk_predicted_tokens(self, net_output, src_tokens, log_probs:
'bool'):
"""
Get self.topk_labels_per_source_token top predicted words for vocab
reduction (per source token).
"""
assert isinstance(self.topk_labels_per_source_token, int
) and self.topk_labels_per_source_token > 0, 'topk_labels_per_source_token must be a positive int, or None'
k = src_tokens.size(1) * self.topk_labels_per_source_token
probs = self.get_normalized_probs(net_output, log_probs)
_, topk_indices = torch.topk(probs, k, dim=1)
return topk_indices
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ConvWS2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ww/cwww2apcubf5chosrvnjwezswzhrp5km6tznagvysldlndvyv5qa.py
# Topologically Sorted Source Nodes: [mean, std, sub, add, weight], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# mean => mean
# std => sqrt, var
# sub => sub
# weight => div
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, 1e-05), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
triton_per_fused_add_div_mean_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_std_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tmp0 - tmp20
tmp25 = 1e-05
tmp26 = tmp23 + tmp25
tmp27 = tmp24 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp23, xmask)
tl.store(out_ptr0 + (r1 + (64*x0)), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %div, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse
buf5 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, add, weight], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_std_sub_0.run(buf1, buf5, primals_1, buf6, 4, 64, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf8, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
return (buf8, primals_1, primals_3, buf1, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def conv_ws_2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1, eps=1e-05):
c_in = weight.size(0)
weight_flat = weight.view(c_in, -1)
mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1)
std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1)
weight = (weight - mean) / (std + eps)
return F.conv2d(input, weight, bias, stride, padding, dilation, groups)
class ConvWS2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, eps=1e-05):
super(ConvWS2d, self).__init__(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
self.eps = eps
def forward(self, x):
return conv_ws_2d(x, self.weight, self.bias, self.stride, self.
padding, self.dilation, self.groups, self.eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_std_sub_0(in_out_ptr0, in_out_ptr1,
in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tmp0 - tmp20
tmp25 = 1e-05
tmp26 = tmp23 + tmp25
tmp27 = tmp24 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp23, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp27, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0)
del buf0
buf5 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_std_sub_0[grid(4)](buf1, buf5,
primals_1, buf6, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
buf8 = buf7
del buf7
triton_poi_fused_convolution_1[grid(16)](buf8, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf8, primals_1, primals_3, buf1, buf5, buf6
def conv_ws_2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1, eps=1e-05):
c_in = weight.size(0)
weight_flat = weight.view(c_in, -1)
mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1)
std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1)
weight = (weight - mean) / (std + eps)
return F.conv2d(input, weight, bias, stride, padding, dilation, groups)
class ConvWS2dNew(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, eps=1e-05):
super(ConvWS2dNew, self).__init__(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
self.eps = eps
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AlphaLFC/mmdetection | ConvWS2d | false | 4,845 | [
"Apache-2.0"
] | 1 | 45619c5b8aca0ca3e6ddc211210a8946c94694d8 | https://github.com/AlphaLFC/mmdetection/tree/45619c5b8aca0ca3e6ddc211210a8946c94694d8 | import torch
import torch.nn as nn
import torch.nn.functional as F
def conv_ws_2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
groups=1, eps=1e-05):
c_in = weight.size(0)
weight_flat = weight.view(c_in, -1)
mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1)
std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1)
weight = (weight - mean) / (std + eps)
return F.conv2d(input, weight, bias, stride, padding, dilation, groups)
class Model(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, eps=1e-05):
super().__init__(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, dilation=dilation,
groups=groups, bias=bias)
self.eps = eps
def forward(self, x):
return conv_ws_2d(x, self.weight, self.bias, self.stride, self.
padding, self.dilation, self.groups, self.eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ValueNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 256, grid=grid(256), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
from torch import nn
import torch.nn
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class ValueNetwork(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), primals_6, buf6, primals_4, buf7
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class ValueNetworkNew(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super(ValueNetworkNew, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_6 = self.linear3.weight
primals_7 = self.linear3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| AmmarFayad/Influence-based-Reinforcement-Learning-in-Intrinsically-motivated-Agents | ValueNetwork | false | 4,846 | [
"MIT"
] | 1 | e7cfa4121542312de641792288f7487f86971c1e | https://github.com/AmmarFayad/Influence-based-Reinforcement-Learning-in-Intrinsically-motivated-Agents/tree/e7cfa4121542312de641792288f7487f86971c1e | import torch
import torch.nn.functional as F
from torch import nn
import torch.nn
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class Model(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super().__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
GDN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ow/cowdcudxhul3bkp5n6x4sh5xlfsr5wjeys5mle367nouiee2xmcv.py
# Topologically Sorted Source Nodes: [var, pow_1, sub], Original ATen: [aten.clamp, aten.pow, aten.sub]
# Source node to ATen node mapping:
# pow_1 => pow_1
# sub => sub
# var => clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 3.814697265625e-06), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_1, 1.4551915228366852e-11), kwargs = {})
triton_poi_fused_clamp_pow_sub_0 = async_compile.triton('triton_poi_fused_clamp_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_pow_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.814697265625e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = 1.4551915228366852e-11
tmp5 = tmp3 - tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2y/c2y2depfxa2z6x54ydtq4sztgglwdvphffk5xy2ad6meezomjm6h.py
# Topologically Sorted Source Nodes: [pow_3], Original ATen: [aten.pow]
# Source node to ATen node mapping:
# pow_3 => pow_3
# Graph fragment:
# %pow_3 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {})
triton_poi_fused_pow_1 = async_compile.triton('triton_poi_fused_pow_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pow_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 * tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ug/cug44ghn7hpw52fmb6cvsqsikmnucfhvsokiyh4jncwkntkhgtb3.py
# Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution]
# Source node to ATen node mapping:
# beta => sub_1
# norm_pool => convolution
# pow_2 => pow_2
# var_1 => clamp_min_1
# Graph fragment:
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_2, 0.0010000072759311445), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_1, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, 1.4551915228366852e-11), kwargs = {})
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%pow_3, %view, %sub_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_clamp_convolution_pow_sub_2 = async_compile.triton('triton_poi_fused_clamp_convolution_pow_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_convolution_pow_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_convolution_pow_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0010000072759311445
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = 1.4551915228366852e-11
tmp5 = tmp3 - tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cl/cclwght2uzu6dkoinyev2wpfgnp3tg3nmwinz7z2d5yrlspj6gh5.py
# Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool, norm_pool_1, norm_pool_2], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# beta => sub_1
# norm_pool => convolution
# norm_pool_1 => sqrt
# norm_pool_2 => div
# pow_2 => pow_2
# var_1 => clamp_min_1
# Graph fragment:
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_2, 0.0010000072759311445), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_1, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, 1.4551915228366852e-11), kwargs = {})
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%pow_3, %view, %sub_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%convolution,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_3, %sqrt), kwargs = {})
triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3 = async_compile.triton('triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = libdevice.sqrt(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var, pow_1, sub], Original ATen: [aten.clamp, aten.pow, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_pow_sub_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_3], Original ATen: [aten.pow]
triton_poi_fused_pow_1.run(primals_3, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution]
triton_poi_fused_clamp_convolution_pow_sub_2.run(primals_2, buf2, 4, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution]
buf3 = extern_kernels.convolution(buf1, reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool, norm_pool_1, norm_pool_2], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution, aten.sqrt, aten.div]
triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3.run(buf4, buf2, primals_3, buf5, 256, grid=grid(256), stream=stream0)
del buf2
return (buf5, primals_1, primals_2, primals_3, reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0), buf1, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import torch
import torch.nn.functional as F
import torch.nn as nn
class LowerBound(Function):
@staticmethod
def forward(ctx, inputs, bound):
ctx.save_for_backward(inputs, inputs.new_ones(1) * bound)
return inputs.clamp(min=bound)
@staticmethod
def backward(ctx, grad_output):
inputs, bound = ctx.saved_tensors
pass_through_1 = inputs >= bound
pass_through_2 = grad_output < 0
pass_through = pass_through_1 | pass_through_2
return pass_through.type(grad_output.dtype) * grad_output, None
class GDN(nn.Module):
def __init__(self, num_features, inverse=False, gamma_init=0.1,
beta_bound=1e-06, gamma_bound=0.0, reparam_offset=2 ** -18):
super(GDN, self).__init__()
self._inverse = inverse
self.num_features = num_features
self.reparam_offset = reparam_offset
self.pedestal = self.reparam_offset ** 2
beta_init = torch.sqrt(torch.ones(num_features, dtype=torch.float) +
self.pedestal)
gama_init = torch.sqrt(torch.full((num_features, num_features),
fill_value=gamma_init, dtype=torch.float) * torch.eye(
num_features, dtype=torch.float) + self.pedestal)
self.beta = nn.Parameter(beta_init)
self.gamma = nn.Parameter(gama_init)
self.beta_bound = (beta_bound + self.pedestal) ** 0.5
self.gamma_bound = (gamma_bound + self.pedestal) ** 0.5
def _reparam(self, var, bound):
var = LowerBound.apply(var, bound)
return var ** 2 - self.pedestal
def forward(self, x):
gamma = self._reparam(self.gamma, self.gamma_bound).view(self.
num_features, self.num_features, 1, 1)
beta = self._reparam(self.beta, self.beta_bound)
norm_pool = F.conv2d(x ** 2, gamma, bias=beta, stride=1, padding=0)
norm_pool = torch.sqrt(norm_pool)
if self._inverse:
norm_pool = x * norm_pool
else:
norm_pool = x / norm_pool
return norm_pool
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch.autograd import Function
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clamp_pow_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.814697265625e-06
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = 1.4551915228366852e-11
tmp5 = tmp3 - tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_pow_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_clamp_convolution_pow_sub_2(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0010000072759311445
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = tmp2 * tmp2
tmp4 = 1.4551915228366852e-11
tmp5 = tmp3 - tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = libdevice.sqrt(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_pow_sub_0[grid(16)](primals_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_pow_1[grid(256)](primals_3, buf1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_clamp_convolution_pow_sub_2[grid(4)](primals_2,
buf2, 4, XBLOCK=4, num_warps=1, num_stages=1)
buf3 = extern_kernels.convolution(buf1, reinterpret_tensor(buf0, (4,
4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3[grid(256)](buf4,
buf2, primals_3, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf2
return buf5, primals_1, primals_2, primals_3, reinterpret_tensor(buf0,
(4, 4, 1, 1), (4, 1, 1, 1), 0), buf1, buf4
class LowerBound(Function):
@staticmethod
def forward(ctx, inputs, bound):
ctx.save_for_backward(inputs, inputs.new_ones(1) * bound)
return inputs.clamp(min=bound)
@staticmethod
def backward(ctx, grad_output):
inputs, bound = ctx.saved_tensors
pass_through_1 = inputs >= bound
pass_through_2 = grad_output < 0
pass_through = pass_through_1 | pass_through_2
return pass_through.type(grad_output.dtype) * grad_output, None
class GDNNew(nn.Module):
def __init__(self, num_features, inverse=False, gamma_init=0.1,
beta_bound=1e-06, gamma_bound=0.0, reparam_offset=2 ** -18):
super(GDNNew, self).__init__()
self._inverse = inverse
self.num_features = num_features
self.reparam_offset = reparam_offset
self.pedestal = self.reparam_offset ** 2
beta_init = torch.sqrt(torch.ones(num_features, dtype=torch.float) +
self.pedestal)
gama_init = torch.sqrt(torch.full((num_features, num_features),
fill_value=gamma_init, dtype=torch.float) * torch.eye(
num_features, dtype=torch.float) + self.pedestal)
self.beta = nn.Parameter(beta_init)
self.gamma = nn.Parameter(gama_init)
self.beta_bound = (beta_bound + self.pedestal) ** 0.5
self.gamma_bound = (gamma_bound + self.pedestal) ** 0.5
def _reparam(self, var, bound):
var = LowerBound.apply(var, bound)
return var ** 2 - self.pedestal
def forward(self, input_0):
primals_2 = self.beta
primals_1 = self.gamma
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AmigoLab/pytorch-msssim | GDN | false | 4,847 | [
"MIT"
] | 1 | 234fde137d8d1b4f9b7a2b94523ecc8f11f54c49 | https://github.com/AmigoLab/pytorch-msssim/tree/234fde137d8d1b4f9b7a2b94523ecc8f11f54c49 | from torch.autograd import Function
import torch
import torch.nn.functional as F
import torch.nn as nn
class LowerBound(Function):
@staticmethod
def forward(ctx, inputs, bound):
ctx.save_for_backward(inputs, inputs.new_ones(1) * bound)
return inputs.clamp(min=bound)
@staticmethod
def backward(ctx, grad_output):
inputs, bound = ctx.saved_tensors
pass_through_1 = inputs >= bound
pass_through_2 = grad_output < 0
pass_through = pass_through_1 | pass_through_2
return pass_through.type(grad_output.dtype) * grad_output, None
class Model(nn.Module):
def __init__(self, num_features, inverse=False, gamma_init=0.1,
beta_bound=1e-06, gamma_bound=0.0, reparam_offset=2 ** -18):
super().__init__()
self._inverse = inverse
self.num_features = num_features
self.reparam_offset = reparam_offset
self.pedestal = self.reparam_offset ** 2
beta_init = torch.sqrt(torch.ones(num_features, dtype=torch.float) +
self.pedestal)
gama_init = torch.sqrt(torch.full((num_features, num_features),
fill_value=gamma_init, dtype=torch.float) * torch.eye(
num_features, dtype=torch.float) + self.pedestal)
self.beta = nn.Parameter(beta_init)
self.gamma = nn.Parameter(gama_init)
self.beta_bound = (beta_bound + self.pedestal) ** 0.5
self.gamma_bound = (gamma_bound + self.pedestal) ** 0.5
def _reparam(self, var, bound):
var = LowerBound.apply(var, bound)
return var ** 2 - self.pedestal
def forward(self, x):
gamma = self._reparam(self.gamma, self.gamma_bound).view(self.
num_features, self.num_features, 1, 1)
beta = self._reparam(self.beta, self.beta_bound)
norm_pool = F.conv2d(x ** 2, gamma, bias=beta, stride=1, padding=0)
norm_pool = torch.sqrt(norm_pool)
if self._inverse:
norm_pool = x * norm_pool
else:
norm_pool = x / norm_pool
return norm_pool
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
MeanStd | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/4s/c4sc5cydwzt4zayqlgvp453uu257ikgf22p4yyrjshtofjfpeg42.py
# Topologically Sorted Source Nodes: [pow_1, mean_1, mean_x, mul, var_x], Original ATen: [aten.pow, aten.mean, aten.mul, aten.sub]
# Source node to ATen node mapping:
# mean_1 => mean_1
# mean_x => mean
# mul => mul
# pow_1 => pow_1
# var_x => sub
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [2]), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, %mean), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_1, %mul), kwargs = {})
triton_per_fused_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_mean_mul_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mul_pow_sub_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 16.0
tmp11 = tmp9 / tmp10
tmp12 = tmp5 / tmp10
tmp13 = tmp11 * tmp11
tmp14 = tmp12 - tmp13
tl.store(out_ptr2 + (x2 + (8*x3)), tmp11, xmask)
tl.store(out_ptr3 + (x2 + (8*x3)), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0) # alias
buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4) # alias
# Topologically Sorted Source Nodes: [pow_1, mean_1, mean_x, mul, var_x], Original ATen: [aten.pow, aten.mean, aten.mul, aten.sub]
stream0 = get_raw_stream(0)
triton_per_fused_mean_mul_pow_sub_0.run(arg0_1, buf2, buf3, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MeanStd(nn.Module):
def __init__(self):
super(MeanStd, self).__init__()
def forward(self, x):
x = x.view(x.size(0), x.size(1), -1)
mean_x = torch.mean(x, dim=2)
var_x = torch.mean(x ** 2, dim=2) - mean_x * mean_x
return torch.cat([mean_x, var_x], dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_mul_pow_sub_0(in_ptr0, out_ptr2, out_ptr3, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 16.0
tmp11 = tmp9 / tmp10
tmp12 = tmp5 / tmp10
tmp13 = tmp11 * tmp11
tmp14 = tmp12 - tmp13
tl.store(out_ptr2 + (x2 + 8 * x3), tmp11, xmask)
tl.store(out_ptr3 + (x2 + 8 * x3), tmp14, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0)
buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4)
get_raw_stream(0)
triton_per_fused_mean_mul_pow_sub_0[grid(16)](arg0_1, buf2, buf3,
16, 16, XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
return buf4,
class MeanStdNew(nn.Module):
def __init__(self):
super(MeanStdNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Andribi/pytorch_GAN_zoo | MeanStd | false | 4,848 | [
"BSD-3-Clause"
] | 1 | b37c7268cbd4ec7dc61ba65a3ccf11af71247597 | https://github.com/Andribi/pytorch_GAN_zoo/tree/b37c7268cbd4ec7dc61ba65a3ccf11af71247597 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x = x.view(x.size(0), x.size(1), -1)
mean_x = torch.mean(x, dim=2)
var_x = torch.mean(x ** 2, dim=2) - mean_x * mean_x
return torch.cat([mean_x, var_x], dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
GHMC | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/eu/ceuv7b3vtgnm54c77ljfgp5gdzt44um3527nmb7duufsy6ufr57k.py
# Topologically Sorted Source Nodes: [valid, float_3, sum_1], Original ATen: [aten.gt, aten._to_copy, aten.sum]
# Source node to ATen node mapping:
# float_3 => convert_element_type
# sum_1 => sum_1
# valid => gt
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg2_1, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {})
triton_per_fused__to_copy_gt_sum_0 = async_compile.triton('triton_per_fused__to_copy_gt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_gt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp2, None)
tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yx/cyx33b4cuc5wetqcfqkvlznxkkeck5wuib3zqzten6pdyhb3nib2.py
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like]
# Source node to ATen node mapping:
# weights => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_like_1 = async_compile.triton('triton_poi_fused_zeros_like_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/o3/co3ohsiccha2jedxkbuuzgpfkttvcqovi7edh443hag7dzlqgnfb.py
# Topologically Sorted Source Nodes: [sigmoid, sub, g], Original ATen: [aten.sigmoid, aten.sub, aten.abs]
# Source node to ATen node mapping:
# g => abs_1
# sigmoid => sigmoid
# sub => sub
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
triton_poi_fused_abs_sigmoid_sub_2 = async_compile.triton('triton_poi_fused_abs_sigmoid_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_sigmoid_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_sigmoid_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.abs(tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [valid, float_3, sum_1], Original ATen: [aten.gt, aten._to_copy, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_gt_sum_0.run(arg2_1, buf0, buf1, 1, 256, grid=grid(1), stream=stream0)
del arg2_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like]
triton_poi_fused_zeros_like_1.run(buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, sub, g], Original ATen: [aten.sigmoid, aten.sub, aten.abs]
triton_poi_fused_abs_sigmoid_sub_2.run(arg0_1, arg1_1, buf3, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf1, arg1_1, buf2, buf3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
bin_label_weights = label_weights.view(-1, 1).expand(label_weights.size
(0), label_channels)
return bin_labels, bin_label_weights
class GHMC(nn.Module):
"""GHM Classification Loss.
Details of the theorem can be viewed in the paper
"Gradient Harmonized Single-stage Detector".
https://arxiv.org/abs/1811.05181
Args:
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
use_sigmoid (bool): Can only be true for BCE based loss now.
loss_weight (float): The weight of the total GHM-C loss.
"""
def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0):
super(GHMC, self).__init__()
self.bins = bins
self.momentum = momentum
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] += 1e-06
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.use_sigmoid = use_sigmoid
if not self.use_sigmoid:
raise NotImplementedError
self.loss_weight = loss_weight
def forward(self, pred, target, label_weight, *args, **kwargs):
"""Calculate the GHM-C loss.
Args:
pred (float tensor of size [batch_num, class_num]):
The direct prediction of classification fc layer.
target (float tensor of size [batch_num, class_num]):
Binary class target for each sample.
label_weight (float tensor of size [batch_num, class_num]):
the value is 1 if the sample is valid and 0 if ignored.
Returns:
The gradient harmonized loss.
"""
if pred.dim() != target.dim():
target, label_weight = _expand_binary_labels(target,
label_weight, pred.size(-1))
target, label_weight = target.float(), label_weight.float()
edges = self.edges
mmt = self.momentum
weights = torch.zeros_like(pred)
g = torch.abs(pred.sigmoid().detach() - target)
valid = label_weight > 0
tot = max(valid.float().sum().item(), 1.0)
n = 0
for i in range(self.bins):
inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
num_in_bin = inds.sum().item()
if num_in_bin > 0:
if mmt > 0:
self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt
) * num_in_bin
weights[inds] = tot / self.acc_sum[i]
else:
weights[inds] = tot / num_in_bin
n += 1
if n > 0:
weights = weights / n
loss = F.binary_cross_entropy_with_logits(pred, target, weights,
reduction='sum') / tot
return loss * self.loss_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp2, None)
tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp6, None)
@triton.jit
def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_abs_sigmoid_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.abs(tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf1 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused__to_copy_gt_sum_0[grid(1)](arg2_1, buf0, buf1, 1,
256, num_warps=2, num_stages=1)
del arg2_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_zeros_like_1[grid(256)](buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_abs_sigmoid_sub_2[grid(256)](arg0_1, arg1_1, buf3,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf1, arg1_1, buf2, buf3, buf0
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
bin_label_weights = label_weights.view(-1, 1).expand(label_weights.size
(0), label_channels)
return bin_labels, bin_label_weights
class GHMCNew(nn.Module):
"""GHM Classification Loss.
Details of the theorem can be viewed in the paper
"Gradient Harmonized Single-stage Detector".
https://arxiv.org/abs/1811.05181
Args:
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
use_sigmoid (bool): Can only be true for BCE based loss now.
loss_weight (float): The weight of the total GHM-C loss.
"""
def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0):
super(GHMCNew, self).__init__()
self.bins = bins
self.momentum = momentum
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] += 1e-06
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.use_sigmoid = use_sigmoid
if not self.use_sigmoid:
raise NotImplementedError
self.loss_weight = loss_weight
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| AlphaLFC/mmdetection | GHMC | false | 4,849 | [
"Apache-2.0"
] | 1 | 45619c5b8aca0ca3e6ddc211210a8946c94694d8 | https://github.com/AlphaLFC/mmdetection/tree/45619c5b8aca0ca3e6ddc211210a8946c94694d8 | import torch
import torch.nn as nn
import torch.nn.functional as F
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
bin_label_weights = label_weights.view(-1, 1).expand(label_weights.size
(0), label_channels)
return bin_labels, bin_label_weights
class Model(nn.Module):
"""GHM Classification Loss.
Details of the theorem can be viewed in the paper
"Gradient Harmonized Single-stage Detector".
https://arxiv.org/abs/1811.05181
Args:
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
use_sigmoid (bool): Can only be true for BCE based loss now.
loss_weight (float): The weight of the total GHM-C loss.
"""
def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0):
super().__init__()
self.bins = bins
self.momentum = momentum
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] += 1e-06
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.use_sigmoid = use_sigmoid
if not self.use_sigmoid:
raise NotImplementedError
self.loss_weight = loss_weight
def forward(self, pred, target, label_weight, *args, **kwargs):
"""Calculate the GHM-C loss.
Args:
pred (float tensor of size [batch_num, class_num]):
The direct prediction of classification fc layer.
target (float tensor of size [batch_num, class_num]):
Binary class target for each sample.
label_weight (float tensor of size [batch_num, class_num]):
the value is 1 if the sample is valid and 0 if ignored.
Returns:
The gradient harmonized loss.
"""
if pred.dim() != target.dim():
target, label_weight = _expand_binary_labels(target,
label_weight, pred.size(-1))
target, label_weight = target.float(), label_weight.float()
edges = self.edges
mmt = self.momentum
weights = torch.zeros_like(pred)
g = torch.abs(pred.sigmoid().detach() - target)
valid = label_weight > 0
tot = max(valid.float().sum().item(), 1.0)
n = 0
for i in range(self.bins):
inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
num_in_bin = inds.sum().item()
if num_in_bin > 0:
if mmt > 0:
self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt
) * num_in_bin
weights[inds] = tot / self.acc_sum[i]
else:
weights[inds] = tot / num_in_bin
n += 1
if n > 0:
weights = weights / n
loss = F.binary_cross_entropy_with_logits(pred, target, weights,
reduction='sum') / tot
return loss * self.loss_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
Critic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ul/culsagfqamnnmddjotxaqqrzmmkltfbyazkye544lnbmocdfeo7k.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 112
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 28
x1 = (xindex // 28)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 24, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((24*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 28, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-24) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lc/clcsnjcqfyfpolgflybhra37v7tkcuzg4jvogembn6crpgpcvdhc.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_6), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 48
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/h5/ch52uc2erke4n6rzuq4544hj2etkkufywfyw77ur444hhbzmpili.py
# Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# xs => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 24
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (24, 4), (4, 1))
assert_size_stride(primals_2, (24, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (48, 28), (28, 1))
assert_size_stride(primals_6, (48, ), (1, ))
assert_size_stride(primals_7, (1, 48), (48, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 24), (24, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 28), (28, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 112, grid=grid(112), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 48), (48, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (28, 48), (1, 28), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (48, 1), (1, 48), 0), alpha=1, beta=1, out=buf5)
del primals_8
buf6 = empty_strided_cuda((4, 24), (24, 1), torch.bool)
# Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf6, 96, grid=grid(96), stream=stream0)
del buf0
del primals_2
return (buf5, primals_3, buf1, buf3, primals_7, primals_5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((24, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((48, 28), (28, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 48), (48, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class Critic(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=24,
fc2_units=48):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
xs = F.relu(self.fcs1(state))
x = torch.cat((xs, action), dim=1)
x = F.relu(self.fc2(x))
return self.fc3(x)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 112
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 28
x1 = xindex // 28
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 24, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (24 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 28, tl.int64)
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-24 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 48
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 24
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (24, 4), (4, 1))
assert_size_stride(primals_2, (24,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (48, 28), (28, 1))
assert_size_stride(primals_6, (48,), (1,))
assert_size_stride(primals_7, (1, 48), (48, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 24), (24, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 24),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 28), (28, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(112)](buf0, primals_2, primals_4, buf1,
112, XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 48), (48, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (28, 48), (1,
28), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(192)](buf3, primals_6, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7,
(48, 1), (1, 48), 0), alpha=1, beta=1, out=buf5)
del primals_8
buf6 = empty_strided_cuda((4, 24), (24, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(96)](buf0,
primals_2, buf6, 96, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
return buf5, primals_3, buf1, buf3, primals_7, primals_5, buf6
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class CriticNew(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=24,
fc2_units=48):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super(CriticNew, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, input_0, input_1):
primals_1 = self.fcs1.weight
primals_2 = self.fcs1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_7 = self.fc3.weight
primals_8 = self.fc3.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| AnKra/deep-reinforcement-learning | Critic | false | 4,850 | [
"MIT"
] | 1 | fa906b0a3a21102b5085ce0c934185d2e50c3324 | https://github.com/AnKra/deep-reinforcement-learning/tree/fa906b0a3a21102b5085ce0c934185d2e50c3324 | import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class Model(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=24,
fc2_units=48):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
xs = F.relu(self.fcs1(state))
x = torch.cat((xs, action), dim=1)
x = F.relu(self.fc2(x))
return self.fc3(x)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Actor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/jv/cjvfpvazszqsn7k2c7ac25njk43pn5fjlaxzgkwwsgomov2lqu5x.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 24
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7t/c7tl4sumjtjry7tjtgnqmbovvksgqubsdowfuhrkz4ymnneywfuc.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 48
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ns/cnszijuiz432ctw37rqktvk3syr2vugzeuatmva3neoizic6f3sq.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (24, 4), (4, 1))
assert_size_stride(primals_2, (24, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (48, 24), (24, 1))
assert_size_stride(primals_5, (48, ), (1, ))
assert_size_stride(primals_6, (4, 48), (48, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 24), (24, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 24), (384, 96, 24, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 1536, grid=grid(1536), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 48), (48, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(primals_4, (24, 48), (1, 24), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 48), (768, 192, 48, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 48), (768, 192, 48, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 3072, grid=grid(3072), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 48), (48, 1), 0), reinterpret_tensor(primals_6, (48, 4), (1, 48), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
triton_poi_fused_tanh_2.run(buf5, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(buf3, (64, 48), (48, 1), 0), buf5, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((24, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((48, 24), (24, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 48), (48, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class Actor(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=24,
fc2_units=48):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return F.tanh(self.fc3(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 24
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 3072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 48
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (24, 4), (4, 1))
assert_size_stride(primals_2, (24,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (48, 24), (24, 1))
assert_size_stride(primals_5, (48,), (1,))
assert_size_stride(primals_6, (4, 48), (48, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 24), (24, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 24), (384, 96, 24, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1536)](buf1,
primals_2, buf7, 1536, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 48), (48, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 24), (24, 1), 0),
reinterpret_tensor(primals_4, (24, 48), (1, 24), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 48), (768, 192, 48, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 48), (768, 192, 48, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(3072)](buf3,
primals_5, buf6, 3072, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 48), (48, 1), 0),
reinterpret_tensor(primals_6, (48, 4), (1, 48), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused_tanh_2[grid(256)](buf5, primals_7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(
buf3, (64, 48), (48, 1), 0), buf5, primals_6, buf6, primals_4, buf7
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class ActorNew(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=24,
fc2_units=48):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(ActorNew, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| AnKra/deep-reinforcement-learning | Actor | false | 4,851 | [
"MIT"
] | 1 | fa906b0a3a21102b5085ce0c934185d2e50c3324 | https://github.com/AnKra/deep-reinforcement-learning/tree/fa906b0a3a21102b5085ce0c934185d2e50c3324 | import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class Model(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=24,
fc2_units=48):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return F.tanh(self.fc3(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
Network | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py
# Topologically Sorted Source Nodes: [features1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# features1 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [features1], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [features2], Original ATen: [aten.tanh]
triton_poi_fused_tanh_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf3, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Network(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super(Network, self).__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, state, **kwargs):
features1 = torch.tanh(self._h1(torch.squeeze(state, -1).float()))
features2 = torch.tanh(self._h2(features1))
a = self._h3(features2)
return a
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'output_shape': [4, 4],
'n_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](buf1, primals_3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_tanh_0[grid(256)](buf3, primals_5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), buf1, buf3, primals_6, primals_4
class NetworkNew(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super(NetworkNew, self).__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, input_0):
primals_2 = self._h1.weight
primals_3 = self._h1.bias
primals_4 = self._h2.weight
primals_5 = self._h2.bias
primals_6 = self._h3.weight
primals_7 = self._h3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| AmmarFahmy/mushroom-rl | Network | false | 4,852 | [
"MIT"
] | 1 | 2625ee7f64d5613b3b9fba00f0b7a39fece88ca5 | https://github.com/AmmarFahmy/mushroom-rl/tree/2625ee7f64d5613b3b9fba00f0b7a39fece88ca5 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_shape, output_shape, n_features, **kwargs):
super().__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h1 = nn.Linear(n_input, n_features)
self._h2 = nn.Linear(n_features, n_features)
self._h3 = nn.Linear(n_features, n_output)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('linear'))
def forward(self, state, **kwargs):
features1 = torch.tanh(self._h1(torch.squeeze(state, -1).float()))
features2 = torch.tanh(self._h2(features1))
a = self._h3(features2)
return a
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'output_shape': [4, 4],
'n_features': 4}]
|
SmoothL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/t7/ct7n4vk2rjfplrvzzjcijiow2tdczppexhay5gcikb3dfjajcdzu.py
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, mul_1, truediv, sub_1, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.div, aten.where, aten.mean]
# Source node to ATen node mapping:
# diff => abs_1
# loss => where
# loss_1 => mean
# loss_bbox => mul_2
# lt => lt
# mul => mul
# mul_1 => mul_1
# sub => sub
# sub_1 => sub_1
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=4] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %abs_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_abs_div_lt_mean_mul_sub_where_0 = async_compile.triton('triton_per_fused_abs_div_lt_mean_mul_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_lt_mean_mul_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_div_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 0.5
tmp7 = tmp3 * tmp6
tmp8 = tmp7 * tmp3
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp6
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tmp17 = tmp16 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, mul_1, truediv, sub_1, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.div, aten.where, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_div_lt_mean_mul_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def smooth_l1_loss(pred, target, beta=1.0):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta
)
return loss
class SmoothL1Loss(nn.Module):
def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0):
super(SmoothL1Loss, self).__init__()
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
loss_bbox = self.loss_weight * smooth_l1_loss(pred, target, weight,
beta=self.beta, reduction=reduction, avg_factor=avg_factor, **
kwargs)
return loss_bbox
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import functools
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_div_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 0.5
tmp7 = tmp3 * tmp6
tmp8 = tmp7 * tmp3
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp6
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tmp17 = tmp16 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_div_lt_mean_mul_sub_where_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def smooth_l1_loss(pred, target, beta=1.0):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta
)
return loss
class SmoothL1LossNew(nn.Module):
def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0):
super(SmoothL1LossNew, self).__init__()
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| AlphaLFC/mmdetection | SmoothL1Loss | false | 4,853 | [
"Apache-2.0"
] | 1 | 45619c5b8aca0ca3e6ddc211210a8946c94694d8 | https://github.com/AlphaLFC/mmdetection/tree/45619c5b8aca0ca3e6ddc211210a8946c94694d8 | import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def smooth_l1_loss(pred, target, beta=1.0):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta
)
return loss
class Model(nn.Module):
def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0):
super().__init__()
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None,
reduction_override=None, **kwargs):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
loss_bbox = self.loss_weight * smooth_l1_loss(pred, target, weight,
beta=self.beta, reduction=reduction, avg_factor=avg_factor, **
kwargs)
return loss_bbox
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
outconv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class outconv(nn.Module):
def __init__(self, in_ch, out_ch):
super(outconv, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
def forward(self, x):
x = self.conv(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_ch': 4, 'out_ch': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
class outconvNew(nn.Module):
def __init__(self, in_ch, out_ch):
super(outconvNew, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AntarSidgi/LiverTumorSegmentation | outconv | false | 4,854 | [
"MIT"
] | 1 | 9e8b1182541e011dc9f14218276ee9cb736ce479 | https://github.com/AntarSidgi/LiverTumorSegmentation/tree/9e8b1182541e011dc9f14218276ee9cb736ce479 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv = nn.Conv2d(in_ch, out_ch, 1)
def forward(self, x):
x = self.conv(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
CriticNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ie/ciettq2a3562jfpgfe75iig4ki2hbm6pmbwujlvp6mw26i2odufm.py
# Topologically Sorted Source Nodes: [state_action], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# state_action => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3q/c3quaotcggbd77lhrwqwx4dll7dmonnhxy355jbakbfvmuukdk5v.py
# Topologically Sorted Source Nodes: [q, squeeze], Original ATen: [aten.relu, aten.squeeze, aten.threshold_backward]
# Source node to ATen node mapping:
# q => relu
# squeeze => squeeze
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %squeeze : [num_users=1] = call_function[target=torch.ops.aten.squeeze.default](args = (%relu,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_squeeze_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_squeeze_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_squeeze_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_squeeze_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [state_action], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [q, squeeze], Original ATen: [aten.relu, aten.squeeze, aten.threshold_backward]
triton_poi_fused_relu_squeeze_threshold_backward_1.run(buf1, primals_4, buf2, buf3, 512, grid=grid(512), stream=stream0)
del buf1
del primals_4
return (buf2, reinterpret_tensor(buf0, (128, 4), (4, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class CriticNetwork(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super().__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h = nn.Linear(n_input, n_output)
nn.init.xavier_uniform_(self._h.weight, gain=nn.init.calculate_gain
('relu'))
def forward(self, state, action):
state_action = torch.cat((state.float(), action.float()), dim=1)
q = F.relu(self._h(state_action))
return torch.squeeze(q)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'output_shape': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_squeeze_threshold_backward_1(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((128, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (128, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool)
triton_poi_fused_relu_squeeze_threshold_backward_1[grid(512)](buf1,
primals_4, buf2, buf3, 512, XBLOCK=256, num_warps=4, num_stages=1)
del buf1
del primals_4
return buf2, reinterpret_tensor(buf0, (128, 4), (4, 1), 0), buf3
class CriticNetworkNew(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super().__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h = nn.Linear(n_input, n_output)
nn.init.xavier_uniform_(self._h.weight, gain=nn.init.calculate_gain
('relu'))
def forward(self, input_0, input_1):
primals_3 = self._h.weight
primals_4 = self._h.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| AmmarFahmy/mushroom-rl | CriticNetwork | false | 4,855 | [
"MIT"
] | 1 | 2625ee7f64d5613b3b9fba00f0b7a39fece88ca5 | https://github.com/AmmarFahmy/mushroom-rl/tree/2625ee7f64d5613b3b9fba00f0b7a39fece88ca5 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super().__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h = nn.Linear(n_input, n_output)
nn.init.xavier_uniform_(self._h.weight, gain=nn.init.calculate_gain
('relu'))
def forward(self, state, action):
state_action = torch.cat((state.float(), action.float()), dim=1)
q = F.relu(self._h(state_action))
return torch.squeeze(q)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
DiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/d5/cd52mlrkv7fg7ptxw5vaz664ocriv2bgu4unk4oe24v6nbgmv7uv.py
# Topologically Sorted Source Nodes: [mul, intersection, ground_o, pred_o], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# ground_o => sum_2
# intersection => sum_1
# mul => mul
# pred_o => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg1_1, [2, 3]), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3]), kwargs = {})
triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
tl.store(out_ptr2 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hj/chjrhkjo6m5kpftlvex45jdnrr3g3jrhba4nk3qs657tmtf2uepl.py
# Topologically Sorted Source Nodes: [mul_1, add_1, denominator, add_2, truediv, f, f_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# denominator => add
# f => sub
# f_1 => mean
# mul_1 => mul_1
# truediv => div
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1e-05), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {})
triton_per_fused_add_div_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r0), None)
tmp6 = tl.load(in_ptr2 + (r0), None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-05
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tmp15 = 16.0
tmp16 = tmp14 / tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, intersection, ground_o, pred_o], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_mul_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf2, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [mul_1, add_1, denominator, add_2, truediv, f, f_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
triton_per_fused_add_div_mean_mul_rsub_1.run(buf4, buf0, buf1, buf2, 1, 16, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import collections
import torch
import warnings
from typing import Optional
from typing import Union
from typing import Any
from typing import Callable
from typing import Tuple
import torch.nn
from torch.nn.modules.loss import _Loss
from enum import Enum
import collections.abc
def issequenceiterable(obj: 'Any') ->bool:
"""
Determine if the object is an iterable sequence and is not a string.
"""
if torch.is_tensor(obj):
return int(obj.dim()) > 0
return isinstance(obj, collections.abc.Iterable) and not isinstance(obj,
str)
def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]:
"""
Returns a tuple of `vals`.
"""
if not issequenceiterable(vals):
vals = vals,
return tuple(vals)
def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any,
...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.
"""
tup = ensure_tuple(tup) + (pad_val,) * dim
return tuple(tup[:dim])
def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype:
'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor:
"""
For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]`
for `num_classes` N number of classes.
Example:
For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0.
Note that this will include the background label, thus a binary mask should be treated as having 2 classes.
"""
assert labels.dim() > 0, 'labels should have dim of 1 or more.'
if labels.ndim < dim + 1:
shape = ensure_tuple_size(labels.shape, dim + 1, 1)
labels = labels.reshape(*shape)
sh = list(labels.shape)
assert sh[dim
] == 1, 'labels should have a channel with length equals to one.'
sh[dim] = num_classes
o = torch.zeros(size=sh, dtype=dtype, device=labels.device)
labels = o.scatter_(dim=dim, index=labels.long(), value=1)
return labels
class LossReduction(Enum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = 'none'
MEAN = 'mean'
SUM = 'sum'
class DiceLoss(_Loss):
"""
Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks.
Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).
Axis N of `input` is expected to have logit predictions for each class rather than being image channels,
while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are
values added to the intersection and union components of the inter-over-union calculation to smooth results
respectively, these values should be small. The `include_background` class attribute can be set to False for
an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be
background. If the non-background segmentations are small compared to the total image size they can get
overwhelmed by the signal from the background so excluding it in such cases helps convergence.
Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016.
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard:
'bool'=False, reduction: 'Union[LossReduction, str]'=LossReduction.
MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch:
'bool'=False) ->None:
"""
Args:
include_background: if False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: if True, apply a sigmoid function to the prediction.
softmax: if True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or not.
jaccard: compute Jaccard Index (soft IoU) instead of dice or not.
reduction: {``"none"``, ``"mean"``, ``"sum"``}
Specifies the reduction to apply to the output. Defaults to ``"mean"``.
- ``"none"``: no reduction will be applied.
- ``"mean"``: the sum of the output will be divided by the number of elements in the output.
- ``"sum"``: the output will be summed.
smooth_nr: a small constant added to the numerator to avoid zero.
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, a Dice loss value is computed independently from each item in the batch
before any `reduction`.
Raises:
TypeError: When ``other_act`` is not an ``Optional[Callable]``.
ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``].
Incompatible values.
"""
super().__init__(reduction=LossReduction(reduction).value)
if other_act is not None and not callable(other_act):
raise TypeError(
f'other_act must be None or callable but is {type(other_act).__name__}.'
)
if int(sigmoid) + int(softmax) + int(other_act is not None) > 1:
raise ValueError(
'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].'
)
self.include_background = include_background
self.to_onehot_y = to_onehot_y
self.sigmoid = sigmoid
self.softmax = softmax
self.other_act = other_act
self.squared_pred = squared_pred
self.jaccard = jaccard
self.smooth_nr = float(smooth_nr)
self.smooth_dr = float(smooth_dr)
self.batch = batch
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'
) ->torch.Tensor:
"""
Args:
input: the shape should be BNH[WD].
target: the shape should be BNH[WD].
Raises:
ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"].
"""
if self.sigmoid:
input = torch.sigmoid(input)
n_pred_ch = input.shape[1]
if self.softmax:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `softmax=True` ignored.')
else:
input = torch.softmax(input, 1)
if self.other_act is not None:
input = self.other_act(input)
if self.to_onehot_y:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `to_onehot_y=True` ignored.')
else:
target = one_hot(target, num_classes=n_pred_ch)
if not self.include_background:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `include_background=False` ignored.'
)
else:
target = target[:, 1:]
input = input[:, 1:]
assert target.shape == input.shape, f'ground truth has differing shape ({target.shape}) from input ({input.shape})'
reduce_axis = list(range(2, len(input.shape)))
if self.batch:
reduce_axis = [0] + reduce_axis
intersection = torch.sum(target * input, dim=reduce_axis)
if self.squared_pred:
target = torch.pow(target, 2)
input = torch.pow(input, 2)
ground_o = torch.sum(target, dim=reduce_axis)
pred_o = torch.sum(input, dim=reduce_axis)
denominator = ground_o + pred_o
if self.jaccard:
denominator = 2.0 * (denominator - intersection)
f: 'torch.Tensor' = 1.0 - (2.0 * intersection + self.smooth_nr) / (
denominator + self.smooth_dr)
if self.reduction == LossReduction.MEAN.value:
f = torch.mean(f)
elif self.reduction == LossReduction.SUM.value:
f = torch.sum(f)
elif self.reduction == LossReduction.NONE.value:
pass
else:
raise ValueError(
f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].'
)
return f
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import collections
from typing import Optional
from typing import Union
from typing import Any
from typing import Callable
from typing import Tuple
import torch.nn
from torch.nn.modules.loss import _Loss
from enum import Enum
import collections.abc
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
tl.store(out_ptr2 + x0, tmp14, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r0, None)
tmp6 = tl.load(in_ptr2 + r0, None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 1e-05
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tmp15 = 16.0
tmp16 = tmp14 / tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(16)](arg1_1, arg0_1, buf0, buf1,
buf2, 16, 16, XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_add_div_mean_mul_rsub_1[grid(1)](buf4, buf0, buf1,
buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf2
return buf4,
def issequenceiterable(obj: 'Any') ->bool:
"""
Determine if the object is an iterable sequence and is not a string.
"""
if torch.is_tensor(obj):
return int(obj.dim()) > 0
return isinstance(obj, collections.abc.Iterable) and not isinstance(obj,
str)
def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]:
"""
Returns a tuple of `vals`.
"""
if not issequenceiterable(vals):
vals = vals,
return tuple(vals)
def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any,
...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.
"""
tup = ensure_tuple(tup) + (pad_val,) * dim
return tuple(tup[:dim])
def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype:
'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor:
"""
For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]`
for `num_classes` N number of classes.
Example:
For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0.
Note that this will include the background label, thus a binary mask should be treated as having 2 classes.
"""
assert labels.dim() > 0, 'labels should have dim of 1 or more.'
if labels.ndim < dim + 1:
shape = ensure_tuple_size(labels.shape, dim + 1, 1)
labels = labels.reshape(*shape)
sh = list(labels.shape)
assert sh[dim
] == 1, 'labels should have a channel with length equals to one.'
sh[dim] = num_classes
o = torch.zeros(size=sh, dtype=dtype, device=labels.device)
labels = o.scatter_(dim=dim, index=labels.long(), value=1)
return labels
class LossReduction(Enum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = 'none'
MEAN = 'mean'
SUM = 'sum'
class DiceLossNew(_Loss):
"""
Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks.
Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).
Axis N of `input` is expected to have logit predictions for each class rather than being image channels,
while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are
values added to the intersection and union components of the inter-over-union calculation to smooth results
respectively, these values should be small. The `include_background` class attribute can be set to False for
an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be
background. If the non-background segmentations are small compared to the total image size they can get
overwhelmed by the signal from the background so excluding it in such cases helps convergence.
Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016.
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard:
'bool'=False, reduction: 'Union[LossReduction, str]'=LossReduction.
MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch:
'bool'=False) ->None:
"""
Args:
include_background: if False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: if True, apply a sigmoid function to the prediction.
softmax: if True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or not.
jaccard: compute Jaccard Index (soft IoU) instead of dice or not.
reduction: {``"none"``, ``"mean"``, ``"sum"``}
Specifies the reduction to apply to the output. Defaults to ``"mean"``.
- ``"none"``: no reduction will be applied.
- ``"mean"``: the sum of the output will be divided by the number of elements in the output.
- ``"sum"``: the output will be summed.
smooth_nr: a small constant added to the numerator to avoid zero.
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, a Dice loss value is computed independently from each item in the batch
before any `reduction`.
Raises:
TypeError: When ``other_act`` is not an ``Optional[Callable]``.
ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``].
Incompatible values.
"""
super().__init__(reduction=LossReduction(reduction).value)
if other_act is not None and not callable(other_act):
raise TypeError(
f'other_act must be None or callable but is {type(other_act).__name__}.'
)
if int(sigmoid) + int(softmax) + int(other_act is not None) > 1:
raise ValueError(
'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].'
)
self.include_background = include_background
self.to_onehot_y = to_onehot_y
self.sigmoid = sigmoid
self.softmax = softmax
self.other_act = other_act
self.squared_pred = squared_pred
self.jaccard = jaccard
self.smooth_nr = float(smooth_nr)
self.smooth_dr = float(smooth_dr)
self.batch = batch
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Alxaline/MONAI | DiceLoss | false | 4,856 | [
"Apache-2.0"
] | 1 | 6b8fdf9db7f13ed7d88d605155a0463840abcbf2 | https://github.com/Alxaline/MONAI/tree/6b8fdf9db7f13ed7d88d605155a0463840abcbf2 | import collections
import torch
import warnings
from typing import Optional
from typing import Union
from typing import Any
from typing import Callable
from typing import Tuple
import torch.nn
from torch.nn.modules.loss import _Loss
from enum import Enum
import collections.abc
def issequenceiterable(obj: 'Any') ->bool:
"""
Determine if the object is an iterable sequence and is not a string.
"""
if torch.is_tensor(obj):
return int(obj.dim()) > 0
return isinstance(obj, collections.abc.Iterable) and not isinstance(obj,
str)
def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]:
"""
Returns a tuple of `vals`.
"""
if not issequenceiterable(vals):
vals = vals,
return tuple(vals)
def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any,
...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.
"""
tup = ensure_tuple(tup) + (pad_val,) * dim
return tuple(tup[:dim])
def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype:
'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor:
"""
For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]`
for `num_classes` N number of classes.
Example:
For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0.
Note that this will include the background label, thus a binary mask should be treated as having 2 classes.
"""
assert labels.dim() > 0, 'labels should have dim of 1 or more.'
if labels.ndim < dim + 1:
shape = ensure_tuple_size(labels.shape, dim + 1, 1)
labels = labels.reshape(*shape)
sh = list(labels.shape)
assert sh[dim
] == 1, 'labels should have a channel with length equals to one.'
sh[dim] = num_classes
o = torch.zeros(size=sh, dtype=dtype, device=labels.device)
labels = o.scatter_(dim=dim, index=labels.long(), value=1)
return labels
class LossReduction(Enum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = 'none'
MEAN = 'mean'
SUM = 'sum'
class Model(_Loss):
"""
Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks.
Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]).
Axis N of `input` is expected to have logit predictions for each class rather than being image channels,
while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are
values added to the intersection and union components of the inter-over-union calculation to smooth results
respectively, these values should be small. The `include_background` class attribute can be set to False for
an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be
background. If the non-background segmentations are small compared to the total image size they can get
overwhelmed by the signal from the background so excluding it in such cases helps convergence.
Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016.
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard:
'bool'=False, reduction: 'Union[LossReduction, str]'=LossReduction.
MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch:
'bool'=False) ->None:
"""
Args:
include_background
# ... truncated (>4000 chars) for memory efficiency |
Sum | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/fz/cfz4tzgiddaw2fy5bh2rj32s5huz55cu55x2vyxubcar7zzoef6e.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%primals_2, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/75/c75au4thfzsrnhpvv73ven7brk7fsciagbh6n4qikx4yw2fujr6f.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sz/csz66vykacf427j2te67saiuy5cjrxvpgacucheupaafqk4r3w3z.py
# Topologically Sorted Source Nodes: [log_softmax, x, x_1], Original ATen: [aten._log_softmax, aten.add, aten.logsumexp]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# x => add
# x_1 => abs_1, add_1, amax_1, eq, exp_1, full_default, log_1, sub_2, sum_2, where
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze, %sub_1), kwargs = {})
# %amax_1 : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%add, [2], True), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%amax_1,), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_1, inf), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %amax_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %where), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [2]), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log_1, %squeeze), kwargs = {})
triton_poi_fused__log_softmax_add_logsumexp_2 = async_compile.triton('triton_poi_fused__log_softmax_add_logsumexp_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_add_logsumexp_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_add_logsumexp_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x4 = xindex % 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x4), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x4), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tl_math.abs(tmp14)
tmp16 = float("inf")
tmp17 = tmp15 == tmp16
tmp18 = 0.0
tmp19 = tl.where(tmp17, tmp18, tmp14)
tmp20 = tmp2 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp5 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp9 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp13 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tl_math.log(tmp30)
tmp32 = tmp31 + tmp19
tl.store(in_out_ptr0 + (x3), tmp32, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(primals_2, buf0, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [log_softmax, x, x_1], Original ATen: [aten._log_softmax, aten.add, aten.logsumexp]
triton_poi_fused__log_softmax_add_logsumexp_2.run(buf4, primals_1, buf1, 256, grid=grid(256), stream=stream0)
del buf1
return (buf4, primals_1, primals_2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable as Variable
class Sum(nn.Module):
def __init__(self, in_channels, in_features, out_channels, dropout=0.0):
"""
Create a Sum layer.
Args:
in_channels (int): Number of output channels from the previous layer.
in_features (int): Number of input features.
out_channels (int): Multiplicity of a sum node for a given scope set.
dropout (float, optional): Dropout percentage.
"""
super(Sum, self).__init__()
self.in_channels = in_channels
self.in_features = in_features
self.out_channels = out_channels
self.dropout = dropout
assert out_channels > 0, 'Number of output channels must be at least 1, but was %s.' % out_channels
in_features = int(in_features)
ws = torch.randn(in_features, in_channels, out_channels)
self.sum_weights = nn.Parameter(ws)
self._bernoulli_dist = torch.distributions.Bernoulli(probs=dropout)
self.out_shape = f'(N, {in_features}, C_in)'
def forward(self, x):
"""
Sum layer foward pass.
Args:
x: Input of shape [batch, in_features, in_channels].
Returns:
torch.Tensor: Output of shape [batch, in_features, out_channels]
"""
if self.dropout > 0.0:
r = self._bernoulli_dist.sample(x.shape).type(torch.bool)
x[r] = np.NINF
x = x.unsqueeze(3) + F.log_softmax(self.sum_weights, dim=1)
x = torch.logsumexp(x, dim=2)
return x
def __repr__(self):
return (
'Sum(in_channels={}, in_features={}, out_channels={}, dropout={}, out_shape={})'
.format(self.in_channels, self.in_features, self.out_channels,
self.dropout, self.out_shape))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'in_features': 4, 'out_channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.autograd import Variable as Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
@triton.jit
def triton_poi_fused__log_softmax_add_logsumexp_2(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x4 = xindex % 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x4), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x4), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tl_math.abs(tmp14)
tmp16 = float('inf')
tmp17 = tmp15 == tmp16
tmp18 = 0.0
tmp19 = tl.where(tmp17, tmp18, tmp14)
tmp20 = tmp2 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp5 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp9 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp13 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tl_math.log(tmp30)
tmp32 = tmp31 + tmp19
tl.store(in_out_ptr0 + x3, tmp32, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(64)](primals_2, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = buf3
del buf3
triton_poi_fused__log_softmax_add_logsumexp_2[grid(256)](buf4,
primals_1, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
return buf4, primals_1, primals_2, buf4
class SumNew(nn.Module):
def __init__(self, in_channels, in_features, out_channels, dropout=0.0):
"""
Create a Sum layer.
Args:
in_channels (int): Number of output channels from the previous layer.
in_features (int): Number of input features.
out_channels (int): Multiplicity of a sum node for a given scope set.
dropout (float, optional): Dropout percentage.
"""
super(SumNew, self).__init__()
self.in_channels = in_channels
self.in_features = in_features
self.out_channels = out_channels
self.dropout = dropout
assert out_channels > 0, 'Number of output channels must be at least 1, but was %s.' % out_channels
in_features = int(in_features)
ws = torch.randn(in_features, in_channels, out_channels)
self.sum_weights = nn.Parameter(ws)
self._bernoulli_dist = torch.distributions.Bernoulli(probs=dropout)
self.out_shape = f'(N, {in_features}, C_in)'
def __repr__(self):
return (
'Sum(in_channels={}, in_features={}, out_channels={}, dropout={}, out_shape={})'
.format(self.in_channels, self.in_features, self.out_channels,
self.dropout, self.out_shape))
def forward(self, input_0):
primals_2 = self.sum_weights
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| AmurG/SPFlow | Sum | false | 4,857 | [
"Apache-2.0"
] | 1 | ab28dd4af9ed722ace69c6b290cf0a279bbda39e | https://github.com/AmurG/SPFlow/tree/ab28dd4af9ed722ace69c6b290cf0a279bbda39e | import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable as Variable
class Model(nn.Module):
def __init__(self, in_channels, in_features, out_channels, dropout=0.0):
"""
Create a Sum layer.
Args:
in_channels (int): Number of output channels from the previous layer.
in_features (int): Number of input features.
out_channels (int): Multiplicity of a sum node for a given scope set.
dropout (float, optional): Dropout percentage.
"""
super().__init__()
self.in_channels = in_channels
self.in_features = in_features
self.out_channels = out_channels
self.dropout = dropout
assert out_channels > 0, 'Number of output channels must be at least 1, but was %s.' % out_channels
in_features = int(in_features)
ws = torch.randn(in_features, in_channels, out_channels)
self.sum_weights = nn.Parameter(ws)
self._bernoulli_dist = torch.distributions.Bernoulli(probs=dropout)
self.out_shape = f'(N, {in_features}, C_in)'
def forward(self, x):
"""
Sum layer foward pass.
Args:
x: Input of shape [batch, in_features, in_channels].
Returns:
torch.Tensor: Output of shape [batch, in_features, out_channels]
"""
if self.dropout > 0.0:
r = self._bernoulli_dist.sample(x.shape).type(torch.bool)
x[r] = np.NINF
x = x.unsqueeze(3) + F.log_softmax(self.sum_weights, dim=1)
x = torch.logsumexp(x, dim=2)
return x
def __repr__(self):
return (
'Sum(in_channels={}, in_features={}, out_channels={}, dropout={}, out_shape={})'
.format(self.in_channels, self.in_features, self.out_channels,
self.dropout, self.out_shape))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
QNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nq/cnqjufcqn3ur3s7xvlb2i747nyf24md4zaiatlwgkasynplfjstu.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 4096, grid=grid(4096), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 64), (64, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class QNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64,
fc2_units=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
def forward(self, state):
"""Build a network that maps state -> action values."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return self.fc3(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 64), (64, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1,
primals_2, buf6, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf3,
primals_5, buf5, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(
buf3, (64, 64), (64, 1), 0), primals_6, buf5, primals_4, buf6
class QNetworkNew(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64,
fc2_units=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(QNetworkNew, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| AmineKheldouni/Graphs-in-Machine-Learning | QNetwork | false | 4,858 | [
"MIT"
] | 1 | 003217495c624eaa33d44d679a0bc2164ca1f3d2 | https://github.com/AmineKheldouni/Graphs-in-Machine-Learning/tree/003217495c624eaa33d44d679a0bc2164ca1f3d2 | import torch
import torch.nn.functional as F
import torch.nn as nn
class Model(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=64,
fc2_units=64):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super().__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
def forward(self, state):
"""Build a network that maps state -> action values."""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return self.fc3(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
GHMR | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oz/cozsertrqgjrqyur62xx2dwoox3tbac6et7fykm33ltnl7jxfmfm.py
# Topologically Sorted Source Nodes: [sum_1, valid], Original ATen: [aten.sum, aten.gt]
# Source node to ATen node mapping:
# sum_1 => sum_1
# valid => gt
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg2_1, 0), kwargs = {})
triton_per_fused_gt_sum_0 = async_compile.triton('triton_per_fused_gt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_gt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 0.0
tmp5 = tmp0 > tmp4
tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp5, None)
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2a/c2ayatl72atxz7llof44xg6xfcod4w34uyxjsxirgoqzc6bhc5er.py
# Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss, mul_1, add_1, sqrt_1, truediv, abs_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.div, aten.abs]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# add_1 => add_1
# diff => sub
# loss => sub_1
# mul => mul
# mul_1 => mul_1
# sqrt => sqrt
# sqrt_1 => sqrt_1
# truediv => div
# Graph fragment:
# %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.0004), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sqrt, 0.02), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 0.0004), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div,), kwargs = {})
triton_poi_fused_abs_add_div_mul_sqrt_sub_1 = async_compile.triton('triton_poi_fused_abs_add_div_mul_sqrt_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_div_mul_sqrt_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 0.0004
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 0.02
tmp8 = tmp6 - tmp7
tmp9 = tmp2 / tmp6
tmp10 = tl_math.abs(tmp9)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zd/czdhovzy3i75dbb4lrrvs36jdqekoz77qi3q3aloxdafcrzuwdjh.py
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like]
# Source node to ATen node mapping:
# weights => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_like_2 = async_compile.triton('triton_poi_fused_zeros_like_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_like_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [sum_1, valid], Original ATen: [aten.sum, aten.gt]
stream0 = get_raw_stream(0)
triton_per_fused_gt_sum_0.run(arg2_1, buf0, buf4, 1, 256, grid=grid(1), stream=stream0)
del arg2_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss, mul_1, add_1, sqrt_1, truediv, abs_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.div, aten.abs]
triton_poi_fused_abs_add_div_mul_sqrt_sub_1.run(arg0_1, arg1_1, buf1, buf2, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like]
triton_poi_fused_zeros_like_2.run(buf3, 256, grid=grid(256), stream=stream0)
return (buf0, buf1, buf2, buf3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class GHMR(nn.Module):
"""GHM Regression Loss.
Details of the theorem can be viewed in the paper
"Gradient Harmonized Single-stage Detector"
https://arxiv.org/abs/1811.05181
Args:
mu (float): The parameter for the Authentic Smooth L1 loss.
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
loss_weight (float): The weight of the total GHM-R loss.
"""
def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0):
super(GHMR, self).__init__()
self.mu = mu
self.bins = bins
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] = 1000.0
self.momentum = momentum
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.loss_weight = loss_weight
def forward(self, pred, target, label_weight, avg_factor=None):
"""Calculate the GHM-R loss.
Args:
pred (float tensor of size [batch_num, 4 (* class_num)]):
The prediction of box regression layer. Channel number can be 4
or 4 * class_num depending on whether it is class-agnostic.
target (float tensor of size [batch_num, 4 (* class_num)]):
The target regression values with the same size of pred.
label_weight (float tensor of size [batch_num, 4 (* class_num)]):
The weight of each sample, 0 if ignored.
Returns:
The gradient harmonized loss.
"""
mu = self.mu
edges = self.edges
mmt = self.momentum
diff = pred - target
loss = torch.sqrt(diff * diff + mu * mu) - mu
g = torch.abs(diff / torch.sqrt(mu * mu + diff * diff)).detach()
weights = torch.zeros_like(g)
valid = label_weight > 0
tot = max(label_weight.float().sum().item(), 1.0)
n = 0
for i in range(self.bins):
inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
num_in_bin = inds.sum().item()
if num_in_bin > 0:
n += 1
if mmt > 0:
self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt
) * num_in_bin
weights[inds] = tot / self.acc_sum[i]
else:
weights[inds] = tot / num_in_bin
if n > 0:
weights /= n
loss = loss * weights
loss = loss.sum() / tot
return loss * self.loss_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 0.0
tmp5 = tmp0 > tmp4
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp5, None)
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None)
@triton.jit
def triton_poi_fused_abs_add_div_mul_sqrt_sub_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 0.0004
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 0.02
tmp8 = tmp6 - tmp7
tmp9 = tmp2 / tmp6
tmp10 = tl_math.abs(tmp9)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_zeros_like_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_per_fused_gt_sum_0[grid(1)](arg2_1, buf0, buf4, 1, 256,
num_warps=2, num_stages=1)
del arg2_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_abs_add_div_mul_sqrt_sub_1[grid(256)](arg0_1,
arg1_1, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_zeros_like_2[grid(256)](buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
return buf0, buf1, buf2, buf3, buf4
class GHMRNew(nn.Module):
"""GHM Regression Loss.
Details of the theorem can be viewed in the paper
"Gradient Harmonized Single-stage Detector"
https://arxiv.org/abs/1811.05181
Args:
mu (float): The parameter for the Authentic Smooth L1 loss.
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
loss_weight (float): The weight of the total GHM-R loss.
"""
def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0):
super(GHMRNew, self).__init__()
self.mu = mu
self.bins = bins
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] = 1000.0
self.momentum = momentum
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.loss_weight = loss_weight
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| AlphaLFC/mmdetection | GHMR | false | 4,859 | [
"Apache-2.0"
] | 1 | 45619c5b8aca0ca3e6ddc211210a8946c94694d8 | https://github.com/AlphaLFC/mmdetection/tree/45619c5b8aca0ca3e6ddc211210a8946c94694d8 | import torch
import torch.nn as nn
class Model(nn.Module):
"""GHM Regression Loss.
Details of the theorem can be viewed in the paper
"Gradient Harmonized Single-stage Detector"
https://arxiv.org/abs/1811.05181
Args:
mu (float): The parameter for the Authentic Smooth L1 loss.
bins (int): Number of the unit regions for distribution calculation.
momentum (float): The parameter for moving average.
loss_weight (float): The weight of the total GHM-R loss.
"""
def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0):
super().__init__()
self.mu = mu
self.bins = bins
edges = torch.arange(bins + 1).float() / bins
self.register_buffer('edges', edges)
self.edges[-1] = 1000.0
self.momentum = momentum
if momentum > 0:
acc_sum = torch.zeros(bins)
self.register_buffer('acc_sum', acc_sum)
self.loss_weight = loss_weight
def forward(self, pred, target, label_weight, avg_factor=None):
"""Calculate the GHM-R loss.
Args:
pred (float tensor of size [batch_num, 4 (* class_num)]):
The prediction of box regression layer. Channel number can be 4
or 4 * class_num depending on whether it is class-agnostic.
target (float tensor of size [batch_num, 4 (* class_num)]):
The target regression values with the same size of pred.
label_weight (float tensor of size [batch_num, 4 (* class_num)]):
The weight of each sample, 0 if ignored.
Returns:
The gradient harmonized loss.
"""
mu = self.mu
edges = self.edges
mmt = self.momentum
diff = pred - target
loss = torch.sqrt(diff * diff + mu * mu) - mu
g = torch.abs(diff / torch.sqrt(mu * mu + diff * diff)).detach()
weights = torch.zeros_like(g)
valid = label_weight > 0
tot = max(label_weight.float().sum().item(), 1.0)
n = 0
for i in range(self.bins):
inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
num_in_bin = inds.sum().item()
if num_in_bin > 0:
n += 1
if mmt > 0:
self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt
) * num_in_bin
weights[inds] = tot / self.acc_sum[i]
else:
weights[inds] = tot / num_in_bin
if n > 0:
weights /= n
loss = loss * weights
loss = loss.sum() / tot
return loss * self.loss_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
ActorNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del primals_3
return (buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ActorNetwork(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super(ActorNetwork, self).__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h = nn.Linear(n_input, n_output)
nn.init.xavier_uniform_(self._h.weight, gain=nn.init.calculate_gain
('relu'))
def forward(self, state):
return F.relu(self._h(torch.squeeze(state, 1).float()))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': [4, 4], 'output_shape': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_3, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
return buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2
class ActorNetworkNew(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super(ActorNetworkNew, self).__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h = nn.Linear(n_input, n_output)
nn.init.xavier_uniform_(self._h.weight, gain=nn.init.calculate_gain
('relu'))
def forward(self, input_0):
primals_2 = self._h.weight
primals_3 = self._h.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AmmarFahmy/mushroom-rl | ActorNetwork | false | 4,860 | [
"MIT"
] | 1 | 2625ee7f64d5613b3b9fba00f0b7a39fece88ca5 | https://github.com/AmmarFahmy/mushroom-rl/tree/2625ee7f64d5613b3b9fba00f0b7a39fece88ca5 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super().__init__()
n_input = input_shape[-1]
n_output = output_shape[0]
self._h = nn.Linear(n_input, n_output)
nn.init.xavier_uniform_(self._h.weight, gain=nn.init.calculate_gain
('relu'))
def forward(self, state):
return F.relu(self._h(torch.squeeze(state, 1).float()))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/do/cdoahs7c227u5jaalk3qaaedn23dpnuwahibj3cx77ddefse5mx5.py
# Topologically Sorted Source Nodes: [mean, std, sub, add, y, mul, y_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mean => mean
# mul => mul
# std => var
# sub => sub
# y => div
# y_1 => add_1
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1]), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_5), kwargs = {})
triton_per_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp26 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp27 = tmp0 - tmp20
tmp28 = tmp27 / tmp25
tmp29 = tmp26 * tmp28
tmp31 = tmp29 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp25, xmask)
tl.store(out_ptr0 + (r1 + (64*x0)), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = buf0; del buf0 # reuse
buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, add, y, mul, y_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0.run(buf1, buf5, primals_1, primals_2, primals_3, buf6, 4, 64, grid=grid(4), stream=stream0)
del primals_2
del primals_3
return (buf6, primals_1, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
y = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
y = self.gamma.view(*shape) * y + self.beta.view(*shape)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp26 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp27 = tmp0 - tmp20
tmp28 = tmp27 / tmp25
tmp29 = tmp26 * tmp28
tmp31 = tmp29 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp25, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = buf0
del buf0
buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0[grid(4)](buf1, buf5,
primals_1, primals_2, primals_3, buf6, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_2
del primals_3
return buf6, primals_1, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1,
1), 0), buf5
class LayerNormNew(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNormNew, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AnonymousGFR/wbgan.pytorch | LayerNorm | false | 4,861 | [
"MIT"
] | 1 | d75cb6599852e901df0136db87520e3314f8ca71 | https://github.com/AnonymousGFR/wbgan.pytorch/tree/d75cb6599852e901df0136db87520e3314f8ca71 | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
class Model(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super().__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
y = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
y = self.gamma.view(*shape) * y + self.beta.view(*shape)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
AdaIN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sv/csvajytgcilbqci5szrc43xpvpogl3cxef6o34h6ltfapzi35byb.py
# Topologically Sorted Source Nodes: [mean, mul, mean_1, mul_1, sub, varx, add, varx_1, sub_1, x, mul_3, add_1], Original ATen: [aten.mean, aten.mul, aten.sub, aten.clamp, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mean => mean
# mean_1 => mean_1
# mul => mul
# mul_1 => mul_1
# mul_3 => mul_4
# sub => sub
# sub_1 => sub_1
# varx => clamp_min
# varx_1 => rsqrt
# x => mul_2
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul, [2]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %mul_1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %mul_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %view_6), kwargs = {})
triton_per_fused_add_clamp_mean_mul_rsqrt_sub_0 = async_compile.triton('triton_per_fused_add_clamp_mean_mul_rsqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mean_mul_rsqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_mean_mul_rsqrt_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + (x2 + (8*x3)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (4 + x2 + (8*x3)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = tmp0 * tmp0
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 16.0
tmp11 = tmp4 / tmp10
tmp12 = tmp9 / tmp10
tmp13 = tmp11 * tmp11
tmp14 = tmp12 - tmp13
tmp15 = 0.0
tmp16 = triton_helpers.maximum(tmp14, tmp15)
tmp17 = 1e-08
tmp18 = tmp16 + tmp17
tmp19 = libdevice.rsqrt(tmp18)
tmp22 = tmp20 + tmp21
tmp23 = 0.7071067811865476
tmp24 = tmp22 * tmp23
tmp25 = tmp0 - tmp11
tmp26 = tmp25 * tmp19
tmp27 = tmp24 * tmp26
tmp30 = tmp28 + tmp29
tmp31 = tmp30 * tmp23
tmp32 = tmp27 + tmp31
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp11, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp19, xmask)
tl.store(out_ptr0 + (r1 + (16*x0)), tmp32, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4), (4, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_4, reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf4)
del primals_2
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, mul, mean_1, mul_1, sub, varx, add, varx_1, sub_1, x, mul_3, add_1], Original ATen: [aten.mean, aten.mul, aten.sub, aten.clamp, aten.add, aten.rsqrt]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_mean_mul_rsqrt_sub_0.run(buf1, buf3, primals_1, buf4, primals_3, buf5, 16, 16, grid=grid(16), stream=stream0)
del buf4
del primals_3
return (buf5, primals_1, primals_4, reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
from numpy import prod
def getLayerNormalizationFactor(x):
"""
Get He's constant for the given layer
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
"""
size = x.weight.size()
fan_in = prod(size[1:])
return math.sqrt(2.0 / fan_in)
class ConstrainedLayer(nn.Module):
"""
A handy refactor that allows the user to:
- initialize one layer's bias to zero
- apply He's initialization at runtime
"""
def __init__(self, module, equalized=True, lrMul=1.0, initBiasToZero=True):
"""
equalized (bool): if true, the layer's weight should evolve within
the range (-1, 1)
initBiasToZero (bool): if true, bias will be initialized to zero
"""
super(ConstrainedLayer, self).__init__()
self.module = module
self.equalized = equalized
if initBiasToZero:
self.module.bias.data.fill_(0)
if self.equalized:
self.module.weight.data.normal_(0, 1)
self.module.weight.data /= lrMul
self.weight = getLayerNormalizationFactor(self.module) * lrMul
def forward(self, x):
x = self.module(x)
if self.equalized:
x *= self.weight
return x
class EqualizedLinear(ConstrainedLayer):
def __init__(self, nChannelsPrevious, nChannels, bias=True, **kwargs):
"""
A nn.Linear module with specific constraints
Args:
nChannelsPrevious (int): number of channels in the previous layer
nChannels (int): number of channels of the current layer
bias (bool): with bias ?
"""
ConstrainedLayer.__init__(self, nn.Linear(nChannelsPrevious,
nChannels, bias=bias), **kwargs)
class AdaIN(nn.Module):
def __init__(self, dimIn, dimOut, epsilon=1e-08):
super(AdaIN, self).__init__()
self.epsilon = epsilon
self.styleModulator = EqualizedLinear(dimIn, 2 * dimOut, equalized=
True, initBiasToZero=True)
self.dimOut = dimOut
def forward(self, x, y):
batchSize, nChannel, _width, _height = x.size()
tmpX = x.view(batchSize, nChannel, -1)
mux = tmpX.mean(dim=2).view(batchSize, nChannel, 1, 1)
varx = torch.clamp((tmpX * tmpX).mean(dim=2).view(batchSize,
nChannel, 1, 1) - mux * mux, min=0)
varx = torch.rsqrt(varx + self.epsilon)
x = (x - mux) * varx
styleY = self.styleModulator(y)
yA = styleY[:, :self.dimOut].view(batchSize, self.dimOut, 1, 1)
yB = styleY[:, self.dimOut:].view(batchSize, self.dimOut, 1, 1)
return yA * x + yB
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'dimIn': 4, 'dimOut': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.nn as nn
from numpy import prod
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_clamp_mean_mul_rsqrt_sub_0(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp20 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = tmp0 * tmp0
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 16.0
tmp11 = tmp4 / tmp10
tmp12 = tmp9 / tmp10
tmp13 = tmp11 * tmp11
tmp14 = tmp12 - tmp13
tmp15 = 0.0
tmp16 = triton_helpers.maximum(tmp14, tmp15)
tmp17 = 1e-08
tmp18 = tmp16 + tmp17
tmp19 = libdevice.rsqrt(tmp18)
tmp22 = tmp20 + tmp21
tmp23 = 0.7071067811865476
tmp24 = tmp22 * tmp23
tmp25 = tmp0 - tmp11
tmp26 = tmp25 * tmp19
tmp27 = tmp24 * tmp26
tmp30 = tmp28 + tmp29
tmp31 = tmp30 * tmp23
tmp32 = tmp27 + tmp31
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp11, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp19, xmask)
tl.store(out_ptr0 + (r1 + 16 * x0), tmp32, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4), (4, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(primals_4, reinterpret_tensor(primals_2, (4, 8),
(1, 4), 0), out=buf4)
del primals_2
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_clamp_mean_mul_rsqrt_sub_0[grid(16)](buf1,
buf3, primals_1, buf4, primals_3, buf5, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del buf4
del primals_3
return buf5, primals_1, primals_4, reinterpret_tensor(buf1, (4, 4, 1, 1
), (4, 1, 1, 1), 0), buf3
def getLayerNormalizationFactor(x):
"""
Get He's constant for the given layer
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
"""
size = x.weight.size()
fan_in = prod(size[1:])
return math.sqrt(2.0 / fan_in)
class ConstrainedLayer(nn.Module):
"""
A handy refactor that allows the user to:
- initialize one layer's bias to zero
- apply He's initialization at runtime
"""
def __init__(self, module, equalized=True, lrMul=1.0, initBiasToZero=True):
"""
equalized (bool): if true, the layer's weight should evolve within
the range (-1, 1)
initBiasToZero (bool): if true, bias will be initialized to zero
"""
super(ConstrainedLayer, self).__init__()
self.module = module
self.equalized = equalized
if initBiasToZero:
self.module.bias.data.fill_(0)
if self.equalized:
self.module.weight.data.normal_(0, 1)
self.module.weight.data /= lrMul
self.weight = getLayerNormalizationFactor(self.module) * lrMul
def forward(self, x):
x = self.module(x)
if self.equalized:
x *= self.weight
return x
class EqualizedLinear(ConstrainedLayer):
def __init__(self, nChannelsPrevious, nChannels, bias=True, **kwargs):
"""
A nn.Linear module with specific constraints
Args:
nChannelsPrevious (int): number of channels in the previous layer
nChannels (int): number of channels of the current layer
bias (bool): with bias ?
"""
ConstrainedLayer.__init__(self, nn.Linear(nChannelsPrevious,
nChannels, bias=bias), **kwargs)
class AdaINNew(nn.Module):
def __init__(self, dimIn, dimOut, epsilon=1e-08):
super(AdaINNew, self).__init__()
self.epsilon = epsilon
self.styleModulator = EqualizedLinear(dimIn, 2 * dimOut, equalized=
True, initBiasToZero=True)
self.dimOut = dimOut
def forward(self, input_0, input_1):
primals_2 = self.styleModulator.module.weight
primals_3 = self.styleModulator.module.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| Andribi/pytorch_GAN_zoo | AdaIN | false | 4,862 | [
"BSD-3-Clause"
] | 1 | b37c7268cbd4ec7dc61ba65a3ccf11af71247597 | https://github.com/Andribi/pytorch_GAN_zoo/tree/b37c7268cbd4ec7dc61ba65a3ccf11af71247597 | import math
import torch
import torch.nn as nn
from numpy import prod
def getLayerNormalizationFactor(x):
"""
Get He's constant for the given layer
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
"""
size = x.weight.size()
fan_in = prod(size[1:])
return math.sqrt(2.0 / fan_in)
class ConstrainedLayer(nn.Module):
"""
A handy refactor that allows the user to:
- initialize one layer's bias to zero
- apply He's initialization at runtime
"""
def __init__(self, module, equalized=True, lrMul=1.0, initBiasToZero=True):
"""
equalized (bool): if true, the layer's weight should evolve within
the range (-1, 1)
initBiasToZero (bool): if true, bias will be initialized to zero
"""
super().__init__()
self.module = module
self.equalized = equalized
if initBiasToZero:
self.module.bias.data.fill_(0)
if self.equalized:
self.module.weight.data.normal_(0, 1)
self.module.weight.data /= lrMul
self.weight = getLayerNormalizationFactor(self.module) * lrMul
def forward(self, x):
x = self.module(x)
if self.equalized:
x *= self.weight
return x
class EqualizedLinear(ConstrainedLayer):
def __init__(self, nChannelsPrevious, nChannels, bias=True, **kwargs):
"""
A nn.Linear module with specific constraints
Args:
nChannelsPrevious (int): number of channels in the previous layer
nChannels (int): number of channels of the current layer
bias (bool): with bias ?
"""
ConstrainedLayer.__init__(self, nn.Linear(nChannelsPrevious,
nChannels, bias=bias), **kwargs)
class Model(nn.Module):
def __init__(self, dimIn, dimOut, epsilon=1e-08):
super().__init__()
self.epsilon = epsilon
self.styleModulator = EqualizedLinear(dimIn, 2 * dimOut, equalized=
True, initBiasToZero=True)
self.dimOut = dimOut
def forward(self, x, y):
batchSize, nChannel, _width, _height = x.size()
tmpX = x.view(batchSize, nChannel, -1)
mux = tmpX.mean(dim=2).view(batchSize, nChannel, 1, 1)
varx = torch.clamp((tmpX * tmpX).mean(dim=2).view(batchSize,
nChannel, 1, 1) - mux * mux, min=0)
varx = torch.rsqrt(varx + self.epsilon)
x = (x - mux) * varx
styleY = self.styleModulator(y)
yA = styleY[:, :self.dimOut].view(batchSize, self.dimOut, 1, 1)
yB = styleY[:, self.dimOut:].view(batchSize, self.dimOut, 1, 1)
return yA * x + yB
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
CmapPafHead | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf1, buf3, primals_1, primals_3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn
import torch.optim
class UpsampleCBR(torch.nn.Sequential):
def __init__(self, input_channels, output_channels, count=1, num_flat=0):
layers = []
for i in range(count):
if i == 0:
inch = input_channels
else:
inch = output_channels
layers += [torch.nn.ConvTranspose2d(inch, output_channels,
kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d(
output_channels), torch.nn.ReLU()]
for i in range(num_flat):
layers += [torch.nn.Conv2d(output_channels, output_channels,
kernel_size=3, stride=1, padding=1), torch.nn.
BatchNorm2d(output_channels), torch.nn.ReLU()]
super(UpsampleCBR, self).__init__(*layers)
class CmapPafHead(torch.nn.Module):
def __init__(self, input_channels, cmap_channels, paf_channels,
upsample_channels=256, num_upsample=0, num_flat=0):
super(CmapPafHead, self).__init__()
if num_upsample > 0:
self.cmap_conv = torch.nn.Sequential(UpsampleCBR(input_channels,
upsample_channels, num_upsample, num_flat), torch.nn.Conv2d
(upsample_channels, cmap_channels, kernel_size=1, stride=1,
padding=0))
self.paf_conv = torch.nn.Sequential(UpsampleCBR(input_channels,
upsample_channels, num_upsample, num_flat), torch.nn.Conv2d
(upsample_channels, paf_channels, kernel_size=1, stride=1,
padding=0))
else:
self.cmap_conv = torch.nn.Conv2d(input_channels, cmap_channels,
kernel_size=1, stride=1, padding=0)
self.paf_conv = torch.nn.Conv2d(input_channels, paf_channels,
kernel_size=1, stride=1, padding=0)
def forward(self, x):
return self.cmap_conv(x), self.paf_conv(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_channels': 4, 'cmap_channels': 4, 'paf_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(256)](buf3, primals_5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
return buf1, buf3, primals_1, primals_3, primals_4
class UpsampleCBR(torch.nn.Sequential):
def __init__(self, input_channels, output_channels, count=1, num_flat=0):
layers = []
for i in range(count):
if i == 0:
inch = input_channels
else:
inch = output_channels
layers += [torch.nn.ConvTranspose2d(inch, output_channels,
kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d(
output_channels), torch.nn.ReLU()]
for i in range(num_flat):
layers += [torch.nn.Conv2d(output_channels, output_channels,
kernel_size=3, stride=1, padding=1), torch.nn.
BatchNorm2d(output_channels), torch.nn.ReLU()]
super(UpsampleCBR, self).__init__(*layers)
class CmapPafHeadNew(torch.nn.Module):
def __init__(self, input_channels, cmap_channels, paf_channels,
upsample_channels=256, num_upsample=0, num_flat=0):
super(CmapPafHeadNew, self).__init__()
if num_upsample > 0:
self.cmap_conv = torch.nn.Sequential(UpsampleCBR(input_channels,
upsample_channels, num_upsample, num_flat), torch.nn.Conv2d
(upsample_channels, cmap_channels, kernel_size=1, stride=1,
padding=0))
self.paf_conv = torch.nn.Sequential(UpsampleCBR(input_channels,
upsample_channels, num_upsample, num_flat), torch.nn.Conv2d
(upsample_channels, paf_channels, kernel_size=1, stride=1,
padding=0))
else:
self.cmap_conv = torch.nn.Conv2d(input_channels, cmap_channels,
kernel_size=1, stride=1, padding=0)
self.paf_conv = torch.nn.Conv2d(input_channels, paf_channels,
kernel_size=1, stride=1, padding=0)
def forward(self, input_0):
primals_1 = self.cmap_conv.weight
primals_2 = self.cmap_conv.bias
primals_4 = self.paf_conv.weight
primals_5 = self.paf_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
| Anqi-nus/trtpose | CmapPafHead | false | 4,863 | [
"MIT"
] | 1 | 723ec95df8b8414b9289af90fbfbc98756792a21 | https://github.com/Anqi-nus/trtpose/tree/723ec95df8b8414b9289af90fbfbc98756792a21 | import torch
import torch.utils.data
import torch.nn
import torch.optim
class UpsampleCBR(torch.nn.Sequential):
def __init__(self, input_channels, output_channels, count=1, num_flat=0):
layers = []
for i in range(count):
if i == 0:
inch = input_channels
else:
inch = output_channels
layers += [torch.nn.ConvTranspose2d(inch, output_channels,
kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d(
output_channels), torch.nn.ReLU()]
for i in range(num_flat):
layers += [torch.nn.Conv2d(output_channels, output_channels,
kernel_size=3, stride=1, padding=1), torch.nn.
BatchNorm2d(output_channels), torch.nn.ReLU()]
super().__init__(*layers)
class Model(torch.nn.Module):
def __init__(self, input_channels, cmap_channels, paf_channels,
upsample_channels=256, num_upsample=0, num_flat=0):
super().__init__()
if num_upsample > 0:
self.cmap_conv = torch.nn.Sequential(UpsampleCBR(input_channels,
upsample_channels, num_upsample, num_flat), torch.nn.Conv2d
(upsample_channels, cmap_channels, kernel_size=1, stride=1,
padding=0))
self.paf_conv = torch.nn.Sequential(UpsampleCBR(input_channels,
upsample_channels, num_upsample, num_flat), torch.nn.Conv2d
(upsample_channels, paf_channels, kernel_size=1, stride=1,
padding=0))
else:
self.cmap_conv = torch.nn.Conv2d(input_channels, cmap_channels,
kernel_size=1, stride=1, padding=0)
self.paf_conv = torch.nn.Conv2d(input_channels, paf_channels,
kernel_size=1, stride=1, padding=0)
def forward(self, x):
return self.cmap_conv(x), self.paf_conv(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
QNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# xu => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/5b/c5br3r4gpi7zzaygqfdgcqeerwiekt2d2t2wkw4sj54lam6radgq.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x1 => relu
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (4, 8), (8, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (1, 4), (4, 1))
assert_size_stride(primals_14, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_6, 16, grid=grid(16), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 4), (1, 8), 0), out=buf7)
del primals_9
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf8, primals_10, 16, grid=grid(16), stream=stream0)
del primals_10
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf10, primals_12, 16, grid=grid(16), stream=stream0)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x2_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(primals_13, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13, primals_11, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
from torch import nn
import torch.nn
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class QNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state, action):
xu = torch.cat([state, action], 1)
x1 = F.relu(self.linear1(xu))
x1 = F.relu(self.linear2(x1))
x1 = self.linear3(x1)
x2 = F.relu(self.linear4(xu))
x2 = F.relu(self.linear5(x2))
x2 = self.linear6(x2)
return x1, x2
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'num_actions': 4, 'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (4, 8), (8, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (1, 4), (4, 1))
assert_size_stride(primals_14, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8
), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4
), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(16)](buf4, primals_6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 4), (1, 8
), 0), out=buf7)
del primals_9
buf8 = buf7
del buf7
triton_poi_fused_relu_1[grid(16)](buf8, primals_10, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_10
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (4, 4), (1,
4), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_relu_1[grid(16)](buf10, primals_12, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(
primals_13, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13,
primals_11, primals_7, primals_5)
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class QNetworkNew(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetworkNew, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, input_0, input_1):
primals_3 = self.linear1.weight
primals_4 = self.linear1.bias
primals_1 = self.linear2.weight
primals_6 = self.linear2.bias
primals_7 = self.linear3.weight
primals_8 = self.linear3.bias
primals_9 = self.linear4.weight
primals_10 = self.linear4.bias
primals_2 = self.linear5.weight
primals_12 = self.linear5.bias
primals_13 = self.linear6.weight
primals_14 = self.linear6.bias
primals_5 = input_0
primals_11 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0], output[1]
| AmmarFayad/Influence-based-Reinforcement-Learning-in-Intrinsically-motivated-Agents | QNetwork | false | 4,864 | [
"MIT"
] | 1 | e7cfa4121542312de641792288f7487f86971c1e | https://github.com/AmmarFayad/Influence-based-Reinforcement-Learning-in-Intrinsically-motivated-Agents/tree/e7cfa4121542312de641792288f7487f86971c1e | import torch
import torch.nn.functional as F
from torch import nn
import torch.nn
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class Model(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super().__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state, action):
xu = torch.cat([state, action], 1)
x1 = F.relu(self.linear1(xu))
x1 = F.relu(self.linear2(x1))
x1 = self.linear3(x1)
x2 = F.relu(self.linear4(xu))
x2 = F.relu(self.linear5(x2))
x2 = self.linear6(x2)
return x1, x2
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
GeLU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6s/c6shmuvjmq6zc4ifvdsynorwri47ra63qxa7jg3e7p6lw6xlqj5q.py
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
# Source node to ATen node mapping:
# add => add
# erf => erf
# mul => mul
# mul_1 => mul_1
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1.4142135623730951), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_add_div_erf_mul_0 = async_compile.triton('triton_poi_fused_add_div_erf_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class GeLU(nn.Module):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super().__init__()
def forward(self, x):
return gelu(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865475
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_erf_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class GeLUNew(nn.Module):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AsmitaBhat30/lxmert | GeLU | false | 4,865 | [
"MIT"
] | 1 | 90292dc36a25c04c4f76fe9119e3141d5dc05874 | https://github.com/AsmitaBhat30/lxmert/tree/90292dc36a25c04c4f76fe9119e3141d5dc05874 | import math
import torch
import torch.nn as nn
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class Model(nn.Module):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super().__init__()
def forward(self, x):
return gelu(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/hc/chcvgm3sfysnmktc2gfu6wuvzistmmcdmnswrsruagvhi7yf2qi6.py
# Topologically Sorted Source Nodes: [mean, std, sub, add, x, mul, x_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mean => mean
# mul => mul
# std => var
# sub => sub
# x => div
# x_1 => add_1
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1]), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view_4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_5), kwargs = {})
triton_per_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp28 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = tmp0 - tmp20
tmp27 = tmp26 / tmp25
tmp29 = tmp27 * tmp28
tmp31 = tmp29 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp25, xmask)
tl.store(out_ptr0 + (r1 + (64*x0)), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = buf0; del buf0 # reuse
buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, add, x, mul, x_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0.run(buf1, buf5, primals_1, primals_2, primals_3, buf6, 4, 64, grid=grid(4), stream=stream0)
del primals_2
del primals_3
return (buf6, primals_1, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp28 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp4 / tmp19
tmp21 = 63.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = 1e-05
tmp25 = tmp23 + tmp24
tmp26 = tmp0 - tmp20
tmp27 = tmp26 / tmp25
tmp29 = tmp27 * tmp28
tmp31 = tmp29 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp25, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = buf0
del buf0
buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_mean_mul_std_sub_0[grid(4)](buf1, buf5,
primals_1, primals_2, primals_3, buf6, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_2
del primals_3
return buf6, primals_1, reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1,
1), 0), buf5
class LayerNormNew(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNormNew, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AntiAegis/PyTorch-GAN | LayerNorm | false | 4,866 | [
"MIT"
] | 1 | 1cb951b3ad3a58b749c1802f84947b85f72c8367 | https://github.com/AntiAegis/PyTorch-GAN/tree/1cb951b3ad3a58b749c1802f84947b85f72c8367 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super().__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
SimpleCNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/g3/cg3el2gn3jo2uczn6kvxebxonhlsgf4gykdxpouwhsyjf55b5gdg.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu_1
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 784), (784, 1))
assert_size_stride(primals_2, (500, 784), (784, 1))
assert_size_stride(primals_3, (500, ), (1, ))
assert_size_stride(primals_4, (256, 500), (500, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (10, 256), (256, 1))
assert_size_stride(primals_7, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 500), (1, 784), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 2000, grid=grid(2000), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 256), (1, 500), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 1024, grid=grid(1024), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (buf4, primals_1, buf1, buf3, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((500, 784), (784, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((10, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import functional as F
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.fc1 = nn.Linear(28 * 28, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def name(self):
return 'SimpleCNN'
def get_inputs():
return [torch.rand([4, 784])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 2000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 784), (784, 1))
assert_size_stride(primals_2, (500, 784), (784, 1))
assert_size_stride(primals_3, (500,), (1,))
assert_size_stride(primals_4, (256, 500), (500, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (10, 256), (256, 1))
assert_size_stride(primals_7, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784,
500), (1, 784), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(2000)](buf1, primals_3, 2000, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 256), (
1, 500), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(1024)](buf3, primals_5, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6,
(256, 10), (1, 256), 0), alpha=1, beta=1, out=buf4)
del primals_7
return buf4, primals_1, buf1, buf3, primals_6, primals_4
class SimpleCNNNew(nn.Module):
def __init__(self):
super(SimpleCNNNew, self).__init__()
self.fc1 = nn.Linear(28 * 28, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 10)
def name(self):
return 'SimpleCNN'
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| AnweshCR7/autonomous_greenhouse | SimpleCNN | false | 4,867 | [
"MIT"
] | 1 | a29cfe37d0152001d2544216ed65c3472f572b4e | https://github.com/AnweshCR7/autonomous_greenhouse/tree/a29cfe37d0152001d2544216ed65c3472f572b4e | import torch
import torch.nn as nn
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def name(self):
return 'SimpleCNN'
def get_inputs():
return [torch.rand([4, 784])]
def get_init_inputs():
return []
|
Pairer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/kq/ckqk4ahydv37mmcfwbfoz46szfvxyyipbmsfv4nxhr5bpnwyl3ln.py
# Topologically Sorted Source Nodes: [pair_matrix], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# pair_matrix => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_1, %permute, %mul], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x4 = (xindex // 48)
x1 = (xindex // 12) % 4
x3 = (xindex // 192)
x5 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x4) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + ((4*x1) + (16*x3) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr0 + ((4*x4) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr0 + ((4*x1) + (16*x3) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 * tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp11, tmp16, tmp17)
tmp19 = tl.where(tmp9, tmp10, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + (x5), tmp20, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [pair_matrix], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 768, grid=grid(768), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import Tensor
from torch.functional import Tensor
from typing import Union
class Pairer(torch.nn.Module):
"""
To predict links between segments we will find all possible pairs and estimate the probability that they are linked.
We do this by creating a matrix where each row in each sample represent a pair of segments. Let say we want to represent a pair
the embedding of the first and second member, as well as the dot product of the member and lastly a positional encoding. Then
a row would be
r = [hi; hj; hi*hj, φ(h, m)]
where i, j are indexes of the segments, h is the representation of a segment and φ is a one-hot encodings
representing the relative distance betwen the segments i,j (j-i)
when we have such a matrix we score the all the pairs and select the pair which scores highest using Maximum Spanning Tree.
I.e. simply taking the argmax along axis 2.
To create that matrix following steps will be taken. In this example let us assume that the max
segments in our datset is 3.
For each sample we want the following matrix:
s = [
[
[h0, h0, h0*h0, 0, 0, 1, 0, 0],
[h0, h1, h0*h1, 0, 0, 0, 1, 0],
[h0, h2, h0*h2, 0, 0, 0, 0, 1],
],
[
[h1, h0, h1*h0, 0, 1, 0, 0, 0],
[h1, h1, h1*h1, 0, 0, 1, 0, 0],
[h1, h2, h1*h2, 0, 0, 0, 1, 0],
],
[
[h2, h0, h2*h0, 1, 0, 0, 0, 0],
[h2, h1, h2*h1, 0, 1, 0, 0, 0],
[h2, h2, h2*h2, 0, 0, 1, 0, 0],
]
]
NOTE: that each row here is a 1d vector, the rows with h are vector represent a span of values
THE LAST 5 DIMENSIONS is the one-hot encoding representing the relative position of the paired segment. 5 dimensions
is due to the possible relative relations, stretching from ( -(max_segments -1), (max_segments-1)). In this example
the max_segments==3, which means that a segment can either be related to 2 segments behind itself (-2), 1 segment behind
itself (-1) , 0 segments behind itself (0) and so on, hence leaving us with a 5 dim one-hot-encodings.
h = segment embedding
A sample in out input matrix will look like:
S = [
[h0,h1,h2],
],
1) duplicating the matrix at dim==1 nr times equal to max_segments ( dim==1)
2) then we reshape the result of 1) so for each segment in each sample is filled with copies of itself.
this will columns 0 (0:h).
3) then we transpose output of 2) to create columns 1 (h:h+h)
4) then we create the relattive positional one-hot-encodings. These encodings will follow a strict diagonal
pattern as we can seen in the example above.
5) concatenate output from steps 2,3 and 4, along with the multiplication of output of step 2 and 3 which
creates the columns 2 (h*2:(h*2)).
"""
def __init__(self, input_size: 'int', mode: 'str'='cat+multi',
n_rel_pos: 'int'=None):
super().__init__()
self.mode = mode.split('+')
self.n_rel_pos = n_rel_pos
self.output_size = 0
if n_rel_pos:
self.output_size += self.n_rel_pos * 2 - 1
if 'cat' in self.mode:
self.output_size += input_size * 2
if 'multi' in self.mode:
self.output_size += input_size
if 'sum' in self.mode:
self.output_size += input_size
if 'mean' in self.mode:
self.output_size += input_size
def forward(self, input: 'Tensor', device: 'Union[str, torch.device]'='cpu'
) ->Tensor:
batch_size = input.shape[0]
dim1 = input.shape[1]
shape = batch_size, dim1, dim1, input.shape[-1]
m = torch.reshape(torch.repeat_interleave(input, dim1, dim=1), shape)
mT = m.transpose(2, 1)
to_cat = []
if 'cat' in self.mode:
to_cat.append(m)
to_cat.append(mT)
if 'multi' in self.mode:
to_cat.append(m * mT)
if 'mean' in self.mode:
to_cat.append(m + mT / 2)
if 'sum' in self.mode:
to_cat.append(m + mT)
if self.n_rel_pos:
rel_one_hot_dim = self.n_rel_pos * 2 - 1
rel_one_hots = torch.tensor([np.diag(np.ones(rel_one_hot_dim),
i)[:dim1, :rel_one_hot_dim] for i in range(dim1 - 1, -1, -1
)], dtype=torch.uint8, device=device)
rel_one_hots = rel_one_hots.repeat_interleave(batch_size, dim=0)
rel_one_hots = rel_one_hots.view((batch_size, dim1, dim1,
rel_one_hot_dim))
to_cat.append(rel_one_hots)
pair_matrix = torch.cat(to_cat, axis=-1)
return pair_matrix
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x4 = xindex // 48
x1 = xindex // 12 % 4
x3 = xindex // 192
x5 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x4 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (4 * x1 + 16 * x3 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr0 + (4 * x4 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr0 + (4 * x1 + 16 * x3 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 * tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp11, tmp16, tmp17)
tmp19 = tl.where(tmp9, tmp10, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + x5, tmp20, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(768)](arg0_1, buf0, 768, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class PairerNew(torch.nn.Module):
"""
To predict links between segments we will find all possible pairs and estimate the probability that they are linked.
We do this by creating a matrix where each row in each sample represent a pair of segments. Let say we want to represent a pair
the embedding of the first and second member, as well as the dot product of the member and lastly a positional encoding. Then
a row would be
r = [hi; hj; hi*hj, φ(h, m)]
where i, j are indexes of the segments, h is the representation of a segment and φ is a one-hot encodings
representing the relative distance betwen the segments i,j (j-i)
when we have such a matrix we score the all the pairs and select the pair which scores highest using Maximum Spanning Tree.
I.e. simply taking the argmax along axis 2.
To create that matrix following steps will be taken. In this example let us assume that the max
segments in our datset is 3.
For each sample we want the following matrix:
s = [
[
[h0, h0, h0*h0, 0, 0, 1, 0, 0],
[h0, h1, h0*h1, 0, 0, 0, 1, 0],
[h0, h2, h0*h2, 0, 0, 0, 0, 1],
],
[
[h1, h0, h1*h0, 0, 1, 0, 0, 0],
[h1, h1, h1*h1, 0, 0, 1, 0, 0],
[h1, h2, h1*h2, 0, 0, 0, 1, 0],
],
[
[h2, h0, h2*h0, 1, 0, 0, 0, 0],
[h2, h1, h2*h1, 0, 1, 0, 0, 0],
[h2, h2, h2*h2, 0, 0, 1, 0, 0],
]
]
NOTE: that each row here is a 1d vector, the rows with h are vector represent a span of values
THE LAST 5 DIMENSIONS is the one-hot encoding representing the relative position of the paired segment. 5 dimensions
is due to the possible relative relations, stretching from ( -(max_segments -1), (max_segments-1)). In this example
the max_segments==3, which means that a segment can either be related to 2 segments behind itself (-2), 1 segment behind
itself (-1) , 0 segments behind itself (0) and so on, hence leaving us with a 5 dim one-hot-encodings.
h = segment embedding
A sample in out input matrix will look like:
S = [
[h0,h1,h2],
],
1) duplicating the matrix at dim==1 nr times equal to max_segments ( dim==1)
2) then we reshape the result of 1) so for each segment in each sample is filled with copies of itself.
this will columns 0 (0:h).
3) then we transpose output of 2) to create columns 1 (h:h+h)
4) then we create the relattive positional one-hot-encodings. These encodings will follow a strict diagonal
pattern as we can seen in the example above.
5) concatenate output from steps 2,3 and 4, along with the multiplication of output of step 2 and 3 which
creates the columns 2 (h*2:(h*2)).
"""
def __init__(self, input_size: 'int', mode: 'str'='cat+multi',
n_rel_pos: 'int'=None):
super().__init__()
self.mode = mode.split('+')
self.n_rel_pos = n_rel_pos
self.output_size = 0
if n_rel_pos:
self.output_size += self.n_rel_pos * 2 - 1
if 'cat' in self.mode:
self.output_size += input_size * 2
if 'multi' in self.mode:
self.output_size += input_size
if 'sum' in self.mode:
self.output_size += input_size
if 'mean' in self.mode:
self.output_size += input_size
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| AxlAlm/SegNLP | Pairer | false | 4,868 | [
"Apache-2.0"
] | 1 | 89b8d077952397dfcea089376b373b117bcf6a65 | https://github.com/AxlAlm/SegNLP/tree/89b8d077952397dfcea089376b373b117bcf6a65 | import torch
import numpy as np
from torch import Tensor
from torch.functional import Tensor
from typing import Union
class Model(torch.nn.Module):
"""
To predict links between segments we will find all possible pairs and estimate the probability that they are linked.
We do this by creating a matrix where each row in each sample represent a pair of segments. Let say we want to represent a pair
the embedding of the first and second member, as well as the dot product of the member and lastly a positional encoding. Then
a row would be
r = [hi; hj; hi*hj, φ(h, m)]
where i, j are indexes of the segments, h is the representation of a segment and φ is a one-hot encodings
representing the relative distance betwen the segments i,j (j-i)
when we have such a matrix we score the all the pairs and select the pair which scores highest using Maximum Spanning Tree.
I.e. simply taking the argmax along axis 2.
To create that matrix following steps will be taken. In this example let us assume that the max
segments in our datset is 3.
For each sample we want the following matrix:
s = [
[
[h0, h0, h0*h0, 0, 0, 1, 0, 0],
[h0, h1, h0*h1, 0, 0, 0, 1, 0],
[h0, h2, h0*h2, 0, 0, 0, 0, 1],
],
[
[h1, h0, h1*h0, 0, 1, 0, 0, 0],
[h1, h1, h1*h1, 0, 0, 1, 0, 0],
[h1, h2, h1*h2, 0, 0, 0, 1, 0],
],
[
[h2, h0, h2*h0, 1, 0, 0, 0, 0],
[h2, h1, h2*h1, 0, 1, 0, 0, 0],
[h2, h2, h2*h2, 0, 0, 1, 0, 0],
]
]
NOTE: that each row here is a 1d vector, the rows with h are vector represent a span of values
THE LAST 5 DIMENSIONS is the one-hot encoding representing the relative position of the paired segment. 5 dimensions
is due to the possible relative relations, stretching from ( -(max_segments -1), (max_segments-1)). In this example
the max_segments==3, which means that a segment can either be related to 2 segments behind itself (-2), 1 segment behind
itself (-1) , 0 segments behind itself (0) and so on, hence leaving us with a 5 dim one-hot-encodings.
h = segment embedding
A sample in out input matrix will look like:
S = [
[h0,h1,h2],
],
1) duplicating the matrix at dim==1 nr times equal to max_segments ( dim==1)
2) then we reshape the result of 1) so for each segment in each sample is filled with copies of itself.
this will columns 0 (0:h).
3) then we transpose output of 2) to create columns 1 (h:h+h)
4) then we create the relattive positional one-hot-encodings. These encodings will follow a strict diagonal
pattern as we can seen in the example above.
5) concatenate output from steps 2,3 and 4, along with the multiplication of output of step 2 and 3 which
creates the columns 2 (h*2:(h*2)).
"""
def __init__(self, input_size: 'int', mode: 'str'='cat+multi',
n_rel_pos: 'int'=None):
super().__init__()
self.mode = mode.split('+')
self.n_rel_pos = n_rel_pos
self.output_size = 0
if n_rel_pos:
self.output_size += self.n_rel_pos * 2 - 1
if 'cat' in self.mode:
self.output_size += input_size * 2
if 'multi' in self.mode:
self.output_size += input_size
if 'sum' in self.mode:
self.output_size += input_size
if 'mean' in self.mode:
self.output_size += input_size
def forward(self, input: 'Tensor', device: 'Union[str, torch.device]'='cpu'
) ->Tensor:
batch_size = input.shape[0]
dim1 = input.shape[1]
shape = batch_size, dim1, dim1, input.shape[-1]
m = torch.reshape(torch.repeat_interleave(input, dim1, dim=1), shape)
# ... truncated (>4000 chars) for memory efficiency |
SourceContextGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_tensor => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6s/c6s456zdtwmlik5mrlyh27gyo7fuehy7vzu5kdq6caawwt6hjyvr.py
# Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# mul => mul
# tanh => tanh
# z => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_tensor, %mul), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp5 = tl.load(in_ptr2 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp3)
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = libdevice.tanh(tmp7)
tl.store(in_out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), out=buf4)
del primals_8
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh]
triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf5, primals_9, buf1, buf2, 16, grid=grid(16), stream=stream0)
del primals_9
return (buf5, primals_3, buf0, buf1, buf2, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class SourceContextGate(nn.Module):
"""Apply the context gate only to the source context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(SourceContextGate, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh(target + z * source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp5 = tl.load(in_ptr2 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp3)
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = libdevice.tanh(tmp7)
tl.store(in_out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(
primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8
), 0), out=buf4)
del primals_8
buf5 = buf4
del buf4
triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, primals_9,
buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_9
return buf5, primals_3, buf0, buf1, buf2, buf3, buf5
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class SourceContextGateNew(nn.Module):
"""Apply the context gate only to the source context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(SourceContextGateNew, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, input_0, input_1, input_2):
primals_4 = self.context_gate.gate.weight
primals_5 = self.context_gate.gate.bias
primals_1 = self.context_gate.source_proj.weight
primals_7 = self.context_gate.source_proj.bias
primals_8 = self.context_gate.target_proj.weight
primals_9 = self.context_gate.target_proj.bias
primals_2 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| AngusGLChen/qg | SourceContextGate | false | 4,869 | [
"MIT"
] | 1 | 3ebc5b94348a4c313829a6c71705fbc9dadd8181 | https://github.com/AngusGLChen/qg/tree/3ebc5b94348a4c313829a6c71705fbc9dadd8181 | import torch
import torch.nn as nn
import torch.cuda
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super().__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class Model(nn.Module):
"""Apply the context gate only to the source context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super().__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh(target + z * source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
|
BothContextGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_tensor => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/42/c42q6xmrtx4mk6cvsm764oigvfmjedisa43isepa27ioqcfzfgtm.py
# Topologically Sorted Source Nodes: [z, sub, mul, mul_1, add, tanh], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# mul => mul
# mul_1 => mul_1
# sub => sub
# tanh => tanh
# z => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %addmm_2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp4 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tmp3 * tmp4
tmp7 = tmp1 * tmp6
tmp8 = tmp5 + tmp7
tmp9 = libdevice.tanh(tmp8)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z, sub, mul, mul_1, add, tanh], Original ATen: [aten.sigmoid, aten.rsub, aten.mul, aten.add, aten.tanh]
triton_poi_fused_add_mul_rsub_sigmoid_tanh_2.run(buf1, buf4, buf2, buf5, 16, grid=grid(16), stream=stream0)
return (buf5, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class BothContextGate(nn.Module):
"""Apply the context gate to both contexts"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(BothContextGate, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh((1.0 - z) * target + z * source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp4 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tmp3 * tmp4
tmp7 = tmp1 * tmp6
tmp8 = tmp5 + tmp7
tmp9 = libdevice.tanh(tmp8)
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(
primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_2[grid(16)](buf1, buf4,
buf2, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1)
return buf5, primals_3, buf0, buf1, buf2, buf3, buf4, buf5
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class BothContextGateNew(nn.Module):
"""Apply the context gate to both contexts"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(BothContextGateNew, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, input_0, input_1, input_2):
primals_4 = self.context_gate.gate.weight
primals_5 = self.context_gate.gate.bias
primals_1 = self.context_gate.source_proj.weight
primals_7 = self.context_gate.source_proj.bias
primals_8 = self.context_gate.target_proj.weight
primals_9 = self.context_gate.target_proj.bias
primals_2 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| AngusGLChen/qg | BothContextGate | false | 4,870 | [
"MIT"
] | 1 | 3ebc5b94348a4c313829a6c71705fbc9dadd8181 | https://github.com/AngusGLChen/qg/tree/3ebc5b94348a4c313829a6c71705fbc9dadd8181 | import torch
import torch.nn as nn
import torch.cuda
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super().__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class Model(nn.Module):
"""Apply the context gate to both contexts"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super().__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh((1.0 - z) * target + z * source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
|
TargetContextGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_tensor => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/as/castj5utepsqaf7nmxz7ydwohxvblspgu7zqqkf5geoow2xnjdtg.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7l/c7lf5woemwxcoeo376uvq4tswpw24vydykzmrhtxemqtbvcbg3gw.py
# Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# mul => mul
# tanh => tanh
# z => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %addmm_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %add_tensor), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp4 = tl.load(in_out_ptr0 + (x2), xmask)
tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp6 = tmp4 + tmp5
tmp7 = tmp3 + tmp6
tmp8 = libdevice.tanh(tmp7)
tl.store(in_out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
buf5 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [z, mul, add, tanh], Original ATen: [aten.sigmoid, aten.mul, aten.add, aten.tanh]
triton_poi_fused_add_mul_sigmoid_tanh_2.run(buf5, buf1, buf4, primals_7, 16, grid=grid(16), stream=stream0)
del primals_7
return (buf5, primals_3, buf0, buf1, buf3, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class TargetContextGate(nn.Module):
"""Apply the context gate only to the target context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(TargetContextGate, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh(z * target + source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp4 = tl.load(in_out_ptr0 + x2, xmask)
tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp6 = tmp4 + tmp5
tmp7 = tmp3 + tmp6
tmp8 = libdevice.tanh(tmp7)
tl.store(in_out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_6, (4, 4),
(1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4)
del primals_8
del primals_9
buf5 = buf2
del buf2
triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, buf1, buf4,
primals_7, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_7
return buf5, primals_3, buf0, buf1, buf3, buf4, buf5
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class TargetContextGateNew(nn.Module):
"""Apply the context gate only to the target context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(TargetContextGateNew, self).__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, input_0, input_1, input_2):
primals_4 = self.context_gate.gate.weight
primals_5 = self.context_gate.gate.bias
primals_1 = self.context_gate.source_proj.weight
primals_7 = self.context_gate.source_proj.bias
primals_8 = self.context_gate.target_proj.weight
primals_9 = self.context_gate.target_proj.bias
primals_2 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| AngusGLChen/qg | TargetContextGate | false | 4,871 | [
"MIT"
] | 1 | 3ebc5b94348a4c313829a6c71705fbc9dadd8181 | https://github.com/AngusGLChen/qg/tree/3ebc5b94348a4c313829a6c71705fbc9dadd8181 | import torch
import torch.nn as nn
import torch.cuda
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super().__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
class Model(nn.Module):
"""Apply the context gate only to the target context"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super().__init__()
self.context_gate = ContextGate(embeddings_size, decoder_size,
attention_size, output_size)
self.tanh = nn.Tanh()
def forward(self, prev_emb, dec_state, attn_state):
z, source, target = self.context_gate(prev_emb, dec_state, attn_state)
return self.tanh(z * target + source)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
|
ContextGate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_tensor => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/x7/cx7xziu4lpr42gzh3hblzhyhhr2agimvsluvyrub77hqbwauajw5.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# z => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zd/czdeq2ohbgubcyeps2ukquvfhigxtyega57i24ketclusfgmyedi.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_tensor], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1)
del primals_4
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf2, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_source], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
del primals_7
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(primals_1, primals_2, buf4, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_target], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_8
del primals_9
return (buf2, buf3, buf5, primals_3, buf0, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
class ContextGate(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGate, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1,
12), 0), out=buf1)
del primals_4
buf2 = buf1
del buf1
triton_poi_fused_sigmoid_1[grid(16)](buf2, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor(
primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
del primals_7
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_2[grid(32)](primals_1, primals_2, buf4, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_8
del primals_9
return buf2, buf3, buf5, primals_3, buf0, buf2, buf4
class ContextGateNew(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super(ContextGateNew, self).__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, input_0, input_1, input_2):
primals_4 = self.gate.weight
primals_5 = self.gate.bias
primals_1 = self.source_proj.weight
primals_7 = self.source_proj.bias
primals_8 = self.target_proj.weight
primals_9 = self.target_proj.bias
primals_2 = input_0
primals_3 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1], output[2]
| AngusGLChen/qg | ContextGate | false | 4,872 | [
"MIT"
] | 1 | 3ebc5b94348a4c313829a6c71705fbc9dadd8181 | https://github.com/AngusGLChen/qg/tree/3ebc5b94348a4c313829a6c71705fbc9dadd8181 | import torch
import torch.nn as nn
import torch.cuda
class Model(nn.Module):
"""Implement up to the computation of the gate"""
def __init__(self, embeddings_size, decoder_size, attention_size,
output_size):
super().__init__()
input_size = embeddings_size + decoder_size + attention_size
self.gate = nn.Linear(input_size, output_size, bias=True)
self.sig = nn.Sigmoid()
self.source_proj = nn.Linear(attention_size, output_size)
self.target_proj = nn.Linear(embeddings_size + decoder_size,
output_size)
def forward(self, prev_emb, dec_state, attn_state):
input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1)
z = self.sig(self.gate(input_tensor))
proj_source = self.source_proj(attn_state)
proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1))
return z, proj_source, proj_target
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size':
4, 'output_size': 4}]
|
SimpleCNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/w2/cw26etiuqgfsnlcvfovjrjfkwerbr3hb33ggi6l6pg47hpyjzaos.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7t/c7thipsuxejpdhfqhgxxoz3i72ctiepm6n5e45wy4oj7j27wj3sd.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (3, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (3, ), (1, ))
assert_size_stride(primals_6, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_7, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 49152, grid=grid(49152), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 49152, grid=grid(49152), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf5, primals_7, 49152, grid=grid(49152), stream=stream0)
del primals_7
return (buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((3, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class SimpleCNN(torch.nn.Module):
def __init__(self, in_ch=1, out_ch=3):
super(SimpleCNN, self).__init__()
self.conv1 = torch.nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1,
padding=1)
self.conv2 = torch.nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=
1, padding=1)
self.conv3 = torch.nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=
1, padding=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.conv3(x)
return x
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (3, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (3,), (1,))
assert_size_stride(primals_6, (3, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_7, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(49152)](buf1, primals_2,
49152, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(49152)](buf3, primals_5,
49152, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_1[grid(49152)](buf5, primals_7, 49152,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
return buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3
class SimpleCNNNew(torch.nn.Module):
def __init__(self, in_ch=1, out_ch=3):
super(SimpleCNNNew, self).__init__()
self.conv1 = torch.nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1,
padding=1)
self.conv2 = torch.nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=
1, padding=1)
self.conv3 = torch.nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=
1, padding=1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Arjun-Arora/CS348B_project | SimpleCNN | false | 4,873 | [
"BSD-2-Clause"
] | 1 | 000ced8edbc3554db74db36ebcd76042d17398ee | https://github.com/Arjun-Arora/CS348B_project/tree/000ced8edbc3554db74db36ebcd76042d17398ee | import torch
import torch.nn.functional as F
class Model(torch.nn.Module):
def __init__(self, in_ch=1, out_ch=3):
super().__init__()
self.conv1 = torch.nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1,
padding=1)
self.conv2 = torch.nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=
1, padding=1)
self.conv3 = torch.nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=
1, padding=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.conv3(x)
return x
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return []
|
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/dg/cdgw6x7nju4bzp2wyuwgeanbco7zcjis6yiusovvnpz6zw3yjd3l.py
# Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub]
# Source node to ATen node mapping:
# sub => sub
# u => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qa/cqanrp6ysxh6sybzulc3onfaha6cuqejs54bwpkhct7ohd5rdj6b.py
# Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# pow_1 => pow_1
# s => mean_1
# sqrt => sqrt
# x => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + (x2), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, add_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
del primals_3
return (buf1, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.optim
class LayerNorm(nn.Module):
"""Construct a layernorm module in the OpenAI style (epsilon inside the square root)."""
def __init__(self, n_state, e=1e-05):
super(LayerNorm, self).__init__()
self.g = nn.Parameter(torch.ones(n_state))
self.b = nn.Parameter(torch.zeros(n_state))
self.e = e
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.e)
return self.g * x + self.b
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_state': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + x2, tmp21, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(256)](primals_2,
buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
del primals_3
return buf1, primals_1
class LayerNormNew(nn.Module):
"""Construct a layernorm module in the OpenAI style (epsilon inside the square root)."""
def __init__(self, n_state, e=1e-05):
super(LayerNormNew, self).__init__()
self.g = nn.Parameter(torch.ones(n_state))
self.b = nn.Parameter(torch.zeros(n_state))
self.e = e
def forward(self, input_0):
primals_2 = self.g
primals_3 = self.b
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Arvindkrishna1997/comet-dataset | LayerNorm | false | 4,874 | [
"Apache-2.0"
] | 1 | 2cb42a4aefdea6d0e81f544f94830d44730e9853 | https://github.com/Arvindkrishna1997/comet-dataset/tree/2cb42a4aefdea6d0e81f544f94830d44730e9853 | import torch
import torch.nn as nn
import torch.optim
class Model(nn.Module):
"""Construct a layernorm module in the OpenAI style (epsilon inside the square root)."""
def __init__(self, n_state, e=1e-05):
super().__init__()
self.g = nn.Parameter(torch.ones(n_state))
self.b = nn.Parameter(torch.zeros(n_state))
self.e = e
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.e)
return self.g * x + self.b
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ScaledDotProductAttention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nq/cnqgpozfupmeoly3clr6c5kuqetg544kqc2babbdai3pypst4tge.py
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_2 => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 4), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_2 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm]
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
return (buf3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
from torch import nn
class ScaledDotProductAttention(nn.Module):
""" Scaled Dot-Product Attention """
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, q, k, v, mask=None):
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
if mask is not None:
attn = attn.masked_fill(mask, -np.inf)
attn = self.softmax(attn)
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'temperature': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
return buf3, buf2
class ScaledDotProductAttentionNew(nn.Module):
""" Scaled Dot-Product Attention """
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
| AutuanLiu/LeetCode2019 | ScaledDotProductAttention | false | 4,875 | [
"MIT"
] | 1 | 8efc7c5475fd888f7d86c3b08a3c1c9e55c1ac30 | https://github.com/AutuanLiu/LeetCode2019/tree/8efc7c5475fd888f7d86c3b08a3c1c9e55c1ac30 | import torch
import numpy as np
from torch import nn
class Model(nn.Module):
""" Scaled Dot-Product Attention """
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, q, k, v, mask=None):
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
if mask is not None:
attn = attn.masked_fill(mask, -np.inf)
attn = self.softmax(attn)
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [4]
|
MyLayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/m7/cm7vgp6xhmboxi4k3xipfw6vob4iy3q5y37tbgqv37yyejj5z2ct.py
# Topologically Sorted Source Nodes: [mean, x_shifted], Original ATen: [aten.mean, aten.sub]
# Source node to ATen node mapping:
# mean => mean
# x_shifted => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qn/cqnum4l3jcqijkcfuhgxiueh6tumgbmvaekuyw5a7pjmetq3fzq3.py
# Topologically Sorted Source Nodes: [pow_1, var, add, inv_std, mul, output, output_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul]
# Source node to ATen node mapping:
# add => add
# inv_std => rsqrt
# mul => mul
# output => mul_1
# output_1 => add_1
# pow_1 => pow_1
# var => mean_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [2], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %rsqrt), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_add_mean_mul_pow_rsqrt_1 = async_compile.triton('triton_poi_fused_add_mean_mul_pow_rsqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_pow_rsqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_mul_pow_rsqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x3 = xindex
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp3 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = 4.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tmp19 = tmp2 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + (x3), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, x_shifted], Original ATen: [aten.mean, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, var, add, inv_std, mul, output, output_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul]
triton_poi_fused_add_mean_mul_pow_rsqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
del primals_3
return (buf1, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MyLayerNorm(nn.Module):
def __init__(self, input_dim):
super(MyLayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(input_dim))
if True or use_bias:
self.beta = nn.Parameter(torch.ones(input_dim))
def forward(self, x):
dims = 2
mean = x.mean(dim=dims, keepdim=True)
x_shifted = x - mean
var = torch.mean(x_shifted ** 2, dim=dims, keepdim=True)
inv_std = torch.rsqrt(var + 1e-05)
output = self.gamma * x_shifted * inv_std
if True or use_bias:
output += self.beta
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mean_mul_pow_rsqrt_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x3 = xindex
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp3 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr1 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr1 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = 4.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tmp19 = tmp2 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + x3, tmp21, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mean_mul_pow_rsqrt_1[grid(256)](primals_2,
buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
del primals_3
return buf1, primals_1
class MyLayerNormNew(nn.Module):
def __init__(self, input_dim):
super(MyLayerNormNew, self).__init__()
self.gamma = nn.Parameter(torch.ones(input_dim))
if True or use_bias:
self.beta = nn.Parameter(torch.ones(input_dim))
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Ar-Kareem/Sketch-RNN | MyLayerNorm | false | 4,876 | [
"MIT"
] | 1 | 350824040715ea281182de01bca467130f326566 | https://github.com/Ar-Kareem/Sketch-RNN/tree/350824040715ea281182de01bca467130f326566 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, input_dim):
super().__init__()
self.gamma = nn.Parameter(torch.ones(input_dim))
if True or use_bias:
self.beta = nn.Parameter(torch.ones(input_dim))
def forward(self, x):
dims = 2
mean = x.mean(dim=dims, keepdim=True)
x_shifted = x - mean
var = torch.mean(x_shifted ** 2, dim=dims, keepdim=True)
inv_std = torch.rsqrt(var + 1e-05)
output = self.gamma * x_shifted * inv_std
if True or use_bias:
output += self.beta
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
ConvNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/c4/cc4vdw5yatwuk2yw4r2yb75zt4ka2baffjb6g3p2wocglahzk7af.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 163840
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 10
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sn/csnmidtsiu23zk4o5y5aie5cuk3lxf4y4ujzkj33u2ie6fnddtcx.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%relu, [2, 2], [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 40960
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ye/cyeoega4sxtxtcq42ftceniwle35wencvumyiw3qpso7ostx36n4.py
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 81920
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 20
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/uy/cuy6w7czmmekjkzyksv4m4qjsbxnq5pxqlx2r4hgimdxb2xg7bs7.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x_1 => avg_pool2d_1
# Graph fragment:
# %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%relu_1, [2, 2], [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_3 = async_compile.triton('triton_poi_fused_avg_pool2d_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ke/ckesogp4bn3hfpmtgdqokmvohcuwcfx54ggwalbvcfqc3bstkbg3.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_3 => relu_2
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 10240
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 640
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/q2/cq2fhvyc5sqqpijy6aprqweph2l3s7msetp7mefxawumnuz3x3gg.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_4 => relu_3
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ff/cffqkxaclnbspnyrbt2ow5jbhx4qnyi4rfolyh7svs6dxpgjs5pv.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_5 => relu_4
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_relu_threshold_backward_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (10, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (10, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (20, 10, 3, 3), (90, 9, 3, 1))
assert_size_stride(primals_5, (20, ), (1, ))
assert_size_stride(primals_6, (640, 1280), (1280, 1))
assert_size_stride(primals_7, (640, ), (1, ))
assert_size_stride(primals_8, (100, 640), (640, 1))
assert_size_stride(primals_9, (100, ), (1, ))
assert_size_stride(primals_10, (10, 100), (100, 1))
assert_size_stride(primals_11, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 10, 64, 64), (40960, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 163840, grid=grid(163840), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 10, 32, 32), (10240, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_1.run(buf1, buf2, 40960, grid=grid(40960), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 20, 32, 32), (20480, 1024, 32, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 81920, grid=grid(81920), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((4, 20, 16, 16), (5120, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_3.run(buf4, buf5, 20480, grid=grid(20480), stream=stream0)
buf6 = empty_strided_cuda((16, 640), (640, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (16, 1280), (1280, 1), 0), reinterpret_tensor(primals_6, (1280, 640), (1, 1280), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf7, primals_7, 10240, grid=grid(10240), stream=stream0)
del primals_7
buf8 = empty_strided_cuda((16, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf7, reinterpret_tensor(primals_8, (640, 100), (1, 640), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
triton_poi_fused_relu_5.run(buf9, primals_9, 1600, grid=grid(1600), stream=stream0)
del primals_9
buf10 = empty_strided_cuda((16, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf9, reinterpret_tensor(primals_10, (100, 10), (1, 100), 0), out=buf10)
buf11 = buf10; del buf10 # reuse
buf12 = empty_strided_cuda((16, 10), (10, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_6.run(buf11, primals_11, buf12, 160, grid=grid(160), stream=stream0)
del primals_11
return (buf11, primals_1, primals_3, primals_4, buf1, buf2, buf4, reinterpret_tensor(buf5, (16, 1280), (1280, 1), 0), buf7, buf9, buf12, primals_10, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((10, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((20, 10, 3, 3), (90, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((640, 1280), (1280, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((640, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((100, 640), (640, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((10, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ConvNet(nn.Module):
"""Standard convolutional net for baseline
Architecture: 2 convolutional layers, 3 fully connected layers.
"""
def __init__(self):
super(ConvNet, self).__init__()
args = {'stride': 1, 'padding': 1}
self.conv1 = nn.Conv2d(3, 10, 3, **args)
self.conv2 = nn.Conv2d(10, 20, 3, **args)
self.pool = nn.AvgPool2d(2, 2)
self.relu = nn.ReLU()
self.fc1 = nn.Linear(1280, 640)
self.fc2 = nn.Linear(640, 100)
self.fc3 = nn.Linear(100, 10)
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = x.view(-1, 1280)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.relu(self.fc3(x))
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 10
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 20
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 640
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_6(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (10, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (10,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (20, 10, 3, 3), (90, 9, 3, 1))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (640, 1280), (1280, 1))
assert_size_stride(primals_7, (640,), (1,))
assert_size_stride(primals_8, (100, 640), (640, 1))
assert_size_stride(primals_9, (100,), (1,))
assert_size_stride(primals_10, (10, 100), (100, 1))
assert_size_stride(primals_11, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 10, 64, 64), (40960, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(163840)](buf1, primals_2,
163840, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 10, 32, 32), (10240, 1024, 32, 1),
torch.float32)
triton_poi_fused_avg_pool2d_1[grid(40960)](buf1, buf2, 40960,
XBLOCK=256, num_warps=4, num_stages=1)
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 20, 32, 32), (20480, 1024, 32, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_2[grid(81920)](buf4, primals_5,
81920, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((4, 20, 16, 16), (5120, 256, 16, 1),
torch.float32)
triton_poi_fused_avg_pool2d_3[grid(20480)](buf4, buf5, 20480,
XBLOCK=128, num_warps=4, num_stages=1)
buf6 = empty_strided_cuda((16, 640), (640, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (16, 1280), (1280, 1), 0
), reinterpret_tensor(primals_6, (1280, 640), (1, 1280), 0),
out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_relu_4[grid(10240)](buf7, primals_7, 10240, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_7
buf8 = empty_strided_cuda((16, 100), (100, 1), torch.float32)
extern_kernels.mm(buf7, reinterpret_tensor(primals_8, (640, 100), (
1, 640), 0), out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_5[grid(1600)](buf9, primals_9, 1600, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf10 = empty_strided_cuda((16, 10), (10, 1), torch.float32)
extern_kernels.mm(buf9, reinterpret_tensor(primals_10, (100, 10), (
1, 100), 0), out=buf10)
buf11 = buf10
del buf10
buf12 = empty_strided_cuda((16, 10), (10, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_6[grid(160)](buf11,
primals_11, buf12, 160, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
return (buf11, primals_1, primals_3, primals_4, buf1, buf2, buf4,
reinterpret_tensor(buf5, (16, 1280), (1280, 1), 0), buf7, buf9,
buf12, primals_10, primals_8, primals_6)
class ConvNetNew(nn.Module):
"""Standard convolutional net for baseline
Architecture: 2 convolutional layers, 3 fully connected layers.
"""
def __init__(self):
super(ConvNetNew, self).__init__()
args = {'stride': 1, 'padding': 1}
self.conv1 = nn.Conv2d(3, 10, 3, **args)
self.conv2 = nn.Conv2d(10, 20, 3, **args)
self.pool = nn.AvgPool2d(2, 2)
self.relu = nn.ReLU()
self.fc1 = nn.Linear(1280, 640)
self.fc2 = nn.Linear(640, 100)
self.fc3 = nn.Linear(100, 10)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_10 = self.fc3.weight
primals_11 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| Allen-Z-4230/MoCo-CIFAR10 | ConvNet | false | 4,877 | [
"MIT"
] | 1 | b2ade575b8ed1e05e32e4ec629acdfee55c8ff41 | https://github.com/Allen-Z-4230/MoCo-CIFAR10/tree/b2ade575b8ed1e05e32e4ec629acdfee55c8ff41 | import torch
import torch.nn as nn
class Model(nn.Module):
"""Standard convolutional net for baseline
Architecture: 2 convolutional layers, 3 fully connected layers.
"""
def __init__(self):
super().__init__()
args = {'stride': 1, 'padding': 1}
self.conv1 = nn.Conv2d(3, 10, 3, **args)
self.conv2 = nn.Conv2d(10, 20, 3, **args)
self.pool = nn.AvgPool2d(2, 2)
self.relu = nn.ReLU()
self.fc1 = nn.Linear(1280, 640)
self.fc2 = nn.Linear(640, 100)
self.fc3 = nn.Linear(100, 10)
def forward(self, x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = x.view(-1, 1280)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.relu(self.fc3(x))
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return []
|
HS | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/l3/cl36amj5qpddnxzqe3ijln6zugsqgt7xt7bxwbzxk2rlf25dky2f.py
# Topologically Sorted Source Nodes: [add, clamp, clip, mul], Original ATen: [aten.add, aten.clamp, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# clamp => clamp_max, clamp_min
# clip => div
# mul => mul
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %div), kwargs = {})
triton_poi_fused_add_clamp_div_mul_0 = async_compile.triton('triton_poi_fused_add_clamp_div_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_div_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, clamp, clip, mul], Original ATen: [aten.add, aten.clamp, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_clamp_div_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class HS(nn.Module):
def __init__(self):
super(HS, self).__init__()
def forward(self, inputs):
clip = torch.clamp(inputs + 3, 0, 6) / 6
return inputs * clip
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_clamp_div_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_clamp_div_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HSNew(nn.Module):
def __init__(self):
super(HSNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| BXuan694/basemodel-pytorch | HS | false | 4,878 | [
"MIT"
] | 1 | a36c96904580be902e323db17eebbe2ea1f54176 | https://github.com/BXuan694/basemodel-pytorch/tree/a36c96904580be902e323db17eebbe2ea1f54176 | import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, inputs):
clip = torch.clamp(inputs + 3, 0, 6) / 6
return inputs * clip
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ConditionalBatchNorm2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/7h/c7h472oam6vlzx7yb5mtc3kdy3p5vvd7jgap45mgevlf5geawq4f.py
# Topologically Sorted Source Nodes: [matmul, norm], Original ATen: [aten.mv, aten.linalg_vector_norm]
# Source node to ATen node mapping:
# matmul => mul_2, sum_1
# norm => pow_1, sum_2
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %primals_4), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
triton_per_fused_linalg_vector_norm_mv_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_mv_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_mv_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.load(in_ptr0 + (4 + r0), None)
tmp5 = tl.load(in_ptr1 + (1))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp9 = tl.load(in_ptr0 + (8 + r0), None)
tmp10 = tl.load(in_ptr1 + (2))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp14 = tl.load(in_ptr0 + (12 + r0), None)
tmp15 = tl.load(in_ptr1 + (3))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp3 = tmp0 * tmp2
tmp7 = tmp4 * tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 * tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp18 * tmp18
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp18, None)
tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp22, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/vn/cvni2qgjd2juowltkhd53nvyjor5s5rs2db3273tfh2p6in366cc.py
# Topologically Sorted Source Nodes: [norm, add, v, matmul_1, norm_1, add_1, u, sigma], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot]
# Source node to ATen node mapping:
# add => add_1
# add_1 => add_2
# matmul_1 => mul_3, sum_3
# norm => pow_2
# norm_1 => pow_3, pow_4, sum_4
# sigma => mul_5, sum_6
# u => div_1
# v => div
# Graph fragment:
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 0.0001), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {})
# %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, None), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_4, 0.0001), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %add_2), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sum_3), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_5,), kwargs = {})
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1 = async_compile.triton('triton_per_fused_add_div_dot_linalg_vector_norm_mv_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_dot_linalg_vector_norm_mv_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_dot_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3 = tl.load(in_ptr2 + (0))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1))
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp16 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (2))
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp22 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (3))
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 0.0001
tmp7 = tmp5 + tmp6
tmp8 = tmp2 / tmp7
tmp9 = tmp0 * tmp8
tmp13 = tmp12 / tmp7
tmp14 = tmp10 * tmp13
tmp15 = tmp9 + tmp14
tmp19 = tmp18 / tmp7
tmp20 = tmp16 * tmp19
tmp21 = tmp15 + tmp20
tmp25 = tmp24 / tmp7
tmp26 = tmp22 * tmp25
tmp27 = tmp21 + tmp26
tmp28 = tmp27 * tmp27
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = libdevice.sqrt(tmp31)
tmp33 = tmp32 + tmp6
tmp34 = tmp27 / tmp33
tmp35 = tmp34 * tmp27
tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK])
tmp38 = tl.sum(tmp36, 1)[:, None]
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp38, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qa/cqacjmg5thruiiympgmeg563tgu547tvricd27codfxv36x3vdcv.py
# Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv_2 => div_2
# Graph fragment:
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_5, %expand), kwargs = {})
triton_poi_fused_div_2 = async_compile.triton('triton_poi_fused_div_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 / tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7p/c7pbdjyinlr4jzoslxhdn74su3e6kah3nd373g2lidkiorfsskik.py
# Topologically Sorted Source Nodes: [out, mul, out_1], Original ATen: [aten._native_batch_norm_legit_no_training, aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul_10
# out => mul_1, sub
# out_1 => add_6
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %unsqueeze_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %unsqueeze_3), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %mul_1), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, %view_7), kwargs = {})
triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = (xindex // 16)
x4 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x4), None)
tmp4 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x1), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr4 + (x3), None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp5 = tmp3 - tmp4
tmp7 = 0.0001
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = tl.full([1], 1, tl.int32)
tmp11 = tmp10 / tmp9
tmp12 = tmp11 * tmp1
tmp13 = tmp5 * tmp12
tmp14 = tmp2 * tmp13
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + (x4), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [matmul, norm], Original ATen: [aten.mv, aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_mv_0.run(primals_5, primals_4, buf0, buf1, 1, 4, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [norm, add, v, matmul_1, norm_1, add_1, u, sigma], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot]
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1.run(buf4, primals_5, buf0, buf1, 1, 4, grid=grid(1), stream=stream0)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div]
triton_poi_fused_div_2.run(primals_5, buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6)
buf7 = buf0; del buf0 # reuse
buf8 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [matmul_2, norm_2], Original ATen: [aten.mv, aten.linalg_vector_norm]
triton_per_fused_linalg_vector_norm_mv_0.run(primals_8, primals_7, buf7, buf8, 1, 4, grid=grid(1), stream=stream0)
buf10 = buf1; del buf1 # reuse
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [norm_2, add_3, v_1, matmul_3, norm_3, add_4, u_1, sigma_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot]
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1.run(buf11, primals_8, buf7, buf8, 1, 4, grid=grid(1), stream=stream0)
del buf7
del buf8
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv_5], Original ATen: [aten.div]
triton_poi_fused_div_2.run(primals_8, buf11, buf12, 16, grid=grid(16), stream=stream0)
del buf11
buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [beta], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf12, (4, 4), (1, 4), 0), out=buf13)
buf14 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, mul, out_1], Original ATen: [aten._native_batch_norm_legit_no_training, aten.mul, aten.add]
triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3.run(buf6, primals_1, primals_2, primals_3, buf13, buf14, 4096, grid=grid(4096), stream=stream0)
del buf13
del buf6
return (buf14, buf5, buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_7, primals_8, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
from torch.nn import Parameter
def l2normalize(v, eps=0.0001):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
_w = w.view(height, -1)
for _ in range(self.power_iterations):
v = l2normalize(torch.matmul(_w.t(), u))
u = l2normalize(torch.matmul(_w, v))
sigma = u.dot(_w.mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class ConditionalBatchNorm2d(nn.Module):
def __init__(self, num_features, num_classes, eps=0.0001, momentum=0.1):
super().__init__()
self.num_features = num_features
self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps,
momentum=momentum)
self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
def forward(self, x, y):
out = self.bn(x)
gamma = self.gamma_embed(y) + 1
beta = self.beta_embed(y)
out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1,
self.num_features, 1, 1)
return out
def get_inputs():
return [torch.rand([64, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4, 'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_linalg_vector_norm_mv_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.load(in_ptr0 + (4 + r0), None)
tmp5 = tl.load(in_ptr1 + 1)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp9 = tl.load(in_ptr0 + (8 + r0), None)
tmp10 = tl.load(in_ptr1 + 2)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp14 = tl.load(in_ptr0 + (12 + r0), None)
tmp15 = tl.load(in_ptr1 + 3)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp3 = tmp0 * tmp2
tmp7 = tmp4 * tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 * tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp18 * tmp18
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp18, None)
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp22, None)
@triton.jit
def triton_per_fused_add_div_dot_linalg_vector_norm_mv_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3 = tl.load(in_ptr2 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + 1)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp16 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + 2)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp22 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + 3)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 0.0001
tmp7 = tmp5 + tmp6
tmp8 = tmp2 / tmp7
tmp9 = tmp0 * tmp8
tmp13 = tmp12 / tmp7
tmp14 = tmp10 * tmp13
tmp15 = tmp9 + tmp14
tmp19 = tmp18 / tmp7
tmp20 = tmp16 * tmp19
tmp21 = tmp15 + tmp20
tmp25 = tmp24 / tmp7
tmp26 = tmp22 * tmp25
tmp27 = tmp21 + tmp26
tmp28 = tmp27 * tmp27
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = libdevice.sqrt(tmp31)
tmp33 = tmp32 + tmp6
tmp34 = tmp27 / tmp33
tmp35 = tmp34 * tmp27
tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK])
tmp38 = tl.sum(tmp36, 1)[:, None]
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp38, None)
@triton.jit
def triton_poi_fused_div_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 / tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex // 16
x4 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x4, None)
tmp4 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x1, None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr4 + x3, None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp5 = tmp3 - tmp4
tmp7 = 0.0001
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = tl.full([1], 1, tl.int32)
tmp11 = tmp10 / tmp9
tmp12 = tmp11 * tmp1
tmp13 = tmp5 * tmp12
tmp14 = tmp2 * tmp13
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + x4, tmp16, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_mv_0[grid(1)](primals_5,
primals_4, buf0, buf1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1[grid(1)](buf4,
primals_5, buf0, buf1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_2[grid(16)](primals_5, buf4, buf5, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6)
buf7 = buf0
del buf0
buf8 = buf4
del buf4
triton_per_fused_linalg_vector_norm_mv_0[grid(1)](primals_8,
primals_7, buf7, buf8, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf10 = buf1
del buf1
buf11 = buf10
del buf10
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1[grid(1)](buf11,
primals_8, buf7, buf8, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf7
del buf8
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_2[grid(16)](primals_8, buf11, buf12, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del buf11
buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(buf12, (4, 4), (1, 4), 0), out=buf13)
buf14 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32
)
triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3[grid
(4096)](buf6, primals_1, primals_2, primals_3, buf13, buf14,
4096, XBLOCK=128, num_warps=4, num_stages=1)
del buf13
del buf6
return (buf14, buf5, buf12, primals_1, primals_2, primals_3, primals_4,
primals_5, primals_7, primals_8, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0))
def l2normalize(v, eps=0.0001):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
_w = w.view(height, -1)
for _ in range(self.power_iterations):
v = l2normalize(torch.matmul(_w.t(), u))
u = l2normalize(torch.matmul(_w, v))
sigma = u.dot(_w.mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class ConditionalBatchNorm2dNew(nn.Module):
def __init__(self, num_features, num_classes, eps=0.0001, momentum=0.1):
super().__init__()
self.num_features = num_features
self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps,
momentum=momentum)
self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
def forward(self, input_0, input_1):
primals_2 = self.gamma_embed.module.weight_u
primals_3 = self.gamma_embed.module.weight_v
primals_5 = self.gamma_embed.module.weight_bar
primals_4 = self.beta_embed.module.weight_u
primals_7 = self.beta_embed.module.weight_v
primals_8 = self.beta_embed.module.weight_bar
primals_1 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| AnonymousGFR/wbgan.pytorch | ConditionalBatchNorm2d | false | 4,879 | [
"MIT"
] | 1 | d75cb6599852e901df0136db87520e3314f8ca71 | https://github.com/AnonymousGFR/wbgan.pytorch/tree/d75cb6599852e901df0136db87520e3314f8ca71 | import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
from torch.nn import Parameter
def l2normalize(v, eps=0.0001):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super().__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
_w = w.view(height, -1)
for _ in range(self.power_iterations):
v = l2normalize(torch.matmul(_w.t(), u))
u = l2normalize(torch.matmul(_w, v))
sigma = u.dot(_w.mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Model(nn.Module):
def __init__(self, num_features, num_classes, eps=0.0001, momentum=0.1):
super().__init__()
self.num_features = num_features
self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps,
momentum=momentum)
self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
def forward(self, x, y):
out = self.bn(x)
gamma = self.gamma_embed(y) + 1
beta = self.beta_embed(y)
out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1,
self.num_features, 1, 1)
return out
def get_inputs():
return [torch.rand([64, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
GlobalAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# align_vectors => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# align_vectors => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ip/cip3p4ibqio6uu76ccsemd7wjusq5ptlow3dt2zxzouyuz2sqywf.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %primals_1], 2), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/f5/cf5pnuv5il7avsmzck3quom7r6zvcfuulsdwpzlv2epzfmcgqgwb.py
# Topologically Sorted Source Nodes: [attn_h_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attn_h_2 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + (x3), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/u4/cu4fypgfipklcxtitafatnyqdaatx5tws6qfndqotcy4qivcph6d.py
# Topologically Sorted Source Nodes: [align_vectors_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# align_vectors_2 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align], Original ATen: [aten.bmm]
extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [c], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf3, primals_1, buf4, 128, grid=grid(128), stream=stream0)
del primals_1
buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5)
del primals_3
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_h_2], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [align_vectors_2], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf2, buf7, 64, grid=grid(64), stream=stream0)
del buf2
return (buf6, buf7, reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
def aeq(base, *rest):
""" Assert the first arg equals to each of the rest."""
for a in rest[:]:
assert a == base, 'base(' + str(base
) + ") doesn't equals to each of " + str(rest)
class Bottle(nn.Module):
def forward(self, input):
if len(input.size()) <= 2:
return super(Bottle, self).forward(input)
size = input.size()[:2]
out = super(Bottle, self).forward(input.view(size[0] * size[1], -1))
return out.contiguous().view(size[0], size[1], -1)
class BottleLinear(Bottle, nn.Linear):
pass
class GlobalAttention(nn.Module):
"""
Luong Attention.
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
H_1 H_2 H_3 ... H_n
q q q q
| | | |
\\ | | /
.....
\\ | /
a
Constructs a unit mapping.
$$(H_1 + H_n, q) => (a)$$
Where H is of `batch x n x dim` and q is of `batch x dim`.
Luong Attention (dot, general):
The full function is
$$ anh(W_2 [(softmax((W_1 q + b_1) H) H), q] + b_2)$$.
* dot: $$score(h_t,{\\overline{h}}_s) = h_t^T{\\overline{h}}_s$$
* general: $$score(h_t,{\\overline{h}}_s) = h_t^T W_a {\\overline{h}}_s$$
Bahdanau Attention (mlp):
$$c = \\sum_{j=1}^{SeqLength}_jh_j$$.
The Alignment-function $$a$$ computes an alignment as:
$$a_j = softmax(v_a^T anh(W_a q + U_a h_j) )$$.
"""
def __init__(self, dim, coverage=False, attn_type='dot'):
super(GlobalAttention, self).__init__()
self.dim = dim
self.attn_type = attn_type
assert self.attn_type in ['dot', 'general', 'mlp'
], 'Please select a valid attention type.'
if self.attn_type == 'general':
self.linear_in = nn.Linear(dim, dim, bias=False)
elif self.attn_type == 'mlp':
self.linear_context = BottleLinear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=True)
self.v = BottleLinear(dim, 1, bias=False)
out_bias = self.attn_type == 'mlp'
self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias)
self.sm = nn.Softmax()
self.tanh = nn.Tanh()
self.mask = None
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def applyMask(self, mask):
self.mask = mask
def score(self, h_t, h_s):
"""
h_t (FloatTensor): batch x tgt_len x dim
h_s (FloatTensor): batch x src_len x dim
returns scores (FloatTensor): batch x tgt_len x src_len:
raw attention scores for each src index
"""
src_batch, src_len, src_dim = h_s.size()
tgt_batch, tgt_len, tgt_dim = h_t.size()
aeq(src_batch, tgt_batch)
aeq(src_dim, tgt_dim)
aeq(self.dim, src_dim)
if self.attn_type in ['general', 'dot']:
if self.attn_type == 'general':
h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim)
h_t_ = self.linear_in(h_t_)
h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim)
h_s_ = h_s.transpose(1, 2)
return torch.bmm(h_t, h_s_)
else:
dim = self.dim
wq = self.linear_query(h_t.view(-1, dim))
wq = wq.view(tgt_batch, tgt_len, 1, dim)
wq = wq.expand(tgt_batch, tgt_len, src_len, dim)
uh = self.linear_context(h_s.contiguous().view(-1, dim))
uh = uh.view(src_batch, 1, src_len, dim)
uh = uh.expand(src_batch, tgt_len, src_len, dim)
wquh = self.tanh(wq + uh)
return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len)
def forward(self, input, context, coverage=None):
"""
input (FloatTensor): batch x tgt_len x dim: decoder's rnn's output.
context (FloatTensor): batch x src_len x dim: src hidden states
coverage (FloatTensor): None (not supported yet)
"""
if input.dim() == 2:
one_step = True
input = input.unsqueeze(1)
else:
one_step = False
batch, sourceL, dim = context.size()
batch_, targetL, dim_ = input.size()
aeq(batch, batch_)
aeq(dim, dim_)
aeq(self.dim, dim)
if coverage is not None:
batch_, sourceL_ = coverage.size()
aeq(batch, batch_)
aeq(sourceL, sourceL_)
if self.mask is not None:
beam_, batch_, sourceL_ = self.mask.size()
aeq(batch, batch_ * beam_)
aeq(sourceL, sourceL_)
if coverage is not None:
cover = coverage.view(-1).unsqueeze(1)
context += self.linear_cover(cover).view_as(context)
context = self.tanh(context)
align = self.score(input, context)
if self.mask is not None:
mask_ = self.mask.view(batch, 1, sourceL)
align.data.masked_fill_(mask_, -float('inf'))
align_vectors = self.sm(align.view(batch * targetL, sourceL))
align_vectors = align_vectors.view(batch, targetL, sourceL)
c = torch.bmm(align_vectors, context)
concat_c = torch.cat([c, input], 2).view(batch * targetL, dim * 2)
attn_h = self.linear_out(concat_c).view(batch, targetL, dim)
if self.attn_type in ['general', 'dot']:
attn_h = self.tanh(attn_h)
if one_step:
attn_h = attn_h.squeeze(1)
align_vectors = align_vectors.squeeze(1)
batch_, dim_ = attn_h.size()
aeq(batch, batch_)
aeq(dim, dim_)
batch_, sourceL_ = align_vectors.size()
aeq(batch, batch_)
aeq(sourceL, sourceL_)
else:
attn_h = attn_h.transpose(0, 1).contiguous()
align_vectors = align_vectors.transpose(0, 1).contiguous()
targetL_, batch_, dim_ = attn_h.size()
aeq(targetL, targetL_)
aeq(batch, batch_)
aeq(dim, dim_)
targetL_, batch_, sourceL_ = align_vectors.size()
aeq(targetL, targetL_)
aeq(batch, batch_)
aeq(sourceL, sourceL_)
return attn_h, align_vectors
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + x3, tmp1, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4,
4), (16, 1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1),
0), primals_2, out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
triton_poi_fused_cat_2[grid(128)](buf3, primals_1, buf4, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0)
del buf3
extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5)
del primals_3
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_3[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(64)](buf2, buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf2
return buf6, buf7, reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf5
def aeq(base, *rest):
""" Assert the first arg equals to each of the rest."""
for a in rest[:]:
assert a == base, 'base(' + str(base
) + ") doesn't equals to each of " + str(rest)
class Bottle(nn.Module):
def forward(self, input):
if len(input.size()) <= 2:
return super(Bottle, self).forward(input)
size = input.size()[:2]
out = super(Bottle, self).forward(input.view(size[0] * size[1], -1))
return out.contiguous().view(size[0], size[1], -1)
class BottleLinear(Bottle, nn.Linear):
pass
class GlobalAttentionNew(nn.Module):
"""
Luong Attention.
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
H_1 H_2 H_3 ... H_n
q q q q
| | | |
\\ | | /
.....
\\ | /
a
Constructs a unit mapping.
$$(H_1 + H_n, q) => (a)$$
Where H is of `batch x n x dim` and q is of `batch x dim`.
Luong Attention (dot, general):
The full function is
$$ anh(W_2 [(softmax((W_1 q + b_1) H) H), q] + b_2)$$.
* dot: $$score(h_t,{\\overline{h}}_s) = h_t^T{\\overline{h}}_s$$
* general: $$score(h_t,{\\overline{h}}_s) = h_t^T W_a {\\overline{h}}_s$$
Bahdanau Attention (mlp):
$$c = \\sum_{j=1}^{SeqLength}_jh_j$$.
The Alignment-function $$a$$ computes an alignment as:
$$a_j = softmax(v_a^T anh(W_a q + U_a h_j) )$$.
"""
def __init__(self, dim, coverage=False, attn_type='dot'):
super(GlobalAttentionNew, self).__init__()
self.dim = dim
self.attn_type = attn_type
assert self.attn_type in ['dot', 'general', 'mlp'
], 'Please select a valid attention type.'
if self.attn_type == 'general':
self.linear_in = nn.Linear(dim, dim, bias=False)
elif self.attn_type == 'mlp':
self.linear_context = BottleLinear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=True)
self.v = BottleLinear(dim, 1, bias=False)
out_bias = self.attn_type == 'mlp'
self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias)
self.sm = nn.Softmax()
self.tanh = nn.Tanh()
self.mask = None
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def applyMask(self, mask):
self.mask = mask
def score(self, h_t, h_s):
"""
h_t (FloatTensor): batch x tgt_len x dim
h_s (FloatTensor): batch x src_len x dim
returns scores (FloatTensor): batch x tgt_len x src_len:
raw attention scores for each src index
"""
src_batch, src_len, src_dim = h_s.size()
tgt_batch, tgt_len, tgt_dim = h_t.size()
aeq(src_batch, tgt_batch)
aeq(src_dim, tgt_dim)
aeq(self.dim, src_dim)
if self.attn_type in ['general', 'dot']:
if self.attn_type == 'general':
h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim)
h_t_ = self.linear_in(h_t_)
h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim)
h_s_ = h_s.transpose(1, 2)
return torch.bmm(h_t, h_s_)
else:
dim = self.dim
wq = self.linear_query(h_t.view(-1, dim))
wq = wq.view(tgt_batch, tgt_len, 1, dim)
wq = wq.expand(tgt_batch, tgt_len, src_len, dim)
uh = self.linear_context(h_s.contiguous().view(-1, dim))
uh = uh.view(src_batch, 1, src_len, dim)
uh = uh.expand(src_batch, tgt_len, src_len, dim)
wquh = self.tanh(wq + uh)
return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len)
def forward(self, input_0, input_1):
primals_3 = self.linear_out.weight
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| AngusGLChen/qg | GlobalAttention | false | 4,880 | [
"MIT"
] | 1 | 3ebc5b94348a4c313829a6c71705fbc9dadd8181 | https://github.com/AngusGLChen/qg/tree/3ebc5b94348a4c313829a6c71705fbc9dadd8181 | import torch
import torch.nn as nn
import torch.cuda
def aeq(base, *rest):
""" Assert the first arg equals to each of the rest."""
for a in rest[:]:
assert a == base, 'base(' + str(base
) + ") doesn't equals to each of " + str(rest)
class Bottle(nn.Module):
def forward(self, input):
if len(input.size()) <= 2:
return super(Bottle, self).forward(input)
size = input.size()[:2]
out = super(Bottle, self).forward(input.view(size[0] * size[1], -1))
return out.contiguous().view(size[0], size[1], -1)
class BottleLinear(Bottle, nn.Linear):
pass
class Model(nn.Module):
"""
Luong Attention.
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
H_1 H_2 H_3 ... H_n
q q q q
| | | |
\\ | | /
.....
\\ | /
a
Constructs a unit mapping.
$$(H_1 + H_n, q) => (a)$$
Where H is of `batch x n x dim` and q is of `batch x dim`.
Luong Attention (dot, general):
The full function is
$$ anh(W_2 [(softmax((W_1 q + b_1) H) H), q] + b_2)$$.
* dot: $$score(h_t,{\\overline{h}}_s) = h_t^T{\\overline{h}}_s$$
* general: $$score(h_t,{\\overline{h}}_s) = h_t^T W_a {\\overline{h}}_s$$
Bahdanau Attention (mlp):
$$c = \\sum_{j=1}^{SeqLength}_jh_j$$.
The Alignment-function $$a$$ computes an alignment as:
$$a_j = softmax(v_a^T anh(W_a q + U_a h_j) )$$.
"""
def __init__(self, dim, coverage=False, attn_type='dot'):
super().__init__()
self.dim = dim
self.attn_type = attn_type
assert self.attn_type in ['dot', 'general', 'mlp'
], 'Please select a valid attention type.'
if self.attn_type == 'general':
self.linear_in = nn.Linear(dim, dim, bias=False)
elif self.attn_type == 'mlp':
self.linear_context = BottleLinear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=True)
self.v = BottleLinear(dim, 1, bias=False)
out_bias = self.attn_type == 'mlp'
self.linear_out = nn.Linear(dim * 2, dim, bias=out_bias)
self.sm = nn.Softmax()
self.tanh = nn.Tanh()
self.mask = None
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def applyMask(self, mask):
self.mask = mask
def score(self, h_t, h_s):
"""
h_t (FloatTensor): batch x tgt_len x dim
h_s (FloatTensor): batch x src_len x dim
returns scores (FloatTensor): batch x tgt_len x src_len:
raw attention scores for each src index
"""
src_batch, src_len, src_dim = h_s.size()
tgt_batch, tgt_len, tgt_dim = h_t.size()
aeq(src_batch, tgt_batch)
aeq(src_dim, tgt_dim)
aeq(self.dim, src_dim)
if self.attn_type in ['general', 'dot']:
if self.attn_type == 'general':
h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim)
h_t_ = self.linear_in(h_t_)
h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim)
h_s_ = h_s.transpose(1, 2)
return torch.bmm(h_t, h_s_)
else:
dim = self.dim
wq = self.linear_query(h_t.view(-1, dim))
wq = wq.view(tgt_batch, tgt_len, 1, dim)
wq = wq.expand(tgt_batch, tgt_len, src_len, dim)
uh = self.linear_context(h_s.contiguous().view(-1, dim))
uh = uh.view(src_batch, 1, src_len, dim)
uh = uh.expand(src_batch, tgt_len, src_len, dim)
wquh = self.tanh(wq + uh)
return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len)
def forward(self, input, context, coverage=None):
"""
input (FloatTensor): batch x tgt_len x dim: decoder's rnn's output
# ... truncated (>4000 chars) for memory efficiency |
AdditiveAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2x/c2x66b6sza3svon43c774fqn45xzpdlajk7fj3gf6dzmp6nxl7jx.py
# Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# tanh => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 4
x3 = (xindex // 256)
x5 = xindex % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x5 + (64*x3)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(out_ptr0 + (x6), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/oe/coezvwyo2fyfsqghp3geqsqeeuhyvxcoe7thtujlv6einfmi73d5.py
# Topologically Sorted Source Nodes: [mask, invert, setitem], Original ATen: [aten._to_copy, aten.bitwise_not, aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# invert => bitwise_not
# mask => convert_element_type
# setitem => full_default, index_put
# Graph fragment:
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%primals_9, torch.bool), kwargs = {})
# %bitwise_not : [num_users=2] = call_function[target=torch.ops.aten.bitwise_not.default](args = (%convert_element_type,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%squeeze, [%bitwise_not], %full_default), kwargs = {})
triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1 = async_compile.triton('triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1', 'mutated_arg_names': ['in_ptr1', 'out_ptr2'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1(in_ptr0, in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp2 = tmp1 == 0
tmp4 = float("-inf")
tmp5 = tl.where(tmp2, tmp4, tmp3)
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr2 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(buf0, primals_2, buf1, primals_6, buf2, 1024, grid=grid(1024), stream=stream0)
del buf0
del primals_2
del primals_6
buf4 = reinterpret_tensor(buf1, (256, 1), (1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mask, invert, setitem], Original ATen: [aten._to_copy, aten.bitwise_not, aten.lift_fresh, aten.index_put]
triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1.run(primals_9, buf4, buf5, buf4, 256, grid=grid(256), stream=stream0)
del primals_9
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf2, buf5, primals_7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch.functional import Tensor
import torch.nn as nn
class AdditiveAttention(nn.Module):
"""
Originally from:
https://arxiv.org/pdf/1409.0473v5.pdf
Also referenced to as Content Based Attention:
https://arxiv.org/pdf/1506.03134v1.pdf
Attention is learned for a query vector over a set of vectors.
If we have a query vector and then a key matrix with the size (n,k),
we will create attention vector over n
NOTE!
We mask out the attention scores for the positions which its impossible for
the segments to attend to. I.e. the padding.
"""
def __init__(self, input_dim: 'int'):
super().__init__()
self.W1 = nn.Linear(input_dim, input_dim)
self.W2 = nn.Linear(input_dim, input_dim)
self.v = nn.Linear(input_dim, 1)
def forward(self, query: 'Tensor', key: 'Tensor', mask: 'Tensor',
softmax=False):
key_out = self.W1(key)
query_out = self.W2(query.unsqueeze(1))
ui = self.v(torch.tanh(key_out + query_out)).squeeze(-1)
mask = mask.type(torch.bool)
ui[~mask] = float('-inf')
if softmax:
ui = torch.softmax(ui)
return ui
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 4
x3 = xindex // 256
x5 = xindex % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x5 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(out_ptr0 + x6, tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1(in_ptr0,
in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp2 = tmp1 == 0
tmp4 = float('-inf')
tmp5 = tl.where(tmp2, tmp4, tmp3)
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr2 + x0, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(1024)](buf0, primals_2, buf1,
primals_6, buf2, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
del primals_6
buf4 = reinterpret_tensor(buf1, (256, 1), (1, 1), 0)
del buf1
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4),
(4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused__to_copy_bitwise_not_index_put_lift_fresh_1[grid(256)
](primals_9, buf4, buf5, buf4, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_9
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0
), buf2, buf5, primals_7
class AdditiveAttentionNew(nn.Module):
"""
Originally from:
https://arxiv.org/pdf/1409.0473v5.pdf
Also referenced to as Content Based Attention:
https://arxiv.org/pdf/1506.03134v1.pdf
Attention is learned for a query vector over a set of vectors.
If we have a query vector and then a key matrix with the size (n,k),
we will create attention vector over n
NOTE!
We mask out the attention scores for the positions which its impossible for
the segments to attend to. I.e. the padding.
"""
def __init__(self, input_dim: 'int'):
super().__init__()
self.W1 = nn.Linear(input_dim, input_dim)
self.W2 = nn.Linear(input_dim, input_dim)
self.v = nn.Linear(input_dim, 1)
def forward(self, input_0, input_1, input_2):
primals_1 = self.W1.weight
primals_2 = self.W1.bias
primals_5 = self.W2.weight
primals_6 = self.W2.bias
primals_7 = self.v.weight
primals_8 = self.v.bias
primals_3 = input_0
primals_4 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| AxlAlm/SegNLP | AdditiveAttention | false | 4,881 | [
"Apache-2.0"
] | 1 | 89b8d077952397dfcea089376b373b117bcf6a65 | https://github.com/AxlAlm/SegNLP/tree/89b8d077952397dfcea089376b373b117bcf6a65 | import torch
from torch import Tensor
from torch.functional import Tensor
import torch.nn as nn
class Model(nn.Module):
"""
Originally from:
https://arxiv.org/pdf/1409.0473v5.pdf
Also referenced to as Content Based Attention:
https://arxiv.org/pdf/1506.03134v1.pdf
Attention is learned for a query vector over a set of vectors.
If we have a query vector and then a key matrix with the size (n,k),
we will create attention vector over n
NOTE!
We mask out the attention scores for the positions which its impossible for
the segments to attend to. I.e. the padding.
"""
def __init__(self, input_dim: 'int'):
super().__init__()
self.W1 = nn.Linear(input_dim, input_dim)
self.W2 = nn.Linear(input_dim, input_dim)
self.v = nn.Linear(input_dim, 1)
def forward(self, query: 'Tensor', key: 'Tensor', mask: 'Tensor',
softmax=False):
key_out = self.W1(key)
query_out = self.W2(query.unsqueeze(1))
ui = self.v(torch.tanh(key_out + query_out)).squeeze(-1)
mask = mask.type(torch.bool)
ui[~mask] = float('-inf')
if softmax:
ui = torch.softmax(ui)
return ui
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oq/coqnz4zqnlcw7hdyfkxkk5a5gcgigeemmkgs4tro3dkl73j5pqlt.py
# Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mean => mean
# mul => mul
# std => sqrt, var
# sub => sub
# truediv => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [-1]), kwargs = {correction: 0.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = tmp23 / tmp9
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-06
tmp27 = tmp25 + tmp26
tmp28 = tmp12 / tmp27
tmp30 = tmp28 + tmp29
tl.store(out_ptr0 + (x2), tmp30, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class LayerNorm(torch.nn.Module):
def __init__(self, dimensions, eps: 'float'=1e-06) ->None:
super().__init__()
self.gamma = torch.nn.Parameter(torch.ones(dimensions))
self.beta = torch.nn.Parameter(torch.zeros(dimensions))
self.eps = eps
def forward(self, tensor: 'torch.Tensor'):
mean = tensor.mean(-1, keepdim=True)
std = tensor.std(-1, unbiased=False, keepdim=True)
return self.gamma * (tensor - mean) / (std + self.eps) + self.beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dimensions': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp0 * tmp11
tmp13 = tmp2 - tmp10
tmp14 = tmp13 * tmp13
tmp15 = tmp3 - tmp10
tmp16 = tmp15 * tmp15
tmp17 = tmp14 + tmp16
tmp18 = tmp5 - tmp10
tmp19 = tmp18 * tmp18
tmp20 = tmp17 + tmp19
tmp21 = tmp7 - tmp10
tmp22 = tmp21 * tmp21
tmp23 = tmp20 + tmp22
tmp24 = tmp23 / tmp9
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-06
tmp27 = tmp25 + tmp26
tmp28 = tmp12 / tmp27
tmp30 = tmp28 + tmp29
tl.store(out_ptr0 + x2, tmp30, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_2,
primals_1, primals_3, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class LayerNormNew(torch.nn.Module):
def __init__(self, dimensions, eps: 'float'=1e-06) ->None:
super().__init__()
self.gamma = torch.nn.Parameter(torch.ones(dimensions))
self.beta = torch.nn.Parameter(torch.zeros(dimensions))
self.eps = eps
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| AutuanLiu/LeetCode2019 | LayerNorm | false | 4,882 | [
"MIT"
] | 1 | 8efc7c5475fd888f7d86c3b08a3c1c9e55c1ac30 | https://github.com/AutuanLiu/LeetCode2019/tree/8efc7c5475fd888f7d86c3b08a3c1c9e55c1ac30 | import torch
class Model(torch.nn.Module):
def __init__(self, dimensions, eps: 'float'=1e-06) ->None:
super().__init__()
self.gamma = torch.nn.Parameter(torch.ones(dimensions))
self.beta = torch.nn.Parameter(torch.zeros(dimensions))
self.eps = eps
def forward(self, tensor: 'torch.Tensor'):
mean = tensor.mean(-1, keepdim=True)
std = tensor.std(-1, unbiased=False, keepdim=True)
return self.gamma * (tensor - mean) / (std + self.eps) + self.beta
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Dnn_net_Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/u3/cu3loqwyak57rkhvxnki5qd45s7utmmazwxh7pvlv6zglac3aqiz.py
# Topologically Sorted Source Nodes: [loss, gt, sqrt, mul, loss_1, mean_loss], Original ATen: [aten.mse_loss, aten.gt, aten.sqrt, aten.mul, aten.where, aten.mean]
# Source node to ATen node mapping:
# gt => gt
# loss => pow_1, sub
# loss_1 => where
# mean_loss => mean
# mul => mul
# sqrt => full_default
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %expand), kwargs = {})
# %pow_1 : [num_users=3] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%pow_1, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.4142135381698608), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %pow_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %pow_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {})
triton_per_fused_gt_mean_mse_loss_mul_sqrt_where_0 = async_compile.triton('triton_per_fused_gt_mean_mse_loss_mul_sqrt_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_gt_mean_mse_loss_mul_sqrt_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_gt_mean_mse_loss_mul_sqrt_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r4 = rindex
r1 = (rindex // 4) % 8
r0 = rindex % 4
r2 = (rindex // 32) % 4
tmp0 = tl.load(in_ptr0 + (r4), None)
tmp1 = r1
tmp2 = tl.full([1], 0, tl.int64)
tmp3 = tmp1 >= tmp2
tmp4 = tl.full([1], 4, tl.int64)
tmp5 = tmp1 < tmp4
tmp6 = tl.load(in_ptr1 + (tl.broadcast_to(r0 + (16*r1) + (64*r2), [RBLOCK])), tmp5, eviction_policy='evict_last', other=0.0)
tmp7 = tmp1 >= tmp4
tmp8 = tl.full([1], 8, tl.int64)
tmp9 = tmp1 < tmp8
tmp10 = tl.load(in_ptr1 + (tl.broadcast_to(4 + r0 + (16*((-4) + r1)) + (64*r2), [RBLOCK])), tmp7, eviction_policy='evict_last', other=0.0)
tmp11 = tl.where(tmp5, tmp6, tmp10)
tmp12 = tmp0 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = 0.0
tmp15 = tmp13 > tmp14
tmp16 = 1.4142135381698608
tmp17 = tmp16 * tmp13
tmp18 = tl.where(tmp15, tmp17, tmp13)
tmp19 = tl.broadcast_to(tmp18, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp22 = 512.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 8, 4), (128, 32, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss, gt, sqrt, mul, loss_1, mean_loss], Original ATen: [aten.mse_loss, aten.gt, aten.sqrt, aten.mul, aten.where, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_gt_mean_mse_loss_mul_sqrt_where_0.run(buf1, arg1_1, arg0_1, 1, 512, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 8, 4), (128, 32, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
class Dnn_net_Loss(torch.nn.Module):
def __init__(self):
super(Dnn_net_Loss, self).__init__()
def forward(self, model_output, targ_input):
criterion = torch.nn.MSELoss(reduction='none')
criterion
targ_input = torch.cat((targ_input[:, :, 0], targ_input[:, :, 1]), 1)
loss = criterion(model_output, targ_input)
loss = torch.where(loss > 0, torch.sqrt(torch.tensor(2)) * loss, loss)
mean_loss = torch.mean(loss)
return mean_loss
def get_inputs():
return [torch.rand([4, 4, 8, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_gt_mean_mse_loss_mul_sqrt_where_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r4 = rindex
r1 = rindex // 4 % 8
r0 = rindex % 4
r2 = rindex // 32 % 4
tmp0 = tl.load(in_ptr0 + r4, None)
tmp1 = r1
tl.full([1], 0, tl.int64)
tmp4 = tl.full([1], 4, tl.int64)
tmp5 = tmp1 < tmp4
tmp6 = tl.load(in_ptr1 + tl.broadcast_to(r0 + 16 * r1 + 64 * r2, [
RBLOCK]), tmp5, eviction_policy='evict_last', other=0.0)
tmp7 = tmp1 >= tmp4
tl.full([1], 8, tl.int64)
tmp10 = tl.load(in_ptr1 + tl.broadcast_to(4 + r0 + 16 * (-4 + r1) + 64 *
r2, [RBLOCK]), tmp7, eviction_policy='evict_last', other=0.0)
tmp11 = tl.where(tmp5, tmp6, tmp10)
tmp12 = tmp0 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = 0.0
tmp15 = tmp13 > tmp14
tmp16 = 1.4142135381698608
tmp17 = tmp16 * tmp13
tmp18 = tl.where(tmp15, tmp17, tmp13)
tmp19 = tl.broadcast_to(tmp18, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp22 = 512.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 8, 4), (128, 32, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_gt_mean_mse_loss_mul_sqrt_where_0[grid(1)](buf1,
arg1_1, arg0_1, 1, 512, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class Dnn_net_LossNew(torch.nn.Module):
def __init__(self):
super(Dnn_net_LossNew, self).__init__()
def forward(self, input_0, input_1):
arg1_1 = input_0
arg0_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BaiYunLiu/newPLC | Dnn_net_Loss | false | 4,883 | [
"BSD-3-Clause"
] | 1 | 18245a14648bc28b7269ea1d6e444ca6021ac8d2 | https://github.com/BaiYunLiu/newPLC/tree/18245a14648bc28b7269ea1d6e444ca6021ac8d2 | import torch
import torch.utils.data
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, model_output, targ_input):
criterion = torch.nn.MSELoss(reduction='none')
criterion
targ_input = torch.cat((targ_input[:, :, 0], targ_input[:, :, 1]), 1)
loss = criterion(model_output, targ_input)
loss = torch.where(loss > 0, torch.sqrt(torch.tensor(2)) * loss, loss)
mean_loss = torch.mean(loss)
return mean_loss
def get_inputs():
return [torch.rand([4, 4, 8, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
Similarity | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/fs/cfspu7mejjrdj3rwv6dbd4wtruu376jncdfiwrofkswzbm3tzeww.py
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
# Source node to ATen node mapping:
# cosine_similarity => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %clamp_min), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {})
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x2), xmask)
tmp17 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/oc/coc72s53tbigp7ymrusrlvd4c6t3wv7jqncqyu3mro3wlvcb7eje.py
# Topologically Sorted Source Nodes: [cosine_similarity, truediv], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# cosine_similarity => sum_3
# truediv => div_2
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {})
triton_poi_fused_div_sum_1 = async_compile.triton('triton_poi_fused_div_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cosine_similarity, truediv], Original ATen: [aten.sum, aten.div]
triton_poi_fused_div_sum_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Similarity(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, x, y):
return self.cos(x, y) / self.temp
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'temp': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + x2, xmask)
tmp17 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused_div_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(256)](
arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_div_sum_1[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf0
return buf1,
class SimilarityNew(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BDBC-KG-NLP/MixCSE_AAAI2022 | Similarity | false | 4,884 | [
"MIT"
] | 1 | 884145e24a5258c044fedb658df9999f012df875 | https://github.com/BDBC-KG-NLP/MixCSE_AAAI2022/tree/884145e24a5258c044fedb658df9999f012df875 | import torch
import torch.nn as nn
class Model(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, x, y):
return self.cos(x, y) / self.temp
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
VAE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/a7/ca7arke3s5fg4uhg7akmgqbwrg3d6hnr25qajvo5h3z6zvfwzdiu.py
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# h1 => gt, mul, where
# Graph fragment:
# %add_tensor_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_5, %primals_3), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_5, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_5, 0.01), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_tensor_5, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ty/ctyzjgbvfzeg3tyzrtqcx6dpy4todpdafudrn2hi3dx7vcb32vbe.py
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# h2 => gt_1, mul_1, where_1
# Graph fragment:
# %add_tensor_4 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_5), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_4, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_4, 0.01), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_tensor_4, %mul_1), kwargs = {})
triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/j4/cj4kjp6w447zzyafnxx5ovroigugqzioy6ifrf5fxiyqnrirfnq5.py
# Topologically Sorted Source Nodes: [h3], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# h3 => gt_2, mul_2, where_2
# Graph fragment:
# %add_tensor_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_7), kwargs = {})
# %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_3, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_3, 0.01), kwargs = {})
# %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_tensor_3, %mul_2), kwargs = {})
triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yx/cyxfommvhq7jtntkccbzswxaz6oe2vvfcwxi63gtab4u7vj7aqsn.py
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
# Source node to ATen node mapping:
# mul => mul_3
# mul_1 => mul_4
# std => exp
# z => add
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_4, 0.5), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_3,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%addmm_3, %mul_4), kwargs = {})
triton_poi_fused_add_exp_mul_3 = async_compile.triton('triton_poi_fused_add_exp_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 60
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask)
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 * tmp5
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args
args.clear()
assert_size_stride(primals_1, (4, 24), (24, 1))
assert_size_stride(primals_2, (200, 24), (24, 1))
assert_size_stride(primals_3, (200, ), (1, ))
assert_size_stride(primals_4, (100, 200), (200, 1))
assert_size_stride(primals_5, (100, ), (1, ))
assert_size_stride(primals_6, (50, 100), (100, 1))
assert_size_stride(primals_7, (50, ), (1, ))
assert_size_stride(primals_8, (15, 50), (50, 1))
assert_size_stride(primals_9, (15, ), (1, ))
assert_size_stride(primals_10, (15, 50), (50, 1))
assert_size_stride(primals_11, (15, ), (1, ))
assert_size_stride(primals_12, (50, 15), (15, 1))
assert_size_stride(primals_13, (50, ), (1, ))
assert_size_stride(primals_14, (100, 50), (50, 1))
assert_size_stride(primals_15, (100, ), (1, ))
assert_size_stride(primals_16, (200, 100), (100, 1))
assert_size_stride(primals_17, (200, ), (1, ))
assert_size_stride(primals_18, (24, 200), (200, 1))
assert_size_stride(primals_19, (24, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (24, 200), (1, 24), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 200), (200, 1), torch.bool)
buf2 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [h1], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_3, buf1, buf2, 800, grid=grid(800), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (200, 100), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 100), (100, 1), torch.bool)
buf5 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [h2], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 400, grid=grid(400), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (100, 50), (1, 100), 0), out=buf6)
buf7 = empty_strided_cuda((4, 50), (50, 1), torch.bool)
buf8 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [h3], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_2.run(buf6, primals_7, buf7, buf8, 200, grid=grid(200), stream=stream0)
del primals_7
buf9 = empty_strided_cuda((4, 15), (15, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (50, 15), (1, 50), 0), alpha=1, beta=1, out=buf9)
del primals_9
buf10 = empty_strided_cuda((4, 15), (15, 1), torch.float32)
# Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, buf8, reinterpret_tensor(primals_10, (50, 15), (1, 50), 0), alpha=1, beta=1, out=buf10)
del primals_11
# Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like]
buf11 = torch.ops.aten.randn.default([4, 15], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 15), (15, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add]
triton_poi_fused_add_exp_mul_3.run(buf9, buf12, buf10, buf13, 60, grid=grid(60), stream=stream0)
buf14 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf13, reinterpret_tensor(primals_12, (15, 50), (1, 15), 0), out=buf14)
buf15 = empty_strided_cuda((4, 50), (50, 1), torch.bool)
buf16 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [h4], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_2.run(buf14, primals_13, buf15, buf16, 200, grid=grid(200), stream=stream0)
del buf14
del primals_13
buf17 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf16, reinterpret_tensor(primals_14, (50, 100), (1, 50), 0), out=buf17)
buf18 = empty_strided_cuda((4, 100), (100, 1), torch.bool)
buf19 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [h5], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf17, primals_15, buf18, buf19, 400, grid=grid(400), stream=stream0)
del buf17
del primals_15
buf20 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf19, reinterpret_tensor(primals_16, (100, 200), (1, 100), 0), out=buf20)
buf21 = empty_strided_cuda((4, 200), (200, 1), torch.bool)
buf22 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [h6], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf20, primals_17, buf21, buf22, 800, grid=grid(800), stream=stream0)
del buf20
del primals_17
buf23 = empty_strided_cuda((4, 24), (24, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_19, buf22, reinterpret_tensor(primals_18, (200, 24), (1, 200), 0), alpha=1, beta=1, out=buf23)
del primals_19
return (buf23, buf9, buf10, primals_1, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf12, buf13, buf15, buf16, buf18, buf19, buf21, buf22, primals_18, primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 24), (24, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, 24), (24, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((50, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((15, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((15, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((15, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((15, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((50, 15), (15, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((100, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((200, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((24, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
from torch.nn import functional as F
class VAE(nn.Module):
def __init__(self, n_features=24, z_dim=15):
super(VAE, self).__init__()
self.en1 = nn.Linear(n_features, 200)
self.en2 = nn.Linear(200, 100)
self.en3 = nn.Linear(100, 50)
self.fc_mu = nn.Linear(50, z_dim)
self.fc_logvar = nn.Linear(50, z_dim)
self.de1 = nn.Linear(z_dim, 50)
self.de2 = nn.Linear(50, 100)
self.de3 = nn.Linear(100, 200)
self.de4 = nn.Linear(200, n_features)
self.n_features = n_features
self.z_dim = z_dim
def encode(self, x):
h1 = F.leaky_relu(self.en1(x))
h2 = F.leaky_relu(self.en2(h1))
h3 = F.leaky_relu(self.en3(h2))
return self.fc_mu(h3), self.fc_logvar(h3)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h4 = F.leaky_relu(self.de1(z))
h5 = F.leaky_relu(self.de2(h4))
h6 = F.leaky_relu(self.de3(h5))
out = self.de4(h6)
return out
def forward(self, x):
mu, logvar = self.encode(x.view(-1, self.n_features))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def get_inputs():
return [torch.rand([4, 24])]
def get_init_inputs():
return [[], {}]
| import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_add_exp_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 60
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask)
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 * tmp5
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (4, 24), (24, 1))
assert_size_stride(primals_2, (200, 24), (24, 1))
assert_size_stride(primals_3, (200,), (1,))
assert_size_stride(primals_4, (100, 200), (200, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (50, 100), (100, 1))
assert_size_stride(primals_7, (50,), (1,))
assert_size_stride(primals_8, (15, 50), (50, 1))
assert_size_stride(primals_9, (15,), (1,))
assert_size_stride(primals_10, (15, 50), (50, 1))
assert_size_stride(primals_11, (15,), (1,))
assert_size_stride(primals_12, (50, 15), (15, 1))
assert_size_stride(primals_13, (50,), (1,))
assert_size_stride(primals_14, (100, 50), (50, 1))
assert_size_stride(primals_15, (100,), (1,))
assert_size_stride(primals_16, (200, 100), (100, 1))
assert_size_stride(primals_17, (200,), (1,))
assert_size_stride(primals_18, (24, 200), (200, 1))
assert_size_stride(primals_19, (24,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (24, 200
), (1, 24), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 200), (200, 1), torch.bool)
buf2 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(800)](buf0, primals_3, buf1,
buf2, 800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (200, 100), (
1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 100), (100, 1), torch.bool)
buf5 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
triton_poi_fused_leaky_relu_1[grid(400)](buf3, primals_5, buf4,
buf5, 400, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (100, 50), (1,
100), 0), out=buf6)
buf7 = empty_strided_cuda((4, 50), (50, 1), torch.bool)
buf8 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
triton_poi_fused_leaky_relu_2[grid(200)](buf6, primals_7, buf7,
buf8, 200, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf9 = empty_strided_cuda((4, 15), (15, 1), torch.float32)
extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8,
(50, 15), (1, 50), 0), alpha=1, beta=1, out=buf9)
del primals_9
buf10 = empty_strided_cuda((4, 15), (15, 1), torch.float32)
extern_kernels.addmm(primals_11, buf8, reinterpret_tensor(
primals_10, (50, 15), (1, 50), 0), alpha=1, beta=1, out=buf10)
del primals_11
buf11 = torch.ops.aten.randn.default([4, 15], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 15), (15, 1), torch.float32)
triton_poi_fused_add_exp_mul_3[grid(60)](buf9, buf12, buf10, buf13,
60, XBLOCK=64, num_warps=1, num_stages=1)
buf14 = buf6
del buf6
extern_kernels.mm(buf13, reinterpret_tensor(primals_12, (15, 50), (
1, 15), 0), out=buf14)
buf15 = empty_strided_cuda((4, 50), (50, 1), torch.bool)
buf16 = empty_strided_cuda((4, 50), (50, 1), torch.float32)
triton_poi_fused_leaky_relu_2[grid(200)](buf14, primals_13, buf15,
buf16, 200, XBLOCK=256, num_warps=4, num_stages=1)
del buf14
del primals_13
buf17 = buf3
del buf3
extern_kernels.mm(buf16, reinterpret_tensor(primals_14, (50, 100),
(1, 50), 0), out=buf17)
buf18 = empty_strided_cuda((4, 100), (100, 1), torch.bool)
buf19 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
triton_poi_fused_leaky_relu_1[grid(400)](buf17, primals_15, buf18,
buf19, 400, XBLOCK=128, num_warps=4, num_stages=1)
del buf17
del primals_15
buf20 = buf0
del buf0
extern_kernels.mm(buf19, reinterpret_tensor(primals_16, (100, 200),
(1, 100), 0), out=buf20)
buf21 = empty_strided_cuda((4, 200), (200, 1), torch.bool)
buf22 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
triton_poi_fused_leaky_relu_0[grid(800)](buf20, primals_17, buf21,
buf22, 800, XBLOCK=256, num_warps=4, num_stages=1)
del buf20
del primals_17
buf23 = empty_strided_cuda((4, 24), (24, 1), torch.float32)
extern_kernels.addmm(primals_19, buf22, reinterpret_tensor(
primals_18, (200, 24), (1, 200), 0), alpha=1, beta=1, out=buf23)
del primals_19
return (buf23, buf9, buf10, primals_1, buf1, buf2, buf4, buf5, buf7,
buf8, buf10, buf12, buf13, buf15, buf16, buf18, buf19, buf21, buf22,
primals_18, primals_16, primals_14, primals_12, primals_10,
primals_8, primals_6, primals_4)
class VAENew(nn.Module):
def __init__(self, n_features=24, z_dim=15):
super(VAENew, self).__init__()
self.en1 = nn.Linear(n_features, 200)
self.en2 = nn.Linear(200, 100)
self.en3 = nn.Linear(100, 50)
self.fc_mu = nn.Linear(50, z_dim)
self.fc_logvar = nn.Linear(50, z_dim)
self.de1 = nn.Linear(z_dim, 50)
self.de2 = nn.Linear(50, 100)
self.de3 = nn.Linear(100, 200)
self.de4 = nn.Linear(200, n_features)
self.n_features = n_features
self.z_dim = z_dim
def encode(self, x):
h1 = F.leaky_relu(self.en1(x))
h2 = F.leaky_relu(self.en2(h1))
h3 = F.leaky_relu(self.en3(h2))
return self.fc_mu(h3), self.fc_logvar(h3)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h4 = F.leaky_relu(self.de1(z))
h5 = F.leaky_relu(self.de2(h4))
h6 = F.leaky_relu(self.de3(h5))
out = self.de4(h6)
return out
def forward(self, input_0):
primals_2 = self.en1.weight
primals_3 = self.en1.bias
primals_4 = self.en2.weight
primals_5 = self.en2.bias
primals_6 = self.en3.weight
primals_7 = self.en3.bias
primals_8 = self.fc_mu.weight
primals_9 = self.fc_mu.bias
primals_10 = self.fc_logvar.weight
primals_11 = self.fc_logvar.bias
primals_12 = self.de1.weight
primals_13 = self.de1.bias
primals_14 = self.de2.weight
primals_15 = self.de2.bias
primals_16 = self.de3.weight
primals_17 = self.de3.bias
primals_18 = self.de4.weight
primals_19 = self.de4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0], output[1], output[2]
| Autoencoders-compression-anomaly/Various-AEs-Compression-Tensorflow | VAE | false | 4,885 | [
"Apache-2.0"
] | 1 | 772ba547c2b7d5d90e79382bf4d8a50e4d733210 | https://github.com/Autoencoders-compression-anomaly/Various-AEs-Compression-Tensorflow/tree/772ba547c2b7d5d90e79382bf4d8a50e4d733210 | import torch
import torch.nn as nn
import torch.utils.data
from torch.nn import functional as F
class Model(nn.Module):
def __init__(self, n_features=24, z_dim=15):
super().__init__()
self.en1 = nn.Linear(n_features, 200)
self.en2 = nn.Linear(200, 100)
self.en3 = nn.Linear(100, 50)
self.fc_mu = nn.Linear(50, z_dim)
self.fc_logvar = nn.Linear(50, z_dim)
self.de1 = nn.Linear(z_dim, 50)
self.de2 = nn.Linear(50, 100)
self.de3 = nn.Linear(100, 200)
self.de4 = nn.Linear(200, n_features)
self.n_features = n_features
self.z_dim = z_dim
def encode(self, x):
h1 = F.leaky_relu(self.en1(x))
h2 = F.leaky_relu(self.en2(h1))
h3 = F.leaky_relu(self.en3(h2))
return self.fc_mu(h3), self.fc_logvar(h3)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h4 = F.leaky_relu(self.de1(z))
h5 = F.leaky_relu(self.de2(h4))
h6 = F.leaky_relu(self.de3(h5))
out = self.de4(h6)
return out
def forward(self, x):
mu, logvar = self.encode(x.view(-1, self.n_features))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def get_inputs():
return [torch.rand([4, 24])]
def get_init_inputs():
return []
|
Attention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/bs/cbstxeghddltznr7shuzsnth6ngv6mnftr2w7pqzzm5flm72plbl.py
# Topologically Sorted Source Nodes: [e], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# e => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/to/ctohnag3s2my72gfje47knfyigkawenmq4hwyddhmhls6qicb3io.py
# Topologically Sorted Source Nodes: [e, expanded_q, add, tanh], Original ATen: [aten.convolution, aten.repeat, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# e => convolution
# expanded_q => repeat
# tanh => tanh
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_5, %primals_6, [1], [0], [1], False, [0], 1), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [1, 1, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%repeat, %convolution), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_convolution_repeat_tanh_1 = async_compile.triton('triton_poi_fused_add_convolution_repeat_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_repeat_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_repeat_tanh_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 4) % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp2
tmp5 = libdevice.tanh(tmp4)
tl.store(in_out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr0 + (x4), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [e], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf1, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [e], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_5, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = buf2; del buf2 # reuse
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [e, expanded_q, add, tanh], Original ATen: [aten.convolution, aten.repeat, aten.add, aten.tanh]
triton_poi_fused_add_convolution_repeat_tanh_1.run(buf3, primals_6, buf0, buf4, 64, grid=grid(64), stream=stream0)
del primals_6
buf5 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_7, (4, 1, 4), (0, 0, 1), 0), buf4, out=buf5)
return (buf3, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), primals_4, primals_5, primals_7, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0), buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
class Attention(nn.Module):
"""A generic attention module for a decoder in seq2seq"""
def __init__(self, dim, use_tanh=False, C=10):
super(Attention, self).__init__()
self.use_tanh = use_tanh
self.project_query = nn.Linear(dim, dim)
self.project_ref = nn.Conv1d(dim, dim, 1, 1)
self.C = C
self.tanh = nn.Tanh()
self.v = nn.Parameter(torch.FloatTensor(dim))
self.v.data.uniform_(-(1.0 / math.sqrt(dim)), 1.0 / math.sqrt(dim))
def forward(self, query, ref):
"""
Args:
query: is the hidden state of the decoder at the current
time step. batch x dim
ref: the set of hidden states from the encoder.
sourceL x batch x hidden_dim
"""
ref = ref.permute(1, 2, 0)
q = self.project_query(query).unsqueeze(2)
e = self.project_ref(ref)
expanded_q = q.repeat(1, 1, e.size(2))
v_view = self.v.unsqueeze(0).expand(expanded_q.size(0), len(self.v)
).unsqueeze(1)
u = torch.bmm(v_view, self.tanh(expanded_q + e)).squeeze(1)
if self.use_tanh:
logits = self.C * self.tanh(u)
else:
logits = u
return e, logits
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x1), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_convolution_repeat_tanh_1(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 4 % 4
x3 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp2
tmp5 = libdevice.tanh(tmp4)
tl.store(in_out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr0 + x4, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(
primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf1, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_5, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = buf2
del buf2
buf4 = buf1
del buf1
triton_poi_fused_add_convolution_repeat_tanh_1[grid(64)](buf3,
primals_6, buf0, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_6
buf5 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(primals_7, (4, 1, 4), (0, 0,
1), 0), buf4, out=buf5)
return buf3, reinterpret_tensor(buf5, (4, 4), (4, 1), 0
), primals_4, primals_5, primals_7, reinterpret_tensor(primals_1, (
4, 4, 4), (4, 1, 16), 0), buf4
class AttentionNew(nn.Module):
"""A generic attention module for a decoder in seq2seq"""
def __init__(self, dim, use_tanh=False, C=10):
super(AttentionNew, self).__init__()
self.use_tanh = use_tanh
self.project_query = nn.Linear(dim, dim)
self.project_ref = nn.Conv1d(dim, dim, 1, 1)
self.C = C
self.tanh = nn.Tanh()
self.v = nn.Parameter(torch.FloatTensor(dim))
self.v.data.uniform_(-(1.0 / math.sqrt(dim)), 1.0 / math.sqrt(dim))
def forward(self, input_0, input_1):
primals_3 = self.v
primals_2 = self.project_query.weight
primals_6 = self.project_query.bias
primals_5 = self.project_ref.weight
primals_7 = self.project_ref.bias
primals_4 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
| BCHoagland/attention-learn-to-route | Attention | false | 4,886 | [
"MIT"
] | 1 | c411289c3b42be5b9c89240f665a029dfc51e034 | https://github.com/BCHoagland/attention-learn-to-route/tree/c411289c3b42be5b9c89240f665a029dfc51e034 | import math
import torch
from torch import nn
class Model(nn.Module):
"""A generic attention module for a decoder in seq2seq"""
def __init__(self, dim, use_tanh=False, C=10):
super().__init__()
self.use_tanh = use_tanh
self.project_query = nn.Linear(dim, dim)
self.project_ref = nn.Conv1d(dim, dim, 1, 1)
self.C = C
self.tanh = nn.Tanh()
self.v = nn.Parameter(torch.FloatTensor(dim))
self.v.data.uniform_(-(1.0 / math.sqrt(dim)), 1.0 / math.sqrt(dim))
def forward(self, query, ref):
"""
Args:
query: is the hidden state of the decoder at the current
time step. batch x dim
ref: the set of hidden states from the encoder.
sourceL x batch x hidden_dim
"""
ref = ref.permute(1, 2, 0)
q = self.project_query(query).unsqueeze(2)
e = self.project_ref(ref)
expanded_q = q.repeat(1, 1, e.size(2))
v_view = self.v.unsqueeze(0).expand(expanded_q.size(0), len(self.v)
).unsqueeze(1)
u = torch.bmm(v_view, self.tanh(expanded_q + e)).squeeze(1)
if self.use_tanh:
logits = self.C * self.tanh(u)
else:
logits = u
return e, logits
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4]
|
ConvLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wl/cwldpc2k6v7rbizd6tlddleva3alwxblabsherkqjtef5e45djwk.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# out => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8) % 8
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-2) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-2) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/42/c42i6kggymcvforsoo45syfc6w3ujwnd3pxalcsjxkelshjyz7gv.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_1 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 25) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 400, grid=grid(400), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class ConvLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayer, self).__init__()
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'stride': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8 % 8
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-2 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-2 + x1)) + 16 * x2),
xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 25 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(1024)](primals_1, buf0,
1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(400)](buf2, primals_3, 400,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0
class ConvLayerNew(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayerNew, self).__init__()
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride)
def forward(self, input_0):
primals_1 = self.conv2d.weight
primals_3 = self.conv2d.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Bartolo1024/ignite | ConvLayer | false | 4,887 | [
"BSD-3-Clause"
] | 1 | b087fef0bc5f97cda415c1c56f1cd589383c54be | https://github.com/Bartolo1024/ignite/tree/b087fef0bc5f97cda415c1c56f1cd589383c54be | import torch
class Model(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'stride': 1}]
|
AE_4D | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/36/c36ws34jrmvnjcthpsazzbts54wc6zhntp6m7cvpzzqp67omwqfy.py
# Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# leaky_relu => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tc/ctc2uons4iai3snec2bfuu3l24zvve2qltsjib2ucjxetp7rqabb.py
# Topologically Sorted Source Nodes: [leaky_relu_1], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# leaky_relu_1 => gt_1, mul_1, where_1
# Graph fragment:
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.01), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_3, %mul_1), kwargs = {})
triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 100
x2 = (xindex // 1600)
x4 = xindex % 1600
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x4 + (1664*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/l4/cl45fsl3uakqicpoz3gy4gfdsnalnkbcwb4q7y4ylxrd3tj7vwib.py
# Topologically Sorted Source Nodes: [leaky_relu_2], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# leaky_relu_2 => gt_2, mul_2, where_2
# Graph fragment:
# %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 0.01), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %view_5, %mul_2), kwargs = {})
triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tp/ctpz4hys7bx2fexfkbstnelzidfzdm6vjqd7er5inxfsaxut2a7p.py
# Topologically Sorted Source Nodes: [leaky_relu_3], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# leaky_relu_3 => gt_3, mul_3, where_3
# Graph fragment:
# %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_7, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, 0.01), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %view_7, %mul_3), kwargs = {})
triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 200), (200, 1))
assert_size_stride(primals_5, (100, ), (1, ))
assert_size_stride(primals_6, (50, 100), (100, 1))
assert_size_stride(primals_7, (50, ), (1, ))
assert_size_stride(primals_8, (3, 50), (50, 1))
assert_size_stride(primals_9, (3, ), (1, ))
assert_size_stride(primals_10, (50, 3), (3, 1))
assert_size_stride(primals_11, (50, ), (1, ))
assert_size_stride(primals_12, (100, 50), (50, 1))
assert_size_stride(primals_13, (100, ), (1, ))
assert_size_stride(primals_14, (200, 100), (100, 1))
assert_size_stride(primals_15, (200, ), (1, ))
assert_size_stride(primals_16, (4, 200), (200, 1))
assert_size_stride(primals_17, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 12800, grid=grid(12800), stream=stream0)
del primals_2
buf3 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 100), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 6400, grid=grid(6400), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 100), (100, 1), 0), reinterpret_tensor(primals_6, (100, 50), (1, 100), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu_2], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_2.run(buf6, primals_7, buf7, buf8, 3200, grid=grid(3200), stream=stream0)
del primals_7
buf9 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf8, (64, 50), (50, 1), 0), reinterpret_tensor(primals_8, (50, 3), (1, 50), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.bool)
buf11 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu_3], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_3.run(buf9, primals_9, buf10, buf11, 192, grid=grid(192), stream=stream0)
del buf9
del primals_9
buf12 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf11, (64, 3), (3, 1), 0), reinterpret_tensor(primals_10, (3, 50), (1, 3), 0), out=buf12)
buf13 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
buf14 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu_4], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_2.run(buf12, primals_11, buf13, buf14, 3200, grid=grid(3200), stream=stream0)
del buf12
del primals_11
buf15 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf14, (64, 50), (50, 1), 0), reinterpret_tensor(primals_12, (50, 100), (1, 50), 0), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
buf17 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu_5], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf15, primals_13, buf16, buf17, 6400, grid=grid(6400), stream=stream0)
del buf15
del primals_13
buf18 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf17, (64, 100), (100, 1), 0), reinterpret_tensor(primals_14, (100, 200), (1, 100), 0), out=buf18)
buf19 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
buf20 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu_6], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_0.run(buf18, primals_15, buf19, buf20, 12800, grid=grid(12800), stream=stream0)
del buf18
del primals_15
buf21 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_7], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_17, reinterpret_tensor(buf20, (64, 200), (200, 1), 0), reinterpret_tensor(primals_16, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf21)
del primals_17
return (reinterpret_tensor(buf21, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 200), (200, 1), 0), buf4, reinterpret_tensor(buf5, (64, 100), (100, 1), 0), buf7, reinterpret_tensor(buf8, (64, 50), (50, 1), 0), buf10, reinterpret_tensor(buf11, (64, 3), (3, 1), 0), buf13, reinterpret_tensor(buf14, (64, 50), (50, 1), 0), buf16, reinterpret_tensor(buf17, (64, 100), (100, 1), 0), buf19, reinterpret_tensor(buf20, (64, 200), (200, 1), 0), primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((50, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((3, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((50, 3), (3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((100, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((200, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class AE_4D(nn.Module):
def __init__(self, n_features=4):
super(AE_4D, self).__init__()
self.en1 = nn.Linear(n_features, 200)
self.en2 = nn.Linear(200, 100)
self.en3 = nn.Linear(100, 50)
self.en4 = nn.Linear(50, 3)
self.de1 = nn.Linear(3, 50)
self.de2 = nn.Linear(50, 100)
self.de3 = nn.Linear(100, 200)
self.de4 = nn.Linear(200, n_features)
self.relu = True
if self.relu:
self.leakyRelu = nn.LeakyReLU()
else:
self.tanh = nn.Tanh()
def encode(self, x):
if self.relu:
return self.en4(self.leakyRelu(self.en3(self.leakyRelu(self.en2
(self.leakyRelu(self.en1(x)))))))
else:
return self.en4(self.tanh(self.en3(self.tanh(self.en2(self.tanh
(self.en1(x)))))))
def decode(self, x):
if self.relu:
return self.de4(self.leakyRelu(self.de3(self.leakyRelu(self.de2
(self.leakyRelu(self.de1(self.leakyRelu(x))))))))
else:
return self.de4(self.tanh(self.de3(self.tanh(self.de2(self.tanh
(self.de1(self.tanh(x))))))))
def forward(self, x):
z = self.encode(x)
return self.decode(z)
def describe(self):
return '4-200-200-20-3-20-200-200-4'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 100
x2 = xindex // 1600
x4 = xindex % 1600
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x4 + 1664 * x2), tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 50
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 200), (200, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (50, 100), (100, 1))
assert_size_stride(primals_7, (50,), (1,))
assert_size_stride(primals_8, (3, 50), (50, 1))
assert_size_stride(primals_9, (3,), (1,))
assert_size_stride(primals_10, (50, 3), (3, 1))
assert_size_stride(primals_11, (50,), (1,))
assert_size_stride(primals_12, (100, 50), (50, 1))
assert_size_stride(primals_13, (100,), (1,))
assert_size_stride(primals_14, (200, 100), (100, 1))
assert_size_stride(primals_15, (200,), (1,))
assert_size_stride(primals_16, (4, 200), (200, 1))
assert_size_stride(primals_17, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(12800)](buf0, primals_2, buf1,
buf2, 12800, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_4, (200, 100), (1, 200), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1),
torch.float32)
triton_poi_fused_leaky_relu_1[grid(6400)](buf3, primals_5, buf4,
buf5, 6400, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((64, 50), (50, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 100), (100, 1), 0),
reinterpret_tensor(primals_6, (100, 50), (1, 100), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.
float32)
triton_poi_fused_leaky_relu_2[grid(3200)](buf6, primals_7, buf7,
buf8, 3200, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf9 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (64, 50), (50, 1), 0),
reinterpret_tensor(primals_8, (50, 3), (1, 50), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.bool)
buf11 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32)
triton_poi_fused_leaky_relu_3[grid(192)](buf9, primals_9, buf10,
buf11, 192, XBLOCK=128, num_warps=4, num_stages=1)
del buf9
del primals_9
buf12 = buf6
del buf6
extern_kernels.mm(reinterpret_tensor(buf11, (64, 3), (3, 1), 0),
reinterpret_tensor(primals_10, (3, 50), (1, 3), 0), out=buf12)
buf13 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool
)
buf14 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.
float32)
triton_poi_fused_leaky_relu_2[grid(3200)](buf12, primals_11, buf13,
buf14, 3200, XBLOCK=256, num_warps=4, num_stages=1)
del buf12
del primals_11
buf15 = buf3
del buf3
extern_kernels.mm(reinterpret_tensor(buf14, (64, 50), (50, 1), 0),
reinterpret_tensor(primals_12, (50, 100), (1, 50), 0), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
buf17 = empty_strided_cuda((4, 4, 4, 100), (1600, 400, 100, 1),
torch.float32)
triton_poi_fused_leaky_relu_1[grid(6400)](buf15, primals_13, buf16,
buf17, 6400, XBLOCK=256, num_warps=4, num_stages=1)
del buf15
del primals_13
buf18 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(buf17, (64, 100), (100, 1), 0),
reinterpret_tensor(primals_14, (100, 200), (1, 100), 0), out=buf18)
buf19 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
buf20 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.float32)
triton_poi_fused_leaky_relu_0[grid(12800)](buf18, primals_15, buf19,
buf20, 12800, XBLOCK=128, num_warps=4, num_stages=1)
del buf18
del primals_15
buf21 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_17, reinterpret_tensor(buf20, (64, 200
), (200, 1), 0), reinterpret_tensor(primals_16, (200, 4), (1,
200), 0), alpha=1, beta=1, out=buf21)
del primals_17
return (reinterpret_tensor(buf21, (4, 4, 4, 4), (64, 16, 4, 1), 0),
reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1,
reinterpret_tensor(buf2, (64, 200), (200, 1), 0), buf4,
reinterpret_tensor(buf5, (64, 100), (100, 1), 0), buf7,
reinterpret_tensor(buf8, (64, 50), (50, 1), 0), buf10,
reinterpret_tensor(buf11, (64, 3), (3, 1), 0), buf13,
reinterpret_tensor(buf14, (64, 50), (50, 1), 0), buf16,
reinterpret_tensor(buf17, (64, 100), (100, 1), 0), buf19,
reinterpret_tensor(buf20, (64, 200), (200, 1), 0), primals_16,
primals_14, primals_12, primals_10, primals_8, primals_6, primals_4)
class AE_4DNew(nn.Module):
def __init__(self, n_features=4):
super(AE_4DNew, self).__init__()
self.en1 = nn.Linear(n_features, 200)
self.en2 = nn.Linear(200, 100)
self.en3 = nn.Linear(100, 50)
self.en4 = nn.Linear(50, 3)
self.de1 = nn.Linear(3, 50)
self.de2 = nn.Linear(50, 100)
self.de3 = nn.Linear(100, 200)
self.de4 = nn.Linear(200, n_features)
self.relu = True
if self.relu:
self.leakyRelu = nn.LeakyReLU()
else:
self.tanh = nn.Tanh()
def encode(self, x):
if self.relu:
return self.en4(self.leakyRelu(self.en3(self.leakyRelu(self.en2
(self.leakyRelu(self.en1(x)))))))
else:
return self.en4(self.tanh(self.en3(self.tanh(self.en2(self.tanh
(self.en1(x)))))))
def decode(self, x):
if self.relu:
return self.de4(self.leakyRelu(self.de3(self.leakyRelu(self.de2
(self.leakyRelu(self.de1(self.leakyRelu(x))))))))
else:
return self.de4(self.tanh(self.de3(self.tanh(self.de2(self.tanh
(self.de1(self.tanh(x))))))))
def describe(self):
return '4-200-200-20-3-20-200-200-4'
def forward(self, input_0):
primals_1 = self.en1.weight
primals_2 = self.en1.bias
primals_4 = self.en2.weight
primals_5 = self.en2.bias
primals_6 = self.en3.weight
primals_7 = self.en3.bias
primals_8 = self.en4.weight
primals_9 = self.en4.bias
primals_10 = self.de1.weight
primals_11 = self.de1.bias
primals_12 = self.de2.weight
primals_13 = self.de2.bias
primals_14 = self.de3.weight
primals_15 = self.de3.bias
primals_16 = self.de4.weight
primals_17 = self.de4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0]
| Autoencoders-compression-anomaly/Various-AEs-Compression-Tensorflow | AE_4D | false | 4,888 | [
"Apache-2.0"
] | 1 | 772ba547c2b7d5d90e79382bf4d8a50e4d733210 | https://github.com/Autoencoders-compression-anomaly/Various-AEs-Compression-Tensorflow/tree/772ba547c2b7d5d90e79382bf4d8a50e4d733210 | import torch
import torch.nn as nn
import torch.utils.data
class Model(nn.Module):
def __init__(self, n_features=4):
super().__init__()
self.en1 = nn.Linear(n_features, 200)
self.en2 = nn.Linear(200, 100)
self.en3 = nn.Linear(100, 50)
self.en4 = nn.Linear(50, 3)
self.de1 = nn.Linear(3, 50)
self.de2 = nn.Linear(50, 100)
self.de3 = nn.Linear(100, 200)
self.de4 = nn.Linear(200, n_features)
self.relu = True
if self.relu:
self.leakyRelu = nn.LeakyReLU()
else:
self.tanh = nn.Tanh()
def encode(self, x):
if self.relu:
return self.en4(self.leakyRelu(self.en3(self.leakyRelu(self.en2
(self.leakyRelu(self.en1(x)))))))
else:
return self.en4(self.tanh(self.en3(self.tanh(self.en2(self.tanh
(self.en1(x)))))))
def decode(self, x):
if self.relu:
return self.de4(self.leakyRelu(self.de3(self.leakyRelu(self.de2
(self.leakyRelu(self.de1(self.leakyRelu(x))))))))
else:
return self.de4(self.tanh(self.de3(self.tanh(self.de2(self.tanh
(self.de1(self.tanh(x))))))))
def forward(self, x):
z = self.encode(x)
return self.decode(z)
def describe(self):
return '4-200-200-20-3-20-200-200-4'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ActorMARL | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/cc/ccc3rfqzulhvn4nmibqhwjsomjzanxwwc34nr7d7enltyb7czw67.py
# Topologically Sorted Source Nodes: [result], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# result => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 500
x2 = (xindex // 2000)
x3 = xindex % 2000
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + (2016*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3 + (2048*x2)), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/od/cod4chcodxhfkpwgvalpo3wjcotr3qr3momwpd2myrvazuq2fy67.py
# Topologically Sorted Source Nodes: [result, linear_1], Original ATen: [aten.relu, aten.view]
# Source node to ATen node mapping:
# linear_1 => view_2
# result => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu, [64, 500]), kwargs = {})
triton_poi_fused_relu_view_1 = async_compile.triton('triton_poi_fused_relu_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 500
x1 = (xindex // 500)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (500*(x1 % 4)) + (2016*(x1 // 4))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/h7/ch7av6xnulewt5b7odqowg5upc5aaxv4uylilvlgoap3w6rnompj.py
# Topologically Sorted Source Nodes: [result_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# result_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sb/csbbn2sf7v6eutogmmhksp5x7rwd7z3vppgfx2mbu7v3njic7bqh.py
# Topologically Sorted Source Nodes: [result_2], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# result_2 => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_3 = async_compile.triton('triton_poi_fused_tanh_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (500, 4), (4, 1))
assert_size_stride(primals_2, (500, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 500), (500, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (4, 128), (128, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 500), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1), torch.bool)
# Topologically Sorted Source Nodes: [result], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf0, primals_2, buf1, buf8, 32000, grid=grid(32000), stream=stream0)
del primals_2
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [result, linear_1], Original ATen: [aten.relu, aten.view]
triton_poi_fused_relu_view_1.run(buf1, buf2, 32000, grid=grid(32000), stream=stream0)
del buf1
buf3 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (500, 128), (1, 500), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf3 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [result_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf7, 8192, grid=grid(8192), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf4, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [result_2], Original ATen: [aten.tanh]
triton_poi_fused_tanh_3.run(buf6, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, reinterpret_tensor(buf4, (64, 128), (128, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((500, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ActorMARL(nn.Module):
def __init__(self, dim_observation, dim_action):
super(ActorMARL, self).__init__()
self.FC1 = nn.Linear(dim_observation, 500)
self.FC2 = nn.Linear(500, 128)
self.FC3 = nn.Linear(128, dim_action)
def forward(self, obs):
result = F.relu(self.FC1(obs))
result = F.relu(self.FC2(result))
result = F.tanh(self.FC3(result))
return result
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_observation': 4, 'dim_action': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 500
x2 = xindex // 2000
x3 = xindex % 2000
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3 + 2016 * x2), tmp4, xmask)
tl.store(out_ptr1 + (x3 + 2048 * x2), tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 500
x1 = xindex // 500
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 500 * (x1 % 4) + 2016 * (x1 // 4)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_tanh_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (500, 4), (4, 1))
assert_size_stride(primals_2, (500,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 500), (500, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (4, 128), (128, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 500), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1),
torch.float32)
buf8 = empty_strided_cuda((4, 4, 4, 500), (8192, 2048, 500, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(32000)](buf0,
primals_2, buf1, buf8, 32000, XBLOCK=256, num_warps=4, num_stages=1
)
del primals_2
buf2 = buf0
del buf0
triton_poi_fused_relu_view_1[grid(32000)](buf1, buf2, 32000, XBLOCK
=256, num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (500, 128), (
1, 500), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf3
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(8192)](buf4,
primals_5, buf7, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_tanh_3[grid(256)](buf6, primals_7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, reinterpret_tensor(buf4, (64, 128), (128, 1), 0
), buf6, primals_6, buf7, primals_4, buf8
class ActorMARLNew(nn.Module):
def __init__(self, dim_observation, dim_action):
super(ActorMARLNew, self).__init__()
self.FC1 = nn.Linear(dim_observation, 500)
self.FC2 = nn.Linear(500, 128)
self.FC3 = nn.Linear(128, dim_action)
def forward(self, input_0):
primals_1 = self.FC1.weight
primals_2 = self.FC1.bias
primals_4 = self.FC2.weight
primals_5 = self.FC2.bias
primals_6 = self.FC3.weight
primals_7 = self.FC3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| BIT-UAV-JJJ/ElegantRL | ActorMARL | false | 4,889 | [
"Apache-2.0"
] | 1 | 5ce5c1030949bb862d0d56b0e78a9a1f47efe63a | https://github.com/BIT-UAV-JJJ/ElegantRL/tree/5ce5c1030949bb862d0d56b0e78a9a1f47efe63a | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, dim_observation, dim_action):
super().__init__()
self.FC1 = nn.Linear(dim_observation, 500)
self.FC2 = nn.Linear(500, 128)
self.FC3 = nn.Linear(128, dim_action)
def forward(self, obs):
result = F.relu(self.FC1(obs))
result = F.relu(self.FC2(result))
result = F.tanh(self.FC3(result))
return result
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
eSEModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/co/ccowauib7vy5gm7p4vj4ao45thoxwz7gg4fphlxqgn5idb7igf7i.py
# Topologically Sorted Source Nodes: [x_1, add, relu6, x_2, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# relu6 => clamp_max, clamp_min
# x_1 => convolution
# x_2 => div
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {})
triton_poi_fused_add_convolution_div_hardtanh_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_div_hardtanh_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_hardtanh_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_div_hardtanh_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 16)
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 3.0
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = 6.0
tmp9 = triton_helpers.minimum(tmp7, tmp8)
tmp10 = 0.16666666666666666
tmp11 = tmp9 * tmp10
tmp12 = tmp0 * tmp11
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jf/cjfxg4qmkc47we3c3cd47pg6lk6t4idzjkbdf3zyoyk4nr3a7ktb.py
# Topologically Sorted Source Nodes: [x_1, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward]
# Source node to ATen node mapping:
# add => add
# x_1 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, 3.0), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, 0), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add, 6), kwargs = {})
# %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {})
triton_poi_fused_add_convolution_hardtanh_backward_2 = async_compile.triton('triton_poi_fused_add_convolution_hardtanh_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_hardtanh_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_hardtanh_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tmp7 = 6.0
tmp8 = tmp4 >= tmp7
tmp9 = tmp6 | tmp8
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, add, relu6, x_2, mul], Original ATen: [aten.convolution, aten.add, aten.hardtanh, aten.div, aten.mul]
triton_poi_fused_add_convolution_div_hardtanh_mul_1.run(primals_1, buf2, primals_3, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1, add], Original ATen: [aten.convolution, aten.add, aten.hardtanh_backward]
triton_poi_fused_add_convolution_hardtanh_backward_2.run(buf2, primals_3, buf4, 16, grid=grid(16), stream=stream0)
del buf2
del primals_3
return (buf3, primals_1, primals_2, buf1, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3.0, inplace=self.inplace) / 6.0
class eSEModule(nn.Module):
def __init__(self, channel, reduction=4):
super(eSEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0)
self.hsigmoid = Hsigmoid()
def forward(self, x):
input = x
x = self.avg_pool(x)
x = self.fc(x)
x = self.hsigmoid(x)
return input * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channel': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_convolution_div_hardtanh_mul_1(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 16
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 3.0
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = 6.0
tmp9 = triton_helpers.minimum(tmp7, tmp8)
tmp10 = 0.16666666666666666
tmp11 = tmp9 * tmp10
tmp12 = tmp0 * tmp11
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_convolution_hardtanh_backward_2(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tmp7 = 6.0
tmp8 = tmp4 >= tmp7
tmp9 = tmp6 | tmp8
tl.store(out_ptr0 + x2, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_convolution_div_hardtanh_mul_1[grid(256)](
primals_1, buf2, primals_3, buf3, 256, XBLOCK=256, num_warps=4,
num_stages=1)
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
triton_poi_fused_add_convolution_hardtanh_backward_2[grid(16)](buf2,
primals_3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf2
del primals_3
return buf3, primals_1, primals_2, buf1, buf4
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3.0, inplace=self.inplace) / 6.0
class eSEModuleNew(nn.Module):
def __init__(self, channel, reduction=4):
super(eSEModuleNew, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0)
self.hsigmoid = Hsigmoid()
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| BXuan694/basemodel-pytorch | eSEModule | false | 4,890 | [
"MIT"
] | 1 | a36c96904580be902e323db17eebbe2ea1f54176 | https://github.com/BXuan694/basemodel-pytorch/tree/a36c96904580be902e323db17eebbe2ea1f54176 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super().__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3.0, inplace=self.inplace) / 6.0
class Model(nn.Module):
def __init__(self, channel, reduction=4):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0)
self.hsigmoid = Hsigmoid()
def forward(self, x):
input = x
x = self.avg_pool(x)
x = self.fc(x)
x = self.hsigmoid(x)
return input * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
Net | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/zv/czvfpj3ah2lefbwpcuw4esv23bxs5a3ab63ply3ntgbsdktepd5v.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 18816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 784) % 6
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/v7/cv7qi7gg3bpfwb3hj7zgy5jlgh7x7wdgqsfsodkjsoverxdjlf6z.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4704
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x3 = (xindex // 14)
x2 = (xindex // 1176)
x4 = xindex % 1176
tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + (1184*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x4 + (1280*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xe/cxelxvpw3asckozc53rh36773aohp5hqpbp2nos5ymcdqhxvo4bl.py
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 100) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tn/ctnw4tbgfy47ppke77vu7rtiz7dl5o3ahickx4p64n7c5rmrrix6.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x2), tmp15, xmask)
tl.store(out_ptr1 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jn/cjnqv3sgcv5x2iz7ij5zdad6ofabcnonrlksgsxu2ob7n274gz6b.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_3 => relu_2
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 120
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6m/c6m6u2ctjb4r4ra3sizrwezzkzegfp2ombflmfg3dwjfci2pen7h.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_4 => relu_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 336
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 84
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (6, ), (1, ))
assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1))
assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (120, 400), (400, 1))
assert_size_stride(primals_7, (120, ), (1, ))
assert_size_stride(primals_8, (84, 120), (120, 1))
assert_size_stride(primals_9, (84, ), (1, ))
assert_size_stride(primals_10, (4, 84), (84, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 18816, grid=grid(18816), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch.float32)
buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch.int8)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4704, grid=grid(4704), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8)
buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1600, grid=grid(1600), stream=stream0)
buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf9, primals_7, 480, grid=grid(480), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10)
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu]
triton_poi_fused_relu_5.run(buf11, primals_9, 336, grid=grid(336), stream=stream0)
del primals_9
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(primals_10, (84, 4), (1, 84), 0), alpha=1, beta=1, out=buf12)
del primals_11
return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, primals_10, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((6, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((120, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 84), (84, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self, n_classes):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, n_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 3, 32, 32])]
def get_init_inputs():
return [[], {'n_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 18816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 784 % 6
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4704
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x3 = xindex // 14
x2 = xindex // 1176
x4 = xindex % 1176
tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 100 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 120
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 336
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 84
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (6,), (1,))
assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1))
assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (120, 400), (400, 1))
assert_size_stride(primals_7, (120,), (1,))
assert_size_stride(primals_8, (84, 120), (120, 1))
assert_size_stride(primals_9, (84,), (1,))
assert_size_stride(primals_10, (4, 84), (84, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2,
18816, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch
.float32)
buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch
.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2,
buf3, 4704, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5,
6400, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8)
buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32
)
triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6,
buf7, 1600, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0),
reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32)
extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1,
120), 0), out=buf10)
buf11 = buf10
del buf10
triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(
primals_10, (84, 4), (1, 84), 0), alpha=1, beta=1, out=buf12)
del primals_11
return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5,
buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11,
primals_10, primals_8, primals_6)
class NetNew(nn.Module):
def __init__(self, n_classes):
super(NetNew, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, n_classes)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_10 = self.fc3.weight
primals_11 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| ArWeHei/edflow | Net | false | 4,891 | [
"MIT"
] | 1 | 3383cfbc42a43e906bc7781ad05714fd4fc9616e | https://github.com/ArWeHei/edflow/tree/3383cfbc42a43e906bc7781ad05714fd4fc9616e | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, n_classes):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, n_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 3, 32, 32])]
def get_init_inputs():
return [4]
|
SE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# out => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/o5/co5kpgkyaabh4nd7yz4gzpyl7x35mwdhgusbruykvtydzlq2lizg.py
# Topologically Sorted Source Nodes: [conv2d, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/k2/ck2mamkqpmuzem4n3p4ij6fmfpy2bcbblg6sx6wwslgqwuqq5ifh.py
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lp/clprvnh5p6cmadxtwzizwydrpjlwxohxixbw4ntucp6srbu6gtis.py
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# out_2 => sigmoid
# out_3 => mul
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d, out_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_3.run(primals_1, buf5, buf6, 256, grid=grid(256), stream=stream0)
return (buf6, primals_1, primals_2, primals_4, buf1, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class SE(nn.Module):
"""Squeeze-and-Excitation block."""
def __init__(self, in_planes, se_planes):
super(SE, self).__init__()
self.se1 = nn.Conv2d(in_planes, se_planes, kernel_size=1, bias=True)
self.se2 = nn.Conv2d(se_planes, in_planes, kernel_size=1, bias=True)
def forward(self, x):
out = F.adaptive_avg_pool2d(x, (1, 1))
out = F.relu(self.se1(out))
out = self.se2(out).sigmoid()
out = x * out
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_planes': 4, 'se_planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(16)](buf3, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(16)](buf5, primals_5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_3[grid(256)](primals_1, buf5, buf6,
256, XBLOCK=256, num_warps=4, num_stages=1)
return buf6, primals_1, primals_2, primals_4, buf1, buf3, buf5
class SENew(nn.Module):
"""Squeeze-and-Excitation block."""
def __init__(self, in_planes, se_planes):
super(SENew, self).__init__()
self.se1 = nn.Conv2d(in_planes, se_planes, kernel_size=1, bias=True)
self.se2 = nn.Conv2d(se_planes, in_planes, kernel_size=1, bias=True)
def forward(self, input_0):
primals_2 = self.se1.weight
primals_3 = self.se1.bias
primals_4 = self.se2.weight
primals_5 = self.se2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| BXuan694/basemodel-pytorch | SE | false | 4,892 | [
"MIT"
] | 1 | a36c96904580be902e323db17eebbe2ea1f54176 | https://github.com/BXuan694/basemodel-pytorch/tree/a36c96904580be902e323db17eebbe2ea1f54176 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
"""Squeeze-and-Excitation block."""
def __init__(self, in_planes, se_planes):
super().__init__()
self.se1 = nn.Conv2d(in_planes, se_planes, kernel_size=1, bias=True)
self.se2 = nn.Conv2d(se_planes, in_planes, kernel_size=1, bias=True)
def forward(self, x):
out = F.adaptive_avg_pool2d(x, (1, 1))
out = F.relu(self.se1(out))
out = self.se2(out).sigmoid()
out = x * out
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
Actor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cp/ccp5m5apf7ka2skqyfxhf2df54c52qocprpycry7jrzoptyjvbti.py
# Topologically Sorted Source Nodes: [tanh, mul], Original ATen: [aten.tanh, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 4), kwargs = {})
triton_poi_fused_mul_tanh_1 = async_compile.triton('triton_poi_fused_mul_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256), (256, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (4, 256), (256, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 16384, grid=grid(16384), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, mul], Original ATen: [aten.tanh, aten.mul]
triton_poi_fused_mul_tanh_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), buf4, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, state):
a = F.relu(self.l1(state))
a = F.relu(self.l2(a))
return self.max_action * torch.tanh(self.l3(a))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4, 'max_action': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256), (256, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (4, 256), (256, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf7, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf3,
primals_5, buf6, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256),
(256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256),
0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_tanh_1[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), reinterpret_tensor(buf3, (64, 256), (256, 1), 0
), buf4, primals_6, buf6, primals_4, buf7
class ActorNew(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(ActorNew, self).__init__()
self.l1 = nn.Linear(state_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, input_0):
primals_1 = self.l1.weight
primals_2 = self.l1.bias
primals_4 = self.l2.weight
primals_5 = self.l2.bias
primals_6 = self.l3.weight
primals_7 = self.l3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Barisimre/TD3-Generative | Actor | false | 4,893 | [
"MIT"
] | 1 | 434419b020b88010f09f194c40feac1d420b2086 | https://github.com/Barisimre/TD3-Generative/tree/434419b020b88010f09f194c40feac1d420b2086 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super().__init__()
self.l1 = nn.Linear(state_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, state):
a = F.relu(self.l1(state))
a = F.relu(self.l2(a))
return self.max_action * torch.tanh(self.l3(a))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
GeneralizedDiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/d5/cd52mlrkv7fg7ptxw5vaz664ocriv2bgu4unk4oe24v6nbgmv7uv.py
# Topologically Sorted Source Nodes: [mul, intersection, ground_o, pred_o], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# ground_o => sum_2
# intersection => sum_1
# mul => mul
# pred_o => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg1_1, [2, 3]), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3]), kwargs = {})
triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
tl.store(out_ptr2 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6l/c6l2gkrph5u6qhzfpwcqqfu277drwwd7ra3dyhys4nf64xwbbpre.py
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# setitem => full_default, index_put
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put.default](args = (%select, [%isinf], %full_default), kwargs = {})
triton_poi_fused_index_put_lift_fresh_1 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 * tmp0
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tmp4 = libdevice.isinf(tmp3).to(tl.int1)
tmp5 = 0.0
tmp6 = tl.where(tmp4, tmp5, tmp3)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cy/ccy7idfxu272yvofjbbp54inr6a5zn7jkvgbq7732tfnhhq2lmr7.py
# Topologically Sorted Source Nodes: [mul_1, w], Original ATen: [aten.mul, aten.reciprocal]
# Source node to ATen node mapping:
# mul_1 => mul_1
# w => reciprocal
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, %sum_2), kwargs = {})
# %reciprocal : [num_users=2] = call_function[target=torch.ops.aten.reciprocal.default](args = (%mul_1,), kwargs = {})
# %select_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%reciprocal, %index_put, 0, 0), kwargs = {})
triton_poi_fused_mul_reciprocal_2 = async_compile.triton('triton_poi_fused_mul_reciprocal_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_reciprocal_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x2), xmask)
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tmp4 * tmp4
tmp6 = tl.full([1], 1, tl.int32)
tmp7 = tmp6 / tmp5
tmp8 = tl.where(tmp2, tmp3, tmp7)
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jk/cjkuxs5m7ejvswg7hrk2llstygqftgn2i6wdk7h25jxqaj665z6b.py
# Topologically Sorted Source Nodes: [max_1, setitem_1], Original ATen: [aten.max, aten.index_put]
# Source node to ATen node mapping:
# max_1 => max_1
# setitem_1 => index_put_1
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%select_4,), kwargs = {})
# %index_put_1 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_4, [%isinf], %max_1), kwargs = {})
triton_per_fused_index_put_max_3 = async_compile.triton('triton_per_fused_index_put_max_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_max_3', 'mutated_arg_names': ['out_ptr2'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_index_put_max_3(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp2 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp0 = tl.full([1, 1], 0, tl.int32)
tmp1 = tmp0 == tmp0
tmp4 = tmp3 * tmp3
tmp5 = tl.full([1, 1], 1, tl.int32)
tmp6 = tmp5 / tmp4
tmp7 = tl.where(tmp1, tmp2, tmp6)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = triton_helpers.max2(tmp8, 1)[:, None]
tmp11 = libdevice.isinf(tmp6).to(tl.int1)
tmp12 = tl.where(tmp11, tmp10, tmp7)
tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/4q/c4ql4xyg2xlaa3uezk7gjgywmt3fw3tynazq4ckpuwcsgzw6zhei.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %select_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default, %index_put_1, 0, 0), kwargs = {})
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (x2), xmask)
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/o5/co5ocweef7wvpqwak7rmrihdxwrqz6mechmdzkcte5vjlsv5tdhx.py
# Topologically Sorted Source Nodes: [setitem_2], Original ATen: [aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# setitem_2 => full_default_1, index_put_2
# Graph fragment:
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put_2 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_6, [%isinf_1], %full_default_1), kwargs = {})
triton_poi_fused_index_put_lift_fresh_5 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_5', 'mutated_arg_names': ['out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_5(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp3 = tl.load(in_ptr0 + (x0), xmask)
tmp4 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp0 = tl.full([1], 1, tl.int32)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = libdevice.isinf(tmp5).to(tl.int1)
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp5)
tl.store(out_ptr1 + (4 + x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yv/cyvyap3cqstn6kbri4i6qtdbvfru2ywjrkts4h2byghwjatyop4k.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %select_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %index_put_2, 0, 1), kwargs = {})
triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (x2), xmask)
tmp0 = x1
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/tg/ctgfsxxk2urovszhep4mbnqcv7roo2a5o633p6v6krrzhegbz6tr.py
# Topologically Sorted Source Nodes: [max_2, setitem_3], Original ATen: [aten.max, aten.index_put]
# Source node to ATen node mapping:
# max_2 => max_2
# setitem_3 => index_put_3
# Graph fragment:
# %max_2 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%select_7,), kwargs = {})
# %index_put_3 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_7, [%isinf_1], %max_2), kwargs = {})
triton_per_fused_index_put_max_7 = async_compile.triton('triton_per_fused_index_put_max_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_max_7', 'mutated_arg_names': ['out_ptr2'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_index_put_max_7(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp2 = tl.load(in_ptr0 + (4 + r0), None)
tmp9 = tl.load(in_ptr1 + (r0), None)
tmp10 = tl.load(in_ptr1 + (4 + r0), None)
tmp0 = tl.full([1, 1], 1, tl.int32)
tmp1 = tmp0 == tmp0
tmp3 = tl.where(tmp1, tmp2, tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.max2(tmp4, 1)[:, None]
tmp7 = tl.full([1, 1], 0, tl.int32)
tmp8 = tmp0 == tmp7
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = libdevice.isinf(tmp11).to(tl.int1)
tmp13 = tl.where(tmp12, tmp6, tmp3)
tl.store(out_ptr2 + (tl.broadcast_to(4 + r0, [XBLOCK, RBLOCK])), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/fy/cfy4vgr7piqugeft2crnhfbw5ielxsgean22zjdvpklq4txeer5o.py
# Topologically Sorted Source Nodes: [setitem_4], Original ATen: [aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# setitem_4 => full_default_2, index_put_4
# Graph fragment:
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put_4 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_9, [%isinf_2], %full_default_2), kwargs = {})
triton_poi_fused_index_put_lift_fresh_8 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_8', 'mutated_arg_names': ['out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_8(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp0 = tl.full([1], 2, tl.int32)
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = libdevice.isinf(tmp5).to(tl.int1)
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp5)
tl.store(out_ptr1 + (8 + x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zj/czjcmriyujs5brmyh7stjrkfk37e4twzbljor3wofssbrxsuw63t.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %select_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_3, %index_put_4, 0, 2), kwargs = {})
triton_poi_fused_9 = async_compile.triton('triton_poi_fused_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (x2), xmask)
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hx/chxbr5aueebc6hjsn4ej4rftudtvp5pbxyu5cbojq5zy2lksc2pa.py
# Topologically Sorted Source Nodes: [max_3, setitem_5], Original ATen: [aten.max, aten.index_put]
# Source node to ATen node mapping:
# max_3 => max_3
# setitem_5 => index_put_5
# Graph fragment:
# %max_3 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%select_10,), kwargs = {})
# %index_put_5 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_10, [%isinf_2], %max_3), kwargs = {})
triton_per_fused_index_put_max_10 = async_compile.triton('triton_per_fused_index_put_max_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_max_10', 'mutated_arg_names': ['out_ptr2'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_index_put_max_10(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp2 = tl.load(in_ptr0 + (8 + r0), None)
tmp9 = tl.load(in_ptr1 + (4 + r0), None)
tmp10 = tl.load(in_ptr1 + (8 + r0), None)
tmp0 = tl.full([1, 1], 2, tl.int32)
tmp1 = tmp0 == tmp0
tmp3 = tl.where(tmp1, tmp2, tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.max2(tmp4, 1)[:, None]
tmp7 = tl.full([1, 1], 1, tl.int32)
tmp8 = tmp0 == tmp7
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = libdevice.isinf(tmp11).to(tl.int1)
tmp13 = tl.where(tmp12, tmp6, tmp3)
tl.store(out_ptr2 + (tl.broadcast_to(8 + r0, [XBLOCK, RBLOCK])), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wq/cwqjjijigoiri7ebhb452bt4tizigzg2o6ji6lsekghkviga7xp3.py
# Topologically Sorted Source Nodes: [setitem_6], Original ATen: [aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# setitem_6 => full_default_3, index_put_6
# Graph fragment:
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put_6 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_12, [%isinf_3], %full_default_3), kwargs = {})
triton_poi_fused_index_put_lift_fresh_11 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_11', 'mutated_arg_names': ['out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_11(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp4 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp0 = tl.full([1], 3, tl.int32)
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = libdevice.isinf(tmp5).to(tl.int1)
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp5)
tl.store(out_ptr1 + (12 + x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ux/cuxhakfkc47pmz4gov3quzmpxdbvtixikhnf3nicsxfr6rvsdnli.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %select_scatter_default_6 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_5, %index_put_6, 0, 3), kwargs = {})
triton_poi_fused_12 = async_compile.triton('triton_poi_fused_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_12(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (x2), xmask)
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lf/clf4pxfzowgmhow2bm4nhu2drefrnqqu6uqv5egtoum633aeciwm.py
# Topologically Sorted Source Nodes: [max_4, setitem_7], Original ATen: [aten.max, aten.index_put]
# Source node to ATen node mapping:
# max_4 => max_4
# setitem_7 => index_put_7
# Graph fragment:
# %max_4 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%select_13,), kwargs = {})
# %index_put_7 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_13, [%isinf_3], %max_4), kwargs = {})
triton_per_fused_index_put_max_13 = async_compile.triton('triton_per_fused_index_put_max_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_max_13', 'mutated_arg_names': ['out_ptr2'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_index_put_max_13(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp2 = tl.load(in_ptr0 + (12 + r0), None)
tmp9 = tl.load(in_ptr1 + (8 + r0), None)
tmp10 = tl.load(in_ptr1 + (12 + r0), None)
tmp0 = tl.full([1, 1], 3, tl.int32)
tmp1 = tmp0 == tmp0
tmp3 = tl.where(tmp1, tmp2, tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.max2(tmp4, 1)[:, None]
tmp7 = tl.full([1, 1], 2, tl.int32)
tmp8 = tmp0 == tmp7
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = libdevice.isinf(tmp11).to(tl.int1)
tmp13 = tl.where(tmp12, tmp6, tmp3)
tl.store(out_ptr2 + (tl.broadcast_to(12 + r0, [XBLOCK, RBLOCK])), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/s2/cs2wyfvtdb7vmxx7u5otf7upxsggzrwonnusuhl3h5txytfu73v3.py
# Topologically Sorted Source Nodes: [mul_2, sum_4, mul_3, add_1, denominator, mul_4, sum_5, add_2, truediv, f, f_1], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# denominator => add
# f => sub
# f_1 => mean
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# sum_4 => sum_4
# sum_5 => sum_5
# truediv => div
# Graph fragment:
# %select_scatter_default_7 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_6, %index_put_7, 0, 3), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, %select_scatter_default_7), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 2.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1e-05), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %select_scatter_default_7), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_5, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {})
triton_per_fused_add_div_mean_mul_rsub_sum_14 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_sum_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_sum_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_sum_14(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (12))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (13))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp12 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (14))
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp19 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr1 + (15))
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp26 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr3 + (4*r0), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr3 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr3 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr3 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp1 = r0
tmp2 = tl.full([1, 1], 3, tl.int32)
tmp3 = tmp1 == tmp2
tmp7 = tl.where(tmp3, tmp5, tmp6)
tmp8 = tmp0 * tmp7
tmp13 = tl.where(tmp3, tmp11, tmp12)
tmp14 = tmp9 * tmp13
tmp15 = tmp8 + tmp14
tmp20 = tl.where(tmp3, tmp18, tmp19)
tmp21 = tmp16 * tmp20
tmp22 = tmp15 + tmp21
tmp27 = tl.where(tmp3, tmp25, tmp26)
tmp28 = tmp23 * tmp27
tmp29 = tmp22 + tmp28
tmp32 = tmp30 + tmp31
tmp33 = tmp32 * tmp7
tmp36 = tmp34 + tmp35
tmp37 = tmp36 * tmp13
tmp38 = tmp33 + tmp37
tmp41 = tmp39 + tmp40
tmp42 = tmp41 * tmp20
tmp43 = tmp38 + tmp42
tmp46 = tmp44 + tmp45
tmp47 = tmp46 * tmp27
tmp48 = tmp43 + tmp47
tmp49 = 2.0
tmp50 = tmp29 * tmp49
tmp51 = 1e-05
tmp52 = tmp50 + tmp51
tmp53 = tmp48 + tmp51
tmp54 = tmp52 / tmp53
tmp55 = 1.0
tmp56 = tmp55 - tmp54
tmp57 = tl.broadcast_to(tmp56, [XBLOCK, RBLOCK])
tmp59 = tl.sum(tmp57, 1)[:, None]
tmp60 = 4.0
tmp61 = tmp59 / tmp60
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp61, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf29 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, intersection, ground_o, pred_o], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_mul_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf29, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put]
triton_poi_fused_index_put_lift_fresh_1.run(buf1, buf2, 4, grid=grid(4), stream=stream0)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, w], Original ATen: [aten.mul, aten.reciprocal]
triton_poi_fused_mul_reciprocal_2.run(buf2, buf1, buf4, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [max_1, setitem_1], Original ATen: [aten.max, aten.index_put]
triton_per_fused_index_put_max_3.run(buf2, buf1, buf4, 1, 4, grid=grid(1), stream=stream0)
del buf2
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(buf4, buf7, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [setitem_2], Original ATen: [aten.lift_fresh, aten.index_put]
triton_poi_fused_index_put_lift_fresh_5.run(buf4, buf7, 4, grid=grid(4), stream=stream0)
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_6.run(buf7, buf11, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [max_2, setitem_3], Original ATen: [aten.max, aten.index_put]
triton_per_fused_index_put_max_7.run(buf7, buf4, buf11, 1, 4, grid=grid(1), stream=stream0)
buf14 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_6.run(buf11, buf14, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [setitem_4], Original ATen: [aten.lift_fresh, aten.index_put]
triton_poi_fused_index_put_lift_fresh_8.run(buf11, buf14, 4, grid=grid(4), stream=stream0)
buf18 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_9.run(buf14, buf18, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [max_3, setitem_5], Original ATen: [aten.max, aten.index_put]
triton_per_fused_index_put_max_10.run(buf14, buf11, buf18, 1, 4, grid=grid(1), stream=stream0)
buf21 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_9.run(buf18, buf21, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [setitem_6], Original ATen: [aten.lift_fresh, aten.index_put]
triton_poi_fused_index_put_lift_fresh_11.run(buf18, buf21, 4, grid=grid(4), stream=stream0)
buf25 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_12.run(buf21, buf25, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [max_4, setitem_7], Original ATen: [aten.max, aten.index_put]
triton_per_fused_index_put_max_13.run(buf21, buf18, buf25, 1, 4, grid=grid(1), stream=stream0)
del buf18
del buf21
buf31 = empty_strided_cuda((), (), torch.float32)
buf32 = buf31; del buf31 # reuse
# Topologically Sorted Source Nodes: [mul_2, sum_4, mul_3, add_1, denominator, mul_4, sum_5, add_2, truediv, f, f_1], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub, aten.mean]
triton_per_fused_add_div_mean_mul_rsub_sum_14.run(buf32, buf0, buf25, buf1, buf29, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf25
del buf29
return (buf32, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import collections
import torch
import warnings
from typing import Optional
from typing import Union
from typing import Any
from typing import Callable
from typing import Tuple
import torch.nn
from torch.nn.modules.loss import _Loss
from enum import Enum
import collections.abc
def issequenceiterable(obj: 'Any') ->bool:
"""
Determine if the object is an iterable sequence and is not a string.
"""
if torch.is_tensor(obj):
return int(obj.dim()) > 0
return isinstance(obj, collections.abc.Iterable) and not isinstance(obj,
str)
def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]:
"""
Returns a tuple of `vals`.
"""
if not issequenceiterable(vals):
vals = vals,
return tuple(vals)
def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any,
...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.
"""
tup = ensure_tuple(tup) + (pad_val,) * dim
return tuple(tup[:dim])
def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype:
'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor:
"""
For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]`
for `num_classes` N number of classes.
Example:
For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0.
Note that this will include the background label, thus a binary mask should be treated as having 2 classes.
"""
assert labels.dim() > 0, 'labels should have dim of 1 or more.'
if labels.ndim < dim + 1:
shape = ensure_tuple_size(labels.shape, dim + 1, 1)
labels = labels.reshape(*shape)
sh = list(labels.shape)
assert sh[dim
] == 1, 'labels should have a channel with length equals to one.'
sh[dim] = num_classes
o = torch.zeros(size=sh, dtype=dtype, device=labels.device)
labels = o.scatter_(dim=dim, index=labels.long(), value=1)
return labels
class LossReduction(Enum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = 'none'
MEAN = 'mean'
SUM = 'sum'
class Weight(Enum):
"""
See also: :py:class:`monai.losses.dice.GeneralizedDiceLoss`
"""
SQUARE = 'square'
SIMPLE = 'simple'
UNIFORM = 'uniform'
class GeneralizedDiceLoss(_Loss):
"""
Compute the generalised Dice loss defined in:
Sudre, C. et. al. (2017) Generalised Dice overlap as a deep learning
loss function for highly unbalanced segmentations. DLMIA 2017.
Adapted from:
https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/layer/loss_segmentation.py#L279
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, w_type: 'Union[Weight, str]'=Weight.
SQUARE, reduction: 'Union[LossReduction, str]'=LossReduction.MEAN,
smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch: 'bool'=False
) ->None:
"""
Args:
include_background: If False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: If True, apply a sigmoid function to the prediction.
softmax: If True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or not.
w_type: {``"square"``, ``"simple"``, ``"uniform"``}
Type of function to transform ground truth volume to a weight factor. Defaults to ``"square"``.
reduction: {``"none"``, ``"mean"``, ``"sum"``}
Specifies the reduction to apply to the output. Defaults to ``"mean"``.
- ``"none"``: no reduction will be applied.
- ``"mean"``: the sum of the output will be divided by the number of elements in the output.
- ``"sum"``: the output will be summed.
smooth_nr: a small constant added to the numerator to avoid zero.
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, intersection over union is computed from each item in the batch.
Raises:
TypeError: When ``other_act`` is not an ``Optional[Callable]``.
ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``].
Incompatible values.
"""
super().__init__(reduction=LossReduction(reduction).value)
if other_act is not None and not callable(other_act):
raise TypeError(
f'other_act must be None or callable but is {type(other_act).__name__}.'
)
if int(sigmoid) + int(softmax) + int(other_act is not None) > 1:
raise ValueError(
'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].'
)
self.include_background = include_background
self.to_onehot_y = to_onehot_y
self.sigmoid = sigmoid
self.softmax = softmax
self.other_act = other_act
w_type = Weight(w_type)
self.w_func: 'Callable' = torch.ones_like
if w_type == Weight.SIMPLE:
self.w_func = torch.reciprocal
elif w_type == Weight.SQUARE:
self.w_func = lambda x: torch.reciprocal(x * x)
self.smooth_nr = float(smooth_nr)
self.smooth_dr = float(smooth_dr)
self.batch = batch
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'
) ->torch.Tensor:
"""
Args:
input: the shape should be BNH[WD].
target: the shape should be BNH[WD].
Raises:
ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"].
"""
if self.sigmoid:
input = torch.sigmoid(input)
n_pred_ch = input.shape[1]
if self.softmax:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `softmax=True` ignored.')
else:
input = torch.softmax(input, 1)
if self.other_act is not None:
input = self.other_act(input)
if self.to_onehot_y:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `to_onehot_y=True` ignored.')
else:
target = one_hot(target, num_classes=n_pred_ch)
if not self.include_background:
if n_pred_ch == 1:
warnings.warn(
'single channel prediction, `include_background=False` ignored.'
)
else:
target = target[:, 1:]
input = input[:, 1:]
assert target.shape == input.shape, f'ground truth has differing shape ({target.shape}) from input ({input.shape})'
reduce_axis = list(range(2, len(input.shape)))
if self.batch:
reduce_axis = [0] + reduce_axis
intersection = torch.sum(target * input, reduce_axis)
ground_o = torch.sum(target, reduce_axis)
pred_o = torch.sum(input, reduce_axis)
denominator = ground_o + pred_o
w = self.w_func(ground_o.float())
for b in w:
infs = torch.isinf(b)
b[infs] = 0.0
b[infs] = torch.max(b)
f: 'torch.Tensor' = 1.0 - (2.0 * (intersection * w).sum(1) + self.
smooth_nr) / ((denominator * w).sum(1) + self.smooth_dr)
if self.reduction == LossReduction.MEAN.value:
f = torch.mean(f)
elif self.reduction == LossReduction.SUM.value:
f = torch.sum(f)
elif self.reduction == LossReduction.NONE.value:
pass
else:
raise ValueError(
f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].'
)
return f
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import collections
from typing import Optional
from typing import Union
from typing import Any
from typing import Callable
from typing import Tuple
import torch.nn
from torch.nn.modules.loss import _Loss
from enum import Enum
import collections.abc
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
tl.store(out_ptr2 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tmp4 = libdevice.isinf(tmp3).to(tl.int1)
tmp5 = 0.0
tmp6 = tl.where(tmp4, tmp5, tmp3)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_reciprocal_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x2, xmask)
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tmp4 * tmp4
tmp6 = tl.full([1], 1, tl.int32)
tmp7 = tmp6 / tmp5
tmp8 = tl.where(tmp2, tmp3, tmp7)
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused_index_put_max_3(in_ptr0, in_ptr1, out_ptr2, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp2 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp0 = tl.full([1, 1], 0, tl.int32)
tmp1 = tmp0 == tmp0
tmp4 = tmp3 * tmp3
tmp5 = tl.full([1, 1], 1, tl.int32)
tmp6 = tmp5 / tmp4
tmp7 = tl.where(tmp1, tmp2, tmp6)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = triton_helpers.max2(tmp8, 1)[:, None]
tmp11 = libdevice.isinf(tmp6).to(tl.int1)
tmp12 = tl.where(tmp11, tmp10, tmp7)
tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp12, None)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + x2, xmask)
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_5(in_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp3 = tl.load(in_ptr0 + x0, xmask)
tmp4 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp0 = tl.full([1], 1, tl.int32)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = libdevice.isinf(tmp5).to(tl.int1)
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp5)
tl.store(out_ptr1 + (4 + x0), tmp8, xmask)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + x2, xmask)
tmp0 = x1
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_per_fused_index_put_max_7(in_ptr0, in_ptr1, out_ptr2, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp2 = tl.load(in_ptr0 + (4 + r0), None)
tmp9 = tl.load(in_ptr1 + r0, None)
tmp10 = tl.load(in_ptr1 + (4 + r0), None)
tmp0 = tl.full([1, 1], 1, tl.int32)
tmp1 = tmp0 == tmp0
tmp3 = tl.where(tmp1, tmp2, tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.max2(tmp4, 1)[:, None]
tmp7 = tl.full([1, 1], 0, tl.int32)
tmp8 = tmp0 == tmp7
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = libdevice.isinf(tmp11).to(tl.int1)
tmp13 = tl.where(tmp12, tmp6, tmp3)
tl.store(out_ptr2 + tl.broadcast_to(4 + r0, [XBLOCK, RBLOCK]), tmp13, None)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_8(in_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp4 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp0 = tl.full([1], 2, tl.int32)
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = libdevice.isinf(tmp5).to(tl.int1)
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp5)
tl.store(out_ptr1 + (8 + x0), tmp8, xmask)
@triton.jit
def triton_poi_fused_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + x2, xmask)
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_per_fused_index_put_max_10(in_ptr0, in_ptr1, out_ptr2, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp2 = tl.load(in_ptr0 + (8 + r0), None)
tmp9 = tl.load(in_ptr1 + (4 + r0), None)
tmp10 = tl.load(in_ptr1 + (8 + r0), None)
tmp0 = tl.full([1, 1], 2, tl.int32)
tmp1 = tmp0 == tmp0
tmp3 = tl.where(tmp1, tmp2, tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.max2(tmp4, 1)[:, None]
tmp7 = tl.full([1, 1], 1, tl.int32)
tmp8 = tmp0 == tmp7
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = libdevice.isinf(tmp11).to(tl.int1)
tmp13 = tl.where(tmp12, tmp6, tmp3)
tl.store(out_ptr2 + tl.broadcast_to(8 + r0, [XBLOCK, RBLOCK]), tmp13, None)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_11(in_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp4 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp0 = tl.full([1], 3, tl.int32)
tmp1 = tl.full([1], 2, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = libdevice.isinf(tmp5).to(tl.int1)
tmp7 = 0.0
tmp8 = tl.where(tmp6, tmp7, tmp5)
tl.store(out_ptr1 + (12 + x0), tmp8, xmask)
@triton.jit
def triton_poi_fused_12(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp3 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + x2, xmask)
tmp0 = x1
tmp1 = tl.full([1], 3, tl.int32)
tmp2 = tmp0 == tmp1
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_per_fused_index_put_max_13(in_ptr0, in_ptr1, out_ptr2, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp2 = tl.load(in_ptr0 + (12 + r0), None)
tmp9 = tl.load(in_ptr1 + (8 + r0), None)
tmp10 = tl.load(in_ptr1 + (12 + r0), None)
tmp0 = tl.full([1, 1], 3, tl.int32)
tmp1 = tmp0 == tmp0
tmp3 = tl.where(tmp1, tmp2, tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.max2(tmp4, 1)[:, None]
tmp7 = tl.full([1, 1], 2, tl.int32)
tmp8 = tmp0 == tmp7
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = libdevice.isinf(tmp11).to(tl.int1)
tmp13 = tl.where(tmp12, tmp6, tmp3)
tl.store(out_ptr2 + tl.broadcast_to(12 + r0, [XBLOCK, RBLOCK]), tmp13, None
)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_sum_14(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + 12)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp6 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + 13)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp12 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + 14)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp19 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr1 + 15)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp26 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr3 + 4 * r0, None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr3 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr3 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr3 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp1 = r0
tmp2 = tl.full([1, 1], 3, tl.int32)
tmp3 = tmp1 == tmp2
tmp7 = tl.where(tmp3, tmp5, tmp6)
tmp8 = tmp0 * tmp7
tmp13 = tl.where(tmp3, tmp11, tmp12)
tmp14 = tmp9 * tmp13
tmp15 = tmp8 + tmp14
tmp20 = tl.where(tmp3, tmp18, tmp19)
tmp21 = tmp16 * tmp20
tmp22 = tmp15 + tmp21
tmp27 = tl.where(tmp3, tmp25, tmp26)
tmp28 = tmp23 * tmp27
tmp29 = tmp22 + tmp28
tmp32 = tmp30 + tmp31
tmp33 = tmp32 * tmp7
tmp36 = tmp34 + tmp35
tmp37 = tmp36 * tmp13
tmp38 = tmp33 + tmp37
tmp41 = tmp39 + tmp40
tmp42 = tmp41 * tmp20
tmp43 = tmp38 + tmp42
tmp46 = tmp44 + tmp45
tmp47 = tmp46 * tmp27
tmp48 = tmp43 + tmp47
tmp49 = 2.0
tmp50 = tmp29 * tmp49
tmp51 = 1e-05
tmp52 = tmp50 + tmp51
tmp53 = tmp48 + tmp51
tmp54 = tmp52 / tmp53
tmp55 = 1.0
tmp56 = tmp55 - tmp54
tmp57 = tl.broadcast_to(tmp56, [XBLOCK, RBLOCK])
tmp59 = tl.sum(tmp57, 1)[:, None]
tmp60 = 4.0
tmp61 = tmp59 / tmp60
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp61, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf29 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(16)](arg1_1, arg0_1, buf0, buf1,
buf29, 16, 16, XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_index_put_lift_fresh_1[grid(4)](buf1, buf2, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_reciprocal_2[grid(16)](buf2, buf1, buf4, 16,
XBLOCK=16, num_warps=1, num_stages=1)
triton_per_fused_index_put_max_3[grid(1)](buf2, buf1, buf4, 1, 4,
XBLOCK=1, num_warps=2, num_stages=1)
del buf2
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_4[grid(16)](buf4, buf7, 16, XBLOCK=16, num_warps=1,
num_stages=1)
triton_poi_fused_index_put_lift_fresh_5[grid(4)](buf4, buf7, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_6[grid(16)](buf7, buf11, 16, XBLOCK=16, num_warps=
1, num_stages=1)
triton_per_fused_index_put_max_7[grid(1)](buf7, buf4, buf11, 1, 4,
XBLOCK=1, num_warps=2, num_stages=1)
buf14 = buf7
del buf7
triton_poi_fused_6[grid(16)](buf11, buf14, 16, XBLOCK=16, num_warps
=1, num_stages=1)
triton_poi_fused_index_put_lift_fresh_8[grid(4)](buf11, buf14, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf18 = buf4
del buf4
triton_poi_fused_9[grid(16)](buf14, buf18, 16, XBLOCK=16, num_warps
=1, num_stages=1)
triton_per_fused_index_put_max_10[grid(1)](buf14, buf11, buf18, 1,
4, XBLOCK=1, num_warps=2, num_stages=1)
buf21 = buf14
del buf14
triton_poi_fused_9[grid(16)](buf18, buf21, 16, XBLOCK=16, num_warps
=1, num_stages=1)
triton_poi_fused_index_put_lift_fresh_11[grid(4)](buf18, buf21, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf25 = buf11
del buf11
triton_poi_fused_12[grid(16)](buf21, buf25, 16, XBLOCK=16,
num_warps=1, num_stages=1)
triton_per_fused_index_put_max_13[grid(1)](buf21, buf18, buf25, 1,
4, XBLOCK=1, num_warps=2, num_stages=1)
del buf18
del buf21
buf31 = empty_strided_cuda((), (), torch.float32)
buf32 = buf31
del buf31
triton_per_fused_add_div_mean_mul_rsub_sum_14[grid(1)](buf32, buf0,
buf25, buf1, buf29, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf25
del buf29
return buf32,
def issequenceiterable(obj: 'Any') ->bool:
"""
Determine if the object is an iterable sequence and is not a string.
"""
if torch.is_tensor(obj):
return int(obj.dim()) > 0
return isinstance(obj, collections.abc.Iterable) and not isinstance(obj,
str)
def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]:
"""
Returns a tuple of `vals`.
"""
if not issequenceiterable(vals):
vals = vals,
return tuple(vals)
def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any,
...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.
"""
tup = ensure_tuple(tup) + (pad_val,) * dim
return tuple(tup[:dim])
def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype:
'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor:
"""
For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]`
for `num_classes` N number of classes.
Example:
For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0.
Note that this will include the background label, thus a binary mask should be treated as having 2 classes.
"""
assert labels.dim() > 0, 'labels should have dim of 1 or more.'
if labels.ndim < dim + 1:
shape = ensure_tuple_size(labels.shape, dim + 1, 1)
labels = labels.reshape(*shape)
sh = list(labels.shape)
assert sh[dim
] == 1, 'labels should have a channel with length equals to one.'
sh[dim] = num_classes
o = torch.zeros(size=sh, dtype=dtype, device=labels.device)
labels = o.scatter_(dim=dim, index=labels.long(), value=1)
return labels
class LossReduction(Enum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = 'none'
MEAN = 'mean'
SUM = 'sum'
class Weight(Enum):
"""
See also: :py:class:`monai.losses.dice.GeneralizedDiceLoss`
"""
SQUARE = 'square'
SIMPLE = 'simple'
UNIFORM = 'uniform'
class GeneralizedDiceLossNew(_Loss):
"""
Compute the generalised Dice loss defined in:
Sudre, C. et. al. (2017) Generalised Dice overlap as a deep learning
loss function for highly unbalanced segmentations. DLMIA 2017.
Adapted from:
https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/layer/loss_segmentation.py#L279
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, w_type: 'Union[Weight, str]'=Weight.
SQUARE, reduction: 'Union[LossReduction, str]'=LossReduction.MEAN,
smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch: 'bool'=False
) ->None:
"""
Args:
include_background: If False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: If True, apply a sigmoid function to the prediction.
softmax: If True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or not.
w_type: {``"square"``, ``"simple"``, ``"uniform"``}
Type of function to transform ground truth volume to a weight factor. Defaults to ``"square"``.
reduction: {``"none"``, ``"mean"``, ``"sum"``}
Specifies the reduction to apply to the output. Defaults to ``"mean"``.
- ``"none"``: no reduction will be applied.
- ``"mean"``: the sum of the output will be divided by the number of elements in the output.
- ``"sum"``: the output will be summed.
smooth_nr: a small constant added to the numerator to avoid zero.
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, intersection over union is computed from each item in the batch.
Raises:
TypeError: When ``other_act`` is not an ``Optional[Callable]``.
ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``].
Incompatible values.
"""
super().__init__(reduction=LossReduction(reduction).value)
if other_act is not None and not callable(other_act):
raise TypeError(
f'other_act must be None or callable but is {type(other_act).__name__}.'
)
if int(sigmoid) + int(softmax) + int(other_act is not None) > 1:
raise ValueError(
'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].'
)
self.include_background = include_background
self.to_onehot_y = to_onehot_y
self.sigmoid = sigmoid
self.softmax = softmax
self.other_act = other_act
w_type = Weight(w_type)
self.w_func: 'Callable' = torch.ones_like
if w_type == Weight.SIMPLE:
self.w_func = torch.reciprocal
elif w_type == Weight.SQUARE:
self.w_func = lambda x: torch.reciprocal(x * x)
self.smooth_nr = float(smooth_nr)
self.smooth_dr = float(smooth_dr)
self.batch = batch
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Alxaline/MONAI | GeneralizedDiceLoss | false | 4,894 | [
"Apache-2.0"
] | 1 | 6b8fdf9db7f13ed7d88d605155a0463840abcbf2 | https://github.com/Alxaline/MONAI/tree/6b8fdf9db7f13ed7d88d605155a0463840abcbf2 | import collections
import torch
import warnings
from typing import Optional
from typing import Union
from typing import Any
from typing import Callable
from typing import Tuple
import torch.nn
from torch.nn.modules.loss import _Loss
from enum import Enum
import collections.abc
def issequenceiterable(obj: 'Any') ->bool:
"""
Determine if the object is an iterable sequence and is not a string.
"""
if torch.is_tensor(obj):
return int(obj.dim()) > 0
return isinstance(obj, collections.abc.Iterable) and not isinstance(obj,
str)
def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]:
"""
Returns a tuple of `vals`.
"""
if not issequenceiterable(vals):
vals = vals,
return tuple(vals)
def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any,
...]:
"""
Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary.
"""
tup = ensure_tuple(tup) + (pad_val,) * dim
return tuple(tup[:dim])
def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype:
'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor:
"""
For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]`
for `num_classes` N number of classes.
Example:
For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0.
Note that this will include the background label, thus a binary mask should be treated as having 2 classes.
"""
assert labels.dim() > 0, 'labels should have dim of 1 or more.'
if labels.ndim < dim + 1:
shape = ensure_tuple_size(labels.shape, dim + 1, 1)
labels = labels.reshape(*shape)
sh = list(labels.shape)
assert sh[dim
] == 1, 'labels should have a channel with length equals to one.'
sh[dim] = num_classes
o = torch.zeros(size=sh, dtype=dtype, device=labels.device)
labels = o.scatter_(dim=dim, index=labels.long(), value=1)
return labels
class LossReduction(Enum):
"""
See also:
- :py:class:`monai.losses.dice.DiceLoss`
- :py:class:`monai.losses.dice.GeneralizedDiceLoss`
- :py:class:`monai.losses.focal_loss.FocalLoss`
- :py:class:`monai.losses.tversky.TverskyLoss`
"""
NONE = 'none'
MEAN = 'mean'
SUM = 'sum'
class Weight(Enum):
"""
See also: :py:class:`monai.losses.dice.GeneralizedDiceLoss`
"""
SQUARE = 'square'
SIMPLE = 'simple'
UNIFORM = 'uniform'
class Model(_Loss):
"""
Compute the generalised Dice loss defined in:
Sudre, C. et. al. (2017) Generalised Dice overlap as a deep learning
loss function for highly unbalanced segmentations. DLMIA 2017.
Adapted from:
https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/layer/loss_segmentation.py#L279
"""
def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool'
=False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act:
'Optional[Callable]'=None, w_type: 'Union[Weight, str]'=Weight.
SQUARE, reduction: 'Union[LossReduction, str]'=LossReduction.MEAN,
smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch: 'bool'=False
) ->None:
"""
Args:
include_background: If False channel index 0 (background category) is excluded from the calculation.
to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
sigmoid: If True, apply a sigmoid function to the prediction.
softmax: If True, apply a softmax function to the prediction.
other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
other activation layers, Defaults to ``None``. for example:
`other_act = torch.tanh`.
squared_pred: use squared versions of targets and predictions in the denominator or no
# ... truncated (>4000 chars) for memory efficiency |
Critic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [sa], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# sa => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py
# Topologically Sorted Source Nodes: [q1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# q1 => relu
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (256, 8), (8, 1))
assert_size_stride(primals_4, (256, ), (1, ))
assert_size_stride(primals_5, (256, 256), (256, 1))
assert_size_stride(primals_6, (256, ), (1, ))
assert_size_stride(primals_7, (1, 256), (256, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (256, 8), (8, 1))
assert_size_stride(primals_10, (256, ), (1, ))
assert_size_stride(primals_11, (256, 256), (256, 1))
assert_size_stride(primals_12, (256, ), (1, ))
assert_size_stride(primals_13, (1, 256), (256, 1))
assert_size_stride(primals_14, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [sa], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [q1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 1024, grid=grid(1024), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), (1, 256), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [q1_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_6, 1024, grid=grid(1024), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [q1_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 256), (1, 8), 0), out=buf7)
del primals_9
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [q2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf8, primals_10, 1024, grid=grid(1024), stream=stream0)
del primals_10
buf9 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (256, 256), (1, 256), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [q2_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf10, primals_12, 1024, grid=grid(1024), stream=stream0)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [q2_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(primals_13, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13, primals_11, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, 1)
self.l4 = nn.Linear(state_dim + action_dim, 256)
self.l5 = nn.Linear(256, 256)
self.l6 = nn.Linear(256, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(sa))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (256, 8), (8, 1))
assert_size_stride(primals_4, (256,), (1,))
assert_size_stride(primals_5, (256, 256), (256, 1))
assert_size_stride(primals_6, (256,), (1,))
assert_size_stride(primals_7, (1, 256), (256, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (256, 8), (8, 1))
assert_size_stride(primals_10, (256,), (1,))
assert_size_stride(primals_11, (256, 256), (256, 1))
assert_size_stride(primals_12, (256,), (1,))
assert_size_stride(primals_13, (1, 256), (256, 1))
assert_size_stride(primals_14, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1,
8), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(1024)](buf2, primals_4, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), (
1, 256), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(1024)](buf4, primals_6, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 256), (1,
8), 0), out=buf7)
del primals_9
buf8 = buf7
del buf7
triton_poi_fused_relu_1[grid(1024)](buf8, primals_10, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_10
buf9 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (256, 256),
(1, 256), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_relu_1[grid(1024)](buf10, primals_12, 1024, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(
primals_13, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13,
primals_11, primals_7, primals_5)
class CriticNew(nn.Module):
def __init__(self, state_dim, action_dim):
super(CriticNew, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, 1)
self.l4 = nn.Linear(state_dim + action_dim, 256)
self.l5 = nn.Linear(256, 256)
self.l6 = nn.Linear(256, 1)
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
def forward(self, input_0, input_1):
primals_3 = self.l1.weight
primals_4 = self.l1.bias
primals_5 = self.l2.weight
primals_6 = self.l2.bias
primals_7 = self.l3.weight
primals_8 = self.l3.bias
primals_9 = self.l4.weight
primals_10 = self.l4.bias
primals_11 = self.l5.weight
primals_12 = self.l5.bias
primals_13 = self.l6.weight
primals_14 = self.l6.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0], output[1]
| Barisimre/TD3-Generative | Critic | false | 4,895 | [
"MIT"
] | 1 | 434419b020b88010f09f194c40feac1d420b2086 | https://github.com/Barisimre/TD3-Generative/tree/434419b020b88010f09f194c40feac1d420b2086 | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.l1 = nn.Linear(state_dim + action_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, 1)
self.l4 = nn.Linear(state_dim + action_dim, 256)
self.l5 = nn.Linear(256, 256)
self.l6 = nn.Linear(256, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(sa))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [4, 4]
|
DNNnet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/u7/cu7pejezhevt5zxeq5ul5qcdbafeenotlv2ryxcmgslsyxnyvsrm.py
# Topologically Sorted Source Nodes: [mean, std, add], Original ATen: [aten.mean, aten.std, aten.add]
# Source node to ATen node mapping:
# add => add
# mean => mean
# std => sqrt, var
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-05), kwargs = {})
triton_poi_fused_add_mean_std_0 = async_compile.triton('triton_poi_fused_add_mean_std_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_std_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = 3.0
tmp21 = tmp19 / tmp20
tmp22 = libdevice.sqrt(tmp21)
tmp23 = 1e-05
tmp24 = tmp22 + tmp23
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/i2/ci2y2v6wspi2i4izpra64qxcysplufszfhk3kb2ghcsthcfzud4a.py
# Topologically Sorted Source Nodes: [sub, truediv], Original ATen: [aten.sub, aten.div]
# Source node to ATen node mapping:
# sub => sub
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/br/cbrgejd3salrdu5bb3wf7dn6ggnaub42y43rj4ugcj37clbevjg3.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# output_1 => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (2048, 4), (4, 1))
assert_size_stride(primals_3, (2048, ), (1, ))
assert_size_stride(primals_4, (4, 2048), (2048, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, add], Original ATen: [aten.mean, aten.std, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mean_std_0.run(primals_1, buf0, buf1, 4, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, truediv], Original ATen: [aten.sub, aten.div]
triton_poi_fused_div_sub_1.run(primals_1, buf0, buf1, buf2, 16, grid=grid(16), stream=stream0)
del primals_1
buf3 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_2, (4, 2048), (1, 4), 0), out=buf3)
del primals_2
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf4, primals_3, 8192, grid=grid(8192), stream=stream0)
del primals_3
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf4, reinterpret_tensor(primals_4, (2048, 4), (1, 2048), 0), alpha=1, beta=1, out=buf5)
del primals_5
return (buf5, buf1, buf0, buf2, buf4, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
class DNNnet(torch.nn.Module):
def __init__(self, n_layer, n_in_channel, n_out_channel):
super(DNNnet, self).__init__()
self.n_layer = n_layer
self.fc_layers = torch.nn.ModuleList()
self.act_func = torch.nn.Sigmoid()
start_layer = torch.nn.Linear(n_in_channel, 2048)
self.start = start_layer
for i in range(self.n_layer - 1):
fc_layer = torch.nn.Linear(2048, 2048)
self.fc_layers.append(fc_layer)
end_layer = torch.nn.Linear(2048, n_out_channel)
self.end = end_layer
def scale(self, x):
"""
x = [batchsize , n_mel_channels x frames]
"""
self.mm = torch.mean(x, dim=1, keepdim=True)
self.std = torch.std(x, dim=1, keepdim=True) + 1e-05
return (x - self.mm) / self.std
def forward(self, forward_input):
"""
forward_input = mel spectrongram of 11 input frames: [batchsize , n_mel_channels , frames]
"""
forward_input = forward_input.contiguous().view(forward_input.size(
0), -1)
output = self.start(self.scale(forward_input))
output = self.act_func(output)
for i in range(self.n_layer - 1):
output = self.fc_layers[i](output)
output = self.act_func(output)
output = self.end(output)
return output
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_layer': 1, 'n_in_channel': 4, 'n_out_channel': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mean_std_0(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = 3.0
tmp21 = tmp19 / tmp20
tmp22 = libdevice.sqrt(tmp21)
tmp23 = 1e-05
tmp24 = tmp22 + tmp23
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp24, xmask)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (2048, 4), (4, 1))
assert_size_stride(primals_3, (2048,), (1,))
assert_size_stride(primals_4, (4, 2048), (2048, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mean_std_0[grid(4)](primals_1, buf0, buf1, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_sub_1[grid(16)](primals_1, buf0, buf1, buf2,
16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_1
buf3 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_2, (4, 2048), (1,
4), 0), out=buf3)
del primals_2
buf4 = buf3
del buf3
triton_poi_fused_sigmoid_2[grid(8192)](buf4, primals_3, 8192,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf4, reinterpret_tensor(primals_4,
(2048, 4), (1, 2048), 0), alpha=1, beta=1, out=buf5)
del primals_5
return buf5, buf1, buf0, buf2, buf4, primals_4
class DNNnetNew(torch.nn.Module):
def __init__(self, n_layer, n_in_channel, n_out_channel):
super(DNNnetNew, self).__init__()
self.n_layer = n_layer
self.fc_layers = torch.nn.ModuleList()
self.act_func = torch.nn.Sigmoid()
start_layer = torch.nn.Linear(n_in_channel, 2048)
self.start = start_layer
for i in range(self.n_layer - 1):
fc_layer = torch.nn.Linear(2048, 2048)
self.fc_layers.append(fc_layer)
end_layer = torch.nn.Linear(2048, n_out_channel)
self.end = end_layer
def scale(self, x):
"""
x = [batchsize , n_mel_channels x frames]
"""
self.mm = torch.mean(x, dim=1, keepdim=True)
self.std = torch.std(x, dim=1, keepdim=True) + 1e-05
return (x - self.mm) / self.std
def forward(self, input_0):
primals_2 = self.start.weight
primals_3 = self.start.bias
primals_4 = self.end.weight
primals_5 = self.end.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| BaiYunLiu/newPLC | DNNnet | false | 4,896 | [
"BSD-3-Clause"
] | 1 | 18245a14648bc28b7269ea1d6e444ca6021ac8d2 | https://github.com/BaiYunLiu/newPLC/tree/18245a14648bc28b7269ea1d6e444ca6021ac8d2 | import torch
import torch.utils.data
class Model(torch.nn.Module):
def __init__(self, n_layer, n_in_channel, n_out_channel):
super().__init__()
self.n_layer = n_layer
self.fc_layers = torch.nn.ModuleList()
self.act_func = torch.nn.Sigmoid()
start_layer = torch.nn.Linear(n_in_channel, 2048)
self.start = start_layer
for i in range(self.n_layer - 1):
fc_layer = torch.nn.Linear(2048, 2048)
self.fc_layers.append(fc_layer)
end_layer = torch.nn.Linear(2048, n_out_channel)
self.end = end_layer
def scale(self, x):
"""
x = [batchsize , n_mel_channels x frames]
"""
self.mm = torch.mean(x, dim=1, keepdim=True)
self.std = torch.std(x, dim=1, keepdim=True) + 1e-05
return (x - self.mm) / self.std
def forward(self, forward_input):
"""
forward_input = mel spectrongram of 11 input frames: [batchsize , n_mel_channels , frames]
"""
forward_input = forward_input.contiguous().view(forward_input.size(
0), -1)
output = self.start(self.scale(forward_input))
output = self.act_func(output)
for i in range(self.n_layer - 1):
output = self.fc_layers[i](output)
output = self.act_func(output)
output = self.end(output)
return output
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [1, 4, 4]
|
SkipLastTargetChannelWrapper | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/5s/c5sm5kphldgxwwp4doi74u3hybpyvhluugizqauidwaufw37p6ud.py
# Topologically Sorted Source Nodes: [mse_loss], Original ATen: [aten.mse_loss]
# Source node to ATen node mapping:
# mse_loss => mean, pow_1, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %slice_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
triton_per_fused_mse_loss_0 = async_compile.triton('triton_per_fused_mse_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mse_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 192
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r2 = rindex
r0 = rindex % 48
r1 = (rindex // 48)
tmp0 = tl.load(in_ptr0 + (r2), rmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), rmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = 192.0
tmp9 = tmp7 / tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 3, 4, 4), (48, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mse_loss], Original ATen: [aten.mse_loss]
stream0 = get_raw_stream(0)
triton_per_fused_mse_loss_0.run(buf1, arg1_1, arg0_1, 1, 192, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn import MSELoss
class SkipLastTargetChannelWrapper(nn.Module):
"""
Loss wrapper which removes additional target channel
"""
def __init__(self, loss, squeeze_channel=False):
super(SkipLastTargetChannelWrapper, self).__init__()
self.loss = loss
self.squeeze_channel = squeeze_channel
def forward(self, input, target):
assert target.size(1
) > 1, 'Target tensor has a singleton channel dimension, cannot remove channel'
target = target[:, :-1, ...]
if self.squeeze_channel:
target = torch.squeeze(target, dim=1)
return self.loss(input, target)
def get_inputs():
return [torch.rand([4, 3, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'loss': MSELoss()}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
rnumel = 192
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r2 = rindex
r0 = rindex % 48
r1 = rindex // 48
tmp0 = tl.load(in_ptr0 + r2, rmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), rmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = 192.0
tmp9 = tmp7 / tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 3, 4, 4), (48, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mse_loss_0[grid(1)](buf1, arg1_1, arg0_1, 1, 192,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class SkipLastTargetChannelWrapperNew(nn.Module):
"""
Loss wrapper which removes additional target channel
"""
def __init__(self, loss, squeeze_channel=False):
super(SkipLastTargetChannelWrapperNew, self).__init__()
self.loss = loss
self.squeeze_channel = squeeze_channel
def forward(self, input_0, input_1):
arg1_1 = input_0
arg0_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BioTrillion/pytorch-3dunet | SkipLastTargetChannelWrapper | false | 4,897 | [
"MIT"
] | 1 | 217781197dd94211ee7fe5d53a8b404f0b8391a6 | https://github.com/BioTrillion/pytorch-3dunet/tree/217781197dd94211ee7fe5d53a8b404f0b8391a6 | import torch
import torch.nn as nn
from torch.nn import MSELoss
class Model(nn.Module):
"""
Loss wrapper which removes additional target channel
"""
def __init__(self, loss, squeeze_channel=False):
super().__init__()
self.loss = loss
self.squeeze_channel = squeeze_channel
def forward(self, input, target):
assert target.size(1
) > 1, 'Target tensor has a singleton channel dimension, cannot remove channel'
target = target[:, :-1, ...]
if self.squeeze_channel:
target = torch.squeeze(target, dim=1)
return self.loss(input, target)
def get_inputs():
return [torch.rand([4, 3, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
WeightBCE | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/mk/cmkul7i5ksf46ar3uswera5oprn3aapolpbjdhllcml5ahczprkj.py
# Topologically Sorted Source Nodes: [neg, add, log, mul, sub, sub_1, add_1, log_1, mul_1, cross_entropy, mul_2, sum_1, truediv], Original ATen: [aten.neg, aten.add, aten.log, aten.mul, aten.rsub, aten.sub, aten.sum, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# cross_entropy => sub_2
# log => log
# log_1 => log_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# neg => neg
# sub => sub
# sub_1 => sub_1
# sum_1 => sum_1
# truediv => div
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1e-08), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %log), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, 1e-08), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %log_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %arg2_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 2.0), kwargs = {})
triton_per_fused_add_div_log_mul_neg_rsub_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_log_mul_neg_rsub_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_log_mul_neg_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_log_mul_neg_rsub_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp14 = tl.load(in_ptr2 + (r0), None)
tmp1 = -tmp0
tmp3 = 1e-08
tmp4 = tmp2 + tmp3
tmp5 = tl_math.log(tmp4)
tmp6 = tmp1 * tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp0
tmp9 = tmp7 - tmp2
tmp10 = tmp9 + tmp3
tmp11 = tl_math.log(tmp10)
tmp12 = tmp8 * tmp11
tmp13 = tmp6 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = 0.5
tmp20 = tmp18 * tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [neg, add, log, mul, sub, sub_1, add_1, log_1, mul_1, cross_entropy, mul_2, sum_1, truediv], Original ATen: [aten.neg, aten.add, aten.log, aten.mul, aten.rsub, aten.sub, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_log_mul_neg_rsub_sub_sum_0.run(buf1, arg0_1, arg1_1, arg2_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch import nn
class WeightBCE(nn.Module):
def __init__(self, epsilon: 'float'=1e-08) ->None:
super(WeightBCE, self).__init__()
self.epsilon = epsilon
def forward(self, x: 'Tensor', label: 'Tensor', weight: 'Tensor') ->Tensor:
"""
:param x: [N, 1]
:param label: [N, 1]
:param weight: [N, 1]
"""
label = label.float()
cross_entropy = -label * torch.log(x + self.epsilon) - (1 - label
) * torch.log(1 - x + self.epsilon)
return torch.sum(cross_entropy * weight.float()) / 2.0
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_log_mul_neg_rsub_sub_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp14 = tl.load(in_ptr2 + r0, None)
tmp1 = -tmp0
tmp3 = 1e-08
tmp4 = tmp2 + tmp3
tmp5 = tl_math.log(tmp4)
tmp6 = tmp1 * tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp0
tmp9 = tmp7 - tmp2
tmp10 = tmp9 + tmp3
tmp11 = tl_math.log(tmp10)
tmp12 = tmp8 * tmp11
tmp13 = tmp6 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = 0.5
tmp20 = tmp18 * tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_log_mul_neg_rsub_sub_sum_0[grid(1)](buf1,
arg0_1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf1,
class WeightBCENew(nn.Module):
def __init__(self, epsilon: 'float'=1e-08) ->None:
super(WeightBCENew, self).__init__()
self.epsilon = epsilon
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| BetterRaven/Transfer-Learning_vscode | WeightBCE | false | 4,898 | [
"MIT"
] | 1 | 90c9bce630f54fd2322cce8fab5fe1d074ff141c | https://github.com/BetterRaven/Transfer-Learning_vscode/tree/90c9bce630f54fd2322cce8fab5fe1d074ff141c | import torch
from torch import Tensor
from torch import nn
class Model(nn.Module):
def __init__(self, epsilon: 'float'=1e-08) ->None:
super().__init__()
self.epsilon = epsilon
def forward(self, x: 'Tensor', label: 'Tensor', weight: 'Tensor') ->Tensor:
"""
:param x: [N, 1]
:param label: [N, 1]
:param weight: [N, 1]
"""
label = label.float()
cross_entropy = -label * torch.log(x + self.epsilon) - (1 - label
) * torch.log(1 - x + self.epsilon)
return torch.sum(cross_entropy * weight.float()) / 2.0
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return []
|
CNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ln/cln6qydwyqg4qnxsbkqnv3hx3efw2a7vyiqfft6cddbhbrgdvyyu.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (36*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/5q/c5qrspwskvpybawg5gxji2xsvpkstvwbi7pblvjxn3j2hjj6m6iu.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (3200*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/5i/c5i2fduxetastvbi5iesxtvgzml2666iz5qwgalwgfmylvltqvrs.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 1024], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 256
xnumel = 625
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (625*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (y0 + (64*x2) + (40000*y1)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/fy/cfynxvuzbg23qlxyhqf2osekxwzn5ndpblsw4p3i5ezw4duyjdsb.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 51200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lj/cljmdmcjausmvjzgqlpegl5mcgajmeuyfrlalps7hsvjgked2i3j.py
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 128
y1 = (yindex // 128)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (128*x2) + (1152*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + (9*y3)), tmp4, xmask & ymask)
tl.store(out_ptr1 + (y0 + (128*x2) + (1152*y1)), tmp6, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (64, 1, 8, 8), (64, 64, 8, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 1, 32, 32), (1024, 1024, 32, 1))
assert_size_stride(primals_4, (128, 64, 6, 6), (2304, 36, 6, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (128, 128, 5, 5), (3200, 25, 5, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (10, 1152), (1152, 1))
assert_size_stride(primals_9, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 64, 6, 6), (2304, 1, 384, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_4, buf0, 8192, 36, grid=grid(8192, 36), stream=stream0)
del primals_4
buf1 = empty_strided_cuda((128, 128, 5, 5), (3200, 1, 640, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_6, buf1, 16384, 25, grid=grid(16384, 25), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 25, 25), (40000, 625, 25, 1))
buf3 = empty_strided_cuda((4, 64, 25, 25), (40000, 1, 1600, 64), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf2, primals_2, buf3, 256, 625, grid=grid(256, 625), stream=stream0)
del buf2
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 128, 10, 10), (12800, 1, 1280, 128))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf5, primals_5, 51200, grid=grid(51200), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 3, 3), (1152, 1, 384, 128))
buf7 = empty_strided_cuda((4, 128, 3, 3), (1152, 9, 3, 1), torch.float32)
buf9 = empty_strided_cuda((4, 128, 3, 3), (1152, 1, 384, 128), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_4.run(buf6, primals_7, buf7, buf9, 512, 9, grid=grid(512, 9), stream=stream0)
del buf6
del primals_7
buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf7, (4, 1152), (1152, 1), 0), reinterpret_tensor(primals_8, (1152, 10), (1, 1152), 0), alpha=1, beta=1, out=buf8)
del primals_9
return (buf8, primals_1, primals_3, buf0, buf1, buf3, buf5, reinterpret_tensor(buf7, (4, 1152), (1152, 1), 0), primals_8, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 1, 8, 8), (64, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 32, 32), (1024, 1024, 32, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64, 6, 6), (2304, 36, 6, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 128, 5, 5), (3200, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((10, 1152), (1152, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
class CNN(torch.nn.Module):
"""Basic CNN architecture."""
def __init__(self, in_channels=1):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, 8, 1)
self.conv2 = nn.Conv2d(64, 128, 6, 2)
self.conv3 = nn.Conv2d(128, 128, 5, 2)
self.fc = nn.Linear(128 * 3 * 3, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(-1, 128 * 3 * 3)
x = self.fc(x)
return x
def get_inputs():
return [torch.rand([4, 1, 32, 32])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 36 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 128 * x2 + 3200 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 256
xnumel = 625
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 625 * y3), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (y0 + 64 * x2 + 40000 * y1), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 128
y1 = yindex // 128
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 1152 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 9 * y3), tmp4, xmask & ymask)
tl.store(out_ptr1 + (y0 + 128 * x2 + 1152 * y1), tmp6, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (64, 1, 8, 8), (64, 64, 8, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 1, 32, 32), (1024, 1024, 32, 1))
assert_size_stride(primals_4, (128, 64, 6, 6), (2304, 36, 6, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (128, 128, 5, 5), (3200, 25, 5, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (10, 1152), (1152, 1))
assert_size_stride(primals_9, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 64, 6, 6), (2304, 1, 384, 64),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(8192, 36)](primals_4, buf0, 8192, 36,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_4
buf1 = empty_strided_cuda((128, 128, 5, 5), (3200, 1, 640, 128),
torch.float32)
triton_poi_fused_1[grid(16384, 25)](primals_6, buf1, 16384, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_6
buf2 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 25, 25), (40000, 625, 25, 1))
buf3 = empty_strided_cuda((4, 64, 25, 25), (40000, 1, 1600, 64),
torch.float32)
triton_poi_fused_convolution_relu_2[grid(256, 625)](buf2, primals_2,
buf3, 256, 625, XBLOCK=256, YBLOCK=16, num_warps=8, num_stages=1)
del buf2
del primals_2
buf4 = extern_kernels.convolution(buf3, buf0, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 128, 10, 10), (12800, 1, 1280, 128))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_3[grid(51200)](buf5, primals_5,
51200, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf6 = extern_kernels.convolution(buf5, buf1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 3, 3), (1152, 1, 384, 128))
buf7 = empty_strided_cuda((4, 128, 3, 3), (1152, 9, 3, 1), torch.
float32)
buf9 = empty_strided_cuda((4, 128, 3, 3), (1152, 1, 384, 128),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_4[grid(512, 9)](
buf6, primals_7, buf7, buf9, 512, 9, XBLOCK=1, YBLOCK=256,
num_warps=4, num_stages=1)
del buf6
del primals_7
buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf7, (4, 1152),
(1152, 1), 0), reinterpret_tensor(primals_8, (1152, 10), (1,
1152), 0), alpha=1, beta=1, out=buf8)
del primals_9
return (buf8, primals_1, primals_3, buf0, buf1, buf3, buf5,
reinterpret_tensor(buf7, (4, 1152), (1152, 1), 0), primals_8, buf9)
class CNNNew(torch.nn.Module):
"""Basic CNN architecture."""
def __init__(self, in_channels=1):
super(CNNNew, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, 8, 1)
self.conv2 = nn.Conv2d(64, 128, 6, 2)
self.conv3 = nn.Conv2d(128, 128, 5, 2)
self.fc = nn.Linear(128 * 3 * 3, 10)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc.weight
primals_9 = self.fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| AxelBohm/cleverhans | CNN | false | 4,899 | [
"MIT"
] | 1 | 35f44d686fa24a8d3a30218dc9ad2617859afbf0 | https://github.com/AxelBohm/cleverhans/tree/35f44d686fa24a8d3a30218dc9ad2617859afbf0 | import torch
from torch import nn
import torch.nn.functional as F
class Model(torch.nn.Module):
"""Basic CNN architecture."""
def __init__(self, in_channels=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, 64, 8, 1)
self.conv2 = nn.Conv2d(64, 128, 6, 2)
self.conv3 = nn.Conv2d(128, 128, 5, 2)
self.fc = nn.Linear(128 * 3 * 3, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(-1, 128 * 3 * 3)
x = self.fc(x)
return x
def get_inputs():
return [torch.rand([4, 1, 32, 32])]
def get_init_inputs():
return []
|
Policy | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/o4/co4ltgolfty6xbtjs454crc7imkotqguqwb6zvbpz2luzl3qkzin.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2e/c2ei25xypczil2scpap6sg6cxhom5wssmh3azqrbkeq7nevkrhj7.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 128), (128, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 8192, grid=grid(8192), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [action_scores], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 2), (1, 128), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf3, 128, grid=grid(128), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 128, grid=grid(128), stream=stream0)
del buf3
return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), buf4, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.affine2 = nn.Linear(128, 2)
self.saved_log_probs = []
self.rewards = []
def forward(self, x):
x = F.relu(self.affine1(x))
action_scores = self.affine2(x)
return F.softmax(action_scores, dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 128), (128, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_2, buf5, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_4, (128, 2), (1, 128),
0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused__softmax_1[grid(128)](buf2, buf3, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf2
triton_poi_fused__softmax_2[grid(128)](buf3, buf4, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del buf3
return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0
), buf4, primals_4, buf5
class PolicyNew(nn.Module):
def __init__(self):
super(PolicyNew, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.affine2 = nn.Linear(128, 2)
self.saved_log_probs = []
self.rewards = []
def forward(self, input_0):
primals_1 = self.affine1.weight
primals_2 = self.affine1.bias
primals_4 = self.affine2.weight
primals_5 = self.affine2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Bartolo1024/ignite | Policy | false | 4,900 | [
"BSD-3-Clause"
] | 1 | b087fef0bc5f97cda415c1c56f1cd589383c54be | https://github.com/Bartolo1024/ignite/tree/b087fef0bc5f97cda415c1c56f1cd589383c54be | import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super().__init__()
self.affine1 = nn.Linear(4, 128)
self.affine2 = nn.Linear(128, 2)
self.saved_log_probs = []
self.rewards = []
def forward(self, x):
x = F.relu(self.affine1(x))
action_scores = self.affine2(x)
return F.softmax(action_scores, dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
MAB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/p6/cp62j5tv2tk4ynnj52fvxnzwu3qhxoiovlhltiksafkjm6cs5wpz.py
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# Q_ => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2, %getitem_3],), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-8) + x1))), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-12) + x1))), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/eh/ceheq5ns3kg3p6tebb47gdy475c5v4keklf245jl4fgbpvugznm5.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# A => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# A => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2n/c2nnsl6rh3uwvjzhffvx73mazqy356d27sevembkk4zhua32vcxd.py
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# O => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_12, %getitem_13, %getitem_14, %getitem_15], 2), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 4, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + (x2), tmp38, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ws/cwsvc5z65iswwv5a6qo3vtrk3rtb7xslw5l36aatdxiyao2vymh7.py
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# O_1 => add_1
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat_3, %relu), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [Q], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [K], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [V], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_7
del primals_8
buf3 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, buf3, 64, grid=grid(64), stream=stream0)
buf4 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 64), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [V_], Original ATen: [aten.cat]
triton_poi_fused_cat_0.run(buf2, buf4, 64, grid=grid(64), stream=stream0)
buf5 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [K_], Original ATen: [aten.cat]
triton_poi_fused_cat_0.run(buf1, buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
buf8 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf7
buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf8, buf4, out=buf9)
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf3, buf9, buf10, 64, grid=grid(64), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_4.run(buf10, buf11, primals_10, buf12, buf13, 64, grid=grid(64), stream=stream0)
del buf11
del primals_10
return (buf12, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf13, primals_9, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim_Q': 4, 'dim_K': 4, 'dim_V': 4, 'num_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1)), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tl.full([1], 4, tl.int64)
tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + x2, tmp38, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_4(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (16,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_6, (16,
4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf2)
del primals_7
del primals_8
buf3 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(64)](buf0, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 64), 0)
del buf0
triton_poi_fused_cat_0[grid(64)](buf2, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
triton_poi_fused_cat_0[grid(64)](buf1, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf5, (16, 1, 4), (4, 0,
1), 0), out=buf6)
buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf8 = buf6
del buf6
triton_poi_fused__softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf7
buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0)
del buf1
extern_kernels.bmm(buf8, buf4, out=buf9)
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_3[grid(64)](buf3, buf9, buf10, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_4[grid(64)](buf10,
buf11, primals_10, buf12, buf13, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf11
del primals_10
return buf12, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf8, reinterpret_tensor(buf10, (16, 4), (4, 1), 0
), buf13, primals_9, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), buf5
class MABNew(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MABNew, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, input_0, input_1):
primals_1 = self.fc_q.weight
primals_2 = self.fc_q.bias
primals_4 = self.fc_k.weight
primals_5 = self.fc_k.bias
primals_7 = self.fc_v.weight
primals_8 = self.fc_v.bias
primals_9 = self.fc_o.weight
primals_10 = self.fc_o.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
| Behrouz-Babaki/NCG4CVRP | MAB | false | 4,901 | [
"MIT"
] | 1 | 87d63366c0b461f44ce8e982159a1e207af77b44 | https://github.com/Behrouz-Babaki/NCG4CVRP/tree/87d63366c0b461f44ce8e982159a1e207af77b44 | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super().__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4, 4]
|
SAB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/p6/cp62j5tv2tk4ynnj52fvxnzwu3qhxoiovlhltiksafkjm6cs5wpz.py
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# Q_ => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2, %getitem_3],), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-8) + x1))), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-12) + x1))), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/eh/ceheq5ns3kg3p6tebb47gdy475c5v4keklf245jl4fgbpvugznm5.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# A => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# A => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2n/c2nnsl6rh3uwvjzhffvx73mazqy356d27sevembkk4zhua32vcxd.py
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# O => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_12, %getitem_13, %getitem_14, %getitem_15], 2), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 4, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + (x2), tmp38, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ws/cwsvc5z65iswwv5a6qo3vtrk3rtb7xslw5l36aatdxiyao2vymh7.py
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# O_1 => add_1
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat_3, %relu), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [Q], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [K], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [V], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, buf3, 64, grid=grid(64), stream=stream0)
buf4 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 64), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [V_], Original ATen: [aten.cat]
triton_poi_fused_cat_0.run(buf2, buf4, 64, grid=grid(64), stream=stream0)
buf5 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [K_], Original ATen: [aten.cat]
triton_poi_fused_cat_0.run(buf1, buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
buf8 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf7
buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf8, buf4, out=buf9)
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf3, buf9, buf10, 64, grid=grid(64), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_4.run(buf10, buf11, primals_9, buf12, buf13, 64, grid=grid(64), stream=stream0)
del buf11
del primals_9
return (buf12, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf13, primals_8, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class SAB(nn.Module):
def __init__(self, dim_in, dim_out, num_heads, ln=False):
super(SAB, self).__init__()
self.mab = MAB(dim_in, dim_in, dim_out, num_heads, ln=ln)
def forward(self, X):
return self.mab(X, X)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4, 'num_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1)), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tl.full([1], 4, tl.int64)
tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + x2, tmp38, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_4(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(64)](buf0, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 64), 0)
del buf0
triton_poi_fused_cat_0[grid(64)](buf2, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
triton_poi_fused_cat_0[grid(64)](buf1, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(buf5, (16, 1, 4), (4, 0,
1), 0), out=buf6)
buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf8 = buf6
del buf6
triton_poi_fused__softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf7
buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0)
del buf1
extern_kernels.bmm(buf8, buf4, out=buf9)
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_3[grid(64)](buf3, buf9, buf10, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_4[grid(64)](buf10,
buf11, primals_9, buf12, buf13, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf11
del primals_9
return buf12, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf8, reinterpret_tensor(buf10, (16, 4), (4, 1), 0
), buf13, primals_8, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), buf5
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class SABNew(nn.Module):
def __init__(self, dim_in, dim_out, num_heads, ln=False):
super(SABNew, self).__init__()
self.mab = MAB(dim_in, dim_in, dim_out, num_heads, ln=ln)
def forward(self, input_0):
primals_1 = self.mab.fc_q.weight
primals_2 = self.mab.fc_q.bias
primals_4 = self.mab.fc_k.weight
primals_5 = self.mab.fc_k.bias
primals_6 = self.mab.fc_v.weight
primals_7 = self.mab.fc_v.bias
primals_8 = self.mab.fc_o.weight
primals_9 = self.mab.fc_o.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| Behrouz-Babaki/NCG4CVRP | SAB | false | 4,902 | [
"MIT"
] | 1 | 87d63366c0b461f44ce8e982159a1e207af77b44 | https://github.com/Behrouz-Babaki/NCG4CVRP/tree/87d63366c0b461f44ce8e982159a1e207af77b44 | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super().__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class Model(nn.Module):
def __init__(self, dim_in, dim_out, num_heads, ln=False):
super().__init__()
self.mab = MAB(dim_in, dim_in, dim_out, num_heads, ln=ln)
def forward(self, X):
return self.mab(X, X)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
PointLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/rs/crsg7dlacsfgnuurqkc7zcxhea7d6tgzbng6ovijxiosh7gpwagi.py
# Topologically Sorted Source Nodes: [min_1, min_2, min_3, min_4, min_5, min_6, min_7, min_8, distances_4, mul_2, distances_9, mul_3, add, truediv, dist, distances_14, mul_6, distances_19, mul_7, add_2, truediv_1, dist_1, distances_24, mul_10, distances_29, mul_11, add_4, truediv_2, dist_2, distances_34, mul_14, distances_39, mul_15, add_6, truediv_3, dist_3, mul_16], Original ATen: [aten.min, aten.mean, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# add_2 => add_2
# add_4 => add_4
# add_6 => add_6
# dist => add_1
# dist_1 => add_3
# dist_2 => add_5
# dist_3 => add_7
# distances_14 => mean_2
# distances_19 => mean_3
# distances_24 => mean_4
# distances_29 => mean_5
# distances_34 => mean_6
# distances_39 => mean_7
# distances_4 => mean
# distances_9 => mean_1
# min_1 => min_1
# min_2 => min_2
# min_3 => min_3
# min_4 => min_4
# min_5 => min_5
# min_6 => min_6
# min_7 => min_7
# min_8 => min_8
# mul_10 => mul_10
# mul_11 => mul_11
# mul_14 => mul_14
# mul_15 => mul_15
# mul_16 => mul_16
# mul_2 => mul_2
# mul_3 => mul_3
# mul_6 => mul_6
# mul_7 => mul_7
# truediv => div
# truediv_1 => div_1
# truediv_2 => div_2
# truediv_3 => div_3
# Graph fragment:
# %min_1 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%view_1, 1), kwargs = {})
# %min_2 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%view_3, 1), kwargs = {})
# %min_3 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%view_5, 1), kwargs = {})
# %min_4 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%view_7, 1), kwargs = {})
# %min_5 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%view_9, 1), kwargs = {})
# %min_6 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%view_11, 1), kwargs = {})
# %min_7 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%view_13, 1), kwargs = {})
# %min_8 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%view_15, 1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%getitem,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%getitem_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 0), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%getitem_4,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 0.5), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%getitem_6,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_3, 0.5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, %mul_7), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 4), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %div_1), kwargs = {})
# %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%getitem_8,), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_4, 0.5), kwargs = {})
# %mean_5 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%getitem_10,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_5, 0.5), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, %mul_11), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_4, 4), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %div_2), kwargs = {})
# %mean_6 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%getitem_12,), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_6, 0.5), kwargs = {})
# %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%getitem_14,), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_7, 0.5), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_14, %mul_15), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_6, 4), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %div_3), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, 100), kwargs = {})
triton_per_fused_add_div_mean_min_mul_0 = async_compile.triton('triton_per_fused_add_div_mean_min_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_min_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 160, 'num_reduction': 8, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_min_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*((4*r0) % 4)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (4))
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp23 = tl.load(in_ptr0 + (5))
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp28 = tl.load(in_ptr0 + (6))
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp33 = tl.load(in_ptr0 + (7))
tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK])
tmp39 = tl.load(in_ptr0 + (8))
tmp40 = tl.broadcast_to(tmp39, [XBLOCK, RBLOCK])
tmp43 = tl.load(in_ptr0 + (9))
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp48 = tl.load(in_ptr0 + (10))
tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK])
tmp53 = tl.load(in_ptr0 + (11))
tmp54 = tl.broadcast_to(tmp53, [XBLOCK, RBLOCK])
tmp59 = tl.load(in_ptr0 + (12))
tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK])
tmp63 = tl.load(in_ptr0 + (13))
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp68 = tl.load(in_ptr0 + (14))
tmp69 = tl.broadcast_to(tmp68, [XBLOCK, RBLOCK])
tmp73 = tl.load(in_ptr0 + (15))
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp82 = tl.load(in_ptr1 + (4*((4*r0) % 4)), None, eviction_policy='evict_last')
tmp83 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp86 = tl.load(in_ptr1 + (1 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp87 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp91 = tl.load(in_ptr1 + (2 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr1 + (3 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp97 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp101 = tl.load(in_ptr1 + (4))
tmp102 = tl.broadcast_to(tmp101, [XBLOCK, RBLOCK])
tmp105 = tl.load(in_ptr1 + (5))
tmp106 = tl.broadcast_to(tmp105, [XBLOCK, RBLOCK])
tmp110 = tl.load(in_ptr1 + (6))
tmp111 = tl.broadcast_to(tmp110, [XBLOCK, RBLOCK])
tmp115 = tl.load(in_ptr1 + (7))
tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK])
tmp121 = tl.load(in_ptr1 + (8))
tmp122 = tl.broadcast_to(tmp121, [XBLOCK, RBLOCK])
tmp125 = tl.load(in_ptr1 + (9))
tmp126 = tl.broadcast_to(tmp125, [XBLOCK, RBLOCK])
tmp130 = tl.load(in_ptr1 + (10))
tmp131 = tl.broadcast_to(tmp130, [XBLOCK, RBLOCK])
tmp135 = tl.load(in_ptr1 + (11))
tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK])
tmp141 = tl.load(in_ptr1 + (12))
tmp142 = tl.broadcast_to(tmp141, [XBLOCK, RBLOCK])
tmp145 = tl.load(in_ptr1 + (13))
tmp146 = tl.broadcast_to(tmp145, [XBLOCK, RBLOCK])
tmp150 = tl.load(in_ptr1 + (14))
tmp151 = tl.broadcast_to(tmp150, [XBLOCK, RBLOCK])
tmp155 = tl.load(in_ptr1 + (15))
tmp156 = tl.broadcast_to(tmp155, [XBLOCK, RBLOCK])
tmp164 = tl.load(in_ptr0 + (16 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp165 = tl.load(in_ptr1 + (16 + (4*r0)), None, eviction_policy='evict_last')
tmp168 = tl.load(in_ptr0 + (17 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp169 = tl.load(in_ptr1 + (17 + (4*r0)), None, eviction_policy='evict_last')
tmp173 = tl.load(in_ptr0 + (18 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp174 = tl.load(in_ptr1 + (18 + (4*r0)), None, eviction_policy='evict_last')
tmp178 = tl.load(in_ptr0 + (19 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp179 = tl.load(in_ptr1 + (19 + (4*r0)), None, eviction_policy='evict_last')
tmp183 = tl.load(in_ptr0 + (20))
tmp184 = tl.broadcast_to(tmp183, [XBLOCK, RBLOCK])
tmp187 = tl.load(in_ptr0 + (21))
tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK])
tmp192 = tl.load(in_ptr0 + (22))
tmp193 = tl.broadcast_to(tmp192, [XBLOCK, RBLOCK])
tmp197 = tl.load(in_ptr0 + (23))
tmp198 = tl.broadcast_to(tmp197, [XBLOCK, RBLOCK])
tmp203 = tl.load(in_ptr0 + (24))
tmp204 = tl.broadcast_to(tmp203, [XBLOCK, RBLOCK])
tmp207 = tl.load(in_ptr0 + (25))
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp212 = tl.load(in_ptr0 + (26))
tmp213 = tl.broadcast_to(tmp212, [XBLOCK, RBLOCK])
tmp217 = tl.load(in_ptr0 + (27))
tmp218 = tl.broadcast_to(tmp217, [XBLOCK, RBLOCK])
tmp223 = tl.load(in_ptr0 + (28))
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp227 = tl.load(in_ptr0 + (29))
tmp228 = tl.broadcast_to(tmp227, [XBLOCK, RBLOCK])
tmp232 = tl.load(in_ptr0 + (30))
tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK])
tmp237 = tl.load(in_ptr0 + (31))
tmp238 = tl.broadcast_to(tmp237, [XBLOCK, RBLOCK])
tmp246 = tl.load(in_ptr1 + (16 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp247 = tl.load(in_ptr0 + (16 + (4*r0)), None, eviction_policy='evict_last')
tmp250 = tl.load(in_ptr1 + (17 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp251 = tl.load(in_ptr0 + (17 + (4*r0)), None, eviction_policy='evict_last')
tmp255 = tl.load(in_ptr1 + (18 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp256 = tl.load(in_ptr0 + (18 + (4*r0)), None, eviction_policy='evict_last')
tmp260 = tl.load(in_ptr1 + (19 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp261 = tl.load(in_ptr0 + (19 + (4*r0)), None, eviction_policy='evict_last')
tmp265 = tl.load(in_ptr1 + (20))
tmp266 = tl.broadcast_to(tmp265, [XBLOCK, RBLOCK])
tmp269 = tl.load(in_ptr1 + (21))
tmp270 = tl.broadcast_to(tmp269, [XBLOCK, RBLOCK])
tmp274 = tl.load(in_ptr1 + (22))
tmp275 = tl.broadcast_to(tmp274, [XBLOCK, RBLOCK])
tmp279 = tl.load(in_ptr1 + (23))
tmp280 = tl.broadcast_to(tmp279, [XBLOCK, RBLOCK])
tmp285 = tl.load(in_ptr1 + (24))
tmp286 = tl.broadcast_to(tmp285, [XBLOCK, RBLOCK])
tmp289 = tl.load(in_ptr1 + (25))
tmp290 = tl.broadcast_to(tmp289, [XBLOCK, RBLOCK])
tmp294 = tl.load(in_ptr1 + (26))
tmp295 = tl.broadcast_to(tmp294, [XBLOCK, RBLOCK])
tmp299 = tl.load(in_ptr1 + (27))
tmp300 = tl.broadcast_to(tmp299, [XBLOCK, RBLOCK])
tmp305 = tl.load(in_ptr1 + (28))
tmp306 = tl.broadcast_to(tmp305, [XBLOCK, RBLOCK])
tmp309 = tl.load(in_ptr1 + (29))
tmp310 = tl.broadcast_to(tmp309, [XBLOCK, RBLOCK])
tmp314 = tl.load(in_ptr1 + (30))
tmp315 = tl.broadcast_to(tmp314, [XBLOCK, RBLOCK])
tmp319 = tl.load(in_ptr1 + (31))
tmp320 = tl.broadcast_to(tmp319, [XBLOCK, RBLOCK])
tmp328 = tl.load(in_ptr0 + (48 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp329 = tl.load(in_ptr1 + (48 + (4*r0)), None, eviction_policy='evict_last')
tmp332 = tl.load(in_ptr0 + (49 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp333 = tl.load(in_ptr1 + (49 + (4*r0)), None, eviction_policy='evict_last')
tmp337 = tl.load(in_ptr0 + (50 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp338 = tl.load(in_ptr1 + (50 + (4*r0)), None, eviction_policy='evict_last')
tmp342 = tl.load(in_ptr0 + (51 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp343 = tl.load(in_ptr1 + (51 + (4*r0)), None, eviction_policy='evict_last')
tmp347 = tl.load(in_ptr0 + (52))
tmp348 = tl.broadcast_to(tmp347, [XBLOCK, RBLOCK])
tmp351 = tl.load(in_ptr0 + (53))
tmp352 = tl.broadcast_to(tmp351, [XBLOCK, RBLOCK])
tmp356 = tl.load(in_ptr0 + (54))
tmp357 = tl.broadcast_to(tmp356, [XBLOCK, RBLOCK])
tmp361 = tl.load(in_ptr0 + (55))
tmp362 = tl.broadcast_to(tmp361, [XBLOCK, RBLOCK])
tmp367 = tl.load(in_ptr0 + (56))
tmp368 = tl.broadcast_to(tmp367, [XBLOCK, RBLOCK])
tmp371 = tl.load(in_ptr0 + (57))
tmp372 = tl.broadcast_to(tmp371, [XBLOCK, RBLOCK])
tmp376 = tl.load(in_ptr0 + (58))
tmp377 = tl.broadcast_to(tmp376, [XBLOCK, RBLOCK])
tmp381 = tl.load(in_ptr0 + (59))
tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK])
tmp387 = tl.load(in_ptr0 + (60))
tmp388 = tl.broadcast_to(tmp387, [XBLOCK, RBLOCK])
tmp391 = tl.load(in_ptr0 + (61))
tmp392 = tl.broadcast_to(tmp391, [XBLOCK, RBLOCK])
tmp396 = tl.load(in_ptr0 + (62))
tmp397 = tl.broadcast_to(tmp396, [XBLOCK, RBLOCK])
tmp401 = tl.load(in_ptr0 + (63))
tmp402 = tl.broadcast_to(tmp401, [XBLOCK, RBLOCK])
tmp410 = tl.load(in_ptr0 + (32 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp411 = tl.load(in_ptr1 + (32 + (4*r0)), None, eviction_policy='evict_last')
tmp414 = tl.load(in_ptr0 + (33 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp415 = tl.load(in_ptr1 + (33 + (4*r0)), None, eviction_policy='evict_last')
tmp419 = tl.load(in_ptr0 + (34 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp420 = tl.load(in_ptr1 + (34 + (4*r0)), None, eviction_policy='evict_last')
tmp424 = tl.load(in_ptr0 + (35 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp425 = tl.load(in_ptr1 + (35 + (4*r0)), None, eviction_policy='evict_last')
tmp429 = tl.load(in_ptr0 + (36))
tmp430 = tl.broadcast_to(tmp429, [XBLOCK, RBLOCK])
tmp433 = tl.load(in_ptr0 + (37))
tmp434 = tl.broadcast_to(tmp433, [XBLOCK, RBLOCK])
tmp438 = tl.load(in_ptr0 + (38))
tmp439 = tl.broadcast_to(tmp438, [XBLOCK, RBLOCK])
tmp443 = tl.load(in_ptr0 + (39))
tmp444 = tl.broadcast_to(tmp443, [XBLOCK, RBLOCK])
tmp449 = tl.load(in_ptr0 + (40))
tmp450 = tl.broadcast_to(tmp449, [XBLOCK, RBLOCK])
tmp453 = tl.load(in_ptr0 + (41))
tmp454 = tl.broadcast_to(tmp453, [XBLOCK, RBLOCK])
tmp458 = tl.load(in_ptr0 + (42))
tmp459 = tl.broadcast_to(tmp458, [XBLOCK, RBLOCK])
tmp463 = tl.load(in_ptr0 + (43))
tmp464 = tl.broadcast_to(tmp463, [XBLOCK, RBLOCK])
tmp469 = tl.load(in_ptr0 + (44))
tmp470 = tl.broadcast_to(tmp469, [XBLOCK, RBLOCK])
tmp473 = tl.load(in_ptr0 + (45))
tmp474 = tl.broadcast_to(tmp473, [XBLOCK, RBLOCK])
tmp478 = tl.load(in_ptr0 + (46))
tmp479 = tl.broadcast_to(tmp478, [XBLOCK, RBLOCK])
tmp483 = tl.load(in_ptr0 + (47))
tmp484 = tl.broadcast_to(tmp483, [XBLOCK, RBLOCK])
tmp492 = tl.load(in_ptr1 + (48 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp493 = tl.load(in_ptr0 + (48 + (4*r0)), None, eviction_policy='evict_last')
tmp496 = tl.load(in_ptr1 + (49 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp497 = tl.load(in_ptr0 + (49 + (4*r0)), None, eviction_policy='evict_last')
tmp501 = tl.load(in_ptr1 + (50 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp502 = tl.load(in_ptr0 + (50 + (4*r0)), None, eviction_policy='evict_last')
tmp506 = tl.load(in_ptr1 + (51 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp507 = tl.load(in_ptr0 + (51 + (4*r0)), None, eviction_policy='evict_last')
tmp511 = tl.load(in_ptr1 + (52))
tmp512 = tl.broadcast_to(tmp511, [XBLOCK, RBLOCK])
tmp515 = tl.load(in_ptr1 + (53))
tmp516 = tl.broadcast_to(tmp515, [XBLOCK, RBLOCK])
tmp520 = tl.load(in_ptr1 + (54))
tmp521 = tl.broadcast_to(tmp520, [XBLOCK, RBLOCK])
tmp525 = tl.load(in_ptr1 + (55))
tmp526 = tl.broadcast_to(tmp525, [XBLOCK, RBLOCK])
tmp531 = tl.load(in_ptr1 + (56))
tmp532 = tl.broadcast_to(tmp531, [XBLOCK, RBLOCK])
tmp535 = tl.load(in_ptr1 + (57))
tmp536 = tl.broadcast_to(tmp535, [XBLOCK, RBLOCK])
tmp540 = tl.load(in_ptr1 + (58))
tmp541 = tl.broadcast_to(tmp540, [XBLOCK, RBLOCK])
tmp545 = tl.load(in_ptr1 + (59))
tmp546 = tl.broadcast_to(tmp545, [XBLOCK, RBLOCK])
tmp551 = tl.load(in_ptr1 + (60))
tmp552 = tl.broadcast_to(tmp551, [XBLOCK, RBLOCK])
tmp555 = tl.load(in_ptr1 + (61))
tmp556 = tl.broadcast_to(tmp555, [XBLOCK, RBLOCK])
tmp560 = tl.load(in_ptr1 + (62))
tmp561 = tl.broadcast_to(tmp560, [XBLOCK, RBLOCK])
tmp565 = tl.load(in_ptr1 + (63))
tmp566 = tl.broadcast_to(tmp565, [XBLOCK, RBLOCK])
tmp574 = tl.load(in_ptr1 + (32 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp575 = tl.load(in_ptr0 + (32 + (4*r0)), None, eviction_policy='evict_last')
tmp578 = tl.load(in_ptr1 + (33 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp579 = tl.load(in_ptr0 + (33 + (4*r0)), None, eviction_policy='evict_last')
tmp583 = tl.load(in_ptr1 + (34 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp584 = tl.load(in_ptr0 + (34 + (4*r0)), None, eviction_policy='evict_last')
tmp588 = tl.load(in_ptr1 + (35 + (4*((4*r0) % 4))), None, eviction_policy='evict_last')
tmp589 = tl.load(in_ptr0 + (35 + (4*r0)), None, eviction_policy='evict_last')
tmp593 = tl.load(in_ptr1 + (36))
tmp594 = tl.broadcast_to(tmp593, [XBLOCK, RBLOCK])
tmp597 = tl.load(in_ptr1 + (37))
tmp598 = tl.broadcast_to(tmp597, [XBLOCK, RBLOCK])
tmp602 = tl.load(in_ptr1 + (38))
tmp603 = tl.broadcast_to(tmp602, [XBLOCK, RBLOCK])
tmp607 = tl.load(in_ptr1 + (39))
tmp608 = tl.broadcast_to(tmp607, [XBLOCK, RBLOCK])
tmp613 = tl.load(in_ptr1 + (40))
tmp614 = tl.broadcast_to(tmp613, [XBLOCK, RBLOCK])
tmp617 = tl.load(in_ptr1 + (41))
tmp618 = tl.broadcast_to(tmp617, [XBLOCK, RBLOCK])
tmp622 = tl.load(in_ptr1 + (42))
tmp623 = tl.broadcast_to(tmp622, [XBLOCK, RBLOCK])
tmp627 = tl.load(in_ptr1 + (43))
tmp628 = tl.broadcast_to(tmp627, [XBLOCK, RBLOCK])
tmp633 = tl.load(in_ptr1 + (44))
tmp634 = tl.broadcast_to(tmp633, [XBLOCK, RBLOCK])
tmp637 = tl.load(in_ptr1 + (45))
tmp638 = tl.broadcast_to(tmp637, [XBLOCK, RBLOCK])
tmp642 = tl.load(in_ptr1 + (46))
tmp643 = tl.broadcast_to(tmp642, [XBLOCK, RBLOCK])
tmp647 = tl.load(in_ptr1 + (47))
tmp648 = tl.broadcast_to(tmp647, [XBLOCK, RBLOCK])
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp21 = tmp20 - tmp1
tmp22 = tmp21 * tmp21
tmp25 = tmp24 - tmp5
tmp26 = tmp25 * tmp25
tmp27 = tmp22 + tmp26
tmp30 = tmp29 - tmp10
tmp31 = tmp30 * tmp30
tmp32 = tmp27 + tmp31
tmp35 = tmp34 - tmp15
tmp36 = tmp35 * tmp35
tmp37 = tmp32 + tmp36
tmp38 = triton_helpers.minimum(tmp18, tmp37)
tmp41 = tmp40 - tmp1
tmp42 = tmp41 * tmp41
tmp45 = tmp44 - tmp5
tmp46 = tmp45 * tmp45
tmp47 = tmp42 + tmp46
tmp50 = tmp49 - tmp10
tmp51 = tmp50 * tmp50
tmp52 = tmp47 + tmp51
tmp55 = tmp54 - tmp15
tmp56 = tmp55 * tmp55
tmp57 = tmp52 + tmp56
tmp58 = triton_helpers.minimum(tmp38, tmp57)
tmp61 = tmp60 - tmp1
tmp62 = tmp61 * tmp61
tmp65 = tmp64 - tmp5
tmp66 = tmp65 * tmp65
tmp67 = tmp62 + tmp66
tmp70 = tmp69 - tmp10
tmp71 = tmp70 * tmp70
tmp72 = tmp67 + tmp71
tmp75 = tmp74 - tmp15
tmp76 = tmp75 * tmp75
tmp77 = tmp72 + tmp76
tmp78 = triton_helpers.minimum(tmp58, tmp77)
tmp79 = tl.broadcast_to(tmp78, [XBLOCK, RBLOCK])
tmp81 = tl.sum(tmp79, 1)[:, None]
tmp84 = tmp82 - tmp83
tmp85 = tmp84 * tmp84
tmp88 = tmp86 - tmp87
tmp89 = tmp88 * tmp88
tmp90 = tmp85 + tmp89
tmp93 = tmp91 - tmp92
tmp94 = tmp93 * tmp93
tmp95 = tmp90 + tmp94
tmp98 = tmp96 - tmp97
tmp99 = tmp98 * tmp98
tmp100 = tmp95 + tmp99
tmp103 = tmp102 - tmp83
tmp104 = tmp103 * tmp103
tmp107 = tmp106 - tmp87
tmp108 = tmp107 * tmp107
tmp109 = tmp104 + tmp108
tmp112 = tmp111 - tmp92
tmp113 = tmp112 * tmp112
tmp114 = tmp109 + tmp113
tmp117 = tmp116 - tmp97
tmp118 = tmp117 * tmp117
tmp119 = tmp114 + tmp118
tmp120 = triton_helpers.minimum(tmp100, tmp119)
tmp123 = tmp122 - tmp83
tmp124 = tmp123 * tmp123
tmp127 = tmp126 - tmp87
tmp128 = tmp127 * tmp127
tmp129 = tmp124 + tmp128
tmp132 = tmp131 - tmp92
tmp133 = tmp132 * tmp132
tmp134 = tmp129 + tmp133
tmp137 = tmp136 - tmp97
tmp138 = tmp137 * tmp137
tmp139 = tmp134 + tmp138
tmp140 = triton_helpers.minimum(tmp120, tmp139)
tmp143 = tmp142 - tmp83
tmp144 = tmp143 * tmp143
tmp147 = tmp146 - tmp87
tmp148 = tmp147 * tmp147
tmp149 = tmp144 + tmp148
tmp152 = tmp151 - tmp92
tmp153 = tmp152 * tmp152
tmp154 = tmp149 + tmp153
tmp157 = tmp156 - tmp97
tmp158 = tmp157 * tmp157
tmp159 = tmp154 + tmp158
tmp160 = triton_helpers.minimum(tmp140, tmp159)
tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK])
tmp163 = tl.sum(tmp161, 1)[:, None]
tmp166 = tmp164 - tmp165
tmp167 = tmp166 * tmp166
tmp170 = tmp168 - tmp169
tmp171 = tmp170 * tmp170
tmp172 = tmp167 + tmp171
tmp175 = tmp173 - tmp174
tmp176 = tmp175 * tmp175
tmp177 = tmp172 + tmp176
tmp180 = tmp178 - tmp179
tmp181 = tmp180 * tmp180
tmp182 = tmp177 + tmp181
tmp185 = tmp184 - tmp165
tmp186 = tmp185 * tmp185
tmp189 = tmp188 - tmp169
tmp190 = tmp189 * tmp189
tmp191 = tmp186 + tmp190
tmp194 = tmp193 - tmp174
tmp195 = tmp194 * tmp194
tmp196 = tmp191 + tmp195
tmp199 = tmp198 - tmp179
tmp200 = tmp199 * tmp199
tmp201 = tmp196 + tmp200
tmp202 = triton_helpers.minimum(tmp182, tmp201)
tmp205 = tmp204 - tmp165
tmp206 = tmp205 * tmp205
tmp209 = tmp208 - tmp169
tmp210 = tmp209 * tmp209
tmp211 = tmp206 + tmp210
tmp214 = tmp213 - tmp174
tmp215 = tmp214 * tmp214
tmp216 = tmp211 + tmp215
tmp219 = tmp218 - tmp179
tmp220 = tmp219 * tmp219
tmp221 = tmp216 + tmp220
tmp222 = triton_helpers.minimum(tmp202, tmp221)
tmp225 = tmp224 - tmp165
tmp226 = tmp225 * tmp225
tmp229 = tmp228 - tmp169
tmp230 = tmp229 * tmp229
tmp231 = tmp226 + tmp230
tmp234 = tmp233 - tmp174
tmp235 = tmp234 * tmp234
tmp236 = tmp231 + tmp235
tmp239 = tmp238 - tmp179
tmp240 = tmp239 * tmp239
tmp241 = tmp236 + tmp240
tmp242 = triton_helpers.minimum(tmp222, tmp241)
tmp243 = tl.broadcast_to(tmp242, [XBLOCK, RBLOCK])
tmp245 = tl.sum(tmp243, 1)[:, None]
tmp248 = tmp246 - tmp247
tmp249 = tmp248 * tmp248
tmp252 = tmp250 - tmp251
tmp253 = tmp252 * tmp252
tmp254 = tmp249 + tmp253
tmp257 = tmp255 - tmp256
tmp258 = tmp257 * tmp257
tmp259 = tmp254 + tmp258
tmp262 = tmp260 - tmp261
tmp263 = tmp262 * tmp262
tmp264 = tmp259 + tmp263
tmp267 = tmp266 - tmp247
tmp268 = tmp267 * tmp267
tmp271 = tmp270 - tmp251
tmp272 = tmp271 * tmp271
tmp273 = tmp268 + tmp272
tmp276 = tmp275 - tmp256
tmp277 = tmp276 * tmp276
tmp278 = tmp273 + tmp277
tmp281 = tmp280 - tmp261
tmp282 = tmp281 * tmp281
tmp283 = tmp278 + tmp282
tmp284 = triton_helpers.minimum(tmp264, tmp283)
tmp287 = tmp286 - tmp247
tmp288 = tmp287 * tmp287
tmp291 = tmp290 - tmp251
tmp292 = tmp291 * tmp291
tmp293 = tmp288 + tmp292
tmp296 = tmp295 - tmp256
tmp297 = tmp296 * tmp296
tmp298 = tmp293 + tmp297
tmp301 = tmp300 - tmp261
tmp302 = tmp301 * tmp301
tmp303 = tmp298 + tmp302
tmp304 = triton_helpers.minimum(tmp284, tmp303)
tmp307 = tmp306 - tmp247
tmp308 = tmp307 * tmp307
tmp311 = tmp310 - tmp251
tmp312 = tmp311 * tmp311
tmp313 = tmp308 + tmp312
tmp316 = tmp315 - tmp256
tmp317 = tmp316 * tmp316
tmp318 = tmp313 + tmp317
tmp321 = tmp320 - tmp261
tmp322 = tmp321 * tmp321
tmp323 = tmp318 + tmp322
tmp324 = triton_helpers.minimum(tmp304, tmp323)
tmp325 = tl.broadcast_to(tmp324, [XBLOCK, RBLOCK])
tmp327 = tl.sum(tmp325, 1)[:, None]
tmp330 = tmp328 - tmp329
tmp331 = tmp330 * tmp330
tmp334 = tmp332 - tmp333
tmp335 = tmp334 * tmp334
tmp336 = tmp331 + tmp335
tmp339 = tmp337 - tmp338
tmp340 = tmp339 * tmp339
tmp341 = tmp336 + tmp340
tmp344 = tmp342 - tmp343
tmp345 = tmp344 * tmp344
tmp346 = tmp341 + tmp345
tmp349 = tmp348 - tmp329
tmp350 = tmp349 * tmp349
tmp353 = tmp352 - tmp333
tmp354 = tmp353 * tmp353
tmp355 = tmp350 + tmp354
tmp358 = tmp357 - tmp338
tmp359 = tmp358 * tmp358
tmp360 = tmp355 + tmp359
tmp363 = tmp362 - tmp343
tmp364 = tmp363 * tmp363
tmp365 = tmp360 + tmp364
tmp366 = triton_helpers.minimum(tmp346, tmp365)
tmp369 = tmp368 - tmp329
tmp370 = tmp369 * tmp369
tmp373 = tmp372 - tmp333
tmp374 = tmp373 * tmp373
tmp375 = tmp370 + tmp374
tmp378 = tmp377 - tmp338
tmp379 = tmp378 * tmp378
tmp380 = tmp375 + tmp379
tmp383 = tmp382 - tmp343
tmp384 = tmp383 * tmp383
tmp385 = tmp380 + tmp384
tmp386 = triton_helpers.minimum(tmp366, tmp385)
tmp389 = tmp388 - tmp329
tmp390 = tmp389 * tmp389
tmp393 = tmp392 - tmp333
tmp394 = tmp393 * tmp393
tmp395 = tmp390 + tmp394
tmp398 = tmp397 - tmp338
tmp399 = tmp398 * tmp398
tmp400 = tmp395 + tmp399
tmp403 = tmp402 - tmp343
tmp404 = tmp403 * tmp403
tmp405 = tmp400 + tmp404
tmp406 = triton_helpers.minimum(tmp386, tmp405)
tmp407 = tl.broadcast_to(tmp406, [XBLOCK, RBLOCK])
tmp409 = tl.sum(tmp407, 1)[:, None]
tmp412 = tmp410 - tmp411
tmp413 = tmp412 * tmp412
tmp416 = tmp414 - tmp415
tmp417 = tmp416 * tmp416
tmp418 = tmp413 + tmp417
tmp421 = tmp419 - tmp420
tmp422 = tmp421 * tmp421
tmp423 = tmp418 + tmp422
tmp426 = tmp424 - tmp425
tmp427 = tmp426 * tmp426
tmp428 = tmp423 + tmp427
tmp431 = tmp430 - tmp411
tmp432 = tmp431 * tmp431
tmp435 = tmp434 - tmp415
tmp436 = tmp435 * tmp435
tmp437 = tmp432 + tmp436
tmp440 = tmp439 - tmp420
tmp441 = tmp440 * tmp440
tmp442 = tmp437 + tmp441
tmp445 = tmp444 - tmp425
tmp446 = tmp445 * tmp445
tmp447 = tmp442 + tmp446
tmp448 = triton_helpers.minimum(tmp428, tmp447)
tmp451 = tmp450 - tmp411
tmp452 = tmp451 * tmp451
tmp455 = tmp454 - tmp415
tmp456 = tmp455 * tmp455
tmp457 = tmp452 + tmp456
tmp460 = tmp459 - tmp420
tmp461 = tmp460 * tmp460
tmp462 = tmp457 + tmp461
tmp465 = tmp464 - tmp425
tmp466 = tmp465 * tmp465
tmp467 = tmp462 + tmp466
tmp468 = triton_helpers.minimum(tmp448, tmp467)
tmp471 = tmp470 - tmp411
tmp472 = tmp471 * tmp471
tmp475 = tmp474 - tmp415
tmp476 = tmp475 * tmp475
tmp477 = tmp472 + tmp476
tmp480 = tmp479 - tmp420
tmp481 = tmp480 * tmp480
tmp482 = tmp477 + tmp481
tmp485 = tmp484 - tmp425
tmp486 = tmp485 * tmp485
tmp487 = tmp482 + tmp486
tmp488 = triton_helpers.minimum(tmp468, tmp487)
tmp489 = tl.broadcast_to(tmp488, [XBLOCK, RBLOCK])
tmp491 = tl.sum(tmp489, 1)[:, None]
tmp494 = tmp492 - tmp493
tmp495 = tmp494 * tmp494
tmp498 = tmp496 - tmp497
tmp499 = tmp498 * tmp498
tmp500 = tmp495 + tmp499
tmp503 = tmp501 - tmp502
tmp504 = tmp503 * tmp503
tmp505 = tmp500 + tmp504
tmp508 = tmp506 - tmp507
tmp509 = tmp508 * tmp508
tmp510 = tmp505 + tmp509
tmp513 = tmp512 - tmp493
tmp514 = tmp513 * tmp513
tmp517 = tmp516 - tmp497
tmp518 = tmp517 * tmp517
tmp519 = tmp514 + tmp518
tmp522 = tmp521 - tmp502
tmp523 = tmp522 * tmp522
tmp524 = tmp519 + tmp523
tmp527 = tmp526 - tmp507
tmp528 = tmp527 * tmp527
tmp529 = tmp524 + tmp528
tmp530 = triton_helpers.minimum(tmp510, tmp529)
tmp533 = tmp532 - tmp493
tmp534 = tmp533 * tmp533
tmp537 = tmp536 - tmp497
tmp538 = tmp537 * tmp537
tmp539 = tmp534 + tmp538
tmp542 = tmp541 - tmp502
tmp543 = tmp542 * tmp542
tmp544 = tmp539 + tmp543
tmp547 = tmp546 - tmp507
tmp548 = tmp547 * tmp547
tmp549 = tmp544 + tmp548
tmp550 = triton_helpers.minimum(tmp530, tmp549)
tmp553 = tmp552 - tmp493
tmp554 = tmp553 * tmp553
tmp557 = tmp556 - tmp497
tmp558 = tmp557 * tmp557
tmp559 = tmp554 + tmp558
tmp562 = tmp561 - tmp502
tmp563 = tmp562 * tmp562
tmp564 = tmp559 + tmp563
tmp567 = tmp566 - tmp507
tmp568 = tmp567 * tmp567
tmp569 = tmp564 + tmp568
tmp570 = triton_helpers.minimum(tmp550, tmp569)
tmp571 = tl.broadcast_to(tmp570, [XBLOCK, RBLOCK])
tmp573 = tl.sum(tmp571, 1)[:, None]
tmp576 = tmp574 - tmp575
tmp577 = tmp576 * tmp576
tmp580 = tmp578 - tmp579
tmp581 = tmp580 * tmp580
tmp582 = tmp577 + tmp581
tmp585 = tmp583 - tmp584
tmp586 = tmp585 * tmp585
tmp587 = tmp582 + tmp586
tmp590 = tmp588 - tmp589
tmp591 = tmp590 * tmp590
tmp592 = tmp587 + tmp591
tmp595 = tmp594 - tmp575
tmp596 = tmp595 * tmp595
tmp599 = tmp598 - tmp579
tmp600 = tmp599 * tmp599
tmp601 = tmp596 + tmp600
tmp604 = tmp603 - tmp584
tmp605 = tmp604 * tmp604
tmp606 = tmp601 + tmp605
tmp609 = tmp608 - tmp589
tmp610 = tmp609 * tmp609
tmp611 = tmp606 + tmp610
tmp612 = triton_helpers.minimum(tmp592, tmp611)
tmp615 = tmp614 - tmp575
tmp616 = tmp615 * tmp615
tmp619 = tmp618 - tmp579
tmp620 = tmp619 * tmp619
tmp621 = tmp616 + tmp620
tmp624 = tmp623 - tmp584
tmp625 = tmp624 * tmp624
tmp626 = tmp621 + tmp625
tmp629 = tmp628 - tmp589
tmp630 = tmp629 * tmp629
tmp631 = tmp626 + tmp630
tmp632 = triton_helpers.minimum(tmp612, tmp631)
tmp635 = tmp634 - tmp575
tmp636 = tmp635 * tmp635
tmp639 = tmp638 - tmp579
tmp640 = tmp639 * tmp639
tmp641 = tmp636 + tmp640
tmp644 = tmp643 - tmp584
tmp645 = tmp644 * tmp644
tmp646 = tmp641 + tmp645
tmp649 = tmp648 - tmp589
tmp650 = tmp649 * tmp649
tmp651 = tmp646 + tmp650
tmp652 = triton_helpers.minimum(tmp632, tmp651)
tmp653 = tl.broadcast_to(tmp652, [XBLOCK, RBLOCK])
tmp655 = tl.sum(tmp653, 1)[:, None]
tmp656 = 4.0
tmp657 = tmp81 / tmp656
tmp658 = 0.5
tmp659 = tmp657 * tmp658
tmp660 = tmp163 / tmp656
tmp661 = tmp660 * tmp658
tmp662 = tmp659 + tmp661
tmp663 = 0.25
tmp664 = tmp662 * tmp663
tmp665 = 0.0
tmp666 = tmp664 + tmp665
tmp667 = tmp245 / tmp656
tmp668 = tmp667 * tmp658
tmp669 = tmp327 / tmp656
tmp670 = tmp669 * tmp658
tmp671 = tmp668 + tmp670
tmp672 = tmp671 * tmp663
tmp673 = tmp666 + tmp672
tmp674 = tmp491 / tmp656
tmp675 = tmp674 * tmp658
tmp676 = tmp655 / tmp656
tmp677 = tmp676 * tmp658
tmp678 = tmp675 + tmp677
tmp679 = tmp678 * tmp663
tmp680 = tmp673 + tmp679
tmp681 = tmp409 / tmp656
tmp682 = tmp681 * tmp658
tmp683 = tmp573 / tmp656
tmp684 = tmp683 * tmp658
tmp685 = tmp682 + tmp684
tmp686 = tmp685 * tmp663
tmp687 = tmp680 + tmp686
tmp688 = 100.0
tmp689 = tmp687 * tmp688
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp689, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf14 = buf10; del buf10 # reuse
buf17 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [min_1, min_2, min_3, min_4, min_5, min_6, min_7, min_8, distances_4, mul_2, distances_9, mul_3, add, truediv, dist, distances_14, mul_6, distances_19, mul_7, add_2, truediv_1, dist_1, distances_24, mul_10, distances_29, mul_11, add_4, truediv_2, dist_2, distances_34, mul_14, distances_39, mul_15, add_6, truediv_3, dist_3, mul_16], Original ATen: [aten.min, aten.mean, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_min_mul_0.run(buf17, arg0_1, arg1_1, 1, 4, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf17, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.parallel
import torch.utils.data
import torch.nn as nn
def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point1, _num_features1 = array1.shape
num_point2, num_features2 = array2.shape
expanded_array1 = array1.repeat(num_point2, 1)
expanded_array2 = torch.reshape(torch.unsqueeze(array2, 1).repeat(1,
num_point1, 1), (-1, num_features2))
distances = (expanded_array1 - expanded_array2) * (expanded_array1 -
expanded_array2)
distances = torch.sum(distances, dim=1)
distances = torch.reshape(distances, (num_point2, num_point1))
distances = torch.min(distances, dim=1)[0]
distances = torch.mean(distances)
return distances
def chamfer_distance_numpy(array1, array2):
batch_size, _num_point, _num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (0.5 * av_dist1 + 0.5 * av_dist2) / batch_size
return dist * 100
class PointLoss(nn.Module):
def __init__(self):
super(PointLoss, self).__init__()
def forward(self, array1, array2):
return chamfer_distance_numpy(array1, array2)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn.parallel
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mean_min_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * (4 * r0 % 4), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 4 * (4 * r0 % 4)), None, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + 4 * (4 * r0 % 4)), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + 4 * (4 * r0 % 4)), None, eviction_policy
='evict_last')
tmp15 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + 4)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp23 = tl.load(in_ptr0 + 5)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp28 = tl.load(in_ptr0 + 6)
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp33 = tl.load(in_ptr0 + 7)
tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK])
tmp39 = tl.load(in_ptr0 + 8)
tmp40 = tl.broadcast_to(tmp39, [XBLOCK, RBLOCK])
tmp43 = tl.load(in_ptr0 + 9)
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp48 = tl.load(in_ptr0 + 10)
tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK])
tmp53 = tl.load(in_ptr0 + 11)
tmp54 = tl.broadcast_to(tmp53, [XBLOCK, RBLOCK])
tmp59 = tl.load(in_ptr0 + 12)
tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK])
tmp63 = tl.load(in_ptr0 + 13)
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp68 = tl.load(in_ptr0 + 14)
tmp69 = tl.broadcast_to(tmp68, [XBLOCK, RBLOCK])
tmp73 = tl.load(in_ptr0 + 15)
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp82 = tl.load(in_ptr1 + 4 * (4 * r0 % 4), None, eviction_policy=
'evict_last')
tmp83 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp86 = tl.load(in_ptr1 + (1 + 4 * (4 * r0 % 4)), None, eviction_policy
='evict_last')
tmp87 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp91 = tl.load(in_ptr1 + (2 + 4 * (4 * r0 % 4)), None, eviction_policy
='evict_last')
tmp92 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr1 + (3 + 4 * (4 * r0 % 4)), None, eviction_policy
='evict_last')
tmp97 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp101 = tl.load(in_ptr1 + 4)
tmp102 = tl.broadcast_to(tmp101, [XBLOCK, RBLOCK])
tmp105 = tl.load(in_ptr1 + 5)
tmp106 = tl.broadcast_to(tmp105, [XBLOCK, RBLOCK])
tmp110 = tl.load(in_ptr1 + 6)
tmp111 = tl.broadcast_to(tmp110, [XBLOCK, RBLOCK])
tmp115 = tl.load(in_ptr1 + 7)
tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK])
tmp121 = tl.load(in_ptr1 + 8)
tmp122 = tl.broadcast_to(tmp121, [XBLOCK, RBLOCK])
tmp125 = tl.load(in_ptr1 + 9)
tmp126 = tl.broadcast_to(tmp125, [XBLOCK, RBLOCK])
tmp130 = tl.load(in_ptr1 + 10)
tmp131 = tl.broadcast_to(tmp130, [XBLOCK, RBLOCK])
tmp135 = tl.load(in_ptr1 + 11)
tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK])
tmp141 = tl.load(in_ptr1 + 12)
tmp142 = tl.broadcast_to(tmp141, [XBLOCK, RBLOCK])
tmp145 = tl.load(in_ptr1 + 13)
tmp146 = tl.broadcast_to(tmp145, [XBLOCK, RBLOCK])
tmp150 = tl.load(in_ptr1 + 14)
tmp151 = tl.broadcast_to(tmp150, [XBLOCK, RBLOCK])
tmp155 = tl.load(in_ptr1 + 15)
tmp156 = tl.broadcast_to(tmp155, [XBLOCK, RBLOCK])
tmp164 = tl.load(in_ptr0 + (16 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp165 = tl.load(in_ptr1 + (16 + 4 * r0), None, eviction_policy=
'evict_last')
tmp168 = tl.load(in_ptr0 + (17 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp169 = tl.load(in_ptr1 + (17 + 4 * r0), None, eviction_policy=
'evict_last')
tmp173 = tl.load(in_ptr0 + (18 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp174 = tl.load(in_ptr1 + (18 + 4 * r0), None, eviction_policy=
'evict_last')
tmp178 = tl.load(in_ptr0 + (19 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp179 = tl.load(in_ptr1 + (19 + 4 * r0), None, eviction_policy=
'evict_last')
tmp183 = tl.load(in_ptr0 + 20)
tmp184 = tl.broadcast_to(tmp183, [XBLOCK, RBLOCK])
tmp187 = tl.load(in_ptr0 + 21)
tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK])
tmp192 = tl.load(in_ptr0 + 22)
tmp193 = tl.broadcast_to(tmp192, [XBLOCK, RBLOCK])
tmp197 = tl.load(in_ptr0 + 23)
tmp198 = tl.broadcast_to(tmp197, [XBLOCK, RBLOCK])
tmp203 = tl.load(in_ptr0 + 24)
tmp204 = tl.broadcast_to(tmp203, [XBLOCK, RBLOCK])
tmp207 = tl.load(in_ptr0 + 25)
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp212 = tl.load(in_ptr0 + 26)
tmp213 = tl.broadcast_to(tmp212, [XBLOCK, RBLOCK])
tmp217 = tl.load(in_ptr0 + 27)
tmp218 = tl.broadcast_to(tmp217, [XBLOCK, RBLOCK])
tmp223 = tl.load(in_ptr0 + 28)
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp227 = tl.load(in_ptr0 + 29)
tmp228 = tl.broadcast_to(tmp227, [XBLOCK, RBLOCK])
tmp232 = tl.load(in_ptr0 + 30)
tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK])
tmp237 = tl.load(in_ptr0 + 31)
tmp238 = tl.broadcast_to(tmp237, [XBLOCK, RBLOCK])
tmp246 = tl.load(in_ptr1 + (16 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp247 = tl.load(in_ptr0 + (16 + 4 * r0), None, eviction_policy=
'evict_last')
tmp250 = tl.load(in_ptr1 + (17 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp251 = tl.load(in_ptr0 + (17 + 4 * r0), None, eviction_policy=
'evict_last')
tmp255 = tl.load(in_ptr1 + (18 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp256 = tl.load(in_ptr0 + (18 + 4 * r0), None, eviction_policy=
'evict_last')
tmp260 = tl.load(in_ptr1 + (19 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp261 = tl.load(in_ptr0 + (19 + 4 * r0), None, eviction_policy=
'evict_last')
tmp265 = tl.load(in_ptr1 + 20)
tmp266 = tl.broadcast_to(tmp265, [XBLOCK, RBLOCK])
tmp269 = tl.load(in_ptr1 + 21)
tmp270 = tl.broadcast_to(tmp269, [XBLOCK, RBLOCK])
tmp274 = tl.load(in_ptr1 + 22)
tmp275 = tl.broadcast_to(tmp274, [XBLOCK, RBLOCK])
tmp279 = tl.load(in_ptr1 + 23)
tmp280 = tl.broadcast_to(tmp279, [XBLOCK, RBLOCK])
tmp285 = tl.load(in_ptr1 + 24)
tmp286 = tl.broadcast_to(tmp285, [XBLOCK, RBLOCK])
tmp289 = tl.load(in_ptr1 + 25)
tmp290 = tl.broadcast_to(tmp289, [XBLOCK, RBLOCK])
tmp294 = tl.load(in_ptr1 + 26)
tmp295 = tl.broadcast_to(tmp294, [XBLOCK, RBLOCK])
tmp299 = tl.load(in_ptr1 + 27)
tmp300 = tl.broadcast_to(tmp299, [XBLOCK, RBLOCK])
tmp305 = tl.load(in_ptr1 + 28)
tmp306 = tl.broadcast_to(tmp305, [XBLOCK, RBLOCK])
tmp309 = tl.load(in_ptr1 + 29)
tmp310 = tl.broadcast_to(tmp309, [XBLOCK, RBLOCK])
tmp314 = tl.load(in_ptr1 + 30)
tmp315 = tl.broadcast_to(tmp314, [XBLOCK, RBLOCK])
tmp319 = tl.load(in_ptr1 + 31)
tmp320 = tl.broadcast_to(tmp319, [XBLOCK, RBLOCK])
tmp328 = tl.load(in_ptr0 + (48 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp329 = tl.load(in_ptr1 + (48 + 4 * r0), None, eviction_policy=
'evict_last')
tmp332 = tl.load(in_ptr0 + (49 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp333 = tl.load(in_ptr1 + (49 + 4 * r0), None, eviction_policy=
'evict_last')
tmp337 = tl.load(in_ptr0 + (50 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp338 = tl.load(in_ptr1 + (50 + 4 * r0), None, eviction_policy=
'evict_last')
tmp342 = tl.load(in_ptr0 + (51 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp343 = tl.load(in_ptr1 + (51 + 4 * r0), None, eviction_policy=
'evict_last')
tmp347 = tl.load(in_ptr0 + 52)
tmp348 = tl.broadcast_to(tmp347, [XBLOCK, RBLOCK])
tmp351 = tl.load(in_ptr0 + 53)
tmp352 = tl.broadcast_to(tmp351, [XBLOCK, RBLOCK])
tmp356 = tl.load(in_ptr0 + 54)
tmp357 = tl.broadcast_to(tmp356, [XBLOCK, RBLOCK])
tmp361 = tl.load(in_ptr0 + 55)
tmp362 = tl.broadcast_to(tmp361, [XBLOCK, RBLOCK])
tmp367 = tl.load(in_ptr0 + 56)
tmp368 = tl.broadcast_to(tmp367, [XBLOCK, RBLOCK])
tmp371 = tl.load(in_ptr0 + 57)
tmp372 = tl.broadcast_to(tmp371, [XBLOCK, RBLOCK])
tmp376 = tl.load(in_ptr0 + 58)
tmp377 = tl.broadcast_to(tmp376, [XBLOCK, RBLOCK])
tmp381 = tl.load(in_ptr0 + 59)
tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK])
tmp387 = tl.load(in_ptr0 + 60)
tmp388 = tl.broadcast_to(tmp387, [XBLOCK, RBLOCK])
tmp391 = tl.load(in_ptr0 + 61)
tmp392 = tl.broadcast_to(tmp391, [XBLOCK, RBLOCK])
tmp396 = tl.load(in_ptr0 + 62)
tmp397 = tl.broadcast_to(tmp396, [XBLOCK, RBLOCK])
tmp401 = tl.load(in_ptr0 + 63)
tmp402 = tl.broadcast_to(tmp401, [XBLOCK, RBLOCK])
tmp410 = tl.load(in_ptr0 + (32 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp411 = tl.load(in_ptr1 + (32 + 4 * r0), None, eviction_policy=
'evict_last')
tmp414 = tl.load(in_ptr0 + (33 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp415 = tl.load(in_ptr1 + (33 + 4 * r0), None, eviction_policy=
'evict_last')
tmp419 = tl.load(in_ptr0 + (34 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp420 = tl.load(in_ptr1 + (34 + 4 * r0), None, eviction_policy=
'evict_last')
tmp424 = tl.load(in_ptr0 + (35 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp425 = tl.load(in_ptr1 + (35 + 4 * r0), None, eviction_policy=
'evict_last')
tmp429 = tl.load(in_ptr0 + 36)
tmp430 = tl.broadcast_to(tmp429, [XBLOCK, RBLOCK])
tmp433 = tl.load(in_ptr0 + 37)
tmp434 = tl.broadcast_to(tmp433, [XBLOCK, RBLOCK])
tmp438 = tl.load(in_ptr0 + 38)
tmp439 = tl.broadcast_to(tmp438, [XBLOCK, RBLOCK])
tmp443 = tl.load(in_ptr0 + 39)
tmp444 = tl.broadcast_to(tmp443, [XBLOCK, RBLOCK])
tmp449 = tl.load(in_ptr0 + 40)
tmp450 = tl.broadcast_to(tmp449, [XBLOCK, RBLOCK])
tmp453 = tl.load(in_ptr0 + 41)
tmp454 = tl.broadcast_to(tmp453, [XBLOCK, RBLOCK])
tmp458 = tl.load(in_ptr0 + 42)
tmp459 = tl.broadcast_to(tmp458, [XBLOCK, RBLOCK])
tmp463 = tl.load(in_ptr0 + 43)
tmp464 = tl.broadcast_to(tmp463, [XBLOCK, RBLOCK])
tmp469 = tl.load(in_ptr0 + 44)
tmp470 = tl.broadcast_to(tmp469, [XBLOCK, RBLOCK])
tmp473 = tl.load(in_ptr0 + 45)
tmp474 = tl.broadcast_to(tmp473, [XBLOCK, RBLOCK])
tmp478 = tl.load(in_ptr0 + 46)
tmp479 = tl.broadcast_to(tmp478, [XBLOCK, RBLOCK])
tmp483 = tl.load(in_ptr0 + 47)
tmp484 = tl.broadcast_to(tmp483, [XBLOCK, RBLOCK])
tmp492 = tl.load(in_ptr1 + (48 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp493 = tl.load(in_ptr0 + (48 + 4 * r0), None, eviction_policy=
'evict_last')
tmp496 = tl.load(in_ptr1 + (49 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp497 = tl.load(in_ptr0 + (49 + 4 * r0), None, eviction_policy=
'evict_last')
tmp501 = tl.load(in_ptr1 + (50 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp502 = tl.load(in_ptr0 + (50 + 4 * r0), None, eviction_policy=
'evict_last')
tmp506 = tl.load(in_ptr1 + (51 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp507 = tl.load(in_ptr0 + (51 + 4 * r0), None, eviction_policy=
'evict_last')
tmp511 = tl.load(in_ptr1 + 52)
tmp512 = tl.broadcast_to(tmp511, [XBLOCK, RBLOCK])
tmp515 = tl.load(in_ptr1 + 53)
tmp516 = tl.broadcast_to(tmp515, [XBLOCK, RBLOCK])
tmp520 = tl.load(in_ptr1 + 54)
tmp521 = tl.broadcast_to(tmp520, [XBLOCK, RBLOCK])
tmp525 = tl.load(in_ptr1 + 55)
tmp526 = tl.broadcast_to(tmp525, [XBLOCK, RBLOCK])
tmp531 = tl.load(in_ptr1 + 56)
tmp532 = tl.broadcast_to(tmp531, [XBLOCK, RBLOCK])
tmp535 = tl.load(in_ptr1 + 57)
tmp536 = tl.broadcast_to(tmp535, [XBLOCK, RBLOCK])
tmp540 = tl.load(in_ptr1 + 58)
tmp541 = tl.broadcast_to(tmp540, [XBLOCK, RBLOCK])
tmp545 = tl.load(in_ptr1 + 59)
tmp546 = tl.broadcast_to(tmp545, [XBLOCK, RBLOCK])
tmp551 = tl.load(in_ptr1 + 60)
tmp552 = tl.broadcast_to(tmp551, [XBLOCK, RBLOCK])
tmp555 = tl.load(in_ptr1 + 61)
tmp556 = tl.broadcast_to(tmp555, [XBLOCK, RBLOCK])
tmp560 = tl.load(in_ptr1 + 62)
tmp561 = tl.broadcast_to(tmp560, [XBLOCK, RBLOCK])
tmp565 = tl.load(in_ptr1 + 63)
tmp566 = tl.broadcast_to(tmp565, [XBLOCK, RBLOCK])
tmp574 = tl.load(in_ptr1 + (32 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp575 = tl.load(in_ptr0 + (32 + 4 * r0), None, eviction_policy=
'evict_last')
tmp578 = tl.load(in_ptr1 + (33 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp579 = tl.load(in_ptr0 + (33 + 4 * r0), None, eviction_policy=
'evict_last')
tmp583 = tl.load(in_ptr1 + (34 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp584 = tl.load(in_ptr0 + (34 + 4 * r0), None, eviction_policy=
'evict_last')
tmp588 = tl.load(in_ptr1 + (35 + 4 * (4 * r0 % 4)), None,
eviction_policy='evict_last')
tmp589 = tl.load(in_ptr0 + (35 + 4 * r0), None, eviction_policy=
'evict_last')
tmp593 = tl.load(in_ptr1 + 36)
tmp594 = tl.broadcast_to(tmp593, [XBLOCK, RBLOCK])
tmp597 = tl.load(in_ptr1 + 37)
tmp598 = tl.broadcast_to(tmp597, [XBLOCK, RBLOCK])
tmp602 = tl.load(in_ptr1 + 38)
tmp603 = tl.broadcast_to(tmp602, [XBLOCK, RBLOCK])
tmp607 = tl.load(in_ptr1 + 39)
tmp608 = tl.broadcast_to(tmp607, [XBLOCK, RBLOCK])
tmp613 = tl.load(in_ptr1 + 40)
tmp614 = tl.broadcast_to(tmp613, [XBLOCK, RBLOCK])
tmp617 = tl.load(in_ptr1 + 41)
tmp618 = tl.broadcast_to(tmp617, [XBLOCK, RBLOCK])
tmp622 = tl.load(in_ptr1 + 42)
tmp623 = tl.broadcast_to(tmp622, [XBLOCK, RBLOCK])
tmp627 = tl.load(in_ptr1 + 43)
tmp628 = tl.broadcast_to(tmp627, [XBLOCK, RBLOCK])
tmp633 = tl.load(in_ptr1 + 44)
tmp634 = tl.broadcast_to(tmp633, [XBLOCK, RBLOCK])
tmp637 = tl.load(in_ptr1 + 45)
tmp638 = tl.broadcast_to(tmp637, [XBLOCK, RBLOCK])
tmp642 = tl.load(in_ptr1 + 46)
tmp643 = tl.broadcast_to(tmp642, [XBLOCK, RBLOCK])
tmp647 = tl.load(in_ptr1 + 47)
tmp648 = tl.broadcast_to(tmp647, [XBLOCK, RBLOCK])
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp21 = tmp20 - tmp1
tmp22 = tmp21 * tmp21
tmp25 = tmp24 - tmp5
tmp26 = tmp25 * tmp25
tmp27 = tmp22 + tmp26
tmp30 = tmp29 - tmp10
tmp31 = tmp30 * tmp30
tmp32 = tmp27 + tmp31
tmp35 = tmp34 - tmp15
tmp36 = tmp35 * tmp35
tmp37 = tmp32 + tmp36
tmp38 = triton_helpers.minimum(tmp18, tmp37)
tmp41 = tmp40 - tmp1
tmp42 = tmp41 * tmp41
tmp45 = tmp44 - tmp5
tmp46 = tmp45 * tmp45
tmp47 = tmp42 + tmp46
tmp50 = tmp49 - tmp10
tmp51 = tmp50 * tmp50
tmp52 = tmp47 + tmp51
tmp55 = tmp54 - tmp15
tmp56 = tmp55 * tmp55
tmp57 = tmp52 + tmp56
tmp58 = triton_helpers.minimum(tmp38, tmp57)
tmp61 = tmp60 - tmp1
tmp62 = tmp61 * tmp61
tmp65 = tmp64 - tmp5
tmp66 = tmp65 * tmp65
tmp67 = tmp62 + tmp66
tmp70 = tmp69 - tmp10
tmp71 = tmp70 * tmp70
tmp72 = tmp67 + tmp71
tmp75 = tmp74 - tmp15
tmp76 = tmp75 * tmp75
tmp77 = tmp72 + tmp76
tmp78 = triton_helpers.minimum(tmp58, tmp77)
tmp79 = tl.broadcast_to(tmp78, [XBLOCK, RBLOCK])
tmp81 = tl.sum(tmp79, 1)[:, None]
tmp84 = tmp82 - tmp83
tmp85 = tmp84 * tmp84
tmp88 = tmp86 - tmp87
tmp89 = tmp88 * tmp88
tmp90 = tmp85 + tmp89
tmp93 = tmp91 - tmp92
tmp94 = tmp93 * tmp93
tmp95 = tmp90 + tmp94
tmp98 = tmp96 - tmp97
tmp99 = tmp98 * tmp98
tmp100 = tmp95 + tmp99
tmp103 = tmp102 - tmp83
tmp104 = tmp103 * tmp103
tmp107 = tmp106 - tmp87
tmp108 = tmp107 * tmp107
tmp109 = tmp104 + tmp108
tmp112 = tmp111 - tmp92
tmp113 = tmp112 * tmp112
tmp114 = tmp109 + tmp113
tmp117 = tmp116 - tmp97
tmp118 = tmp117 * tmp117
tmp119 = tmp114 + tmp118
tmp120 = triton_helpers.minimum(tmp100, tmp119)
tmp123 = tmp122 - tmp83
tmp124 = tmp123 * tmp123
tmp127 = tmp126 - tmp87
tmp128 = tmp127 * tmp127
tmp129 = tmp124 + tmp128
tmp132 = tmp131 - tmp92
tmp133 = tmp132 * tmp132
tmp134 = tmp129 + tmp133
tmp137 = tmp136 - tmp97
tmp138 = tmp137 * tmp137
tmp139 = tmp134 + tmp138
tmp140 = triton_helpers.minimum(tmp120, tmp139)
tmp143 = tmp142 - tmp83
tmp144 = tmp143 * tmp143
tmp147 = tmp146 - tmp87
tmp148 = tmp147 * tmp147
tmp149 = tmp144 + tmp148
tmp152 = tmp151 - tmp92
tmp153 = tmp152 * tmp152
tmp154 = tmp149 + tmp153
tmp157 = tmp156 - tmp97
tmp158 = tmp157 * tmp157
tmp159 = tmp154 + tmp158
tmp160 = triton_helpers.minimum(tmp140, tmp159)
tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK])
tmp163 = tl.sum(tmp161, 1)[:, None]
tmp166 = tmp164 - tmp165
tmp167 = tmp166 * tmp166
tmp170 = tmp168 - tmp169
tmp171 = tmp170 * tmp170
tmp172 = tmp167 + tmp171
tmp175 = tmp173 - tmp174
tmp176 = tmp175 * tmp175
tmp177 = tmp172 + tmp176
tmp180 = tmp178 - tmp179
tmp181 = tmp180 * tmp180
tmp182 = tmp177 + tmp181
tmp185 = tmp184 - tmp165
tmp186 = tmp185 * tmp185
tmp189 = tmp188 - tmp169
tmp190 = tmp189 * tmp189
tmp191 = tmp186 + tmp190
tmp194 = tmp193 - tmp174
tmp195 = tmp194 * tmp194
tmp196 = tmp191 + tmp195
tmp199 = tmp198 - tmp179
tmp200 = tmp199 * tmp199
tmp201 = tmp196 + tmp200
tmp202 = triton_helpers.minimum(tmp182, tmp201)
tmp205 = tmp204 - tmp165
tmp206 = tmp205 * tmp205
tmp209 = tmp208 - tmp169
tmp210 = tmp209 * tmp209
tmp211 = tmp206 + tmp210
tmp214 = tmp213 - tmp174
tmp215 = tmp214 * tmp214
tmp216 = tmp211 + tmp215
tmp219 = tmp218 - tmp179
tmp220 = tmp219 * tmp219
tmp221 = tmp216 + tmp220
tmp222 = triton_helpers.minimum(tmp202, tmp221)
tmp225 = tmp224 - tmp165
tmp226 = tmp225 * tmp225
tmp229 = tmp228 - tmp169
tmp230 = tmp229 * tmp229
tmp231 = tmp226 + tmp230
tmp234 = tmp233 - tmp174
tmp235 = tmp234 * tmp234
tmp236 = tmp231 + tmp235
tmp239 = tmp238 - tmp179
tmp240 = tmp239 * tmp239
tmp241 = tmp236 + tmp240
tmp242 = triton_helpers.minimum(tmp222, tmp241)
tmp243 = tl.broadcast_to(tmp242, [XBLOCK, RBLOCK])
tmp245 = tl.sum(tmp243, 1)[:, None]
tmp248 = tmp246 - tmp247
tmp249 = tmp248 * tmp248
tmp252 = tmp250 - tmp251
tmp253 = tmp252 * tmp252
tmp254 = tmp249 + tmp253
tmp257 = tmp255 - tmp256
tmp258 = tmp257 * tmp257
tmp259 = tmp254 + tmp258
tmp262 = tmp260 - tmp261
tmp263 = tmp262 * tmp262
tmp264 = tmp259 + tmp263
tmp267 = tmp266 - tmp247
tmp268 = tmp267 * tmp267
tmp271 = tmp270 - tmp251
tmp272 = tmp271 * tmp271
tmp273 = tmp268 + tmp272
tmp276 = tmp275 - tmp256
tmp277 = tmp276 * tmp276
tmp278 = tmp273 + tmp277
tmp281 = tmp280 - tmp261
tmp282 = tmp281 * tmp281
tmp283 = tmp278 + tmp282
tmp284 = triton_helpers.minimum(tmp264, tmp283)
tmp287 = tmp286 - tmp247
tmp288 = tmp287 * tmp287
tmp291 = tmp290 - tmp251
tmp292 = tmp291 * tmp291
tmp293 = tmp288 + tmp292
tmp296 = tmp295 - tmp256
tmp297 = tmp296 * tmp296
tmp298 = tmp293 + tmp297
tmp301 = tmp300 - tmp261
tmp302 = tmp301 * tmp301
tmp303 = tmp298 + tmp302
tmp304 = triton_helpers.minimum(tmp284, tmp303)
tmp307 = tmp306 - tmp247
tmp308 = tmp307 * tmp307
tmp311 = tmp310 - tmp251
tmp312 = tmp311 * tmp311
tmp313 = tmp308 + tmp312
tmp316 = tmp315 - tmp256
tmp317 = tmp316 * tmp316
tmp318 = tmp313 + tmp317
tmp321 = tmp320 - tmp261
tmp322 = tmp321 * tmp321
tmp323 = tmp318 + tmp322
tmp324 = triton_helpers.minimum(tmp304, tmp323)
tmp325 = tl.broadcast_to(tmp324, [XBLOCK, RBLOCK])
tmp327 = tl.sum(tmp325, 1)[:, None]
tmp330 = tmp328 - tmp329
tmp331 = tmp330 * tmp330
tmp334 = tmp332 - tmp333
tmp335 = tmp334 * tmp334
tmp336 = tmp331 + tmp335
tmp339 = tmp337 - tmp338
tmp340 = tmp339 * tmp339
tmp341 = tmp336 + tmp340
tmp344 = tmp342 - tmp343
tmp345 = tmp344 * tmp344
tmp346 = tmp341 + tmp345
tmp349 = tmp348 - tmp329
tmp350 = tmp349 * tmp349
tmp353 = tmp352 - tmp333
tmp354 = tmp353 * tmp353
tmp355 = tmp350 + tmp354
tmp358 = tmp357 - tmp338
tmp359 = tmp358 * tmp358
tmp360 = tmp355 + tmp359
tmp363 = tmp362 - tmp343
tmp364 = tmp363 * tmp363
tmp365 = tmp360 + tmp364
tmp366 = triton_helpers.minimum(tmp346, tmp365)
tmp369 = tmp368 - tmp329
tmp370 = tmp369 * tmp369
tmp373 = tmp372 - tmp333
tmp374 = tmp373 * tmp373
tmp375 = tmp370 + tmp374
tmp378 = tmp377 - tmp338
tmp379 = tmp378 * tmp378
tmp380 = tmp375 + tmp379
tmp383 = tmp382 - tmp343
tmp384 = tmp383 * tmp383
tmp385 = tmp380 + tmp384
tmp386 = triton_helpers.minimum(tmp366, tmp385)
tmp389 = tmp388 - tmp329
tmp390 = tmp389 * tmp389
tmp393 = tmp392 - tmp333
tmp394 = tmp393 * tmp393
tmp395 = tmp390 + tmp394
tmp398 = tmp397 - tmp338
tmp399 = tmp398 * tmp398
tmp400 = tmp395 + tmp399
tmp403 = tmp402 - tmp343
tmp404 = tmp403 * tmp403
tmp405 = tmp400 + tmp404
tmp406 = triton_helpers.minimum(tmp386, tmp405)
tmp407 = tl.broadcast_to(tmp406, [XBLOCK, RBLOCK])
tmp409 = tl.sum(tmp407, 1)[:, None]
tmp412 = tmp410 - tmp411
tmp413 = tmp412 * tmp412
tmp416 = tmp414 - tmp415
tmp417 = tmp416 * tmp416
tmp418 = tmp413 + tmp417
tmp421 = tmp419 - tmp420
tmp422 = tmp421 * tmp421
tmp423 = tmp418 + tmp422
tmp426 = tmp424 - tmp425
tmp427 = tmp426 * tmp426
tmp428 = tmp423 + tmp427
tmp431 = tmp430 - tmp411
tmp432 = tmp431 * tmp431
tmp435 = tmp434 - tmp415
tmp436 = tmp435 * tmp435
tmp437 = tmp432 + tmp436
tmp440 = tmp439 - tmp420
tmp441 = tmp440 * tmp440
tmp442 = tmp437 + tmp441
tmp445 = tmp444 - tmp425
tmp446 = tmp445 * tmp445
tmp447 = tmp442 + tmp446
tmp448 = triton_helpers.minimum(tmp428, tmp447)
tmp451 = tmp450 - tmp411
tmp452 = tmp451 * tmp451
tmp455 = tmp454 - tmp415
tmp456 = tmp455 * tmp455
tmp457 = tmp452 + tmp456
tmp460 = tmp459 - tmp420
tmp461 = tmp460 * tmp460
tmp462 = tmp457 + tmp461
tmp465 = tmp464 - tmp425
tmp466 = tmp465 * tmp465
tmp467 = tmp462 + tmp466
tmp468 = triton_helpers.minimum(tmp448, tmp467)
tmp471 = tmp470 - tmp411
tmp472 = tmp471 * tmp471
tmp475 = tmp474 - tmp415
tmp476 = tmp475 * tmp475
tmp477 = tmp472 + tmp476
tmp480 = tmp479 - tmp420
tmp481 = tmp480 * tmp480
tmp482 = tmp477 + tmp481
tmp485 = tmp484 - tmp425
tmp486 = tmp485 * tmp485
tmp487 = tmp482 + tmp486
tmp488 = triton_helpers.minimum(tmp468, tmp487)
tmp489 = tl.broadcast_to(tmp488, [XBLOCK, RBLOCK])
tmp491 = tl.sum(tmp489, 1)[:, None]
tmp494 = tmp492 - tmp493
tmp495 = tmp494 * tmp494
tmp498 = tmp496 - tmp497
tmp499 = tmp498 * tmp498
tmp500 = tmp495 + tmp499
tmp503 = tmp501 - tmp502
tmp504 = tmp503 * tmp503
tmp505 = tmp500 + tmp504
tmp508 = tmp506 - tmp507
tmp509 = tmp508 * tmp508
tmp510 = tmp505 + tmp509
tmp513 = tmp512 - tmp493
tmp514 = tmp513 * tmp513
tmp517 = tmp516 - tmp497
tmp518 = tmp517 * tmp517
tmp519 = tmp514 + tmp518
tmp522 = tmp521 - tmp502
tmp523 = tmp522 * tmp522
tmp524 = tmp519 + tmp523
tmp527 = tmp526 - tmp507
tmp528 = tmp527 * tmp527
tmp529 = tmp524 + tmp528
tmp530 = triton_helpers.minimum(tmp510, tmp529)
tmp533 = tmp532 - tmp493
tmp534 = tmp533 * tmp533
tmp537 = tmp536 - tmp497
tmp538 = tmp537 * tmp537
tmp539 = tmp534 + tmp538
tmp542 = tmp541 - tmp502
tmp543 = tmp542 * tmp542
tmp544 = tmp539 + tmp543
tmp547 = tmp546 - tmp507
tmp548 = tmp547 * tmp547
tmp549 = tmp544 + tmp548
tmp550 = triton_helpers.minimum(tmp530, tmp549)
tmp553 = tmp552 - tmp493
tmp554 = tmp553 * tmp553
tmp557 = tmp556 - tmp497
tmp558 = tmp557 * tmp557
tmp559 = tmp554 + tmp558
tmp562 = tmp561 - tmp502
tmp563 = tmp562 * tmp562
tmp564 = tmp559 + tmp563
tmp567 = tmp566 - tmp507
tmp568 = tmp567 * tmp567
tmp569 = tmp564 + tmp568
tmp570 = triton_helpers.minimum(tmp550, tmp569)
tmp571 = tl.broadcast_to(tmp570, [XBLOCK, RBLOCK])
tmp573 = tl.sum(tmp571, 1)[:, None]
tmp576 = tmp574 - tmp575
tmp577 = tmp576 * tmp576
tmp580 = tmp578 - tmp579
tmp581 = tmp580 * tmp580
tmp582 = tmp577 + tmp581
tmp585 = tmp583 - tmp584
tmp586 = tmp585 * tmp585
tmp587 = tmp582 + tmp586
tmp590 = tmp588 - tmp589
tmp591 = tmp590 * tmp590
tmp592 = tmp587 + tmp591
tmp595 = tmp594 - tmp575
tmp596 = tmp595 * tmp595
tmp599 = tmp598 - tmp579
tmp600 = tmp599 * tmp599
tmp601 = tmp596 + tmp600
tmp604 = tmp603 - tmp584
tmp605 = tmp604 * tmp604
tmp606 = tmp601 + tmp605
tmp609 = tmp608 - tmp589
tmp610 = tmp609 * tmp609
tmp611 = tmp606 + tmp610
tmp612 = triton_helpers.minimum(tmp592, tmp611)
tmp615 = tmp614 - tmp575
tmp616 = tmp615 * tmp615
tmp619 = tmp618 - tmp579
tmp620 = tmp619 * tmp619
tmp621 = tmp616 + tmp620
tmp624 = tmp623 - tmp584
tmp625 = tmp624 * tmp624
tmp626 = tmp621 + tmp625
tmp629 = tmp628 - tmp589
tmp630 = tmp629 * tmp629
tmp631 = tmp626 + tmp630
tmp632 = triton_helpers.minimum(tmp612, tmp631)
tmp635 = tmp634 - tmp575
tmp636 = tmp635 * tmp635
tmp639 = tmp638 - tmp579
tmp640 = tmp639 * tmp639
tmp641 = tmp636 + tmp640
tmp644 = tmp643 - tmp584
tmp645 = tmp644 * tmp644
tmp646 = tmp641 + tmp645
tmp649 = tmp648 - tmp589
tmp650 = tmp649 * tmp649
tmp651 = tmp646 + tmp650
tmp652 = triton_helpers.minimum(tmp632, tmp651)
tmp653 = tl.broadcast_to(tmp652, [XBLOCK, RBLOCK])
tmp655 = tl.sum(tmp653, 1)[:, None]
tmp656 = 4.0
tmp657 = tmp81 / tmp656
tmp658 = 0.5
tmp659 = tmp657 * tmp658
tmp660 = tmp163 / tmp656
tmp661 = tmp660 * tmp658
tmp662 = tmp659 + tmp661
tmp663 = 0.25
tmp664 = tmp662 * tmp663
tmp665 = 0.0
tmp666 = tmp664 + tmp665
tmp667 = tmp245 / tmp656
tmp668 = tmp667 * tmp658
tmp669 = tmp327 / tmp656
tmp670 = tmp669 * tmp658
tmp671 = tmp668 + tmp670
tmp672 = tmp671 * tmp663
tmp673 = tmp666 + tmp672
tmp674 = tmp491 / tmp656
tmp675 = tmp674 * tmp658
tmp676 = tmp655 / tmp656
tmp677 = tmp676 * tmp658
tmp678 = tmp675 + tmp677
tmp679 = tmp678 * tmp663
tmp680 = tmp673 + tmp679
tmp681 = tmp409 / tmp656
tmp682 = tmp681 * tmp658
tmp683 = tmp573 / tmp656
tmp684 = tmp683 * tmp658
tmp685 = tmp682 + tmp684
tmp686 = tmp685 * tmp663
tmp687 = tmp680 + tmp686
tmp688 = 100.0
tmp689 = tmp687 * tmp688
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp689, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf14 = buf10
del buf10
buf17 = buf14
del buf14
get_raw_stream(0)
triton_per_fused_add_div_mean_min_mul_0[grid(1)](buf17, arg0_1,
arg1_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf17,
def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point1, _num_features1 = array1.shape
num_point2, num_features2 = array2.shape
expanded_array1 = array1.repeat(num_point2, 1)
expanded_array2 = torch.reshape(torch.unsqueeze(array2, 1).repeat(1,
num_point1, 1), (-1, num_features2))
distances = (expanded_array1 - expanded_array2) * (expanded_array1 -
expanded_array2)
distances = torch.sum(distances, dim=1)
distances = torch.reshape(distances, (num_point2, num_point1))
distances = torch.min(distances, dim=1)[0]
distances = torch.mean(distances)
return distances
def chamfer_distance_numpy(array1, array2):
batch_size, _num_point, _num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (0.5 * av_dist1 + 0.5 * av_dist2) / batch_size
return dist * 100
class PointLossNew(nn.Module):
def __init__(self):
super(PointLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| AndyYuanC/VegPN | PointLoss | false | 4,903 | [
"MIT"
] | 1 | eb981d62ad854d3ca607240cc431a0870c1e95ba | https://github.com/AndyYuanC/VegPN/tree/eb981d62ad854d3ca607240cc431a0870c1e95ba | import torch
import torch.nn.parallel
import torch.utils.data
import torch.nn as nn
def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point1, _num_features1 = array1.shape
num_point2, num_features2 = array2.shape
expanded_array1 = array1.repeat(num_point2, 1)
expanded_array2 = torch.reshape(torch.unsqueeze(array2, 1).repeat(1,
num_point1, 1), (-1, num_features2))
distances = (expanded_array1 - expanded_array2) * (expanded_array1 -
expanded_array2)
distances = torch.sum(distances, dim=1)
distances = torch.reshape(distances, (num_point2, num_point1))
distances = torch.min(distances, dim=1)[0]
distances = torch.mean(distances)
return distances
def chamfer_distance_numpy(array1, array2):
batch_size, _num_point, _num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (0.5 * av_dist1 + 0.5 * av_dist2) / batch_size
return dist * 100
class Model(nn.Module):
def __init__(self):
super().__init__()
def forward(self, array1, array2):
return chamfer_distance_numpy(array1, array2)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return []
|
ContrastiveLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/uy/cuycct6y5uxppjur5rk4dh7mbonb4azxnt4hnvgsfprbbb7oal4b.py
# Topologically Sorted Source Nodes: [mul, pow_1, mul_1, sub, mul_2, sub_1, clamp, pow_2, mul_3, add, contrastive_loss], Original ATen: [aten.mul, aten.pow, aten.rsub, aten.clamp, aten.add, aten.mean]
# Source node to ATen node mapping:
# add => add
# clamp => clamp_min
# contrastive_loss => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# pow_1 => pow_1
# pow_2 => pow_2
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %pow_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 0.5), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %arg1_1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %pow_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_3), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add,), kwargs = {})
triton_per_fused_add_clamp_mean_mul_pow_rsub_0 = async_compile.triton('triton_per_fused_add_clamp_mean_mul_pow_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mean_mul_pow_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_mean_mul_pow_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 * tmp4
tmp6 = 1.0
tmp7 = tmp6 - tmp0
tmp8 = tmp7 * tmp1
tmp9 = 2.0
tmp10 = tmp9 - tmp3
tmp11 = 0.0
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tmp12 * tmp12
tmp14 = tmp8 * tmp13
tmp15 = tmp5 + tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = 256.0
tmp20 = tmp18 / tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, pow_1, mul_1, sub, mul_2, sub_1, clamp, pow_2, mul_3, add, contrastive_loss], Original ATen: [aten.mul, aten.pow, aten.rsub, aten.clamp, aten.add, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_mean_mul_pow_rsub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ContrastiveLoss(nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
Loss is proportional to square distance when inputs are of the same type, and proportional to
the square of margin - distance when the classes are different. Margin is a user-specifiable
hyperparameter.
"""
def __init__(self, margin=2.0, pos_weight=0.5):
super(ContrastiveLoss, self).__init__()
self.pos_weight = pos_weight
self.margin = margin
def forward(self, distance, label):
contrastive_loss = torch.mean((1 - self.pos_weight) * label * torch
.pow(distance, 2) + self.pos_weight * (1 - label) * torch.pow(
torch.clamp(self.margin - distance, min=0.0), 2))
return contrastive_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_mean_mul_pow_rsub_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 * tmp4
tmp6 = 1.0
tmp7 = tmp6 - tmp0
tmp8 = tmp7 * tmp1
tmp9 = 2.0
tmp10 = tmp9 - tmp3
tmp11 = 0.0
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tmp12 * tmp12
tmp14 = tmp8 * tmp13
tmp15 = tmp5 + tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = 256.0
tmp20 = tmp18 / tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_clamp_mean_mul_pow_rsub_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class ContrastiveLossNew(nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
Loss is proportional to square distance when inputs are of the same type, and proportional to
the square of margin - distance when the classes are different. Margin is a user-specifiable
hyperparameter.
"""
def __init__(self, margin=2.0, pos_weight=0.5):
super(ContrastiveLossNew, self).__init__()
self.pos_weight = pos_weight
self.margin = margin
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BrunoKM/rhoana_graph_tools | ContrastiveLoss | false | 4,904 | [
"MIT"
] | 1 | 7150f4bc6337ecf51dd9123cf03561a57d655160 | https://github.com/BrunoKM/rhoana_graph_tools/tree/7150f4bc6337ecf51dd9123cf03561a57d655160 | import torch
import torch.nn as nn
class Model(nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
Loss is proportional to square distance when inputs are of the same type, and proportional to
the square of margin - distance when the classes are different. Margin is a user-specifiable
hyperparameter.
"""
def __init__(self, margin=2.0, pos_weight=0.5):
super().__init__()
self.pos_weight = pos_weight
self.margin = margin
def forward(self, distance, label):
contrastive_loss = torch.mean((1 - self.pos_weight) * label * torch
.pow(distance, 2) + self.pos_weight * (1 - label) * torch.pow(
torch.clamp(self.margin - distance, min=0.0), 2))
return contrastive_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return []
|
ResidualBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/v6/cv6oewqqnsshd7he7ylh2kikzu4smtrhj2dmv6nb5csosp7g6vw5.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# out => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/t6/ct6syu6rq3n7yx3zuog2yujcrfreefdccraqz7zj2m3c5xhvp5vl.py
# Topologically Sorted Source Nodes: [out_1, instance_norm], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
# Source node to ATen node mapping:
# instance_norm => add, rsqrt, var_mean
# out_1 => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp23, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3g/c3gbhm3y6wldudvsxdmmjh5ssg2uys5qqk3dd3k7bxnuot4xhndp.py
# Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# instance_norm => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {})
triton_poi_fused_repeat_2 = async_compile.triton('triton_poi_fused_repeat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6x/c6xlvvnj6ftmp7jka4547n3hpffcz5xr3op3wtbpv5povsb6rjue.py
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_2 => relu
# out_3 => _unsafe_index_2, _unsafe_index_3
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/f6/cf6z47jjg5avrtu2dn7ifr4mx5pcq57zzoksapbtrbrglr3gqnxi.py
# Topologically Sorted Source Nodes: [out_4, out_5, out_6], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add]
# Source node to ATen node mapping:
# out_4 => convolution_1
# out_5 => add_2, repeat_2, rsqrt_1, var_mean_1
# out_6 => add_4
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_8, [4]), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {})
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r3 = rindex
x1 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_out_ptr0 + (r3 + (16*x0)), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr3 + (r3 + (16*x0)), xmask, other=0.0)
tmp3 = tmp1 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp10 / tmp12
tmp14 = tmp4 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.where(xmask, tmp16, 0)
tmp19 = tl.sum(tmp18, 1)[:, None]
tmp20 = tmp3 - tmp13
tmp21 = 16.0
tmp22 = tmp19 / tmp21
tmp23 = 1e-05
tmp24 = tmp22 + tmp23
tmp25 = libdevice.rsqrt(tmp24)
tmp26 = tmp20 * tmp25
tmp27 = tmp26 * tmp0
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x0), tmp0, xmask)
tl.store(in_out_ptr0 + (r3 + (16*x0)), tmp3, xmask)
tl.store(out_ptr3 + (r3 + (16*x0)), tmp31, xmask)
tl.store(out_ptr4 + (x0), tmp25, xmask)
tl.store(out_ptr1 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf8 = reinterpret_tensor(buf6, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [out_1, instance_norm], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_1.run(buf2, buf8, primals_3, buf5, 16, 16, grid=grid(16), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat]
triton_poi_fused_repeat_2.run(primals_4, buf3, 16, grid=grid(16), stream=stream0)
del primals_4
buf4 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat]
triton_poi_fused_repeat_2.run(primals_5, buf4, 16, grid=grid(16), stream=stream0)
del primals_5
buf9 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_3.run(buf2, buf5, buf8, buf3, buf4, buf9, 576, grid=grid(576), stream=stream0)
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf12 = empty_strided_cuda((16, ), (1, ), torch.float32)
buf11 = buf10; del buf10 # reuse
buf13 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out_4, out_5, out_6], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add]
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4.run(buf11, primals_8, primals_7, primals_9, primals_1, buf12, buf13, buf17, buf16, 16, 16, grid=grid(16), stream=stream0)
del primals_1
del primals_7
del primals_8
del primals_9
return (buf17, primals_2, primals_6, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, reinterpret_tensor(buf16, (16, ), (1, ), 0), reinterpret_tensor(buf13, (1, 16, 1, 1), (16, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class ConvLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayer, self).__init__()
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ResidualBlock(torch.nn.Module):
"""ResidualBlock
introduced in: https://arxiv.org/abs/1512.03385
recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
"""
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in1 = torch.nn.InstanceNorm2d(channels, affine=True)
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in2 = torch.nn.InstanceNorm2d(channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
out = out + residual
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2),
xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_1(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp23, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 % 4, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2),
xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1,
out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r3 = rindex
x1 = xindex % 4
tmp0 = tl.load(in_ptr0 + x0 % 4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_out_ptr0 + (r3 + 16 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr3 + (r3 + 16 * x0), xmask, other=0.0)
tmp3 = tmp1 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tl.where(xmask, tmp4, 0)
tmp7 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp10 / tmp12
tmp14 = tmp4 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.where(xmask, tmp16, 0)
tmp19 = tl.sum(tmp18, 1)[:, None]
tmp20 = tmp3 - tmp13
tmp21 = 16.0
tmp22 = tmp19 / tmp21
tmp23 = 1e-05
tmp24 = tmp22 + tmp23
tmp25 = libdevice.rsqrt(tmp24)
tmp26 = tmp20 * tmp25
tmp27 = tmp26 * tmp0
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x0, tmp0, xmask)
tl.store(in_out_ptr0 + (r3 + 16 * x0), tmp3, xmask)
tl.store(out_ptr3 + (r3 + 16 * x0), tmp31, xmask)
tl.store(out_ptr4 + x0, tmp25, xmask)
tl.store(out_ptr1 + x0, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(576)](primals_1, buf0, 576,
XBLOCK=128, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf8 = reinterpret_tensor(buf6, (1, 16, 1, 1), (16, 1, 1, 1), 0)
del buf6
triton_per_fused__native_batch_norm_legit_convolution_1[grid(16)](buf2,
buf8, primals_3, buf5, 16, 16, XBLOCK=1, num_warps=2, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((16,), (1,), torch.float32)
triton_poi_fused_repeat_2[grid(16)](primals_4, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf4 = empty_strided_cuda((16,), (1,), torch.float32)
triton_poi_fused_repeat_2[grid(16)](primals_5, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf9 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
triton_poi_fused_reflection_pad2d_relu_3[grid(576)](buf2, buf5,
buf8, buf3, buf4, buf9, 576, XBLOCK=128, num_warps=4, num_stages=1)
buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf12 = empty_strided_cuda((16,), (1,), torch.float32)
buf11 = buf10
del buf10
buf13 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4[grid
(16)](buf11, primals_8, primals_7, primals_9, primals_1, buf12,
buf13, buf17, buf16, 16, 16, XBLOCK=8, num_warps=2, num_stages=1)
del primals_1
del primals_7
del primals_8
del primals_9
return (buf17, primals_2, primals_6, buf0, buf2, buf3, buf4, buf5, buf8,
buf9, buf11, buf12, reinterpret_tensor(buf16, (16,), (1,), 0),
reinterpret_tensor(buf13, (1, 16, 1, 1), (16, 1, 1, 1), 0))
class ConvLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayer, self).__init__()
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ResidualBlockNew(torch.nn.Module):
"""ResidualBlock
introduced in: https://arxiv.org/abs/1512.03385
recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
"""
def __init__(self, channels):
super(ResidualBlockNew, self).__init__()
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in1 = torch.nn.InstanceNorm2d(channels, affine=True)
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in2 = torch.nn.InstanceNorm2d(channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, input_0):
primals_2 = self.conv1.conv2d.weight
primals_3 = self.conv1.conv2d.bias
primals_4 = self.in1.weight
primals_5 = self.in1.bias
primals_6 = self.conv2.conv2d.weight
primals_7 = self.conv2.conv2d.bias
primals_8 = self.in2.weight
primals_9 = self.in2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| Bartolo1024/ignite | ResidualBlock | false | 4,905 | [
"BSD-3-Clause"
] | 1 | b087fef0bc5f97cda415c1c56f1cd589383c54be | https://github.com/Bartolo1024/ignite/tree/b087fef0bc5f97cda415c1c56f1cd589383c54be | import torch
class ConvLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class Model(torch.nn.Module):
"""ResidualBlock
introduced in: https://arxiv.org/abs/1512.03385
recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
"""
def __init__(self, channels):
super().__init__()
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in1 = torch.nn.InstanceNorm2d(channels, affine=True)
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in2 = torch.nn.InstanceNorm2d(channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
out = out + residual
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4]
|
WeightedSmoothL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xg/cxgg32ubkdfznwtvtyivfhfswp2zdg3yjej2sv2qkuy5ptz2xsmt.py
# Topologically Sorted Source Nodes: [l1, mask], Original ATen: [aten.smooth_l1_loss, aten.lt]
# Source node to ATen node mapping:
# l1 => abs_1, div, lt, mul, pow_1, sub, sub_1, where
# mask => lt_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_lt_smooth_l1_loss_0 = async_compile.triton('triton_poi_fused_lt_smooth_l1_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_lt_smooth_l1_loss_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_lt_smooth_l1_loss_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = tmp3 * tmp3
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp7
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = 4.0
tmp13 = tmp1 < tmp12
tl.store(out_ptr0 + (x0), tmp11, xmask)
tl.store(out_ptr1 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [l1, mask], Original ATen: [aten.smooth_l1_loss, aten.lt]
stream0 = get_raw_stream(0)
triton_poi_fused_lt_smooth_l1_loss_0.run(arg1_1, arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class WeightedSmoothL1Loss(nn.SmoothL1Loss):
def __init__(self, threshold, initial_weight, apply_below_threshold=True):
super().__init__(reduction='none')
self.threshold = threshold
self.apply_below_threshold = apply_below_threshold
self.weight = initial_weight
def forward(self, input, target):
l1 = super().forward(input, target)
if self.apply_below_threshold:
mask = target < self.threshold
else:
mask = target >= self.threshold
l1[mask] = l1[mask] * self.weight
return l1.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'threshold': 4, 'initial_weight': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_lt_smooth_l1_loss_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = tmp3 * tmp3
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp7
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = 4.0
tmp13 = tmp1 < tmp12
tl.store(out_ptr0 + x0, tmp11, xmask)
tl.store(out_ptr1 + x0, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_lt_smooth_l1_loss_0[grid(256)](arg1_1, arg0_1,
buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf1
class WeightedSmoothL1LossNew(nn.SmoothL1Loss):
def __init__(self, threshold, initial_weight, apply_below_threshold=True):
super().__init__(reduction='none')
self.threshold = threshold
self.apply_below_threshold = apply_below_threshold
self.weight = initial_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BioTrillion/pytorch-3dunet | WeightedSmoothL1Loss | false | 4,906 | [
"MIT"
] | 1 | 217781197dd94211ee7fe5d53a8b404f0b8391a6 | https://github.com/BioTrillion/pytorch-3dunet/tree/217781197dd94211ee7fe5d53a8b404f0b8391a6 | import torch
import torch.nn as nn
class Model(nn.SmoothL1Loss):
def __init__(self, threshold, initial_weight, apply_below_threshold=True):
super().__init__(reduction='none')
self.threshold = threshold
self.apply_below_threshold = apply_below_threshold
self.weight = initial_weight
def forward(self, input, target):
l1 = super().forward(input, target)
if self.apply_below_threshold:
mask = target < self.threshold
else:
mask = target >= self.threshold
l1[mask] = l1[mask] * self.weight
return l1.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
BCEDiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/z6/cz6ehk6udjuldkbvdykpkjp4ihcvsvw26c57rsotg2zyo22imkez.py
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits], Original ATen: [aten.binary_cross_entropy_with_logits]
# Source node to ATen node mapping:
# binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
triton_per_fused_binary_cross_entropy_with_logits_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qy/cqy7ade3b5zspapgq3r6yfj5cbncx6zlctm6c2qhdgdpsoczelyy.py
# Topologically Sorted Source Nodes: [mul_1, intersect, mul_2, sum_2, mul_3, sum_3], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# intersect => sum_1
# mul_1 => mul_2
# mul_2 => mul_3
# mul_3 => mul_4
# sum_2 => sum_2
# sum_3 => sum_3
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [-1]), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [-1]), kwargs = {})
triton_per_fused_mul_sum_1 = async_compile.triton('triton_per_fused_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + ((16*x0) + (64*(r1 // 16)) + (r1 % 16)), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + ((16*x0) + (64*(r1 // 16)) + (r1 % 16)), xmask, other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tmp1 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp13 = tmp2 * tmp2
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp7, xmask)
tl.store(out_ptr1 + (x0), tmp12, xmask)
tl.store(out_ptr2 + (x0), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2o/c2oaqlhwjvaim4gkjsmmdcmipjbwogjnjl6jkil6a6df23xruvt4.py
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul, denominator, clamp, truediv, per_channel_dice, mean, sub, mul_5, add_1], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.add, aten.clamp, aten.div, aten.mean, aten.rsub]
# Source node to ATen node mapping:
# add_1 => add_1
# binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2
# clamp => clamp_min
# denominator => add
# mean => mean_1
# mul => mul_1
# mul_5 => mul_6
# per_channel_dice => mul_5
# sub => sub_3
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %clamp_min), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_5,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %mean_1), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_6), kwargs = {})
triton_per_fused_add_binary_cross_entropy_with_logits_clamp_div_mean_mul_rsub_2 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_clamp_div_mean_mul_rsub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_clamp_div_mean_mul_rsub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_clamp_div_mean_mul_rsub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tl.load(in_ptr2 + (r0), None)
tmp12 = tl.load(in_out_ptr0 + (0))
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, 1])
tmp3 = tmp1 + tmp2
tmp4 = 1e-06
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp0 / tmp5
tmp7 = 2.0
tmp8 = tmp6 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 4.0
tmp17 = tmp15 * tmp16
tmp18 = tmp11 / tmp16
tmp19 = 1.0
tmp20 = tmp19 - tmp18
tmp21 = tmp20 * tmp16
tmp22 = tmp17 + tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp22, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits], Original ATen: [aten.binary_cross_entropy_with_logits]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, intersect, mul_2, sum_2, mul_3, sum_3], Original ATen: [aten.mul, aten.sum]
triton_per_fused_mul_sum_1.run(arg1_1, arg0_1, buf1, buf2, buf3, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf5 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, mul, denominator, clamp, truediv, per_channel_dice, mean, sub, mul_5, add_1], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul, aten.add, aten.clamp, aten.div, aten.mean, aten.rsub]
triton_per_fused_add_binary_cross_entropy_with_logits_clamp_div_mean_mul_rsub_2.run(buf5, buf1, buf2, buf3, 1, 4, grid=grid(1), stream=stream0)
del buf1
del buf2
del buf3
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.contiguous().view(C, -1)
def compute_per_channel_dice(input, target, epsilon=1e-06, weight=None):
"""
Computes DiceCoefficient as defined in https://arxiv.org/abs/1606.04797 given a multi channel input and target.
Assumes the input is a normalized probability, e.g. a result of Sigmoid or Softmax function.
Args:
input (torch.Tensor): NxCxSpatial input tensor
target (torch.Tensor): NxCxSpatial target tensor
epsilon (float): prevents division by zero
weight (torch.Tensor): Cx1 tensor of weight per channel/class
"""
assert input.size() == target.size(
), "'input' and 'target' must have the same shape"
input = flatten(input)
target = flatten(target)
target = target.float()
intersect = (input * target).sum(-1)
if weight is not None:
intersect = weight * intersect
denominator = (input * input).sum(-1) + (target * target).sum(-1)
return 2 * (intersect / denominator.clamp(min=epsilon))
class _AbstractDiceLoss(nn.Module):
"""
Base class for different implementations of Dice loss.
"""
def __init__(self, weight=None, normalization='sigmoid'):
super(_AbstractDiceLoss, self).__init__()
self.register_buffer('weight', weight)
assert normalization in ['sigmoid', 'softmax', 'none']
if normalization == 'sigmoid':
self.normalization = nn.Sigmoid()
elif normalization == 'softmax':
self.normalization = nn.Softmax(dim=1)
else:
self.normalization = lambda x: x
def dice(self, input, target, weight):
raise NotImplementedError
def forward(self, input, target):
input = self.normalization(input)
per_channel_dice = self.dice(input, target, weight=self.weight)
return 1.0 - torch.mean(per_channel_dice)
class DiceLoss(_AbstractDiceLoss):
"""Computes Dice Loss according to https://arxiv.org/abs/1606.04797.
For multi-class segmentation `weight` parameter can be used to assign different weights per class.
The input to the loss function is assumed to be a logit and will be normalized by the Sigmoid function.
"""
def __init__(self, weight=None, normalization='sigmoid'):
super().__init__(weight, normalization)
def dice(self, input, target, weight):
return compute_per_channel_dice(input, target, weight=self.weight)
class BCEDiceLoss(nn.Module):
"""Linear combination of BCE and Dice losses"""
def __init__(self, alpha, beta):
super(BCEDiceLoss, self).__init__()
self.alpha = alpha
self.bce = nn.BCEWithLogitsLoss()
self.beta = beta
self.dice = DiceLoss()
def forward(self, input, target):
return self.alpha * self.bce(input, target) + self.beta * self.dice(
input, target)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'alpha': 4, 'beta': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16 * x0 + 64 * (r1 // 16) + r1 % 16), xmask,
other=0.0)
tmp2 = tl.load(in_ptr1 + (16 * x0 + 64 * (r1 // 16) + r1 % 16), xmask,
other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tmp1 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp13 = tmp2 * tmp2
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tl.store(out_ptr0 + x0, tmp7, xmask)
tl.store(out_ptr1 + x0, tmp12, xmask)
tl.store(out_ptr2 + x0, tmp17, xmask)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_clamp_div_mean_mul_rsub_2(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tl.load(in_ptr2 + r0, None)
tmp12 = tl.load(in_out_ptr0 + 0)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, 1])
tmp3 = tmp1 + tmp2
tmp4 = 1e-06
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp0 / tmp5
tmp7 = 2.0
tmp8 = tmp6 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 4.0
tmp17 = tmp15 * tmp16
tmp18 = tmp11 / tmp16
tmp19 = 1.0
tmp20 = tmp19 - tmp18
tmp21 = tmp20 * tmp16
tmp22 = tmp17 + tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp22, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_0[grid(1)](arg0_1,
arg1_1, buf0, 1, 256, num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_mul_sum_1[grid(4)](arg1_1, arg0_1, buf1, buf2,
buf3, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf5 = buf0
del buf0
triton_per_fused_add_binary_cross_entropy_with_logits_clamp_div_mean_mul_rsub_2[
grid(1)](buf5, buf1, buf2, buf3, 1, 4, XBLOCK=1, num_warps=2,
num_stages=1)
del buf1
del buf2
del buf3
return buf5,
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.contiguous().view(C, -1)
def compute_per_channel_dice(input, target, epsilon=1e-06, weight=None):
"""
Computes DiceCoefficient as defined in https://arxiv.org/abs/1606.04797 given a multi channel input and target.
Assumes the input is a normalized probability, e.g. a result of Sigmoid or Softmax function.
Args:
input (torch.Tensor): NxCxSpatial input tensor
target (torch.Tensor): NxCxSpatial target tensor
epsilon (float): prevents division by zero
weight (torch.Tensor): Cx1 tensor of weight per channel/class
"""
assert input.size() == target.size(
), "'input' and 'target' must have the same shape"
input = flatten(input)
target = flatten(target)
target = target.float()
intersect = (input * target).sum(-1)
if weight is not None:
intersect = weight * intersect
denominator = (input * input).sum(-1) + (target * target).sum(-1)
return 2 * (intersect / denominator.clamp(min=epsilon))
class _AbstractDiceLoss(nn.Module):
"""
Base class for different implementations of Dice loss.
"""
def __init__(self, weight=None, normalization='sigmoid'):
super(_AbstractDiceLoss, self).__init__()
self.register_buffer('weight', weight)
assert normalization in ['sigmoid', 'softmax', 'none']
if normalization == 'sigmoid':
self.normalization = nn.Sigmoid()
elif normalization == 'softmax':
self.normalization = nn.Softmax(dim=1)
else:
self.normalization = lambda x: x
def dice(self, input, target, weight):
raise NotImplementedError
def forward(self, input, target):
input = self.normalization(input)
per_channel_dice = self.dice(input, target, weight=self.weight)
return 1.0 - torch.mean(per_channel_dice)
class DiceLoss(_AbstractDiceLoss):
"""Computes Dice Loss according to https://arxiv.org/abs/1606.04797.
For multi-class segmentation `weight` parameter can be used to assign different weights per class.
The input to the loss function is assumed to be a logit and will be normalized by the Sigmoid function.
"""
def __init__(self, weight=None, normalization='sigmoid'):
super().__init__(weight, normalization)
def dice(self, input, target, weight):
return compute_per_channel_dice(input, target, weight=self.weight)
class BCEDiceLossNew(nn.Module):
"""Linear combination of BCE and Dice losses"""
def __init__(self, alpha, beta):
super(BCEDiceLossNew, self).__init__()
self.alpha = alpha
self.bce = nn.BCEWithLogitsLoss()
self.beta = beta
self.dice = DiceLoss()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| BioTrillion/pytorch-3dunet | BCEDiceLoss | false | 4,907 | [
"MIT"
] | 1 | 217781197dd94211ee7fe5d53a8b404f0b8391a6 | https://github.com/BioTrillion/pytorch-3dunet/tree/217781197dd94211ee7fe5d53a8b404f0b8391a6 | import torch
import torch.nn as nn
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
transposed = tensor.permute(axis_order)
return transposed.contiguous().view(C, -1)
def compute_per_channel_dice(input, target, epsilon=1e-06, weight=None):
"""
Computes DiceCoefficient as defined in https://arxiv.org/abs/1606.04797 given a multi channel input and target.
Assumes the input is a normalized probability, e.g. a result of Sigmoid or Softmax function.
Args:
input (torch.Tensor): NxCxSpatial input tensor
target (torch.Tensor): NxCxSpatial target tensor
epsilon (float): prevents division by zero
weight (torch.Tensor): Cx1 tensor of weight per channel/class
"""
assert input.size() == target.size(
), "'input' and 'target' must have the same shape"
input = flatten(input)
target = flatten(target)
target = target.float()
intersect = (input * target).sum(-1)
if weight is not None:
intersect = weight * intersect
denominator = (input * input).sum(-1) + (target * target).sum(-1)
return 2 * (intersect / denominator.clamp(min=epsilon))
class _AbstractDiceLoss(nn.Module):
"""
Base class for different implementations of Dice loss.
"""
def __init__(self, weight=None, normalization='sigmoid'):
super().__init__()
self.register_buffer('weight', weight)
assert normalization in ['sigmoid', 'softmax', 'none']
if normalization == 'sigmoid':
self.normalization = nn.Sigmoid()
elif normalization == 'softmax':
self.normalization = nn.Softmax(dim=1)
else:
self.normalization = lambda x: x
def dice(self, input, target, weight):
raise NotImplementedError
def forward(self, input, target):
input = self.normalization(input)
per_channel_dice = self.dice(input, target, weight=self.weight)
return 1.0 - torch.mean(per_channel_dice)
class DiceLoss(_AbstractDiceLoss):
"""Computes Dice Loss according to https://arxiv.org/abs/1606.04797.
For multi-class segmentation `weight` parameter can be used to assign different weights per class.
The input to the loss function is assumed to be a logit and will be normalized by the Sigmoid function.
"""
def __init__(self, weight=None, normalization='sigmoid'):
super().__init__(weight, normalization)
def dice(self, input, target, weight):
return compute_per_channel_dice(input, target, weight=self.weight)
class Model(nn.Module):
"""Linear combination of BCE and Dice losses"""
def __init__(self, alpha, beta):
super().__init__()
self.alpha = alpha
self.bce = nn.BCEWithLogitsLoss()
self.beta = beta
self.dice = DiceLoss()
def forward(self, input, target):
return self.alpha * self.bce(input, target) + self.beta * self.dice(
input, target)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
BatchLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/bh/cbhpcgxjg3mwo4dulstw5ie26none2yzi5sysdzl34cu6pyah4fg.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add, aten.view]
# Source node to ATen node mapping:
# output_1 => add, view_3
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %unsqueeze), kwargs = {})
# %view_3 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_2, [4, 4, 4, 4]), kwargs = {})
triton_poi_fused_add_view_0 = async_compile.triton('triton_poi_fused_add_view_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_view_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_view_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add, aten.view]
stream0 = get_raw_stream(0)
triton_poi_fused_add_view_0.run(buf2, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from collections import OrderedDict
class MetaModule(nn.Module):
"""
Base class for PyTorch meta-learning modules. These modules accept an
additional argument `params` in their `forward` method.
Notes
-----
Objects inherited from `MetaModule` are fully compatible with PyTorch
modules from `torch.nn.Module`. The argument `params` is a dictionary of
tensors, with full support of the computation graph (for differentiation).
"""
def meta_named_parameters(self, prefix='', recurse=True):
gen = self._named_members(lambda module: module._parameters.items() if
isinstance(module, MetaModule) else [], prefix=prefix, recurse=
recurse)
for elem in gen:
yield elem
def meta_parameters(self, recurse=True):
for name, param in self.meta_named_parameters(recurse=recurse):
yield param
class BatchLinear(nn.Linear, MetaModule):
"""A linear meta-layer that can deal with batched weight matrices and biases, as for instance output by a
hypernetwork."""
__doc__ = nn.Linear.__doc__
def forward(self, input, params=None):
if params is None:
params = OrderedDict(self.named_parameters())
bias = params.get('bias', None)
weight = params['weight']
output = input.matmul(weight.permute(*[i for i in range(len(weight.
shape) - 2)], -1, -2))
output += bias.unsqueeze(-2)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_view_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_view_0[grid(256)](buf2, primals_2, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_2
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class MetaModule(nn.Module):
"""
Base class for PyTorch meta-learning modules. These modules accept an
additional argument `params` in their `forward` method.
Notes
-----
Objects inherited from `MetaModule` are fully compatible with PyTorch
modules from `torch.nn.Module`. The argument `params` is a dictionary of
tensors, with full support of the computation graph (for differentiation).
"""
def meta_named_parameters(self, prefix='', recurse=True):
gen = self._named_members(lambda module: module._parameters.items() if
isinstance(module, MetaModule) else [], prefix=prefix, recurse=
recurse)
for elem in gen:
yield elem
def meta_parameters(self, recurse=True):
for name, param in self.meta_named_parameters(recurse=recurse):
yield param
class BatchLinearNew(nn.Linear, MetaModule):
"""A linear meta-layer that can deal with batched weight matrices and biases, as for instance output by a
hypernetwork."""
__doc__ = nn.Linear.__doc__
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| Bunnycakes62/SIREN | BatchLinear | false | 4,908 | [
"MIT"
] | 1 | 87c2c9e28411fd6a83d1d0d1bc5141cce30e646b | https://github.com/Bunnycakes62/SIREN/tree/87c2c9e28411fd6a83d1d0d1bc5141cce30e646b | import torch
import torch.nn as nn
from collections import OrderedDict
class MetaModule(nn.Module):
"""
Base class for PyTorch meta-learning modules. These modules accept an
additional argument `params` in their `forward` method.
Notes
-----
Objects inherited from `MetaModule` are fully compatible with PyTorch
modules from `torch.nn.Module`. The argument `params` is a dictionary of
tensors, with full support of the computation graph (for differentiation).
"""
def meta_named_parameters(self, prefix='', recurse=True):
gen = self._named_members(lambda module: module._parameters.items() if
isinstance(module, MetaModule) else [], prefix=prefix, recurse=
recurse)
for elem in gen:
yield elem
def meta_parameters(self, recurse=True):
for name, param in self.meta_named_parameters(recurse=recurse):
yield param
class Model(nn.Linear, MetaModule):
"""A linear meta-layer that can deal with batched weight matrices and biases, as for instance output by a
hypernetwork."""
__doc__ = nn.Linear.__doc__
def forward(self, input, params=None):
if params is None:
params = OrderedDict(self.named_parameters())
bias = params.get('bias', None)
weight = params['weight']
output = input.matmul(weight.permute(*[i for i in range(len(weight.
shape) - 2)], -1, -2))
output += bias.unsqueeze(-2)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [4, 4]
|
PMA | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/cm/ccmcgo4hhocf76otuns232vkfdobmiyhbrbzce7zxp7kc5eree6u.py
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_1, [4, 1, 1]), kwargs = {})
triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ev/cevijwbbqed46icacbs6dadxexw32cw7j44rnr3vfdt7cyd63ztr.py
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# Q_ => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2, %getitem_3],), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-8) + x1))), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-12) + x1))), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7n/c7nhob3voygbzg73wacfq2bbcquxe5ozjclkx7uda5hunwppje36.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# A => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# A => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ho/chonql74cp63ou2wjfbbxvxkifexbc3cs3owc7nmvjuuhx6k6oqc.py
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# O => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_12, %getitem_13, %getitem_14, %getitem_15], 2), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 4, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + (x2), tmp38, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3j/c3jlveurtxkoy4v4xyl2fgccp7ieaeliub6jaslea3rhtsnp7cxd.py
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# O_1 => add_1
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat_3, %relu), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
stream0 = get_raw_stream(0)
triton_poi_fused_repeat_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [Q], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [K], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [V], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
del primals_8
buf4 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf4, 64, grid=grid(64), stream=stream0)
buf5 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 64), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [V_], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf3, buf5, 64, grid=grid(64), stream=stream0)
buf6 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [K_], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf2, buf6, 64, grid=grid(64), stream=stream0)
buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(buf4, reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7)
buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf7, buf8, 256, grid=grid(256), stream=stream0)
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf8
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, buf5, out=buf10)
buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf4, buf10, buf11, 64, grid=grid(64), stream=stream0)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf12)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_5.run(buf11, buf12, primals_10, buf13, buf14, 64, grid=grid(64), stream=stream0)
del buf12
del primals_10
return (buf13, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), buf14, primals_9, reinterpret_tensor(buf5, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), buf6, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class PMA(nn.Module):
def __init__(self, dim, num_heads, num_seeds, ln=False):
super(PMA, self).__init__()
self.S = nn.Parameter(torch.Tensor(1, num_seeds, dim))
nn.init.xavier_uniform_(self.S)
self.mab = MAB(dim, dim, dim, num_heads, ln=ln)
def forward(self, X):
return self.mab(self.S.repeat(X.size(0), 1, 1), X)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4, 'num_heads': 4, 'num_seeds': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1)), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tl.full([1], 4, tl.int64)
tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + x2, tmp38, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_5(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_repeat_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf3)
del primals_7
del primals_8
buf4 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
triton_poi_fused_cat_1[grid(64)](buf1, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 64), 0)
del buf1
triton_poi_fused_cat_1[grid(64)](buf3, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0)
del buf3
triton_poi_fused_cat_1[grid(64)](buf2, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf4, reinterpret_tensor(buf6, (16, 1, 4), (4, 0,
1), 0), out=buf7)
buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_3[grid(256)](buf8, buf9, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf8
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(buf9, buf5, out=buf10)
buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_4[grid(64)](buf4, buf10, buf11, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0)
del buf10
extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf12)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_5[grid(64)](buf11,
buf12, primals_10, buf13, buf14, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf12
del primals_10
return buf13, reinterpret_tensor(buf0, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), buf9, reinterpret_tensor(buf11, (16, 4), (4, 1), 0
), buf14, primals_9, reinterpret_tensor(buf5, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), buf6, primals_3
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class PMANew(nn.Module):
def __init__(self, dim, num_heads, num_seeds, ln=False):
super(PMANew, self).__init__()
self.S = nn.Parameter(torch.Tensor(1, num_seeds, dim))
nn.init.xavier_uniform_(self.S)
self.mab = MAB(dim, dim, dim, num_heads, ln=ln)
def forward(self, input_0):
primals_1 = self.S
primals_3 = self.mab.fc_q.weight
primals_4 = self.mab.fc_q.bias
primals_5 = self.mab.fc_k.weight
primals_6 = self.mab.fc_k.bias
primals_7 = self.mab.fc_v.weight
primals_8 = self.mab.fc_v.bias
primals_9 = self.mab.fc_o.weight
primals_10 = self.mab.fc_o.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
| Behrouz-Babaki/NCG4CVRP | PMA | false | 4,909 | [
"MIT"
] | 1 | 87d63366c0b461f44ce8e982159a1e207af77b44 | https://github.com/Behrouz-Babaki/NCG4CVRP/tree/87d63366c0b461f44ce8e982159a1e207af77b44 | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super().__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class Model(nn.Module):
def __init__(self, dim, num_heads, num_seeds, ln=False):
super().__init__()
self.S = nn.Parameter(torch.Tensor(1, num_seeds, dim))
nn.init.xavier_uniform_(self.S)
self.mab = MAB(dim, dim, dim, num_heads, ln=ln)
def forward(self, X):
return self.mab(self.S.repeat(X.size(0), 1, 1), X)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4]
|
ISAB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/cm/ccmcgo4hhocf76otuns232vkfdobmiyhbrbzce7zxp7kc5eree6u.py
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_1, [4, 1, 1]), kwargs = {})
triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ev/cevijwbbqed46icacbs6dadxexw32cw7j44rnr3vfdt7cyd63ztr.py
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# Q_ => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2, %getitem_3],), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-8) + x1))), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-12) + x1))), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7n/c7nhob3voygbzg73wacfq2bbcquxe5ozjclkx7uda5hunwppje36.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# A => exp
# Graph fragment:
# %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [2], True), kwargs = {})
# %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {})
# %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# A => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ho/chonql74cp63ou2wjfbbxvxkifexbc3cs3owc7nmvjuuhx6k6oqc.py
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# O => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_12, %getitem_13, %getitem_14, %getitem_15], 2), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 4, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + (x2), tmp38, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3j/c3jlveurtxkoy4v4xyl2fgccp7ieaeliub6jaslea3rhtsnp7cxd.py
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# O_1 => add_1
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%cat_3, %relu), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
stream0 = get_raw_stream(0)
triton_poi_fused_repeat_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [Q], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [K], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [V], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
del primals_8
buf4 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf4, 64, grid=grid(64), stream=stream0)
buf5 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 64), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [V_], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf3, buf5, 64, grid=grid(64), stream=stream0)
buf6 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [K_], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf2, buf6, 64, grid=grid(64), stream=stream0)
buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(buf4, reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7)
buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf7, buf8, 256, grid=grid(256), stream=stream0)
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf8, buf9, 256, grid=grid(256), stream=stream0)
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, buf5, out=buf10)
buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [O], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf4, buf10, buf11, 64, grid=grid(64), stream=stream0)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf12)
buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [Q_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_11
del primals_12
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf28 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_5.run(buf11, buf12, primals_10, buf14, buf28, 64, grid=grid(64), stream=stream0)
del primals_10
buf15 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [K_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del primals_14
buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [V_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_16, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf16)
del primals_16
buf17 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [Q__1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf13, buf17, 64, grid=grid(64), stream=stream0)
buf18 = reinterpret_tensor(buf13, (16, 4, 1), (4, 1, 64), 0); del buf13 # reuse
# Topologically Sorted Source Nodes: [V__1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf16, buf18, 64, grid=grid(64), stream=stream0)
buf19 = reinterpret_tensor(buf16, (16, 4, 1), (4, 1, 1), 0); del buf16 # reuse
# Topologically Sorted Source Nodes: [K__1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf15, buf19, 64, grid=grid(64), stream=stream0)
buf20 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [bmm_2], Original ATen: [aten.bmm]
extern_kernels.bmm(buf17, reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), out=buf20)
buf21 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [A_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf20, buf21, 256, grid=grid(256), stream=stream0)
buf22 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [A_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf21, buf22, 256, grid=grid(256), stream=stream0)
del buf21
buf23 = reinterpret_tensor(buf15, (16, 4, 1), (4, 1, 1), 0); del buf15 # reuse
# Topologically Sorted Source Nodes: [bmm_3], Original ATen: [aten.bmm]
extern_kernels.bmm(buf22, buf18, out=buf23)
buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [O_2], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf17, buf23, buf24, 64, grid=grid(64), stream=stream0)
buf25 = reinterpret_tensor(buf23, (16, 4), (4, 1), 0); del buf23 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf24, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf25)
buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf27 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_1, O_3], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_5.run(buf24, buf25, primals_18, buf26, buf27, 64, grid=grid(64), stream=stream0)
del buf25
del primals_18
return (buf26, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf24, (16, 4), (4, 1), 0), buf27, primals_17, reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf17, (16, 1, 4), (4, 1, 1), 0), buf19, primals_15, primals_13, buf28, primals_9, reinterpret_tensor(buf5, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), buf6, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class ISAB(nn.Module):
def __init__(self, dim_in, dim_out, num_heads, num_inds, ln=False):
super(ISAB, self).__init__()
self.I = nn.Parameter(torch.Tensor(1, num_inds, dim_out))
nn.init.xavier_uniform_(self.I)
self.mab0 = MAB(dim_out, dim_in, dim_out, num_heads, ln=ln)
self.mab1 = MAB(dim_in, dim_out, dim_out, num_heads, ln=ln)
def forward(self, X):
H = self.mab0(self.I.repeat(X.size(0), 1, 1), X)
return self.mab1(X, H)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4, 'num_heads': 4, 'num_inds': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1)), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tl.full([1], 4, tl.int64)
tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + x2, tmp38, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_5(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_repeat_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf2)
del primals_5
del primals_6
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf3)
del primals_7
del primals_8
buf4 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
triton_poi_fused_cat_1[grid(64)](buf1, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 64), 0)
del buf1
triton_poi_fused_cat_1[grid(64)](buf3, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0)
del buf3
triton_poi_fused_cat_1[grid(64)](buf2, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf4, reinterpret_tensor(buf6, (16, 1, 4), (4, 0,
1), 0), out=buf7)
buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_3[grid(256)](buf8, buf9, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(buf9, buf5, out=buf10)
buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_4[grid(64)](buf4, buf10, buf11, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0)
del buf10
extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf12)
buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_12, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4),
0), alpha=1, beta=1, out=buf13)
del primals_11
del primals_12
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf28 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_5[grid(64)](buf11,
buf12, primals_10, buf14, buf28, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_10
buf15 = buf12
del buf12
extern_kernels.addmm(primals_14, reinterpret_tensor(buf14, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf15)
del primals_14
buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_16, reinterpret_tensor(buf14, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf16)
del primals_16
buf17 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
triton_poi_fused_cat_1[grid(64)](buf13, buf17, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf18 = reinterpret_tensor(buf13, (16, 4, 1), (4, 1, 64), 0)
del buf13
triton_poi_fused_cat_1[grid(64)](buf16, buf18, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf19 = reinterpret_tensor(buf16, (16, 4, 1), (4, 1, 1), 0)
del buf16
triton_poi_fused_cat_1[grid(64)](buf15, buf19, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf20 = buf8
del buf8
extern_kernels.bmm(buf17, reinterpret_tensor(buf19, (16, 1, 4), (4,
0, 1), 0), out=buf20)
buf21 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf20, buf21, 256, XBLOCK=
128, num_warps=4, num_stages=1)
buf22 = buf20
del buf20
triton_poi_fused__softmax_3[grid(256)](buf21, buf22, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del buf21
buf23 = reinterpret_tensor(buf15, (16, 4, 1), (4, 1, 1), 0)
del buf15
extern_kernels.bmm(buf22, buf18, out=buf23)
buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_4[grid(64)](buf17, buf23, buf24, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf25 = reinterpret_tensor(buf23, (16, 4), (4, 1), 0)
del buf23
extern_kernels.mm(reinterpret_tensor(buf24, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf25)
buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf27 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_5[grid(64)](buf24,
buf25, primals_18, buf26, buf27, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf25
del primals_18
return buf26, reinterpret_tensor(buf0, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), buf9, reinterpret_tensor(buf11, (16, 4), (4, 1), 0
), reinterpret_tensor(buf14, (16, 4), (4, 1), 0
), buf22, reinterpret_tensor(buf24, (16, 4), (4, 1), 0
), buf27, primals_17, reinterpret_tensor(buf18, (16, 1, 4), (4, 1,
1), 0), reinterpret_tensor(buf17, (16, 1, 4), (4, 1, 1), 0
), buf19, primals_15, primals_13, buf28, primals_9, reinterpret_tensor(
buf5, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 4
), (4, 1, 1), 0), buf6, primals_3
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class ISABNew(nn.Module):
def __init__(self, dim_in, dim_out, num_heads, num_inds, ln=False):
super(ISABNew, self).__init__()
self.I = nn.Parameter(torch.Tensor(1, num_inds, dim_out))
nn.init.xavier_uniform_(self.I)
self.mab0 = MAB(dim_out, dim_in, dim_out, num_heads, ln=ln)
self.mab1 = MAB(dim_in, dim_out, dim_out, num_heads, ln=ln)
def forward(self, input_0):
primals_1 = self.I
primals_3 = self.mab0.fc_q.weight
primals_4 = self.mab0.fc_q.bias
primals_5 = self.mab0.fc_k.weight
primals_6 = self.mab0.fc_k.bias
primals_7 = self.mab0.fc_v.weight
primals_8 = self.mab0.fc_v.bias
primals_9 = self.mab0.fc_o.weight
primals_10 = self.mab0.fc_o.bias
primals_11 = self.mab1.fc_q.weight
primals_12 = self.mab1.fc_q.bias
primals_13 = self.mab1.fc_k.weight
primals_14 = self.mab1.fc_k.bias
primals_15 = self.mab1.fc_v.weight
primals_16 = self.mab1.fc_v.bias
primals_17 = self.mab1.fc_o.weight
primals_18 = self.mab1.fc_o.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0]
| Behrouz-Babaki/NCG4CVRP | ISAB | false | 4,910 | [
"MIT"
] | 1 | 87d63366c0b461f44ce8e982159a1e207af77b44 | https://github.com/Behrouz-Babaki/NCG4CVRP/tree/87d63366c0b461f44ce8e982159a1e207af77b44 | import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MAB(nn.Module):
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super().__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2
)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
return O
class Model(nn.Module):
def __init__(self, dim_in, dim_out, num_heads, num_inds, ln=False):
super().__init__()
self.I = nn.Parameter(torch.Tensor(1, num_inds, dim_out))
nn.init.xavier_uniform_(self.I)
self.mab0 = MAB(dim_out, dim_in, dim_out, num_heads, ln=ln)
self.mab1 = MAB(dim_in, dim_out, dim_out, num_heads, ln=ln)
def forward(self, X):
H = self.mab0(self.I.repeat(X.size(0), 1, 1), X)
return self.mab1(X, H)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [4, 4, 4, 4]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.