entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
CoAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xh/cxhufxy5z5bw2sxy7kyvon4t3h5htjwg4l5jyqjel46ydm4gdhoo.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%expand, %expand_1, %mul], 3), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x4 = (xindex // 48) x1 = (xindex // 12) % 4 x3 = (xindex // 192) x5 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x4) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + (16*x3) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr0 + ((4*x4) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr1 + ((4*x1) + (16*x3) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 * tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp9, tmp10, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tl.store(out_ptr0 + (x5), tmp20, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/in/cinhohydvjhsrmb65q7lmtejvfet4hwdnbzohhjwba5bqqp2ard3.py # Topologically Sorted Source Nodes: [S_q, S_c], Original ATen: [aten._softmax] # Source node to ATen node mapping: # S_c => amax_1, clone, exp_1, sub_1 # S_q => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [2], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = (xindex // 4) x0 = xindex % 4 x3 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (x0 + (16*x3)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (4 + x0 + (16*x3)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (8 + x0 + (16*x3)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (12 + x0 + (16*x3)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tmp12 = triton_helpers.maximum(tmp10, tmp11) tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp16 = triton_helpers.maximum(tmp14, tmp15) tmp17 = tmp0 - tmp16 tmp18 = tl_math.exp(tmp17) tl.store(out_ptr0 + (x4), tmp9, xmask) tl.store(out_ptr1 + (x4), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [S_q], Original ATen: [aten._softmax] # Source node to ATen node mapping: # S_q => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eo/ceozpk57idzx6fg2br3t2tsfcjyiijh6zrro3dm734z6riudik7o.py # Topologically Sorted Source Nodes: [S_c], Original ATen: [aten._softmax] # Source node to ATen node mapping: # S_c => div_1, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [2], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + (16*y1)), ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + y0 + (16*y1)), ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + y0 + (16*y1)), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + y0 + (16*y1)), ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/46/c46nxna4wokdpulyfa7ikak4z7dcmraddbrj4o2isv5enu5vy4zw.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] # Source node to ATen node mapping: # out => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %bmm, %mul_1, %mul_2], -1), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp14, tmp17, tmp18) tmp20 = tmp0 >= tmp12 tmp21 = tl.full([1], 16, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tl.load(in_ptr0 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.load(in_ptr2 + ((4*x1) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 * tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp20, tmp25, tmp26) tmp28 = tl.where(tmp14, tmp19, tmp27) tmp29 = tl.where(tmp9, tmp10, tmp28) tmp30 = tl.where(tmp4, tmp5, tmp29) tl.store(out_ptr0 + (x2), tmp30, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 12), (12, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_2, primals_1, buf0, 768, grid=grid(768), stream=stream0) buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 12), (12, 1), 0), reinterpret_tensor(primals_3, (12, 1), (1, 12), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [S_q, S_c], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, buf4, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [S_q], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf5 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [S_c], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf4, buf5, 16, 4, grid=grid(16, 4), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [A], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, primals_1, out=buf6) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, buf5, out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [B], Original ATen: [aten.bmm] extern_kernels.bmm(buf7, primals_2, out=buf8) del buf7 buf9 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(primals_2, buf6, buf8, buf9, 256, grid=grid(256), stream=stream0) del buf6 del buf8 return (buf9, primals_2, reinterpret_tensor(buf0, (64, 12), (12, 1), 0), buf3, buf5, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 12), (12, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class CoAttention(nn.Module): """ CoAttention encoder in Dynamic Coattention Networks For Question Answering (https://arxiv.org/abs/1611.01604) check the Figure 2 in paper * Args: embed_dim: the number of input embedding dimension """ def __init__(self, embed_dim): super(CoAttention, self).__init__() self.W_0 = nn.Linear(embed_dim * 3, 1, bias=False) def forward(self, context_embed, question_embed, context_mask=None, question_mask=None): C, Q = context_embed, question_embed B, C_L, Q_L, D = C.size(0), C.size(1), Q.size(1), Q.size(2) similarity_matrix_shape = torch.zeros(B, C_L, Q_L, D) C_ = C.unsqueeze(2).expand_as(similarity_matrix_shape) Q_ = Q.unsqueeze(1).expand_as(similarity_matrix_shape) C_Q = torch.mul(C_, Q_) S = self.W_0(torch.cat([C_, Q_, C_Q], 3)).squeeze(3) S_question = S if question_mask is not None: S_question = f.add_masked_value(S_question, question_mask. unsqueeze(1), value=-10000000.0) S_q = F.softmax(S_question, 2) S_context = S.transpose(1, 2) if context_mask is not None: S_context = f.add_masked_value(S_context, context_mask. unsqueeze(1), value=-10000000.0) S_c = F.softmax(S_context, 2) A = torch.bmm(S_q, Q) B = torch.bmm(S_q, S_c).bmm(C) out = torch.cat([C, A, C * A, C * B], dim=-1) return out def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x4 = xindex // 48 x1 = xindex // 12 % 4 x3 = xindex // 192 x5 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x4 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + 16 * x3 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr0 + (4 * x4 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr1 + (4 * x1 + 16 * x3 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 * tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp11, tmp16, tmp17) tmp19 = tl.where(tmp9, tmp10, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tl.store(out_ptr0 + x5, tmp20, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = xindex // 4 x0 = xindex % 4 x3 = xindex // 16 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (x0 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (4 + x0 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (8 + x0 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (12 + x0 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tmp12 = triton_helpers.maximum(tmp10, tmp11) tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp16 = triton_helpers.maximum(tmp14, tmp15) tmp17 = tmp0 - tmp16 tmp18 = tl_math.exp(tmp17) tl.store(out_ptr0 + x4, tmp9, xmask) tl.store(out_ptr1 + x4, tmp18, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + 16 * y1), ymask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + y0 + 16 * y1), ymask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + y0 + 16 * y1), ymask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + y0 + 16 * y1), ymask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp14, tmp17, tmp18) tmp20 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp23 = tl.load(in_ptr0 + (4 * x1 + (-12 + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.load(in_ptr2 + (4 * x1 + (-12 + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 * tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp20, tmp25, tmp26) tmp28 = tl.where(tmp14, tmp19, tmp27) tmp29 = tl.where(tmp9, tmp10, tmp28) tmp30 = tl.where(tmp4, tmp5, tmp29) tl.store(out_ptr0 + x2, tmp30, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 12), (12, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch. float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(768)](primals_2, primals_1, buf0, 768, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 12), (12, 1), 0), reinterpret_tensor(primals_3, (12, 1), (1, 12), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf1, buf2, buf4, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = buf2 del buf2 triton_poi_fused__softmax_3[grid(16, 4)](buf4, buf5, 16, 4, XBLOCK= 4, YBLOCK=16, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0) del buf4 extern_kernels.bmm(buf3, primals_1, out=buf6) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, buf5, out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf7, primals_2, out=buf8) del buf7 buf9 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused_cat_4[grid(256)](primals_2, buf6, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del buf8 return buf9, primals_2, reinterpret_tensor(buf0, (64, 12), (12, 1), 0 ), buf3, buf5, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0) class CoAttentionNew(nn.Module): """ CoAttention encoder in Dynamic Coattention Networks For Question Answering (https://arxiv.org/abs/1611.01604) check the Figure 2 in paper * Args: embed_dim: the number of input embedding dimension """ def __init__(self, embed_dim): super(CoAttentionNew, self).__init__() self.W_0 = nn.Linear(embed_dim * 3, 1, bias=False) def forward(self, input_0, input_1): primals_3 = self.W_0.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
hamishivi/claf
CoAttention
false
3,578
[ "MIT" ]
0
8e35f30e3fc4a45a45cc0766eb6ab55a6ba3f0c2
https://github.com/hamishivi/claf/tree/8e35f30e3fc4a45a45cc0766eb6ab55a6ba3f0c2
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): """ CoAttention encoder in Dynamic Coattention Networks For Question Answering (https://arxiv.org/abs/1611.01604) check the Figure 2 in paper * Args: embed_dim: the number of input embedding dimension """ def __init__(self, embed_dim): super().__init__() self.W_0 = nn.Linear(embed_dim * 3, 1, bias=False) def forward(self, context_embed, question_embed, context_mask=None, question_mask=None): C, Q = context_embed, question_embed B, C_L, Q_L, D = C.size(0), C.size(1), Q.size(1), Q.size(2) similarity_matrix_shape = torch.zeros(B, C_L, Q_L, D) C_ = C.unsqueeze(2).expand_as(similarity_matrix_shape) Q_ = Q.unsqueeze(1).expand_as(similarity_matrix_shape) C_Q = torch.mul(C_, Q_) S = self.W_0(torch.cat([C_, Q_, C_Q], 3)).squeeze(3) S_question = S if question_mask is not None: S_question = f.add_masked_value(S_question, question_mask. unsqueeze(1), value=-10000000.0) S_q = F.softmax(S_question, 2) S_context = S.transpose(1, 2) if context_mask is not None: S_context = f.add_masked_value(S_context, context_mask. unsqueeze(1), value=-10000000.0) S_c = F.softmax(S_context, 2) A = torch.bmm(S_q, Q) B = torch.bmm(S_q, S_c).bmm(C) out = torch.cat([C, A, C * A, C * B], dim=-1) return out def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
SoftArgMax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ap/capazs53vf7hafcoa3lzpsnuw7vvpg5foinomftp5aheilxucgrj.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mul] # Source node to ATen node mapping: # y => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ai/cai4aganf675szmpqqbldagrvvvml7s2kfnowv6q5zf7l74mv3ps.py # Topologically Sorted Source Nodes: [y_1, x, add, y_2, res], Original ATen: [aten.mul, aten.add, aten.div, aten.gather] # Source node to ATen node mapping: # add => add # res => gather # x => mul_1 # y_1 => mul_2 # y_2 => div # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1e-08), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, %add), kwargs = {}) # %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%div, -1, %unsqueeze_2), kwargs = {}) triton_poi_fused_add_div_gather_mul_1 = async_compile.triton('triton_poi_fused_add_div_gather_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_gather_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_gather_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp13 = tmp12 + tmp11 tmp15 = tmp14 + tmp13 tmp17 = tmp16 + tmp15 tmp18 = tmp17 * tmp7 tmp19 = tmp18 * tmp9 tmp20 = 1e-08 tmp21 = tmp19 + tmp20 tmp22 = tmp10 / tmp21 tl.store(out_ptr0 + (x0), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, arg1_1, buf0, 16, grid=grid(16), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [y_1, x, add, y_2, res], Original ATen: [aten.mul, aten.add, aten.div, aten.gather] triton_poi_fused_add_div_gather_mul_1.run(buf0, arg0_1, buf1, 4, grid=grid(4), stream=stream0) del arg0_1 del buf0 return (reinterpret_tensor(buf1, (4, ), (1, ), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SoftArgMax(nn.Module): def __init__(self): super().__init__() def forward(self, x, labels, kernel_size=0): """ Args x: [B, C, Nd] labels: [Nd] Returns [B, C] """ y = x * labels kernel_size = kernel_size if kernel_size > 0 else x.size(-1) x = F.avg_pool1d(x, kernel_size=kernel_size) * kernel_size y = F.avg_pool1d(y, kernel_size=kernel_size) * kernel_size y = y / (x + 1e-08) ind = x.argmax(dim=-1).unsqueeze(-1) res = torch.gather(y, dim=-1, index=ind) res = res.squeeze(-1) return res def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_div_gather_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp13 = tmp12 + tmp11 tmp15 = tmp14 + tmp13 tmp17 = tmp16 + tmp15 tmp18 = tmp17 * tmp7 tmp19 = tmp18 * tmp9 tmp20 = 1e-08 tmp21 = tmp19 + tmp20 tmp22 = tmp10 / tmp21 tl.store(out_ptr0 + x0, tmp22, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](arg0_1, arg1_1, buf0, 16, XBLOCK= 16, num_warps=1, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_poi_fused_add_div_gather_mul_1[grid(4)](buf0, arg0_1, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del arg0_1 del buf0 return reinterpret_tensor(buf1, (4,), (1,), 0), class SoftArgMaxNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
hcyz33/PlaneSweepPose
SoftArgMax
false
3,579
[ "MIT" ]
0
4ae3a4e7e939fa74c060eb1b354c34ea0fb55248
https://github.com/hcyz33/PlaneSweepPose/tree/4ae3a4e7e939fa74c060eb1b354c34ea0fb55248
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x, labels, kernel_size=0): """ Args x: [B, C, Nd] labels: [Nd] Returns [B, C] """ y = x * labels kernel_size = kernel_size if kernel_size > 0 else x.size(-1) x = F.avg_pool1d(x, kernel_size=kernel_size) * kernel_size y = F.avg_pool1d(y, kernel_size=kernel_size) * kernel_size y = y / (x + 1e-08) ind = x.argmax(dim=-1).unsqueeze(-1) res = torch.gather(y, dim=-1, index=ind) res = res.squeeze(-1) return res def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return []
AutoEncoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/jq/cjqaq2meov3vkcgfealq7w4w35tw2oemvmhneuxmigeoumva22p7.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class AutoEncoder(nn.Module): def __init__(self, num_question, k): """ Initialize a class AutoEncoder. :param num_question: int :param k: int """ super(AutoEncoder, self).__init__() self.g = nn.Linear(num_question, k) self.h = nn.Linear(k, num_question) def get_weight_norm(self): """ Return ||W^1||^2 + ||W^2||^2. :return: float """ g_w_norm = torch.norm(self.g.weight, 2) ** 2 h_w_norm = torch.norm(self.h.weight, 2) ** 2 return g_w_norm + h_w_norm def forward(self, inputs): """ Return a forward pass given inputs. :param inputs: user vector. :return: user vector. """ g = nn.Sigmoid() h = nn.Sigmoid() out = h(self.h(g(self.g(inputs)))) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_question': 4, 'k': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_sigmoid_0[grid(256)](buf3, primals_5, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, primals_4 class AutoEncoderNew(nn.Module): def __init__(self, num_question, k): """ Initialize a class AutoEncoder. :param num_question: int :param k: int """ super(AutoEncoderNew, self).__init__() self.g = nn.Linear(num_question, k) self.h = nn.Linear(k, num_question) def get_weight_norm(self): """ Return ||W^1||^2 + ||W^2||^2. :return: float """ g_w_norm = torch.norm(self.g.weight, 2) ** 2 h_w_norm = torch.norm(self.h.weight, 2) ** 2 return g_w_norm + h_w_norm def forward(self, input_0): primals_1 = self.g.weight primals_2 = self.g.bias primals_4 = self.h.weight primals_5 = self.h.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
harryye930/ML-Performance-Prediction
AutoEncoder
false
3,580
[ "MIT" ]
0
82fac16da3c2dde6054cf5b579aa6864e9d37b30
https://github.com/harryye930/ML-Performance-Prediction/tree/82fac16da3c2dde6054cf5b579aa6864e9d37b30
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, num_question, k): """ Initialize a class AutoEncoder. :param num_question: int :param k: int """ super().__init__() self.g = nn.Linear(num_question, k) self.h = nn.Linear(k, num_question) def get_weight_norm(self): """ Return ||W^1||^2 + ||W^2||^2. :return: float """ g_w_norm = torch.norm(self.g.weight, 2) ** 2 h_w_norm = torch.norm(self.h.weight, 2) ** 2 return g_w_norm + h_w_norm def forward(self, inputs): """ Return a forward pass given inputs. :param inputs: user vector. :return: user vector. """ g = nn.Sigmoid() h = nn.Sigmoid() out = h(self.h(g(self.g(inputs)))) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
CharbonnierLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4z/c4zjulyes3ee4trsbgp5kmnwmhqux4hbpei5b5et3qd2kze5lizg.py # Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.mean] # Source node to ATen node mapping: # add => add # diff => sub # loss => mean # mul => mul # sqrt => sqrt # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-09), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sqrt,), kwargs = {}) triton_per_fused_add_mean_mul_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-09 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_sqrt_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch import autograd as autograd import torch.fft from itertools import product as product class CharbonnierLoss(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-09): super(CharbonnierLoss, self).__init__() self.eps = eps def forward(self, x, y): diff = x - y loss = torch.mean(torch.sqrt(diff * diff + self.eps)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch import autograd as autograd import torch.fft from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-09 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_mul_sqrt_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class CharbonnierLossNew(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-09): super(CharbonnierLossNew, self).__init__() self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
hduba/KAIR
CharbonnierLoss
false
3,581
[ "MIT" ]
0
dbd7596c7e4a4667b9b7baac369fc6c02571fa58
https://github.com/hduba/KAIR/tree/dbd7596c7e4a4667b9b7baac369fc6c02571fa58
import torch import torch.nn as nn from torch import autograd as autograd import torch.fft from itertools import product as product class Model(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-09): super().__init__() self.eps = eps def forward(self, x, y): diff = x - y loss = torch.mean(torch.sqrt(diff * diff + self.eps)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FRM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xj/cxjc6n35n4dbdwuwsgoewpxau7qnxv2giwhqraobhv67igzij74n.py # Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool1d => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%unsqueeze, [-1, -2], True), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xq/cxqdkvsjydmlbtemi3cgcbaz3s34bdl3dtzzd6getpmwvp2or3b3.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # x => mul # x_1 => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_1), kwargs = {}) triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = tmp3 + tmp2 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_1.run(primals_1, buf1, buf2, 64, grid=grid(64), stream=stream0) return (buf2, primals_1, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class FRM(nn.Module): def __init__(self, nb_dim, do_add=True, do_mul=True): super(FRM, self).__init__() self.fc = nn.Linear(nb_dim, nb_dim) self.sig = nn.Sigmoid() self.do_add = do_add self.do_mul = do_mul def forward(self, x): y = F.adaptive_avg_pool1d(x, 1).view(x.size(0), -1) y = self.sig(self.fc(y)).view(x.size(0), x.size(1), -1) if self.do_mul: x = x * y if self.do_add: x = x + y return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'nb_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = tmp3 + tmp2 tl.store(out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_mul_1[grid(64)](primals_1, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, primals_1, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf1 class FRMNew(nn.Module): def __init__(self, nb_dim, do_add=True, do_mul=True): super(FRMNew, self).__init__() self.fc = nn.Linear(nb_dim, nb_dim) self.sig = nn.Sigmoid() self.do_add = do_add self.do_mul = do_mul def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hdubey/RawNet
FRM
false
3,582
[ "MIT" ]
0
45589b2da9b0562ef2810e6097d4bdba23eb8a0a
https://github.com/hdubey/RawNet/tree/45589b2da9b0562ef2810e6097d4bdba23eb8a0a
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, nb_dim, do_add=True, do_mul=True): super().__init__() self.fc = nn.Linear(nb_dim, nb_dim) self.sig = nn.Sigmoid() self.do_add = do_add self.do_mul = do_mul def forward(self, x): y = F.adaptive_avg_pool1d(x, 1).view(x.size(0), -1) y = self.sig(self.fc(y)).view(x.size(0), x.size(1), -1) if self.do_mul: x = x * y if self.do_add: x = x + y return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
UpsampleConvLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ma/cmayqy264pnaznjghwuvcajrnw2atnmz54epgqujb67ep2gi6kbq.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.replication_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max]), kwargs = {}) triton_poi_fused_replication_pad2d_0 = async_compile.triton('triton_poi_fused_replication_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) % 8 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (((0) * ((0) >= ((-2) + x1)) + ((-2) + x1) * (((-2) + x1) > (0))))) + (((0) * ((0) >= ((-2) + x1)) + ((-2) + x1) * (((-2) + x1) > (0)))) * ((((0) * ((0) >= ((-2) + x1)) + ((-2) + x1) * (((-2) + x1) > (0)))) < (3)))) + (16*x2) + ((3) * ((3) <= (((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0))))) + (((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0)))) * ((((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0)))) < (3)))), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/42/c42i6kggymcvforsoo45syfc6w3ujwnd3pxalcsjxkelshjyz7gv.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 25) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.replication_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_replication_pad2d_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 400, grid=grid(400), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class UpsampleConvLayer(nn.Module): """ Upsamples the input and then does a convolution. This method gives better results compared to ConvTranspose2d. """ def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None): super(UpsampleConvLayer, self).__init__() self.upsample = upsample reflection_padding = kernel_size // 2 self.reflection_pad = nn.ReplicationPad2d(reflection_padding) self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): if self.upsample: x = F.interpolate(x, mode='nearest', scale_factor=self.upsample) out = self.reflection_pad(x) out = self.conv2d(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'stride': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 % 8 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= 0 * (0 >= -2 + x1) + (-2 + x1) * (-2 + x1 > 0)) + (0 * (0 >= -2 + x1) + (-2 + x1) * (-2 + x1 > 0)) * (0 * (0 >= -2 + x1) + (-2 + x1) * (-2 + x1 > 0) < 3)) + 16 * x2 + ( 3 * (3 <= 0 * (0 >= -2 + x0) + (-2 + x0) * (-2 + x0 > 0)) + (0 * (0 >= -2 + x0) + (-2 + x0) * (-2 + x0 > 0)) * (0 * (0 >= -2 + x0) + (-2 + x0) * (-2 + x0 > 0) < 3))), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 25 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_replication_pad2d_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(400)](buf2, primals_3, 400, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 class UpsampleConvLayerNew(nn.Module): """ Upsamples the input and then does a convolution. This method gives better results compared to ConvTranspose2d. """ def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None): super(UpsampleConvLayerNew, self).__init__() self.upsample = upsample reflection_padding = kernel_size // 2 self.reflection_pad = nn.ReplicationPad2d(reflection_padding) self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, input_0): primals_1 = self.conv2d.weight primals_3 = self.conv2d.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hehichens/NeuralStyle
UpsampleConvLayer
false
3,583
[ "Apache-2.0" ]
0
cf28a1eefd8713f85e94f50935562a663a53e8b5
https://github.com/hehichens/NeuralStyle/tree/cf28a1eefd8713f85e94f50935562a663a53e8b5
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Upsamples the input and then does a convolution. This method gives better results compared to ConvTranspose2d. """ def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None): super().__init__() self.upsample = upsample reflection_padding = kernel_size // 2 self.reflection_pad = nn.ReplicationPad2d(reflection_padding) self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): if self.upsample: x = F.interpolate(x, mode='nearest', scale_factor=self.upsample) out = self.reflection_pad(x) out = self.conv2d(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'stride': 1}]
DiscreteCriticNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py # Topologically Sorted Source Nodes: [s], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # s => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/at/catgz6uq7rbvmsddndlwm56xvt57ilwp6z2wyexgx4xbvgoeyefj.py # Topologically Sorted Source Nodes: [long, gather], Original ATen: [aten._to_copy, aten.gather] # Source node to ATen node mapping: # gather => gather # long => convert_element_type # Graph fragment: # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%primals_8, torch.int64), kwargs = {}) # %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%view_5, 1, %convert_element_type), kwargs = {}) triton_poi_fused__to_copy_gather_1 = async_compile.triton('triton_poi_fused__to_copy_gather_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_gather_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_gather_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x1 = xindex % 16 x3 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([XBLOCK], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert(((0 <= tmp5) & (tmp5 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp5 < 4") tmp7 = tl.load(in_ptr1 + (x1 + (16*tmp5) + (64*x3)), xmask) tl.store(out_ptr0 + (x0), tmp1, xmask) tl.store(out_ptr1 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (4, 256), (256, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [s], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 16384, grid=grid(16384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [s_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 16384, grid=grid(16384), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [s_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [long, gather], Original ATen: [aten._to_copy, aten.gather] triton_poi_fused__to_copy_gather_1.run(primals_8, buf4, buf5, buf6, 256, grid=grid(256), stream=stream0) del buf4 del primals_8 return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), buf5, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DiscreteCriticNetwork(nn.Module): def __init__(self, obs_dim, act_dim, hidden_size=256): super(DiscreteCriticNetwork, self).__init__() self._l1 = nn.Linear(obs_dim, hidden_size) self._l2 = nn.Linear(hidden_size, hidden_size) self._l3 = nn.Linear(hidden_size, act_dim) def forward(self, s, a): s = F.relu(self._l1(s)) s = F.relu(self._l2(s)) s = self._l3(s) return s.gather(1, a.long()) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'obs_dim': 4, 'act_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused__to_copy_gather_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x1 = xindex % 16 x3 = xindex // 64 tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([XBLOCK], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert((0 <= tmp5) & (tmp5 < 4) | ~xmask, 'index out of bounds: 0 <= tmp5 < 4') tmp7 = tl.load(in_ptr1 + (x1 + 16 * tmp5 + 64 * x3), xmask) tl.store(out_ptr0 + x0, tmp1, xmask) tl.store(out_ptr1 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (4, 256), (256, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1, primals_2, buf8, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf2 buf7 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf3, primals_5, buf7, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__to_copy_gather_1[grid(256)](primals_8, buf4, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf4 del primals_8 return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 256), (256, 1), 0 ), reinterpret_tensor(buf3, (64, 256), (256, 1), 0 ), buf5, primals_6, buf7, primals_4, buf8 class DiscreteCriticNetworkNew(nn.Module): def __init__(self, obs_dim, act_dim, hidden_size=256): super(DiscreteCriticNetworkNew, self).__init__() self._l1 = nn.Linear(obs_dim, hidden_size) self._l2 = nn.Linear(hidden_size, hidden_size) self._l3 = nn.Linear(hidden_size, act_dim) def forward(self, input_0, input_1): primals_1 = self._l1.weight primals_2 = self._l1.bias primals_4 = self._l2.weight primals_5 = self._l2.bias primals_6 = self._l3.weight primals_7 = self._l3.bias primals_3 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
harwiltz/sac
DiscreteCriticNetwork
false
3,584
[ "MIT" ]
0
076e01e63d8933665fbf4038513f163bbfd62800
https://github.com/harwiltz/sac/tree/076e01e63d8933665fbf4038513f163bbfd62800
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, obs_dim, act_dim, hidden_size=256): super().__init__() self._l1 = nn.Linear(obs_dim, hidden_size) self._l2 = nn.Linear(hidden_size, hidden_size) self._l3 = nn.Linear(hidden_size, act_dim) def forward(self, s, a): s = F.relu(self._l1(s)) s = F.relu(self._l2(s)) s = self._l3(s) return s.gather(1, a.long()) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
AFMS
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xj/cxjc6n35n4dbdwuwsgoewpxau7qnxv2giwhqraobhv67igzij74n.py # Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool1d => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%unsqueeze, [-1, -2], True), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wf/cwfjhukeekbhbtamjnwzevd2iue5uslg4nvyfx3eqnop26qerhb6.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.mul] # Source node to ATen node mapping: # x => add # x_1 => mul # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_4), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %view_1), kwargs = {}) triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 x4 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp2 * tmp4 tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.mul] triton_poi_fused_add_mul_1.run(primals_1, primals_4, buf1, buf2, 64, grid=grid(64), stream=stream0) return (buf2, primals_1, primals_4, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class AFMS(nn.Module): """ Alpha-Feature map scaling, added to the output of each residual block[1,2]. Reference: [1] RawNet2 : https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1011.pdf [2] AMFS : https://www.koreascience.or.kr/article/JAKO202029757857763.page """ def __init__(self, nb_dim): super(AFMS, self).__init__() self.alpha = nn.Parameter(torch.ones((nb_dim, 1))) self.fc = nn.Linear(nb_dim, nb_dim) self.sig = nn.Sigmoid() def forward(self, x): y = F.adaptive_avg_pool1d(x, 1).view(x.size(0), -1) y = self.sig(self.fc(y)).view(x.size(0), x.size(1), -1) x = x + self.alpha x = x * y return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'nb_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 x4 = xindex // 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp2 * tmp4 tl.store(out_ptr0 + x3, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_mul_1[grid(64)](primals_1, primals_4, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, primals_1, primals_4, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf1 class AFMSNew(nn.Module): """ Alpha-Feature map scaling, added to the output of each residual block[1,2]. Reference: [1] RawNet2 : https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1011.pdf [2] AMFS : https://www.koreascience.or.kr/article/JAKO202029757857763.page """ def __init__(self, nb_dim): super(AFMSNew, self).__init__() self.alpha = nn.Parameter(torch.ones((nb_dim, 1))) self.fc = nn.Linear(nb_dim, nb_dim) self.sig = nn.Sigmoid() def forward(self, input_0): primals_4 = self.alpha primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
hdubey/RawNet
AFMS
false
3,585
[ "MIT" ]
0
45589b2da9b0562ef2810e6097d4bdba23eb8a0a
https://github.com/hdubey/RawNet/tree/45589b2da9b0562ef2810e6097d4bdba23eb8a0a
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Alpha-Feature map scaling, added to the output of each residual block[1,2]. Reference: [1] RawNet2 : https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1011.pdf [2] AMFS : https://www.koreascience.or.kr/article/JAKO202029757857763.page """ def __init__(self, nb_dim): super().__init__() self.alpha = nn.Parameter(torch.ones((nb_dim, 1))) self.fc = nn.Linear(nb_dim, nb_dim) self.sig = nn.Sigmoid() def forward(self, x): y = F.adaptive_avg_pool1d(x, 1).view(x.size(0), -1) y = self.sig(self.fc(y)).view(x.size(0), x.size(1), -1) x = x + self.alpha x = x * y return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pr/cprthrqz6iotcmrjfcrj7taqntzxisdcjtr54gsuz2ck2kf6kbsr.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3f/c3fojdylt3acgtptumtowi32d26uvrqtyzefg7ta476ezqj5dtyp.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.view] # Source node to ATen node mapping: # out_2 => view_7 # Graph fragment: # %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 1]), kwargs = {}) triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*((x0 % 4) // 4)) + (16*(((4*((x0 // 4) % 4)) + (x0 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ja/cjav5bl6r5w6bg5s2wofxugsfwzslejkqeoc3ia5g7rbnsj7egs6.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_8,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_13, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/h4/ch4a5wnmo3unffqbnkhtgycbtjswoyflrr2s3gvx5gv43b7vybxg.py # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.view] # Source node to ATen node mapping: # out_4 => view_14 # Graph fragment: # %view_14 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_13, [64, 2]), kwargs = {}) triton_poi_fused_view_3 = async_compile.triton('triton_poi_fused_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (2*x1) + (8*((x1 % 4) // 4)) + (32*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6l/c6lsk2d35jkl6q4phvih4qzvl4j5us3xs2klgp5wcgxzr53nypop.py # Topologically Sorted Source Nodes: [w], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # w => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_15,), kwargs = {}) triton_poi_fused_sigmoid_4 = async_compile.triton('triton_poi_fused_sigmoid_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 1), (1, 1)) assert_size_stride(primals_5, (2, ), (1, )) assert_size_stride(primals_6, (4, 2), (2, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 64, grid=grid(64), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) del buf1 buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (1, 2), (1, 1), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf3 # reuse buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf8, 128, grid=grid(128), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.view] triton_poi_fused_view_3.run(buf4, buf5, 128, grid=grid(128), stream=stream0) del buf4 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (2, 4), (1, 2), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [w], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_4.run(buf7, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf5, buf7, primals_6, buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self, latent_size, out_size): super().__init__() self.linear1 = nn.Linear(latent_size, int(out_size / 4)) self.linear2 = nn.Linear(int(out_size / 4), int(out_size / 2)) self.linear3 = nn.Linear(int(out_size / 2), out_size) self.relu = nn.ReLU(True) self.sigmoid = nn.Sigmoid() def forward(self, z): out = self.linear1(z) out = self.relu(out) out = self.linear2(out) out = self.relu(out) out = self.linear3(out) w = self.sigmoid(out) return w def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'latent_size': 4, 'out_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * (x0 % 4 // 4) + 16 * ((4 * (x0 // 4 % 4) + x0 % 4) // 16)), xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 2 * x1 + 8 * (x1 % 4 // 4) + 32 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_sigmoid_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 1), (1, 1)) assert_size_stride(primals_5, (2,), (1,)) assert_size_stride(primals_6, (4, 2), (2, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(64)](buf1, primals_2, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused_view_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (1, 2), (1, 1 ), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf3 buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(128)](buf4, primals_5, buf8, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 2), (2, 1), torch.float32) triton_poi_fused_view_3[grid(128)](buf4, buf5, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf4 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (2, 4), (1, 2 ), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 triton_poi_fused_sigmoid_4[grid(256)](buf7, primals_7, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2, buf5, buf7, primals_6, buf8, primals_4, buf9 class DecoderNew(nn.Module): def __init__(self, latent_size, out_size): super().__init__() self.linear1 = nn.Linear(latent_size, int(out_size / 4)) self.linear2 = nn.Linear(int(out_size / 4), int(out_size / 2)) self.linear3 = nn.Linear(int(out_size / 2), out_size) self.relu = nn.ReLU(True) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
hcgcarry/usad
Decoder
false
3,586
[ "BSD-3-Clause" ]
0
4e99a6acd43ef109be4d89b80e96978b9ad61c2f
https://github.com/hcgcarry/usad/tree/4e99a6acd43ef109be4d89b80e96978b9ad61c2f
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, latent_size, out_size): super().__init__() self.linear1 = nn.Linear(latent_size, int(out_size / 4)) self.linear2 = nn.Linear(int(out_size / 4), int(out_size / 2)) self.linear3 = nn.Linear(int(out_size / 2), out_size) self.relu = nn.ReLU(True) self.sigmoid = nn.Sigmoid() def forward(self, z): out = self.linear1(z) out = self.relu(out) out = self.linear2(out) out = self.relu(out) out = self.linear3(out) w = self.sigmoid(out) return w def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
SSD300
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2q/c2qsph7yuvd4qrjdx7qhitc2tkim3pjng4rqgufiypesenwycnhv.py # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # out => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[67108864], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 67108864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 262144) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/se/csey4casydds7ttdva4dpczpio6jwynlr7qsuqonjcwfmq67hxyv.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16777216], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16777216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (1024*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (1024*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (512 + (2*x0) + (1024*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (513 + (2*x0) + (1024*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/si/csisjq7rc4algelsz22lsae4qhhrrjvjryyw5k5o6x3fdlimo55m.py # Topologically Sorted Source Nodes: [conv2d_2, out_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[33554432], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 33554432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 65536) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vv/cvvcasx345h75eoxksekaeisc7iaf3bqneorw5etqpkzdja2ozs7.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8388608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (512*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (512*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (256 + (2*x0) + (512*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (257 + (2*x0) + (512*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pn/cpnor5ydof7dlspqdxdhkrhf2auj7pppdumfestnp6t2dvc7ahdp.py # Topologically Sorted Source Nodes: [conv2d_4, out_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # out_6 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16777216], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16777216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16384) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yg/cygiwnm4ri26idrrwplrrcwdugludlchq2iib6x7f5lgij24xv3q.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_9 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4194304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (256*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (256*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (128 + (2*x0) + (256*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (129 + (2*x0) + (256*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ro/cro7juuw5xd4di6yakssncsxdhnpfutfkymieevyezfopo5vi5f2.py # Topologically Sorted Source Nodes: [conv2d_7, out_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # out_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8388608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/27/c27dahr6gu73agvkm5pgjug2pbakmm76uviwrqiqcnpmtijfjx7c.py # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_13 => getitem_6, getitem_7 # Graph fragment: # %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {}) # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rz/crzaczqmdz32jx3wlam76xlof7bkrj4sqcvs2mxm2pldktqwxkjt.py # Topologically Sorted Source Nodes: [conv2d_10, out_14], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # out_14 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ct/cctewtzbghhtqagpkqkvir7v3nfuy5ixuei5d65icnryikadosqc.py # Topologically Sorted Source Nodes: [out_17], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_17 => getitem_8, getitem_9 # Graph fragment: # %getitem_8 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 0), kwargs = {}) # %getitem_9 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_9 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 32) % 32 x0 = xindex % 32 x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-33) + x4), tmp10, other=float("-inf")) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-32) + x4), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-31) + x4), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + x4), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x4), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (31 + x4), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (32 + x4), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (33 + x4), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x4), tmp51, None) tl.store(out_ptr1 + (x4), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6k/c6k6gsglrybvjyfonqtp54l2icmsufqa67hpnv3btr4543ox255t.py # Topologically Sorted Source Nodes: [conv2d_13, out_18], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_13 => convolution_13 # out_18 => relu_13 # Graph fragment: # %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_8, %primals_28, %primals_29, [1, 1], [6, 6], [6, 6], False, [0, 0], 1), kwargs = {}) # %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {}) triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4194304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 1024 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/g6/cg6dnpxzqufsxykijivl4wos4pzjcbbtairqgnptitj2vdjgyiey.py # Topologically Sorted Source Nodes: [pow_1, sum_1, norm], Original ATen: [aten.pow, aten.sum, aten.sqrt] # Source node to ATen node mapping: # norm => sqrt # pow_1 => pow_1 # sum_1 => sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu_9, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) triton_red_fused_pow_sqrt_sum_11 = async_compile.triton('triton_red_fused_pow_sqrt_sum_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[16384, 512], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_pow_sqrt_sum_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_pow_sqrt_sum_11(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 16384 rnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 4096 x1 = (xindex // 4096) _tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (2097152*x1)), rmask, eviction_policy='evict_first', other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = _tmp3 + tmp2 _tmp3 = tl.where(rmask, tmp4, _tmp3) tmp3 = tl.sum(_tmp3, 1)[:, None] tmp5 = libdevice.sqrt(tmp3) tl.debug_barrier() tl.store(in_out_ptr0 + (x3), tmp5, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bn/cbnctktjgp7t3nzk7cbjdwatnjesdbubsp42k5hmnarqp4wy6aos.py # Topologically Sorted Source Nodes: [conv4_3_feats, conv4_3_feats_1], Original ATen: [aten.div, aten.mul] # Source node to ATen node mapping: # conv4_3_feats => div # conv4_3_feats_1 => mul # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%relu_9, %sqrt), kwargs = {}) # %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_32), kwargs = {}) triton_poi_fused_div_mul_12 = async_compile.triton('triton_poi_fused_div_mul_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8388608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = (xindex // 2097152) x1 = (xindex // 4096) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x3), tmp2, None) tl.store(out_ptr1 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7e/c7eo6nf5i4jbfcbm6repz4vmeacyjdvnhnob55afz6cmr27ssfpf.py # Topologically Sorted Source Nodes: [conv2d_15, out_19], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_15 => convolution_15 # out_19 => relu_15 # Graph fragment: # %convolution_15 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_14, %primals_33, %primals_34, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_15 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_15,), kwargs = {}) triton_poi_fused_convolution_relu_13 = async_compile.triton('triton_poi_fused_convolution_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/os/cosszfrjynxxkwdsxxfvdhcxozstp3jmgtlqb5zwrbcmgiswrqd3.py # Topologically Sorted Source Nodes: [conv2d_16, out_20], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_16 => convolution_16 # out_20 => relu_16 # Graph fragment: # %convolution_16 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_15, %primals_35, %primals_36, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_16 : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_16,), kwargs = {}) triton_poi_fused_convolution_relu_14 = async_compile.triton('triton_poi_fused_convolution_relu_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/4q/c4qi5rxcv3r3wq6y4cvvf3g2jgztsnqzhvjd624hhs7nn3zfyrza.py # Topologically Sorted Source Nodes: [conv2d_17, out_21], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_17 => convolution_17 # out_21 => relu_17 # Graph fragment: # %convolution_17 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_16, %primals_37, %primals_38, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_17 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_17,), kwargs = {}) triton_poi_fused_convolution_relu_15 = async_compile.triton('triton_poi_fused_convolution_relu_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nw/cnwta4czjivsbztus2tqw6ksxgwb53lhn4haikmufrci7ezow4lo.py # Topologically Sorted Source Nodes: [conv2d_18, out_22], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_18 => convolution_18 # out_22 => relu_18 # Graph fragment: # %convolution_18 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_17, %primals_39, %primals_40, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_18 : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_18,), kwargs = {}) triton_poi_fused_convolution_relu_16 = async_compile.triton('triton_poi_fused_convolution_relu_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dy/cdyqtsyq3zalq6uxljpp7l7awgppvbql7xysw4zlqyrrtqm73a7t.py # Topologically Sorted Source Nodes: [conv2d_19, out_23], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_19 => convolution_19 # out_23 => relu_19 # Graph fragment: # %convolution_19 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_18, %primals_41, %primals_42, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_19 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_19,), kwargs = {}) triton_poi_fused_convolution_relu_17 = async_compile.triton('triton_poi_fused_convolution_relu_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fg/cfgcuo4oirqbbwiyditzzmzwst7ym5zfqol5vhilmjoswdttpouj.py # Topologically Sorted Source Nodes: [conv2d_20, out_24], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_20 => convolution_20 # out_24 => relu_20 # Graph fragment: # %convolution_20 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_19, %primals_43, %primals_44, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_20 : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_20,), kwargs = {}) triton_poi_fused_convolution_relu_18 = async_compile.triton('triton_poi_fused_convolution_relu_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_18', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 36) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tz/ctzm62zmq4eeli7oqdvyfsjqefvgdi2gl2schefhtdg77ra6tgac.py # Topologically Sorted Source Nodes: [conv2d_21, out_25], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_21 => convolution_21 # out_25 => relu_21 # Graph fragment: # %convolution_21 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_20, %primals_45, %primals_46, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_21 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_21,), kwargs = {}) triton_poi_fused_convolution_relu_19 = async_compile.triton('triton_poi_fused_convolution_relu_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_19', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 36) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ss/csswcsc3cundvg6yebux77yizbxo3zagcavuqq5eppgqt4uhsq55.py # Topologically Sorted Source Nodes: [conv2d_22, conv11_2_feats], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv11_2_feats => relu_22 # conv2d_22 => convolution_22 # Graph fragment: # %convolution_22 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_21, %primals_47, %primals_48, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_22 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_22,), kwargs = {}) triton_poi_fused_convolution_relu_20 = async_compile.triton('triton_poi_fused_convolution_relu_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_20', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_20(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cv/ccvahx445gtqwoibtu6zmqasjrfl7qfkuzhnrc4afyoqfxmjtlbc.py # Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat] # Source node to ATen node mapping: # locs => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3, %view_4, %view_5], 1), kwargs = {}) triton_poi_fused_cat_21 = async_compile.triton('triton_poi_fused_cat_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 394496 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 24656 x0 = xindex % 4 x2 = (xindex // 98624) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 16384, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4096*((x0 + (4*x1)) % 16)) + (65536*(((x0 + (4*x1) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*x1)) // 16) % 4096)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + ((x0 + (4*x1)) % 16), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 22528, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + ((1024*((x0 + (4*((-16384) + x1))) % 24)) + (24576*(((x0 + (4*((-16384) + x1)) + (24576*x2)) // 24576) % 4)) + (((x0 + (4*((-16384) + x1))) // 24) % 1024)), tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + ((x0 + (4*((-16384) + x1))) % 24), tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 24064, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr4 + ((256*((x0 + (4*((-22528) + x1))) % 24)) + (6144*(((x0 + (4*((-22528) + x1)) + (6144*x2)) // 6144) % 4)) + (((x0 + (4*((-22528) + x1))) // 24) % 256)), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.load(in_ptr5 + ((x0 + (4*((-22528) + x1))) % 24), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tmp29 = tl.full([1], 24448, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tmp28 & tmp30 tmp32 = tl.load(in_ptr6 + ((64*((x0 + (4*((-24064) + x1))) % 24)) + (1536*(((x0 + (4*((-24064) + x1)) + (1536*x2)) // 1536) % 4)) + (((x0 + (4*((-24064) + x1))) // 24) % 64)), tmp31 & xmask, eviction_policy='evict_last', other=0.0) tmp33 = tl.load(in_ptr7 + ((x0 + (4*((-24064) + x1))) % 24), tmp31 & xmask, eviction_policy='evict_last', other=0.0) tmp34 = tmp32 + tmp33 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp31, tmp34, tmp35) tmp37 = tmp0 >= tmp29 tmp38 = tl.full([1], 24592, tl.int64) tmp39 = tmp0 < tmp38 tmp40 = tmp37 & tmp39 tmp41 = tl.load(in_ptr8 + ((36*((x0 + (4*((-24448) + x1))) % 16)) + (576*(((x0 + (4*((-24448) + x1)) + (576*x2)) // 576) % 4)) + (((x0 + (4*((-24448) + x1))) // 16) % 36)), tmp40 & xmask, eviction_policy='evict_last', other=0.0) tmp42 = tl.load(in_ptr9 + ((x0 + (4*((-24448) + x1))) % 16), tmp40 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp41 + tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp40, tmp43, tmp44) tmp46 = tmp0 >= tmp38 tmp47 = tl.full([1], 24656, tl.int64) tmp48 = tmp0 < tmp47 tmp49 = tl.load(in_ptr10 + ((16*((x0 + (4*((-24592) + x1))) % 16)) + (256*(((x0 + (4*((-24592) + x1)) + (256*x2)) // 256) % 4)) + (((x0 + (4*((-24592) + x1))) // 16) % 16)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.load(in_ptr11 + ((x0 + (4*((-24592) + x1))) % 16), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype) tmp53 = tl.where(tmp46, tmp51, tmp52) tmp54 = tl.where(tmp40, tmp45, tmp53) tmp55 = tl.where(tmp31, tmp36, tmp54) tmp56 = tl.where(tmp22, tmp27, tmp55) tmp57 = tl.where(tmp13, tmp18, tmp56) tmp58 = tl.where(tmp4, tmp9, tmp57) tl.store(out_ptr0 + (x3), tmp58, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 512, 512), (786432, 262144, 512, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512, ), (1, )) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512, ), (1, )) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512, ), (1, )) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512, ), (1, )) assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_29, (1024, ), (1, )) assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_31, (1024, ), (1, )) assert_size_stride(primals_32, (1, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_33, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_34, (256, ), (1, )) assert_size_stride(primals_35, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_36, (512, ), (1, )) assert_size_stride(primals_37, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_38, (128, ), (1, )) assert_size_stride(primals_39, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_40, (256, ), (1, )) assert_size_stride(primals_41, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_42, (128, ), (1, )) assert_size_stride(primals_43, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_44, (256, ), (1, )) assert_size_stride(primals_45, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_46, (128, ), (1, )) assert_size_stride(primals_47, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_48, (256, ), (1, )) assert_size_stride(primals_49, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_50, (16, ), (1, )) assert_size_stride(primals_51, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_52, (24, ), (1, )) assert_size_stride(primals_53, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_54, (24, ), (1, )) assert_size_stride(primals_55, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_56, (24, ), (1, )) assert_size_stride(primals_57, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_58, (16, ), (1, )) assert_size_stride(primals_59, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_60, (16, ), (1, )) assert_size_stride(primals_61, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_62, (16, ), (1, )) assert_size_stride(primals_63, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_64, (24, ), (1, )) assert_size_stride(primals_65, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_66, (24, ), (1, )) assert_size_stride(primals_67, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_68, (24, ), (1, )) assert_size_stride(primals_69, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_70, (16, ), (1, )) assert_size_stride(primals_71, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_72, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 512, 512), (16777216, 262144, 512, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 67108864, grid=grid(67108864), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 512, 512), (16777216, 262144, 512, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 67108864, grid=grid(67108864), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256, 1), torch.int8) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf3, buf4, buf5, 16777216, grid=grid(16777216), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 256, 256), (8388608, 65536, 256, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_2, out_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf7, primals_7, 33554432, grid=grid(33554432), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 256, 256), (8388608, 65536, 256, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_3, out_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf9, primals_9, 33554432, grid=grid(33554432), stream=stream0) del primals_9 buf10 = empty_strided_cuda((4, 128, 128, 128), (2097152, 16384, 128, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 128, 128), (2097152, 16384, 128, 1), torch.int8) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf9, buf10, buf11, 8388608, grid=grid(8388608), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_4, out_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf13, primals_11, 16777216, grid=grid(16777216), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d_5, out_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf15, primals_13, 16777216, grid=grid(16777216), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [conv2d_6, out_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf17, primals_15, 16777216, grid=grid(16777216), stream=stream0) del primals_15 buf18 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.float32) buf19 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.int8) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf17, buf18, buf19, 4194304, grid=grid(4194304), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [conv2d_7, out_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf21, primals_17, 8388608, grid=grid(8388608), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [conv2d_8, out_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf23, primals_19, 8388608, grid=grid(8388608), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [conv2d_9, out_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf25, primals_21, 8388608, grid=grid(8388608), stream=stream0) del primals_21 buf26 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32) buf27 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_7.run(buf25, buf26, buf27, 2097152, grid=grid(2097152), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf26, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf29 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [conv2d_10, out_14], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf29, primals_23, 2097152, grid=grid(2097152), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [conv2d_11, out_15], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf31, primals_25, 2097152, grid=grid(2097152), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf32 = extern_kernels.convolution(buf31, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf33 = buf32; del buf32 # reuse # Topologically Sorted Source Nodes: [conv2d_12, out_16], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf33, primals_27, 2097152, grid=grid(2097152), stream=stream0) del primals_27 buf34 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32) buf35 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [out_17], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_9.run(buf33, buf34, buf35, 2097152, grid=grid(2097152), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf34, primals_28, stride=(1, 1), padding=(6, 6), dilation=(6, 6), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 1024, 32, 32), (1048576, 1024, 32, 1)) buf37 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [conv2d_13, out_18], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf37, primals_29, 4194304, grid=grid(4194304), stream=stream0) del primals_29 # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 1024, 32, 32), (1048576, 1024, 32, 1)) buf39 = buf38; del buf38 # reuse # Topologically Sorted Source Nodes: [conv2d_14, conv7_feats], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf39, primals_31, 4194304, grid=grid(4194304), stream=stream0) del primals_31 buf40 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32) buf41 = reinterpret_tensor(buf40, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf40 # reuse # Topologically Sorted Source Nodes: [pow_1, sum_1, norm], Original ATen: [aten.pow, aten.sum, aten.sqrt] triton_red_fused_pow_sqrt_sum_11.run(buf41, buf25, 16384, 512, grid=grid(16384), stream=stream0) buf42 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32) buf43 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv4_3_feats, conv4_3_feats_1], Original ATen: [aten.div, aten.mul] triton_poi_fused_div_mul_12.run(buf25, buf41, primals_32, buf42, buf43, 8388608, grid=grid(8388608), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution] buf44 = extern_kernels.convolution(buf39, primals_33, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 256, 32, 32), (262144, 1024, 32, 1)) buf45 = buf44; del buf44 # reuse # Topologically Sorted Source Nodes: [conv2d_15, out_19], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf45, primals_34, 1048576, grid=grid(1048576), stream=stream0) del primals_34 # Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution] buf46 = extern_kernels.convolution(buf45, primals_35, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 512, 16, 16), (131072, 256, 16, 1)) buf47 = buf46; del buf46 # reuse # Topologically Sorted Source Nodes: [conv2d_16, out_20], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_14.run(buf47, primals_36, 524288, grid=grid(524288), stream=stream0) del primals_36 # Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution] buf48 = extern_kernels.convolution(buf47, primals_37, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 128, 16, 16), (32768, 256, 16, 1)) buf49 = buf48; del buf48 # reuse # Topologically Sorted Source Nodes: [conv2d_17, out_21], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf49, primals_38, 131072, grid=grid(131072), stream=stream0) del primals_38 # Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution] buf50 = extern_kernels.convolution(buf49, primals_39, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf50, (4, 256, 8, 8), (16384, 64, 8, 1)) buf51 = buf50; del buf50 # reuse # Topologically Sorted Source Nodes: [conv2d_18, out_22], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_16.run(buf51, primals_40, 65536, grid=grid(65536), stream=stream0) del primals_40 # Topologically Sorted Source Nodes: [conv2d_19], Original ATen: [aten.convolution] buf52 = extern_kernels.convolution(buf51, primals_41, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf52, (4, 128, 8, 8), (8192, 64, 8, 1)) buf53 = buf52; del buf52 # reuse # Topologically Sorted Source Nodes: [conv2d_19, out_23], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_17.run(buf53, primals_42, 32768, grid=grid(32768), stream=stream0) del primals_42 # Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution] buf54 = extern_kernels.convolution(buf53, primals_43, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 256, 6, 6), (9216, 36, 6, 1)) buf55 = buf54; del buf54 # reuse # Topologically Sorted Source Nodes: [conv2d_20, out_24], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_18.run(buf55, primals_44, 36864, grid=grid(36864), stream=stream0) del primals_44 # Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution] buf56 = extern_kernels.convolution(buf55, primals_45, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 128, 6, 6), (4608, 36, 6, 1)) buf57 = buf56; del buf56 # reuse # Topologically Sorted Source Nodes: [conv2d_21, out_25], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_19.run(buf57, primals_46, 18432, grid=grid(18432), stream=stream0) del primals_46 # Topologically Sorted Source Nodes: [conv2d_22], Original ATen: [aten.convolution] buf58 = extern_kernels.convolution(buf57, primals_47, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 256, 4, 4), (4096, 16, 4, 1)) buf59 = buf58; del buf58 # reuse # Topologically Sorted Source Nodes: [conv2d_22, conv11_2_feats], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_20.run(buf59, primals_48, 16384, grid=grid(16384), stream=stream0) del primals_48 # Topologically Sorted Source Nodes: [l_conv4_3], Original ATen: [aten.convolution] buf60 = extern_kernels.convolution(buf43, primals_49, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf60, (4, 16, 64, 64), (65536, 4096, 64, 1)) # Topologically Sorted Source Nodes: [l_conv7], Original ATen: [aten.convolution] buf61 = extern_kernels.convolution(buf39, primals_51, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf61, (4, 24, 32, 32), (24576, 1024, 32, 1)) # Topologically Sorted Source Nodes: [l_conv8_2], Original ATen: [aten.convolution] buf62 = extern_kernels.convolution(buf47, primals_53, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf62, (4, 24, 16, 16), (6144, 256, 16, 1)) # Topologically Sorted Source Nodes: [l_conv9_2], Original ATen: [aten.convolution] buf63 = extern_kernels.convolution(buf51, primals_55, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf63, (4, 24, 8, 8), (1536, 64, 8, 1)) # Topologically Sorted Source Nodes: [l_conv10_2], Original ATen: [aten.convolution] buf64 = extern_kernels.convolution(buf55, primals_57, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 16, 6, 6), (576, 36, 6, 1)) # Topologically Sorted Source Nodes: [l_conv11_2], Original ATen: [aten.convolution] buf65 = extern_kernels.convolution(buf59, primals_59, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf65, (4, 16, 4, 4), (256, 16, 4, 1)) # Topologically Sorted Source Nodes: [c_conv4_3], Original ATen: [aten.convolution] buf66 = extern_kernels.convolution(buf43, primals_61, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf66, (4, 16, 64, 64), (65536, 4096, 64, 1)) # Topologically Sorted Source Nodes: [c_conv7], Original ATen: [aten.convolution] buf67 = extern_kernels.convolution(buf39, primals_63, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 24, 32, 32), (24576, 1024, 32, 1)) # Topologically Sorted Source Nodes: [c_conv8_2], Original ATen: [aten.convolution] buf68 = extern_kernels.convolution(buf47, primals_65, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf68, (4, 24, 16, 16), (6144, 256, 16, 1)) # Topologically Sorted Source Nodes: [c_conv9_2], Original ATen: [aten.convolution] buf69 = extern_kernels.convolution(buf51, primals_67, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf69, (4, 24, 8, 8), (1536, 64, 8, 1)) # Topologically Sorted Source Nodes: [c_conv10_2], Original ATen: [aten.convolution] buf70 = extern_kernels.convolution(buf55, primals_69, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 16, 6, 6), (576, 36, 6, 1)) # Topologically Sorted Source Nodes: [c_conv11_2], Original ATen: [aten.convolution] buf71 = extern_kernels.convolution(buf59, primals_71, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf71, (4, 16, 4, 4), (256, 16, 4, 1)) buf72 = empty_strided_cuda((4, 24656, 4), (98624, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat] triton_poi_fused_cat_21.run(buf60, primals_50, buf61, primals_52, buf62, primals_54, buf63, primals_56, buf64, primals_58, buf65, primals_60, buf72, 394496, grid=grid(394496), stream=stream0) del buf60 del buf61 del buf62 del buf63 del buf64 del buf65 del primals_50 del primals_52 del primals_54 del primals_56 del primals_58 del primals_60 buf73 = empty_strided_cuda((4, 24656, 4), (98624, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [classes_scores], Original ATen: [aten.cat] triton_poi_fused_cat_21.run(buf66, primals_62, buf67, primals_64, buf68, primals_66, buf69, primals_68, buf70, primals_70, buf71, primals_72, buf73, 394496, grid=grid(394496), stream=stream0) del buf66 del buf67 del buf68 del buf69 del buf70 del buf71 del primals_62 del primals_64 del primals_66 del primals_68 del primals_70 del primals_72 return (buf72, buf73, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_33, primals_35, primals_37, primals_39, primals_41, primals_43, primals_45, primals_47, primals_49, primals_51, primals_53, primals_55, primals_57, primals_59, primals_61, primals_63, primals_65, primals_67, primals_69, primals_71, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf18, buf19, buf21, buf23, buf25, buf26, buf27, buf29, buf31, buf33, buf34, buf35, buf37, buf39, buf41, buf42, buf43, buf45, buf47, buf49, buf51, buf53, buf55, buf57, buf59, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 512, 512), (786432, 262144, 512, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((1024, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((1024, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((1, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((128, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_48 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_49 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_50 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_51 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_52 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_53 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_54 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_55 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_56 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_57 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_58 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_59 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_60 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_61 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_62 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_63 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_64 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_65 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_66 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_67 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_68 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_69 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_70 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_71 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_72 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torchvision import torch.utils.data from torch import nn import torch.nn.functional as F from math import sqrt from itertools import product as product import torch.optim def decimate(tensor, m): """ Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value. This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size. :param tensor: tensor to be decimated :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension :return: decimated tensor """ assert tensor.dim() == len(m) for d in range(tensor.dim()): if m[d] is not None: tensor = tensor.index_select(dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()) return tensor def cxcy_to_xy(cxcy): """ Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max). :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4) :return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4) """ return torch.cat([cxcy[:, :2] - cxcy[:, 2:] / 2, cxcy[:, :2] + cxcy[:, 2:] / 2], 1) def find_intersection(set_1, set_2): """ Find the intersection of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2]. unsqueeze(0)) upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:]. unsqueeze(0)) intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0) return intersection_dims[:, :, 0] * intersection_dims[:, :, 1] def find_jaccard_overlap(set_1, set_2): """ Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ intersection = find_intersection(set_1, set_2) areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection return intersection / union def gcxgcy_to_cxcy(gcxgcy, priors_cxcy): """ Decode bounding box coordinates predicted by the model, since they are encoded in the form mentioned above. They are decoded into center-size coordinates. This is the inverse of the function above. :param gcxgcy: encoded bounding boxes, i.e. output of the model, a tensor of size (n_priors, 4) :param priors_cxcy: prior boxes with respect to which the encoding is defined, a tensor of size (n_priors, 4) :return: decoded bounding boxes in center-size form, a tensor of size (n_priors, 4) """ return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy [:, :2], torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1) class VGGBase(nn.Module): """ VGG base convolutions to produce lower-level feature maps. """ def __init__(self): super(VGGBase, self).__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1) self.load_pretrained_layers() def forward(self, image): """ Forward propagation. :param image: images, a tensor of dimensions (N, 3, 300, 300) :return: lower-level feature maps conv4_3 and conv7 """ out = F.relu(self.conv1_1(image)) out = F.relu(self.conv1_2(out)) out = self.pool1(out) out = F.relu(self.conv2_1(out)) out = F.relu(self.conv2_2(out)) out = self.pool2(out) out = F.relu(self.conv3_1(out)) out = F.relu(self.conv3_2(out)) out = F.relu(self.conv3_3(out)) out = self.pool3(out) out = F.relu(self.conv4_1(out)) out = F.relu(self.conv4_2(out)) out = F.relu(self.conv4_3(out)) conv4_3_feats = out out = self.pool4(out) out = F.relu(self.conv5_1(out)) out = F.relu(self.conv5_2(out)) out = F.relu(self.conv5_3(out)) out = self.pool5(out) out = F.relu(self.conv6(out)) conv7_feats = F.relu(self.conv7(out)) return conv4_3_feats, conv7_feats def load_pretrained_layers(self): """ As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network. There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16 We copy these parameters into our network. It's straightforward for conv1 to conv5. However, the original VGG-16 does not contain the conv6 and con7 layers. Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py. """ state_dict = self.state_dict() param_names = list(state_dict.keys()) pretrained_state_dict = torchvision.models.vgg16(pretrained=True ).state_dict() pretrained_param_names = list(pretrained_state_dict.keys()) for i, param in enumerate(param_names[:-4]): state_dict[param] = pretrained_state_dict[pretrained_param_names[i] ] conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view( 4096, 512, 7, 7) conv_fc6_bias = pretrained_state_dict['classifier.0.bias'] state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None, 3, 3]) state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4]) conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view( 4096, 4096, 1, 1) conv_fc7_bias = pretrained_state_dict['classifier.3.bias'] state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4, None, None]) state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4]) self.load_state_dict(state_dict) None class AuxiliaryConvolutions(nn.Module): """ Additional convolutions to produce higher-level feature maps. """ def __init__(self): super(AuxiliaryConvolutions, self).__init__() self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0) self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0) self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv7_feats): """ Forward propagation. :param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2 """ out = F.relu(self.conv8_1(conv7_feats)) out = F.relu(self.conv8_2(out)) conv8_2_feats = out out = F.relu(self.conv9_1(out)) out = F.relu(self.conv9_2(out)) conv9_2_feats = out out = F.relu(self.conv10_1(out)) out = F.relu(self.conv10_2(out)) conv10_2_feats = out out = F.relu(self.conv11_1(out)) conv11_2_feats = F.relu(self.conv11_2(out)) return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats class PredictionConvolutions(nn.Module): """ Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps. The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes. See 'cxcy_to_gcxgcy' in utils.py for the encoding definition. The class scores represent the scores of each object class in each of the 8732 bounding boxes located. A high score for 'background' = no object. """ def __init__(self, n_classes): """ :param n_classes: number of different types of objects """ super(PredictionConvolutions, self).__init__() self.n_classes = n_classes n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6, 'conv10_2': 4, 'conv11_2': 4} self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4, kernel_size=3, padding=1) self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size= 3, padding=1) self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4, kernel_size=3, padding=1) self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4, kernel_size=3, padding=1) self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4, kernel_size=3, padding=1) self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4, kernel_size=3, padding=1) self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes, kernel_size=3, padding=1) self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes, kernel_size=3, padding=1) self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes, kernel_size=3, padding=1) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats): """ Forward propagation. :param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38) :param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10) :param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5) :param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3) :param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1) :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image """ batch_size = conv4_3_feats.size(0) l_conv4_3 = self.loc_conv4_3(conv4_3_feats) l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous() l_conv4_3 = l_conv4_3.view(batch_size, -1, 4) l_conv7 = self.loc_conv7(conv7_feats) l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous() l_conv7 = l_conv7.view(batch_size, -1, 4) l_conv8_2 = self.loc_conv8_2(conv8_2_feats) l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous() l_conv8_2 = l_conv8_2.view(batch_size, -1, 4) l_conv9_2 = self.loc_conv9_2(conv9_2_feats) l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous() l_conv9_2 = l_conv9_2.view(batch_size, -1, 4) l_conv10_2 = self.loc_conv10_2(conv10_2_feats) l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous() l_conv10_2 = l_conv10_2.view(batch_size, -1, 4) l_conv11_2 = self.loc_conv11_2(conv11_2_feats) l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous() l_conv11_2 = l_conv11_2.view(batch_size, -1, 4) c_conv4_3 = self.cl_conv4_3(conv4_3_feats) c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous() c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes) c_conv7 = self.cl_conv7(conv7_feats) c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous() c_conv7 = c_conv7.view(batch_size, -1, self.n_classes) c_conv8_2 = self.cl_conv8_2(conv8_2_feats) c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous() c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes) c_conv9_2 = self.cl_conv9_2(conv9_2_feats) c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous() c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes) c_conv10_2 = self.cl_conv10_2(conv10_2_feats) c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous() c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes) c_conv11_2 = self.cl_conv11_2(conv11_2_feats) c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous() c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes) locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2, l_conv10_2, l_conv11_2], dim=1) classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2, c_conv9_2, c_conv10_2, c_conv11_2], dim=1) return locs, classes_scores class SSD300(nn.Module): """ The SSD300 network - encapsulates the base VGG network, auxiliary, and prediction convolutions. """ def __init__(self, n_classes): super(SSD300, self).__init__() self.n_classes = n_classes self.base = VGGBase() self.aux_convs = AuxiliaryConvolutions() self.pred_convs = PredictionConvolutions(n_classes) self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1)) nn.init.constant_(self.rescale_factors, 20) self.priors_cxcy = self.create_prior_boxes() def forward(self, image): """ Forward propagation. :param image: images, a tensor of dimensions (N, 3, 300, 300) :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image """ conv4_3_feats, conv7_feats = self.base(image) norm = conv4_3_feats.pow(2).sum(dim=1, keepdim=True).sqrt() conv4_3_feats = conv4_3_feats / norm conv4_3_feats = conv4_3_feats * self.rescale_factors conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats = (self .aux_convs(conv7_feats)) locs, classes_scores = self.pred_convs(conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats) return locs, classes_scores def create_prior_boxes(self): """ Create the 8732 prior (default) boxes for the SSD300, as defined in the paper. :return: prior boxes in center-size coordinates, a tensor of dimensions (8732, 4) """ fmap_dims = {'conv4_3': 38, 'conv7': 19, 'conv8_2': 10, 'conv9_2': 5, 'conv10_2': 3, 'conv11_2': 1} obj_scales = {'conv4_3': 0.1, 'conv7': 0.2, 'conv8_2': 0.375, 'conv9_2': 0.55, 'conv10_2': 0.725, 'conv11_2': 0.9} aspect_ratios = {'conv4_3': [1.0, 2.0, 0.5], 'conv7': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv8_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv9_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv10_2': [1.0, 2.0, 0.5], 'conv11_2': [1.0, 2.0, 0.5]} fmaps = list(fmap_dims.keys()) prior_boxes = [] for k, fmap in enumerate(fmaps): for i in range(fmap_dims[fmap]): for j in range(fmap_dims[fmap]): cx = (j + 0.5) / fmap_dims[fmap] cy = (i + 0.5) / fmap_dims[fmap] for ratio in aspect_ratios[fmap]: prior_boxes.append([cx, cy, obj_scales[fmap] * sqrt (ratio), obj_scales[fmap] / sqrt(ratio)]) if ratio == 1.0: try: additional_scale = sqrt(obj_scales[fmap] * obj_scales[fmaps[k + 1]]) except IndexError: additional_scale = 1.0 prior_boxes.append([cx, cy, additional_scale, additional_scale]) prior_boxes = torch.FloatTensor(prior_boxes) prior_boxes.clamp_(0, 1) return prior_boxes def detect_objects(self, predicted_locs, predicted_scores, min_score, max_overlap, top_k): """ Decipher the 8732 locations and class scores (output of ths SSD300) to detect objects. For each class, perform Non-Maximum Suppression (NMS) on boxes that are above a minimum threshold. :param predicted_locs: predicted locations/boxes w.r.t the 8732 prior boxes, a tensor of dimensions (N, 8732, 4) :param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, 8732, n_classes) :param min_score: minimum threshold for a box to be considered a match for a certain class :param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via NMS :param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k' :return: detections (boxes, labels, and scores), lists of length batch_size """ batch_size = predicted_locs.size(0) n_priors = self.priors_cxcy.size(0) predicted_scores = F.softmax(predicted_scores, dim=2) all_images_boxes = list() all_images_labels = list() all_images_scores = list() assert n_priors == predicted_locs.size(1) == predicted_scores.size(1) for i in range(batch_size): decoded_locs = cxcy_to_xy(gcxgcy_to_cxcy(predicted_locs[i], self.priors_cxcy)) image_boxes = list() image_labels = list() image_scores = list() _max_scores, _best_label = predicted_scores[i].max(dim=1) for c in range(1, self.n_classes): class_scores = predicted_scores[i][:, c] score_above_min_score = class_scores > min_score n_above_min_score = score_above_min_score.sum().item() if n_above_min_score == 0: continue class_scores = class_scores[score_above_min_score] class_decoded_locs = decoded_locs[score_above_min_score] class_scores, sort_ind = class_scores.sort(dim=0, descending=True) class_decoded_locs = class_decoded_locs[sort_ind] overlap = find_jaccard_overlap(class_decoded_locs, class_decoded_locs) suppress = torch.zeros(n_above_min_score, dtype=torch.uint8) for box in range(class_decoded_locs.size(0)): if suppress[box] == 1: continue suppress = torch.max(suppress, overlap[box] > max_overlap) suppress[box] = 0 image_boxes.append(class_decoded_locs[1 - suppress]) image_labels.append(torch.LongTensor((1 - suppress).sum(). item() * [c])) image_scores.append(class_scores[1 - suppress]) if len(image_boxes) == 0: image_boxes.append(torch.FloatTensor([[0.0, 0.0, 1.0, 1.0]])) image_labels.append(torch.LongTensor([0])) image_scores.append(torch.FloatTensor([0.0])) image_boxes = torch.cat(image_boxes, dim=0) image_labels = torch.cat(image_labels, dim=0) image_scores = torch.cat(image_scores, dim=0) n_objects = image_scores.size(0) if n_objects > top_k: image_scores, sort_ind = image_scores.sort(dim=0, descending=True) image_scores = image_scores[:top_k] image_boxes = image_boxes[sort_ind][:top_k] image_labels = image_labels[sort_ind][:top_k] all_images_boxes.append(image_boxes) all_images_labels.append(image_labels) all_images_scores.append(image_scores) return all_images_boxes, all_images_labels, all_images_scores def get_inputs(): return [torch.rand([4, 3, 512, 512])] def get_init_inputs(): return [[], {'n_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torchvision import torch.utils.data from torch import nn import torch.nn.functional as F from math import sqrt from itertools import product as product import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 262144 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 1024 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 1024 * x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (512 + 2 * x0 + 1024 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (513 + 2 * x0 + 1024 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 65536 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 512 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 512 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (256 + 2 * x0 + 512 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (257 + 2 * x0 + 512 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16384 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 256 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 256 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (128 + 2 * x0 + 256 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (129 + 2 * x0 + 256 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 32 x0 = xindex % 32 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-33 + x4), tmp10, other=float('-inf')) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-32 + x4), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-31 + x4), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + x4), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x4, tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (31 + x4), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (32 + x4), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (33 + x4), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x4, tmp51, None) tl.store(out_ptr1 + x4, tmp76, None) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 1024 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_red_fused_pow_sqrt_sum_11(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): rnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 4096 x1 = xindex // 4096 _tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 2097152 * x1), rmask, eviction_policy='evict_first', other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = _tmp3 + tmp2 _tmp3 = tl.where(rmask, tmp4, _tmp3) tmp3 = tl.sum(_tmp3, 1)[:, None] tmp5 = libdevice.sqrt(tmp3) tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp5, None) @triton.jit def triton_poi_fused_div_mul_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = xindex // 2097152 x1 = xindex // 4096 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x3, tmp2, None) tl.store(out_ptr1 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 36 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 36 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_20(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 394496 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 24656 x0 = xindex % 4 x2 = xindex // 98624 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 16384, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4096 * ((x0 + 4 * x1) % 16) + 65536 * ((x0 + 4 * x1 + 65536 * x2) // 65536 % 4) + (x0 + 4 * x1) // 16 % 4096), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1) % 16, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 22528, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (1024 * ((x0 + 4 * (-16384 + x1)) % 24) + 24576 * ((x0 + 4 * (-16384 + x1) + 24576 * x2) // 24576 % 4) + (x0 + 4 * (-16384 + x1)) // 24 % 1024), tmp13 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + (x0 + 4 * (-16384 + x1)) % 24, tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 24064, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr4 + (256 * ((x0 + 4 * (-22528 + x1)) % 24) + 6144 * ((x0 + 4 * (-22528 + x1) + 6144 * x2) // 6144 % 4) + (x0 + 4 * (- 22528 + x1)) // 24 % 256), tmp22 & xmask, eviction_policy= 'evict_last', other=0.0) tmp24 = tl.load(in_ptr5 + (x0 + 4 * (-22528 + x1)) % 24, tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tmp29 = tl.full([1], 24448, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tmp28 & tmp30 tmp32 = tl.load(in_ptr6 + (64 * ((x0 + 4 * (-24064 + x1)) % 24) + 1536 * ((x0 + 4 * (-24064 + x1) + 1536 * x2) // 1536 % 4) + (x0 + 4 * (- 24064 + x1)) // 24 % 64), tmp31 & xmask, eviction_policy= 'evict_last', other=0.0) tmp33 = tl.load(in_ptr7 + (x0 + 4 * (-24064 + x1)) % 24, tmp31 & xmask, eviction_policy='evict_last', other=0.0) tmp34 = tmp32 + tmp33 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp31, tmp34, tmp35) tmp37 = tmp0 >= tmp29 tmp38 = tl.full([1], 24592, tl.int64) tmp39 = tmp0 < tmp38 tmp40 = tmp37 & tmp39 tmp41 = tl.load(in_ptr8 + (36 * ((x0 + 4 * (-24448 + x1)) % 16) + 576 * ((x0 + 4 * (-24448 + x1) + 576 * x2) // 576 % 4) + (x0 + 4 * (- 24448 + x1)) // 16 % 36), tmp40 & xmask, eviction_policy= 'evict_last', other=0.0) tmp42 = tl.load(in_ptr9 + (x0 + 4 * (-24448 + x1)) % 16, tmp40 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp41 + tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp40, tmp43, tmp44) tmp46 = tmp0 >= tmp38 tl.full([1], 24656, tl.int64) tmp49 = tl.load(in_ptr10 + (16 * ((x0 + 4 * (-24592 + x1)) % 16) + 256 * ((x0 + 4 * (-24592 + x1) + 256 * x2) // 256 % 4) + (x0 + 4 * (- 24592 + x1)) // 16 % 16), tmp46 & xmask, eviction_policy= 'evict_last', other=0.0) tmp50 = tl.load(in_ptr11 + (x0 + 4 * (-24592 + x1)) % 16, tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype) tmp53 = tl.where(tmp46, tmp51, tmp52) tmp54 = tl.where(tmp40, tmp45, tmp53) tmp55 = tl.where(tmp31, tmp36, tmp54) tmp56 = tl.where(tmp22, tmp27, tmp55) tmp57 = tl.where(tmp13, tmp18, tmp56) tmp58 = tl.where(tmp4, tmp9, tmp57) tl.store(out_ptr0 + x3, tmp58, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 512, 512), (786432, 262144, 512, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512,), (1,)) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512,), (1,)) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512,), (1,)) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512,), (1,)) assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_29, (1024,), (1,)) assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_31, (1024,), (1,)) assert_size_stride(primals_32, (1, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_33, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_34, (256,), (1,)) assert_size_stride(primals_35, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_36, (512,), (1,)) assert_size_stride(primals_37, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_38, (128,), (1,)) assert_size_stride(primals_39, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_40, (256,), (1,)) assert_size_stride(primals_41, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_42, (128,), (1,)) assert_size_stride(primals_43, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_44, (256,), (1,)) assert_size_stride(primals_45, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_46, (128,), (1,)) assert_size_stride(primals_47, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_48, (256,), (1,)) assert_size_stride(primals_49, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_50, (16,), (1,)) assert_size_stride(primals_51, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_52, (24,), (1,)) assert_size_stride(primals_53, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_54, (24,), (1,)) assert_size_stride(primals_55, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_56, (24,), (1,)) assert_size_stride(primals_57, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_58, (16,), (1,)) assert_size_stride(primals_59, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_60, (16,), (1,)) assert_size_stride(primals_61, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_62, (16,), (1,)) assert_size_stride(primals_63, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_64, (24,), (1,)) assert_size_stride(primals_65, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_66, (24,), (1,)) assert_size_stride(primals_67, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_68, (24,), (1,)) assert_size_stride(primals_69, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_70, (16,), (1,)) assert_size_stride(primals_71, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_72, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 512, 512), (16777216, 262144, 512, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(67108864)](buf1, primals_2, 67108864, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 512, 512), (16777216, 262144, 512, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(67108864)](buf3, primals_5, 67108864, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(16777216)](buf3, buf4, buf5, 16777216, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 256, 256), (8388608, 65536, 256, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_2[grid(33554432)](buf7, primals_7, 33554432, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 256, 256), (8388608, 65536, 256, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_2[grid(33554432)](buf9, primals_9, 33554432, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((4, 128, 128, 128), (2097152, 16384, 128, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 128, 128), (2097152, 16384, 128, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(8388608)](buf9, buf10, buf11, 8388608, XBLOCK=512, num_warps=8, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(16777216)](buf13, primals_11, 16777216, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_4[grid(16777216)](buf15, primals_13, 16777216, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_4[grid(16777216)](buf17, primals_15, 16777216, XBLOCK=512, num_warps=8, num_stages=1) del primals_15 buf18 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.float32) buf19 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_5[grid(4194304)](buf17, buf18, buf19, 4194304, XBLOCK=512, num_warps=8, num_stages=1) buf20 = extern_kernels.convolution(buf18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf21 = buf20 del buf20 triton_poi_fused_convolution_relu_6[grid(8388608)](buf21, primals_17, 8388608, XBLOCK=512, num_warps=8, num_stages=1) del primals_17 buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_6[grid(8388608)](buf23, primals_19, 8388608, XBLOCK=512, num_warps=8, num_stages=1) del primals_19 buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_6[grid(8388608)](buf25, primals_21, 8388608, XBLOCK=512, num_warps=8, num_stages=1) del primals_21 buf26 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32) buf27 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_7[grid(2097152)](buf25, buf26, buf27, 2097152, XBLOCK=512, num_warps=8, num_stages=1) buf28 = extern_kernels.convolution(buf26, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf29 = buf28 del buf28 triton_poi_fused_convolution_relu_8[grid(2097152)](buf29, primals_23, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_23 buf30 = extern_kernels.convolution(buf29, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf31 = buf30 del buf30 triton_poi_fused_convolution_relu_8[grid(2097152)](buf31, primals_25, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_25 buf32 = extern_kernels.convolution(buf31, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf33 = buf32 del buf32 triton_poi_fused_convolution_relu_8[grid(2097152)](buf33, primals_27, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_27 buf34 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32) buf35 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_9[grid(2097152)](buf33, buf34, buf35, 2097152, XBLOCK=512, num_warps=8, num_stages=1) buf36 = extern_kernels.convolution(buf34, primals_28, stride=(1, 1), padding=(6, 6), dilation=(6, 6), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 1024, 32, 32), (1048576, 1024, 32, 1)) buf37 = buf36 del buf36 triton_poi_fused_convolution_relu_10[grid(4194304)](buf37, primals_29, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del primals_29 buf38 = extern_kernels.convolution(buf37, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 1024, 32, 32), (1048576, 1024, 32, 1)) buf39 = buf38 del buf38 triton_poi_fused_convolution_relu_10[grid(4194304)](buf39, primals_31, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del primals_31 buf40 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32) buf41 = reinterpret_tensor(buf40, (4, 1, 64, 64), (4096, 4096, 64, 1), 0) del buf40 triton_red_fused_pow_sqrt_sum_11[grid(16384)](buf41, buf25, 16384, 512, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1) buf42 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32) buf43 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32) triton_poi_fused_div_mul_12[grid(8388608)](buf25, buf41, primals_32, buf42, buf43, 8388608, XBLOCK=512, num_warps=8, num_stages=1) buf44 = extern_kernels.convolution(buf39, primals_33, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 256, 32, 32), (262144, 1024, 32, 1)) buf45 = buf44 del buf44 triton_poi_fused_convolution_relu_13[grid(1048576)](buf45, primals_34, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_34 buf46 = extern_kernels.convolution(buf45, primals_35, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 512, 16, 16), (131072, 256, 16, 1)) buf47 = buf46 del buf46 triton_poi_fused_convolution_relu_14[grid(524288)](buf47, primals_36, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_36 buf48 = extern_kernels.convolution(buf47, primals_37, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 128, 16, 16), (32768, 256, 16, 1)) buf49 = buf48 del buf48 triton_poi_fused_convolution_relu_15[grid(131072)](buf49, primals_38, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_38 buf50 = extern_kernels.convolution(buf49, primals_39, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf50, (4, 256, 8, 8), (16384, 64, 8, 1)) buf51 = buf50 del buf50 triton_poi_fused_convolution_relu_16[grid(65536)](buf51, primals_40, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_40 buf52 = extern_kernels.convolution(buf51, primals_41, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf52, (4, 128, 8, 8), (8192, 64, 8, 1)) buf53 = buf52 del buf52 triton_poi_fused_convolution_relu_17[grid(32768)](buf53, primals_42, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_42 buf54 = extern_kernels.convolution(buf53, primals_43, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 256, 6, 6), (9216, 36, 6, 1)) buf55 = buf54 del buf54 triton_poi_fused_convolution_relu_18[grid(36864)](buf55, primals_44, 36864, XBLOCK=512, num_warps=4, num_stages=1) del primals_44 buf56 = extern_kernels.convolution(buf55, primals_45, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 128, 6, 6), (4608, 36, 6, 1)) buf57 = buf56 del buf56 triton_poi_fused_convolution_relu_19[grid(18432)](buf57, primals_46, 18432, XBLOCK=256, num_warps=4, num_stages=1) del primals_46 buf58 = extern_kernels.convolution(buf57, primals_47, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 256, 4, 4), (4096, 16, 4, 1)) buf59 = buf58 del buf58 triton_poi_fused_convolution_relu_20[grid(16384)](buf59, primals_48, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_48 buf60 = extern_kernels.convolution(buf43, primals_49, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf60, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf61 = extern_kernels.convolution(buf39, primals_51, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf61, (4, 24, 32, 32), (24576, 1024, 32, 1)) buf62 = extern_kernels.convolution(buf47, primals_53, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf62, (4, 24, 16, 16), (6144, 256, 16, 1)) buf63 = extern_kernels.convolution(buf51, primals_55, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf63, (4, 24, 8, 8), (1536, 64, 8, 1)) buf64 = extern_kernels.convolution(buf55, primals_57, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 16, 6, 6), (576, 36, 6, 1)) buf65 = extern_kernels.convolution(buf59, primals_59, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf65, (4, 16, 4, 4), (256, 16, 4, 1)) buf66 = extern_kernels.convolution(buf43, primals_61, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf66, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf67 = extern_kernels.convolution(buf39, primals_63, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 24, 32, 32), (24576, 1024, 32, 1)) buf68 = extern_kernels.convolution(buf47, primals_65, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf68, (4, 24, 16, 16), (6144, 256, 16, 1)) buf69 = extern_kernels.convolution(buf51, primals_67, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf69, (4, 24, 8, 8), (1536, 64, 8, 1)) buf70 = extern_kernels.convolution(buf55, primals_69, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 16, 6, 6), (576, 36, 6, 1)) buf71 = extern_kernels.convolution(buf59, primals_71, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf71, (4, 16, 4, 4), (256, 16, 4, 1)) buf72 = empty_strided_cuda((4, 24656, 4), (98624, 4, 1), torch.float32) triton_poi_fused_cat_21[grid(394496)](buf60, primals_50, buf61, primals_52, buf62, primals_54, buf63, primals_56, buf64, primals_58, buf65, primals_60, buf72, 394496, XBLOCK=512, num_warps=8, num_stages=1) del buf60 del buf61 del buf62 del buf63 del buf64 del buf65 del primals_50 del primals_52 del primals_54 del primals_56 del primals_58 del primals_60 buf73 = empty_strided_cuda((4, 24656, 4), (98624, 4, 1), torch.float32) triton_poi_fused_cat_21[grid(394496)](buf66, primals_62, buf67, primals_64, buf68, primals_66, buf69, primals_68, buf70, primals_70, buf71, primals_72, buf73, 394496, XBLOCK=512, num_warps=8, num_stages=1) del buf66 del buf67 del buf68 del buf69 del buf70 del buf71 del primals_62 del primals_64 del primals_66 del primals_68 del primals_70 del primals_72 return (buf72, buf73, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_33, primals_35, primals_37, primals_39, primals_41, primals_43, primals_45, primals_47, primals_49, primals_51, primals_53, primals_55, primals_57, primals_59, primals_61, primals_63, primals_65, primals_67, primals_69, primals_71, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf18, buf19, buf21, buf23, buf25, buf26, buf27, buf29, buf31, buf33, buf34, buf35, buf37, buf39, buf41, buf42, buf43, buf45, buf47, buf49, buf51, buf53, buf55, buf57, buf59) def decimate(tensor, m): """ Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value. This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size. :param tensor: tensor to be decimated :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension :return: decimated tensor """ assert tensor.dim() == len(m) for d in range(tensor.dim()): if m[d] is not None: tensor = tensor.index_select(dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()) return tensor def cxcy_to_xy(cxcy): """ Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max). :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4) :return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4) """ return torch.cat([cxcy[:, :2] - cxcy[:, 2:] / 2, cxcy[:, :2] + cxcy[:, 2:] / 2], 1) def find_intersection(set_1, set_2): """ Find the intersection of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2]. unsqueeze(0)) upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:]. unsqueeze(0)) intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0) return intersection_dims[:, :, 0] * intersection_dims[:, :, 1] def find_jaccard_overlap(set_1, set_2): """ Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ intersection = find_intersection(set_1, set_2) areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection return intersection / union def gcxgcy_to_cxcy(gcxgcy, priors_cxcy): """ Decode bounding box coordinates predicted by the model, since they are encoded in the form mentioned above. They are decoded into center-size coordinates. This is the inverse of the function above. :param gcxgcy: encoded bounding boxes, i.e. output of the model, a tensor of size (n_priors, 4) :param priors_cxcy: prior boxes with respect to which the encoding is defined, a tensor of size (n_priors, 4) :return: decoded bounding boxes in center-size form, a tensor of size (n_priors, 4) """ return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy [:, :2], torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1) class VGGBase(nn.Module): """ VGG base convolutions to produce lower-level feature maps. """ def __init__(self): super(VGGBase, self).__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1) self.load_pretrained_layers() def forward(self, image): """ Forward propagation. :param image: images, a tensor of dimensions (N, 3, 300, 300) :return: lower-level feature maps conv4_3 and conv7 """ out = F.relu(self.conv1_1(image)) out = F.relu(self.conv1_2(out)) out = self.pool1(out) out = F.relu(self.conv2_1(out)) out = F.relu(self.conv2_2(out)) out = self.pool2(out) out = F.relu(self.conv3_1(out)) out = F.relu(self.conv3_2(out)) out = F.relu(self.conv3_3(out)) out = self.pool3(out) out = F.relu(self.conv4_1(out)) out = F.relu(self.conv4_2(out)) out = F.relu(self.conv4_3(out)) conv4_3_feats = out out = self.pool4(out) out = F.relu(self.conv5_1(out)) out = F.relu(self.conv5_2(out)) out = F.relu(self.conv5_3(out)) out = self.pool5(out) out = F.relu(self.conv6(out)) conv7_feats = F.relu(self.conv7(out)) return conv4_3_feats, conv7_feats def load_pretrained_layers(self): """ As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network. There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16 We copy these parameters into our network. It's straightforward for conv1 to conv5. However, the original VGG-16 does not contain the conv6 and con7 layers. Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py. """ state_dict = self.state_dict() param_names = list(state_dict.keys()) pretrained_state_dict = torchvision.models.vgg16(pretrained=True ).state_dict() pretrained_param_names = list(pretrained_state_dict.keys()) for i, param in enumerate(param_names[:-4]): state_dict[param] = pretrained_state_dict[pretrained_param_names[i] ] conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view( 4096, 512, 7, 7) conv_fc6_bias = pretrained_state_dict['classifier.0.bias'] state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None, 3, 3]) state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4]) conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view( 4096, 4096, 1, 1) conv_fc7_bias = pretrained_state_dict['classifier.3.bias'] state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4, None, None]) state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4]) self.load_state_dict(state_dict) None class AuxiliaryConvolutions(nn.Module): """ Additional convolutions to produce higher-level feature maps. """ def __init__(self): super(AuxiliaryConvolutions, self).__init__() self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0) self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0) self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv7_feats): """ Forward propagation. :param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2 """ out = F.relu(self.conv8_1(conv7_feats)) out = F.relu(self.conv8_2(out)) conv8_2_feats = out out = F.relu(self.conv9_1(out)) out = F.relu(self.conv9_2(out)) conv9_2_feats = out out = F.relu(self.conv10_1(out)) out = F.relu(self.conv10_2(out)) conv10_2_feats = out out = F.relu(self.conv11_1(out)) conv11_2_feats = F.relu(self.conv11_2(out)) return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats class PredictionConvolutions(nn.Module): """ Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps. The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes. See 'cxcy_to_gcxgcy' in utils.py for the encoding definition. The class scores represent the scores of each object class in each of the 8732 bounding boxes located. A high score for 'background' = no object. """ def __init__(self, n_classes): """ :param n_classes: number of different types of objects """ super(PredictionConvolutions, self).__init__() self.n_classes = n_classes n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6, 'conv10_2': 4, 'conv11_2': 4} self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4, kernel_size=3, padding=1) self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size= 3, padding=1) self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4, kernel_size=3, padding=1) self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4, kernel_size=3, padding=1) self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4, kernel_size=3, padding=1) self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4, kernel_size=3, padding=1) self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes, kernel_size=3, padding=1) self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes, kernel_size=3, padding=1) self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes, kernel_size=3, padding=1) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats): """ Forward propagation. :param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38) :param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10) :param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5) :param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3) :param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1) :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image """ batch_size = conv4_3_feats.size(0) l_conv4_3 = self.loc_conv4_3(conv4_3_feats) l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous() l_conv4_3 = l_conv4_3.view(batch_size, -1, 4) l_conv7 = self.loc_conv7(conv7_feats) l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous() l_conv7 = l_conv7.view(batch_size, -1, 4) l_conv8_2 = self.loc_conv8_2(conv8_2_feats) l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous() l_conv8_2 = l_conv8_2.view(batch_size, -1, 4) l_conv9_2 = self.loc_conv9_2(conv9_2_feats) l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous() l_conv9_2 = l_conv9_2.view(batch_size, -1, 4) l_conv10_2 = self.loc_conv10_2(conv10_2_feats) l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous() l_conv10_2 = l_conv10_2.view(batch_size, -1, 4) l_conv11_2 = self.loc_conv11_2(conv11_2_feats) l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous() l_conv11_2 = l_conv11_2.view(batch_size, -1, 4) c_conv4_3 = self.cl_conv4_3(conv4_3_feats) c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous() c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes) c_conv7 = self.cl_conv7(conv7_feats) c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous() c_conv7 = c_conv7.view(batch_size, -1, self.n_classes) c_conv8_2 = self.cl_conv8_2(conv8_2_feats) c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous() c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes) c_conv9_2 = self.cl_conv9_2(conv9_2_feats) c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous() c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes) c_conv10_2 = self.cl_conv10_2(conv10_2_feats) c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous() c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes) c_conv11_2 = self.cl_conv11_2(conv11_2_feats) c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous() c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes) locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2, l_conv10_2, l_conv11_2], dim=1) classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2, c_conv9_2, c_conv10_2, c_conv11_2], dim=1) return locs, classes_scores class SSD300New(nn.Module): """ The SSD300 network - encapsulates the base VGG network, auxiliary, and prediction convolutions. """ def __init__(self, n_classes): super(SSD300New, self).__init__() self.n_classes = n_classes self.base = VGGBase() self.aux_convs = AuxiliaryConvolutions() self.pred_convs = PredictionConvolutions(n_classes) self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1)) nn.init.constant_(self.rescale_factors, 20) self.priors_cxcy = self.create_prior_boxes() def create_prior_boxes(self): """ Create the 8732 prior (default) boxes for the SSD300, as defined in the paper. :return: prior boxes in center-size coordinates, a tensor of dimensions (8732, 4) """ fmap_dims = {'conv4_3': 38, 'conv7': 19, 'conv8_2': 10, 'conv9_2': 5, 'conv10_2': 3, 'conv11_2': 1} obj_scales = {'conv4_3': 0.1, 'conv7': 0.2, 'conv8_2': 0.375, 'conv9_2': 0.55, 'conv10_2': 0.725, 'conv11_2': 0.9} aspect_ratios = {'conv4_3': [1.0, 2.0, 0.5], 'conv7': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv8_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv9_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv10_2': [1.0, 2.0, 0.5], 'conv11_2': [1.0, 2.0, 0.5]} fmaps = list(fmap_dims.keys()) prior_boxes = [] for k, fmap in enumerate(fmaps): for i in range(fmap_dims[fmap]): for j in range(fmap_dims[fmap]): cx = (j + 0.5) / fmap_dims[fmap] cy = (i + 0.5) / fmap_dims[fmap] for ratio in aspect_ratios[fmap]: prior_boxes.append([cx, cy, obj_scales[fmap] * sqrt (ratio), obj_scales[fmap] / sqrt(ratio)]) if ratio == 1.0: try: additional_scale = sqrt(obj_scales[fmap] * obj_scales[fmaps[k + 1]]) except IndexError: additional_scale = 1.0 prior_boxes.append([cx, cy, additional_scale, additional_scale]) prior_boxes = torch.FloatTensor(prior_boxes) prior_boxes.clamp_(0, 1) return prior_boxes def detect_objects(self, predicted_locs, predicted_scores, min_score, max_overlap, top_k): """ Decipher the 8732 locations and class scores (output of ths SSD300) to detect objects. For each class, perform Non-Maximum Suppression (NMS) on boxes that are above a minimum threshold. :param predicted_locs: predicted locations/boxes w.r.t the 8732 prior boxes, a tensor of dimensions (N, 8732, 4) :param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, 8732, n_classes) :param min_score: minimum threshold for a box to be considered a match for a certain class :param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via NMS :param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k' :return: detections (boxes, labels, and scores), lists of length batch_size """ batch_size = predicted_locs.size(0) n_priors = self.priors_cxcy.size(0) predicted_scores = F.softmax(predicted_scores, dim=2) all_images_boxes = list() all_images_labels = list() all_images_scores = list() assert n_priors == predicted_locs.size(1) == predicted_scores.size(1) for i in range(batch_size): decoded_locs = cxcy_to_xy(gcxgcy_to_cxcy(predicted_locs[i], self.priors_cxcy)) image_boxes = list() image_labels = list() image_scores = list() _max_scores, _best_label = predicted_scores[i].max(dim=1) for c in range(1, self.n_classes): class_scores = predicted_scores[i][:, c] score_above_min_score = class_scores > min_score n_above_min_score = score_above_min_score.sum().item() if n_above_min_score == 0: continue class_scores = class_scores[score_above_min_score] class_decoded_locs = decoded_locs[score_above_min_score] class_scores, sort_ind = class_scores.sort(dim=0, descending=True) class_decoded_locs = class_decoded_locs[sort_ind] overlap = find_jaccard_overlap(class_decoded_locs, class_decoded_locs) suppress = torch.zeros(n_above_min_score, dtype=torch.uint8) for box in range(class_decoded_locs.size(0)): if suppress[box] == 1: continue suppress = torch.max(suppress, overlap[box] > max_overlap) suppress[box] = 0 image_boxes.append(class_decoded_locs[1 - suppress]) image_labels.append(torch.LongTensor((1 - suppress).sum(). item() * [c])) image_scores.append(class_scores[1 - suppress]) if len(image_boxes) == 0: image_boxes.append(torch.FloatTensor([[0.0, 0.0, 1.0, 1.0]])) image_labels.append(torch.LongTensor([0])) image_scores.append(torch.FloatTensor([0.0])) image_boxes = torch.cat(image_boxes, dim=0) image_labels = torch.cat(image_labels, dim=0) image_scores = torch.cat(image_scores, dim=0) n_objects = image_scores.size(0) if n_objects > top_k: image_scores, sort_ind = image_scores.sort(dim=0, descending=True) image_scores = image_scores[:top_k] image_boxes = image_boxes[sort_ind][:top_k] image_labels = image_labels[sort_ind][:top_k] all_images_boxes.append(image_boxes) all_images_labels.append(image_labels) all_images_scores.append(image_scores) return all_images_boxes, all_images_labels, all_images_scores def forward(self, input_0): primals_32 = self.rescale_factors primals_1 = self.base.conv1_1.weight primals_2 = self.base.conv1_1.bias primals_4 = self.base.conv1_2.weight primals_5 = self.base.conv1_2.bias primals_6 = self.base.conv2_1.weight primals_7 = self.base.conv2_1.bias primals_8 = self.base.conv2_2.weight primals_9 = self.base.conv2_2.bias primals_10 = self.base.conv3_1.weight primals_11 = self.base.conv3_1.bias primals_12 = self.base.conv3_2.weight primals_13 = self.base.conv3_2.bias primals_14 = self.base.conv3_3.weight primals_15 = self.base.conv3_3.bias primals_16 = self.base.conv4_1.weight primals_17 = self.base.conv4_1.bias primals_18 = self.base.conv4_2.weight primals_19 = self.base.conv4_2.bias primals_20 = self.base.conv4_3.weight primals_21 = self.base.conv4_3.bias primals_22 = self.base.conv5_1.weight primals_23 = self.base.conv5_1.bias primals_24 = self.base.conv5_2.weight primals_25 = self.base.conv5_2.bias primals_26 = self.base.conv5_3.weight primals_27 = self.base.conv5_3.bias primals_28 = self.base.conv6.weight primals_29 = self.base.conv6.bias primals_30 = self.base.conv7.weight primals_31 = self.base.conv7.bias primals_33 = self.aux_convs.conv8_1.weight primals_34 = self.aux_convs.conv8_1.bias primals_35 = self.aux_convs.conv8_2.weight primals_36 = self.aux_convs.conv8_2.bias primals_37 = self.aux_convs.conv9_1.weight primals_38 = self.aux_convs.conv9_1.bias primals_39 = self.aux_convs.conv9_2.weight primals_40 = self.aux_convs.conv9_2.bias primals_41 = self.aux_convs.conv10_1.weight primals_42 = self.aux_convs.conv10_1.bias primals_43 = self.aux_convs.conv10_2.weight primals_44 = self.aux_convs.conv10_2.bias primals_45 = self.aux_convs.conv11_1.weight primals_46 = self.aux_convs.conv11_1.bias primals_47 = self.aux_convs.conv11_2.weight primals_48 = self.aux_convs.conv11_2.bias primals_49 = self.pred_convs.loc_conv4_3.weight primals_50 = self.pred_convs.loc_conv4_3.bias primals_51 = self.pred_convs.loc_conv7.weight primals_52 = self.pred_convs.loc_conv7.bias primals_53 = self.pred_convs.loc_conv8_2.weight primals_54 = self.pred_convs.loc_conv8_2.bias primals_55 = self.pred_convs.loc_conv9_2.weight primals_56 = self.pred_convs.loc_conv9_2.bias primals_57 = self.pred_convs.loc_conv10_2.weight primals_58 = self.pred_convs.loc_conv10_2.bias primals_59 = self.pred_convs.loc_conv11_2.weight primals_60 = self.pred_convs.loc_conv11_2.bias primals_61 = self.pred_convs.cl_conv4_3.weight primals_62 = self.pred_convs.cl_conv4_3.bias primals_63 = self.pred_convs.cl_conv7.weight primals_64 = self.pred_convs.cl_conv7.bias primals_65 = self.pred_convs.cl_conv8_2.weight primals_66 = self.pred_convs.cl_conv8_2.bias primals_67 = self.pred_convs.cl_conv9_2.weight primals_68 = self.pred_convs.cl_conv9_2.bias primals_69 = self.pred_convs.cl_conv10_2.weight primals_70 = self.pred_convs.cl_conv10_2.bias primals_71 = self.pred_convs.cl_conv11_2.weight primals_72 = self.pred_convs.cl_conv11_2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72]) return output[0], output[1]
adityag6994/pytorch_ssd_training
SSD300
false
3,587
[ "MIT" ]
0
404f3cbef815e314337ec2c1b4f06a2403a7ce03
https://github.com/adityag6994/pytorch_ssd_training/tree/404f3cbef815e314337ec2c1b4f06a2403a7ce03
import torch import torchvision import torch.utils.data from torch import nn import torch.nn.functional as F from math import sqrt from itertools import product as product import torch.optim def decimate(tensor, m): """ Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value. This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size. :param tensor: tensor to be decimated :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension :return: decimated tensor """ assert tensor.dim() == len(m) for d in range(tensor.dim()): if m[d] is not None: tensor = tensor.index_select(dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()) return tensor def cxcy_to_xy(cxcy): """ Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max). :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4) :return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4) """ return torch.cat([cxcy[:, :2] - cxcy[:, 2:] / 2, cxcy[:, :2] + cxcy[:, 2:] / 2], 1) def find_intersection(set_1, set_2): """ Find the intersection of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2]. unsqueeze(0)) upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:]. unsqueeze(0)) intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0) return intersection_dims[:, :, 0] * intersection_dims[:, :, 1] def find_jaccard_overlap(set_1, set_2): """ Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ intersection = find_intersection(set_1, set_2) areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection return intersection / union def gcxgcy_to_cxcy(gcxgcy, priors_cxcy): """ Decode bounding box coordinates predicted by the model, since they are encoded in the form mentioned above. They are decoded into center-size coordinates. This is the inverse of the function above. :param gcxgcy: encoded bounding boxes, i.e. output of the model, a tensor of size (n_priors, 4) :param priors_cxcy: prior boxes with respect to which the encoding is defined, a tensor of size (n_priors, 4) :return: decoded bounding boxes in center-size form, a tensor of size (n_priors, 4) """ return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy [:, :2], torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1) class VGGBase(nn.Module): """ VGG base convolutions to produce lower-level feature maps. """ def __init__(self): super().__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.poo # ... truncated (>4000 chars) for memory efficiency
Attention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ay/caywp47uavxpemsedoua2bukguc4a35wrbcpkididsx7er45yggu.py # Topologically Sorted Source Nodes: [Attn_1, exp_Attn], Original ATen: [aten.sub, aten.exp] # Source node to ATen node mapping: # Attn_1 => sub # exp_Attn => exp # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %expand), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused_exp_sub_0 = async_compile.triton('triton_poi_fused_exp_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zi/czi7jawpjijglao6vg3w7wjcs3kwzlrqgpqyzqnwdtcjtyh5gnmu.py # Topologically Sorted Source Nodes: [Attn_2], Original ATen: [aten.div] # Source node to ATen node mapping: # Attn_2 => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %expand_1), kwargs = {}) triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [Attn], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [Attn_1, exp_Attn], Original ATen: [aten.sub, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_exp_sub_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [Attn_2], Original ATen: [aten.div] triton_poi_fused_div_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class Attention(nn.Module): def __init__(self): super(Attention, self).__init__() def forward(self, input_hidden_traces, target_hidden_traces): Attn = torch.bmm(target_hidden_traces, input_hidden_traces. transpose(1, 2)) Attn_size = Attn.size() Attn = Attn - Attn.max(2)[0].unsqueeze(2).expand(Attn_size) exp_Attn = torch.exp(Attn) Attn = exp_Attn / exp_Attn.sum(2).unsqueeze(2).expand(Attn_size) return Attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_exp_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_exp_sub_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused_div_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 return buf2, class AttentionNew(nn.Module): def __init__(self): super(AttentionNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
hk19960522/2018-DL-Final
Attention
false
3,588
[ "MIT" ]
0
cbc70260aa22d7df366a1d28bee472f1fc5b82c7
https://github.com/hk19960522/2018-DL-Final/tree/cbc70260aa22d7df366a1d28bee472f1fc5b82c7
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self): super().__init__() def forward(self, input_hidden_traces, target_hidden_traces): Attn = torch.bmm(target_hidden_traces, input_hidden_traces. transpose(1, 2)) Attn_size = Attn.size() Attn = Attn - Attn.max(2)[0].unsqueeze(2).expand(Attn_size) exp_Attn = torch.exp(Attn) Attn = exp_Attn / exp_Attn.sum(2).unsqueeze(2).expand(Attn_size) return Attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return []
Autoencoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/k3/ck32qkbu76goin6gngorb46frxtcgido7u4gqqjikn6bs3l76qke.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 1024 y1 = (yindex // 1024) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None) tl.store(out_ptr0 + (y0 + (1024*x2) + (4194304*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uf/cufvrc47k3e3xikkm7jxgk37t4gw7ayimtfzmwz63kerai667jse.py # Topologically Sorted Source Nodes: [encoded_f, decoded_f], Original ATen: [aten.convolution] # Source node to ATen node mapping: # decoded_f => convolution_1 # encoded_f => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 128 y1 = (yindex // 128) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (128*x2) + (524288*y1)), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, ymask) tl.store(out_ptr1 + (y0 + (128*x2) + (524288*y1)), tmp2, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gk/cgkhkq2mdz3autv6ac5clbv7afv65akvhi3yoq7fnrtc4ccdfmr7.py # Topologically Sorted Source Nodes: [decoded_f, decoded_f_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # decoded_f => convolution_1 # decoded_f_1 => relu # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 1024 y1 = (yindex // 1024) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (1024*x2) + (4194304*y1)), None) tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (4096*y3)), tmp4, None) tl.store(out_ptr1 + (y0 + (1024*x2) + (4194304*y1)), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (128, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1)) assert_size_stride(primals_4, (1024, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_5, (1024, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 4096, 4096, grid=grid(4096, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [encoded_f], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 128, 64, 64), (524288, 1, 8192, 128)) buf2 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) buf3 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) # Topologically Sorted Source Nodes: [encoded_f, decoded_f], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf1, primals_2, buf2, buf3, 512, 4096, grid=grid(512, 4096), stream=stream0) del buf1 del primals_2 # Topologically Sorted Source Nodes: [decoded_f], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1024, 64, 64), (4194304, 1, 65536, 1024)) del buf3 buf5 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 4096, 64, 1), torch.float32) buf6 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.bool) # Topologically Sorted Source Nodes: [decoded_f, decoded_f_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_2.run(buf4, primals_5, buf5, buf6, 4096, 4096, grid=grid(4096, 4096), stream=stream0) del buf4 del primals_5 return (buf2, buf5, primals_1, buf0, primals_4, buf2, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1024, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Autoencoder(nn.Module): def __init__(self): super(Autoencoder, self).__init__() self.encoder = nn.Conv2d(1024, 128, kernel_size=1) self.decoder = nn.Conv2d(128, 1024, kernel_size=1) self.relu = nn.ReLU() def forward(self, local_f): encoded_f = self.encoder(local_f) decoded_f = self.decoder(encoded_f) decoded_f = self.relu(decoded_f) return encoded_f, decoded_f def get_inputs(): return [torch.rand([4, 1024, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 1024 y1 = yindex // 1024 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None) tl.store(out_ptr0 + (y0 + 1024 * x2 + 4194304 * y1), tmp0, None) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 128 y1 = yindex // 128 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 524288 * y1), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, ymask) tl.store(out_ptr1 + (y0 + 128 * x2 + 524288 * y1), tmp2, ymask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 1024 y1 = yindex // 1024 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 1024 * x2 + 4194304 * y1), None) tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 4096 * y3), tmp4, None) tl.store(out_ptr1 + (y0 + 1024 * x2 + 4194304 * y1), tmp6, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (128, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1)) assert_size_stride(primals_4, (1024, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_5, (1024,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(4096, 4096)](primals_3, buf0, 4096, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 128, 64, 64), (524288, 1, 8192, 128)) buf2 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) buf3 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) triton_poi_fused_convolution_1[grid(512, 4096)](buf1, primals_2, buf2, buf3, 512, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf1 del primals_2 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1024, 64, 64), (4194304, 1, 65536, 1024)) del buf3 buf5 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 4096, 64, 1), torch.float32) buf6 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_2[grid(4096, 4096) ](buf4, primals_5, buf5, buf6, 4096, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf4 del primals_5 return buf2, buf5, primals_1, buf0, primals_4, buf2, buf6 class AutoencoderNew(nn.Module): def __init__(self): super(AutoencoderNew, self).__init__() self.encoder = nn.Conv2d(1024, 128, kernel_size=1) self.decoder = nn.Conv2d(128, 1024, kernel_size=1) self.relu = nn.ReLU() def forward(self, input_0): primals_1 = self.encoder.weight primals_2 = self.encoder.bias primals_4 = self.decoder.weight primals_5 = self.decoder.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
esha-singh/DL_project
Autoencoder
false
3,589
[ "MIT" ]
0
11ac2874845bc3982435cc37f4e0b8896b95660e
https://github.com/esha-singh/DL_project/tree/11ac2874845bc3982435cc37f4e0b8896b95660e
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.encoder = nn.Conv2d(1024, 128, kernel_size=1) self.decoder = nn.Conv2d(128, 1024, kernel_size=1) self.relu = nn.ReLU() def forward(self, local_f): encoded_f = self.encoder(local_f) decoded_f = self.decoder(encoded_f) decoded_f = self.relu(decoded_f) return encoded_f, decoded_f def get_inputs(): return [torch.rand([4, 1024, 64, 64])] def get_init_inputs(): return []
TVLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/kx/ckxhnni7yy4l5bzroolirzshaf4ts7esancz47taqjmsbha4ba7i.py # Topologically Sorted Source Nodes: [x_diff, pow_1, y_diff, pow_2, add, mean], Original ATen: [aten.sub, aten.pow, aten.add, aten.mean] # Source node to ATen node mapping: # add => add # mean => mean # pow_1 => pow_1 # pow_2 => pow_2 # x_diff => sub # y_diff => sub_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_6), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_9, %slice_12), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add,), kwargs = {}) triton_per_fused_add_mean_pow_sub_0 = async_compile.triton('triton_per_fused_add_mean_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_pow_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 240 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r0 = rindex % 5 r1 = (rindex // 5) % 4 r2 = (rindex // 20) % 3 r3 = (rindex // 60) tmp0 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (1 + r1)) + (1 + r1) * ((1 + r1) < (3)))) + (16*r2) + (64*r3) + ((3) * ((3) <= (r0)) + (r0) * ((r0) < (3)))), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (r1)) + (r1) * ((r1) < (3)))) + (16*r2) + (64*r3) + ((3) * ((3) <= (r0)) + (r0) * ((r0) < (3)))), rmask, other=0.0) tmp4 = tl.load(in_ptr0 + (16 + (4*((3) * ((3) <= (r1)) + (r1) * ((r1) < (3)))) + (16*r2) + (64*r3) + ((3) * ((3) <= (r0)) + (r0) * ((r0) < (3)))), rmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp4 - tmp1 tmp6 = tmp5 * tmp5 tmp7 = tmp3 + tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(rmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = 240.0 tmp13 = tmp11 / tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp13, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_diff, pow_1, y_diff, pow_2, add, mean], Original ATen: [aten.sub, aten.pow, aten.add, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_mean_pow_sub_0.run(buf1, arg0_1, 1, 240, grid=grid(1), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class TVLoss(nn.Module): """L2 total variation loss, as in Mahendran et al.""" def forward(self, input): input = F.pad(input, (0, 1, 0, 1), 'replicate') x_diff = input[:, :-1, 1:] - input[:, :-1, :-1] y_diff = input[:, 1:, :-1] - input[:, :-1, :-1] return (x_diff ** 2 + y_diff ** 2).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_pow_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): rnumel = 240 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r0 = rindex % 5 r1 = rindex // 5 % 4 r2 = rindex // 20 % 3 r3 = rindex // 60 tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + r1) + (1 + r1) * (1 + r1 < 3)) + 16 * r2 + 64 * r3 + (3 * (3 <= r0) + r0 * (r0 < 3))), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (4 * (3 * (3 <= r1) + r1 * (r1 < 3)) + 16 * r2 + 64 * r3 + (3 * (3 <= r0) + r0 * (r0 < 3))), rmask, other=0.0) tmp4 = tl.load(in_ptr0 + (16 + 4 * (3 * (3 <= r1) + r1 * (r1 < 3)) + 16 * r2 + 64 * r3 + (3 * (3 <= r0) + r0 * (r0 < 3))), rmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp4 - tmp1 tmp6 = tmp5 * tmp5 tmp7 = tmp3 + tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(rmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = 240.0 tmp13 = tmp11 / tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp13, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_pow_sub_0[grid(1)](buf1, arg0_1, 1, 240, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf1, class TVLossNew(nn.Module): """L2 total variation loss, as in Mahendran et al.""" def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
hjk0918/style-transfer-pytorch
TVLoss
false
3,590
[ "MIT" ]
0
acbc054c734aa9c723a3a9bb36e33afb9bd7833b
https://github.com/hjk0918/style-transfer-pytorch/tree/acbc054c734aa9c723a3a9bb36e33afb9bd7833b
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): """L2 total variation loss, as in Mahendran et al.""" def forward(self, input): input = F.pad(input, (0, 1, 0, 1), 'replicate') x_diff = input[:, :-1, 1:] - input[:, :-1, :-1] y_diff = input[:, 1:, :-1] - input[:, :-1, :-1] return (x_diff ** 2 + y_diff ** 2).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Bar
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/3u/c3u4235hw5fuoyi7zvmqpjvnxqx5asdkyjlt4thtl6ajywk3ptav.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 4), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tmp3 = 4.0 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.onnx import torch.nn class Bar(torch.nn.Module): def __init__(self, x): super(Bar, self).__init__() self.x = x def forward(self, a, b): return a * b + self.x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'x': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.onnx import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tmp3 = 4.0 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class BarNew(torch.nn.Module): def __init__(self, x): super(BarNew, self).__init__() self.x = x def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
hl475/glow
Bar
false
3,591
[ "Apache-2.0" ]
0
f24d960e3cc80db95ac0bc17b1900dbf60ca044a
https://github.com/hl475/glow/tree/f24d960e3cc80db95ac0bc17b1900dbf60ca044a
import torch import torch.onnx import torch.nn class Model(torch.nn.Module): def __init__(self, x): super().__init__() self.x = x def forward(self, a, b): return a * b + self.x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LegacyXOR
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/mp/cmpaolc5ds56rnmgrtsya2d524udvxx6dcd5nroril2ghftkif5a.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_2 => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_4 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_3, 512, grid=grid(512), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data.distributed import torch.nn as nn import torch.utils.data class LegacyXOR(nn.Module): def __init__(self, input_dim, output_dim): super(LegacyXOR, self).__init__() self.lin1 = nn.Linear(input_dim, 8) self.lin2 = nn.Linear(8, output_dim) def forward(self, features): x = features.float() x = self.lin1(x) x = torch.tanh(x) x = self.lin2(x) x = torch.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data.distributed import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(512)](buf1, primals_3, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_sigmoid_1[grid(256)](buf3, primals_5, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, buf3, primals_4 class LegacyXORNew(nn.Module): def __init__(self, input_dim, output_dim): super(LegacyXORNew, self).__init__() self.lin1 = nn.Linear(input_dim, 8) self.lin2 = nn.Linear(8, output_dim) def forward(self, input_0): primals_2 = self.lin1.weight primals_3 = self.lin1.bias primals_4 = self.lin2.weight primals_5 = self.lin2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
heyfey/horovod
LegacyXOR
false
3,592
[ "Apache-2.0" ]
0
7a697111eef7d88899551c176e31cde5ab61545c
https://github.com/heyfey/horovod/tree/7a697111eef7d88899551c176e31cde5ab61545c
import torch import torch.utils.data.distributed import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.lin1 = nn.Linear(input_dim, 8) self.lin2 = nn.Linear(8, output_dim) def forward(self, features): x = features.float() x = self.lin1(x) x = torch.tanh(x) x = self.lin2(x) x = torch.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Upsample
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/bc/cbclo3jcxnbztsnjohw6ql3fbrm2aqcuiq7g5zspz2equ6g7evkg.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # out_1 => add, add_1, convert_element_type, convert_element_type_1, iota, mul, mul_1 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (2,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 1.0), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_0 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2w/c2wwtuakw62r27qyokeauk4ha7vvsnblmzfcgumwxenza3gksbyl.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten._unsafe_index] # Source node to ATen node mapping: # out => convolution # out_1 => _unsafe_index # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_1 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x5 = (xindex // 4) x2 = (xindex // 4) % 4 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (2*tmp4) + (4*x5)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tl.store(out_ptr0 + (x6), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/m4/cm4p2eqn7f3swmunevtqdzjpu3f2ca7by65kxrdbzw3nuhvmczfb.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten._native_batch_norm_legit] # Source node to ATen node mapping: # out_2 => add_4, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused__native_batch_norm_legit_2 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__native_batch_norm_legit_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/op/cop52uzxo7t4lgpq2vfnf6ozugncbddvqonhvdz6tjjtk76ou666.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = 0.0 tmp8 = tmp6 <= tmp7 tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf1 = empty_strided_cuda((2, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_add_arange_mul_0.run(buf1, 2, grid=grid(2), stream=stream0) buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten._unsafe_index] triton_poi_fused__unsafe_index_convolution_1.run(buf1, buf0, primals_2, buf2, 64, grid=grid(64), stream=stream0) del primals_2 buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf4 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten._native_batch_norm_legit] triton_poi_fused__native_batch_norm_legit_2.run(buf2, buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = buf0; del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf2, buf3, buf4, buf5, buf6, 64, grid=grid(64), stream=stream0) del buf3 del buf4 return (buf5, primals_1, primals_3, buf1, buf2, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Upsample(nn.Module): """ Since the number of channels of the feature map changes after upsampling in HRNet. we have to write a new Upsample class. """ def __init__(self, in_channels, out_channels, scale_factor, mode): super(Upsample, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1) self.upsample = nn.Upsample(scale_factor=scale_factor, mode='nearest') self.instance = nn.InstanceNorm2d(out_channels) self.relu = nn.ReLU(inplace=False) def forward(self, x): out = self.conv(x) out = self.upsample(out) out = self.instance(out) out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'scale_factor': 1.0, 'mode': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_add_arange_mul_0(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x5 = xindex // 4 x2 = xindex // 4 % 4 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 2 * tmp4 + 4 * x5), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tl.store(out_ptr0 + x6, tmp11, xmask) @triton.jit def triton_poi_fused__native_batch_norm_legit_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = 0.0 tmp8 = tmp6 <= tmp7 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf1 = empty_strided_cuda((2,), (1,), torch.int64) get_raw_stream(0) triton_poi_fused__to_copy_add_arange_mul_0[grid(2)](buf1, 2, XBLOCK =2, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_1[grid(64)](buf1, buf0, primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf4 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) triton_poi_fused__native_batch_norm_legit_2[grid(16)](buf2, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = buf0 del buf0 buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(64)](buf2, buf3, buf4, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf3 del buf4 return buf5, primals_1, primals_3, buf1, buf2, buf6 class UpsampleNew(nn.Module): """ Since the number of channels of the feature map changes after upsampling in HRNet. we have to write a new Upsample class. """ def __init__(self, in_channels, out_channels, scale_factor, mode): super(UpsampleNew, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1) self.upsample = nn.Upsample(scale_factor=scale_factor, mode='nearest') self.instance = nn.InstanceNorm2d(out_channels) self.relu = nn.ReLU(inplace=False) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hjk0918/style-transfer-pytorch
Upsample
false
3,593
[ "MIT" ]
0
acbc054c734aa9c723a3a9bb36e33afb9bd7833b
https://github.com/hjk0918/style-transfer-pytorch/tree/acbc054c734aa9c723a3a9bb36e33afb9bd7833b
import torch from torch import nn class Model(nn.Module): """ Since the number of channels of the feature map changes after upsampling in HRNet. we have to write a new Upsample class. """ def __init__(self, in_channels, out_channels, scale_factor, mode): super().__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1) self.upsample = nn.Upsample(scale_factor=scale_factor, mode='nearest') self.instance = nn.InstanceNorm2d(out_channels) self.relu = nn.ReLU(inplace=False) def forward(self, x): out = self.conv(x) out = self.upsample(out) out = self.instance(out) out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'scale_factor': 1.0, 'mode': 4}]
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/w2/cw2tk4wuq2lqaw5ouidkubjzk6zrv7ajgyj5jyqr3yffoa5n5m2t.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/u4/cu4dcn33sgl2ahkb2jwcn4auehbaoshytxhcuib7v4wwlusyrimo.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.view] # Source node to ATen node mapping: # out_2 => view_7 # Graph fragment: # %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 2]), kwargs = {}) triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (2*x1) + (8*((x1 % 4) // 4)) + (32*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6m/c6mfjdig7ut35m7deswr3fle6h6lpdmwl6b6sgilwkylic2ojowj.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_8,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_13, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/36/c366mevtdl3dtf4g4py5tamkbxlhxdcnckbbfzzdmm7gsjksvc3c.py # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.view] # Source node to ATen node mapping: # out_4 => view_14 # Graph fragment: # %view_14 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_13, [64, 1]), kwargs = {}) triton_poi_fused_view_3 = async_compile.triton('triton_poi_fused_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*((x0 % 4) // 4)) + (16*(((4*((x0 // 4) % 4)) + (x0 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rg/crglrlecx3e4jsnkmaqaqzsqzwziipxhqkyuuyuixoca5l4qszw7.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.view, aten.threshold_backward] # Source node to ATen node mapping: # z => relu_2, view_17 # Graph fragment: # %relu_2 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_15,), kwargs = {}) # %view_17 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_16, [4, 4, 4, 4]), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_22, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_view_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_view_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_view_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_view_4(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr1 + (x4), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (4, 1), (1, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse buf11 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf11, 128, grid=grid(128), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf1, buf2, 128, grid=grid(128), stream=stream0) del buf1 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf10, 64, grid=grid(64), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.view] triton_poi_fused_view_3.run(buf4, buf5, 64, grid=grid(64), stream=stream0) del buf4 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (1, 4), (1, 1), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.view, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_view_4.run(buf7, primals_7, buf8, buf9, 256, grid=grid(256), stream=stream0) del buf7 del primals_7 return (buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf5, buf9, primals_6, buf10, primals_4, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Encoder(nn.Module): def __init__(self, in_size, latent_size): super().__init__() self.linear1 = nn.Linear(in_size, int(in_size / 2)) self.linear2 = nn.Linear(int(in_size / 2), int(in_size / 4)) self.linear3 = nn.Linear(int(in_size / 4), latent_size) self.relu = nn.ReLU(True) def forward(self, w): out = self.linear1(w) out = self.relu(out) out = self.linear2(out) out = self.relu(out) out = self.linear3(out) z = self.relu(out) return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_size': 4, 'latent_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 2 * x1 + 8 * (x1 % 4 // 4) + 32 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * (x0 % 4 // 4) + 16 * ((4 * (x0 // 4 % 4) + x0 % 4) // 16)), xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_view_4(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr1 + x4, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (4, 1), (1, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf0 buf11 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf1, primals_2, buf11, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) triton_poi_fused_view_1[grid(128)](buf1, buf2, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf1 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (2, 1), (1, 2 ), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf3 buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(64)](buf4, primals_5, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused_view_3[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf4 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (1, 4), (1, 1 ), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_view_4[grid(256)](buf7, primals_7, buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf7 del primals_7 return buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2, buf5, buf9, primals_6, buf10, primals_4, buf11 class EncoderNew(nn.Module): def __init__(self, in_size, latent_size): super().__init__() self.linear1 = nn.Linear(in_size, int(in_size / 2)) self.linear2 = nn.Linear(int(in_size / 2), int(in_size / 4)) self.linear3 = nn.Linear(int(in_size / 4), latent_size) self.relu = nn.ReLU(True) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
hcgcarry/usad
Encoder
false
3,594
[ "BSD-3-Clause" ]
0
4e99a6acd43ef109be4d89b80e96978b9ad61c2f
https://github.com/hcgcarry/usad/tree/4e99a6acd43ef109be4d89b80e96978b9ad61c2f
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_size, latent_size): super().__init__() self.linear1 = nn.Linear(in_size, int(in_size / 2)) self.linear2 = nn.Linear(int(in_size / 2), int(in_size / 4)) self.linear3 = nn.Linear(int(in_size / 4), latent_size) self.relu = nn.ReLU(True) def forward(self, w): out = self.linear1(w) out = self.relu(out) out = self.linear2(out) out = self.relu(out) out = self.linear3(out) z = self.relu(out) return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Baz
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/3p/c3p5dg3iyqj27rwgxtwdonyxpi46oayqucilggoubv6fbzcw5uhp.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.onnx import torch.nn class Baz(torch.nn.Module): def __init__(self, x): super(Baz, self).__init__() self.x = x def forward(self, a, b): return a + b * self.x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'x': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.onnx import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class BazNew(torch.nn.Module): def __init__(self, x): super(BazNew, self).__init__() self.x = x def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
hl475/glow
Baz
false
3,595
[ "Apache-2.0" ]
0
f24d960e3cc80db95ac0bc17b1900dbf60ca044a
https://github.com/hl475/glow/tree/f24d960e3cc80db95ac0bc17b1900dbf60ca044a
import torch import torch.onnx import torch.nn class Model(torch.nn.Module): def __init__(self, x): super().__init__() self.x = x def forward(self, a, b): return a + b * self.x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
L2_DistanceAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l2/cl24x5xdko564frvaahehy4ph2tgrmu2zj4aurhdvbsf6tmid3kr.py # Topologically Sorted Source Nodes: [add, mul, inner_distance], Original ATen: [aten.add, aten.mul, aten.sub] # Source node to ATen node mapping: # add => add # inner_distance => sub # mul => mul # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %expand_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 2), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul), kwargs = {}) triton_poi_fused_add_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 4) x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + (x4), tmp26, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dh/cdh5rwxv3pghd37myiz5hikjbatq46su7f4qqubwew5v2pi6z2du.py # Topologically Sorted Source Nodes: [Attn, Attn_1, exp_Attn], Original ATen: [aten.neg, aten.sub, aten.exp] # Source node to ATen node mapping: # Attn => neg # Attn_1 => sub_1 # exp_Attn => exp # Graph fragment: # %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%sub,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg, %expand_2), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused_exp_neg_sub_1 = async_compile.triton('triton_poi_fused_exp_neg_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_neg_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_neg_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = -tmp0 tmp3 = -tmp2 tmp5 = -tmp4 tmp6 = triton_helpers.maximum(tmp3, tmp5) tmp8 = -tmp7 tmp9 = triton_helpers.maximum(tmp6, tmp8) tmp11 = -tmp10 tmp12 = triton_helpers.maximum(tmp9, tmp11) tmp13 = tmp1 - tmp12 tmp14 = tl_math.exp(tmp13) tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lb/clbirjf5g4bt2p7tkl34sepb5m7ugna5tesgymku7lkzzg3c3azk.py # Topologically Sorted Source Nodes: [Attn_2], Original ATen: [aten.div] # Source node to ATen node mapping: # Attn_2 => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %expand_3), kwargs = {}) triton_poi_fused_div_2 = async_compile.triton('triton_poi_fused_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_target_mm], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, mul, inner_distance], Original ATen: [aten.add, aten.mul, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sub_0.run(buf1, arg1_1, arg0_1, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [Attn, Attn_1, exp_Attn], Original ATen: [aten.neg, aten.sub, aten.exp] triton_poi_fused_exp_neg_sub_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [Attn_2], Original ATen: [aten.div] triton_poi_fused_div_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) del buf2 return (buf3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class L2_DistanceAttention(nn.Module): def __init__(self): super(L2_DistanceAttention, self).__init__() def forward(self, input_hidden_traces, target_hidden_traces): standard_size = input_hidden_traces.size(0), input_hidden_traces.size(1 ), input_hidden_traces.size(1) target_hidden_traces_square = (target_hidden_traces ** 2).sum(2 ).unsqueeze(2).expand(standard_size) input_hidden_traces_square = (input_hidden_traces ** 2).transpose(1, 2 ).sum(1).unsqueeze(1).expand(standard_size) input_target_mm = torch.bmm(target_hidden_traces, input_hidden_traces.transpose(1, 2)) inner_distance = (target_hidden_traces_square + input_hidden_traces_square - 2 * input_target_mm) Attn = -inner_distance Attn = Attn - Attn.max(2)[0].unsqueeze(2).expand(standard_size) exp_Attn = torch.exp(Attn) Attn = exp_Attn / exp_Attn.sum(2).unsqueeze(2).expand(standard_size) return Attn, inner_distance def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (4 * x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + x4, tmp26, xmask) @triton.jit def triton_poi_fused_exp_neg_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = -tmp0 tmp3 = -tmp2 tmp5 = -tmp4 tmp6 = triton_helpers.maximum(tmp3, tmp5) tmp8 = -tmp7 tmp9 = triton_helpers.maximum(tmp6, tmp8) tmp11 = -tmp10 tmp12 = triton_helpers.maximum(tmp9, tmp11) tmp13 = tmp1 - tmp12 tmp14 = tl_math.exp(tmp13) tl.store(out_ptr0 + x2, tmp14, xmask) @triton.jit def triton_poi_fused_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_mul_sub_0[grid(64)](buf1, arg1_1, arg0_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_exp_neg_sub_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_div_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 return buf3, buf1 class L2_DistanceAttentionNew(nn.Module): def __init__(self): super(L2_DistanceAttentionNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
hk19960522/2018-DL-Final
L2_DistanceAttention
false
3,596
[ "MIT" ]
0
cbc70260aa22d7df366a1d28bee472f1fc5b82c7
https://github.com/hk19960522/2018-DL-Final/tree/cbc70260aa22d7df366a1d28bee472f1fc5b82c7
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self): super().__init__() def forward(self, input_hidden_traces, target_hidden_traces): standard_size = input_hidden_traces.size(0), input_hidden_traces.size(1 ), input_hidden_traces.size(1) target_hidden_traces_square = (target_hidden_traces ** 2).sum(2 ).unsqueeze(2).expand(standard_size) input_hidden_traces_square = (input_hidden_traces ** 2).transpose(1, 2 ).sum(1).unsqueeze(1).expand(standard_size) input_target_mm = torch.bmm(target_hidden_traces, input_hidden_traces.transpose(1, 2)) inner_distance = (target_hidden_traces_square + input_hidden_traces_square - 2 * input_target_mm) Attn = -inner_distance Attn = Attn - Attn.max(2)[0].unsqueeze(2).expand(standard_size) exp_Attn = torch.exp(Attn) Attn = exp_Attn / exp_Attn.sum(2).unsqueeze(2).expand(standard_size) return Attn, inner_distance def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return []
PerfectProd
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yw/cywq5nmoqohyekzdaiwkyhv2p6y5icvcp6kyo5ueu573pyfds5lq.py # Topologically Sorted Source Nodes: [mul, prod], Original ATen: [aten.mul, aten.prod] # Source node to ATen node mapping: # mul => mul # prod => prod # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_2, 2), kwargs = {}) # %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%mul, -1, True), kwargs = {}) triton_poi_fused_mul_prod_0 = async_compile.triton('triton_poi_fused_mul_prod_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_prod_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_prod_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = tl.load(in_ptr0 + ((4*x0) + (64*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0) + (64*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x0) + (64*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x0) + (64*x1)), xmask, eviction_policy='evict_last') tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 * tmp4 tmp7 = tmp6 * tmp1 tmp8 = tmp5 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = tmp8 * tmp10 tl.store(out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 4, 1), (12, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, prod], Original ATen: [aten.mul, aten.prod] stream0 = get_raw_stream(0) triton_poi_fused_mul_prod_0.run(arg0_1, buf0, 48, grid=grid(48), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch import nn class PerfectProd(nn.Module): def __init__(self, in_features, out_features): super().__init__() def reset_parameters(self): pass def forward(self, x): return torch.prod(2 * x[:, :-1], dim=-1, keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_prod_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = tl.load(in_ptr0 + (4 * x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0 + 64 * x1), xmask, eviction_policy ='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x0 + 64 * x1), xmask, eviction_policy ='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x0 + 64 * x1), xmask, eviction_policy ='evict_last') tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 * tmp4 tmp7 = tmp6 * tmp1 tmp8 = tmp5 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = tmp8 * tmp10 tl.store(out_ptr0 + x2, tmp11, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 4, 1), (12, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_prod_0[grid(48)](arg0_1, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class PerfectProdNew(nn.Module): def __init__(self, in_features, out_features): super().__init__() def reset_parameters(self): pass def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
hoedt/stable-nalu
PerfectProd
false
3,597
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import torch import torch.utils.data from torch import nn class Model(nn.Module): def __init__(self, in_features, out_features): super().__init__() def reset_parameters(self): pass def forward(self, x): return torch.prod(2 * x[:, :-1], dim=-1, keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
LearnedUpUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # x => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 3, 3), (9, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1)) return (buf1, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class LearnedUpUnit(nn.Module): def __init__(self, in_feats): super().__init__() self.up = nn.UpsamplingNearest2d(scale_factor=2) self.dep_conv = nn.Conv2d(in_feats, in_feats, kernel_size=3, stride =1, padding=1, groups=in_feats, bias=False) def forward(self, x): x = self.up(x) x = self.dep_conv(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_feats': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp9, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 3, 3), (9, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1)) return buf1, primals_2, buf0 class LearnedUpUnitNew(nn.Module): def __init__(self, in_feats): super().__init__() self.up = nn.UpsamplingNearest2d(scale_factor=2) self.dep_conv = nn.Conv2d(in_feats, in_feats, kernel_size=3, stride =1, padding=1, groups=in_feats, bias=False) def forward(self, input_0): primals_2 = self.dep_conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
hmdliu/PCGNet
LearnedUpUnit
false
3,598
[ "MIT" ]
0
c03f25dc1b138afc52f612c1c517b61874baa02a
https://github.com/hmdliu/PCGNet/tree/c03f25dc1b138afc52f612c1c517b61874baa02a
import torch from torch import nn class Model(nn.Module): def __init__(self, in_feats): super().__init__() self.up = nn.UpsamplingNearest2d(scale_factor=2) self.dep_conv = nn.Conv2d(in_feats, in_feats, kernel_size=3, stride =1, padding=1, groups=in_feats, bias=False) def forward(self, x): x = self.up(x) x = self.dep_conv(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LMA_Merge
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ea/ceahroaqnvw5a3dmqvluk22gq67asius4iszwqamcwylkmq7h5jq.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + (x0), xmask) tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_3, primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_3 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class LMA_Merge(nn.Module): def __init__(self, *args, **kwargs): super().__init__() self.lamb = nn.Parameter(torch.zeros(1)) def forward(self, x, y): return x + self.lamb * y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tl.load(in_ptr2 + x0, xmask) tmp4 = tmp2 * tmp3 tmp5 = tmp0 + tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_3, primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_3 return buf0, primals_2 class LMA_MergeNew(nn.Module): def __init__(self, *args, **kwargs): super().__init__() self.lamb = nn.Parameter(torch.zeros(1)) def forward(self, input_0, input_1): primals_1 = self.lamb primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
hmdliu/PCGNet
LMA_Merge
false
3,599
[ "MIT" ]
0
c03f25dc1b138afc52f612c1c517b61874baa02a
https://github.com/hmdliu/PCGNet/tree/c03f25dc1b138afc52f612c1c517b61874baa02a
import torch from torch import nn class Model(nn.Module): def __init__(self, *args, **kwargs): super().__init__() self.lamb = nn.Parameter(torch.zeros(1)) def forward(self, x, y): return x + self.lamb * y def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ESA
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xr/cxrgycnwn3a2engcpa6finswtqxdogftbffjavnh5ulttlgpbgyq.py # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x1 => convolution # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cm/ccmvr7tiimf5vyxcmpo32tpgqm4xlftn2sold3lo3jxhqinnsgzr.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 61504 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 961) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rg/crgm4cvbr26pyov5mq5ofi5ipy746chytrgo3tz3odj4t6mbxd5t.py # Topologically Sorted Source Nodes: [conv2d_2, x2_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x2_1 => relu # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5184 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 81) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uy/cuynutqegm25xtatlitztub67baw3y52r7n2czmdbqudkkpkp6ri.py # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x2_3 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) triton_poi_fused__to_copy_3 = async_compile.triton('triton_poi_fused__to_copy_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_3(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nk/cnkygs5khynysv5m5svblfxapwezsltnqkbtzymwug6ongywjvxe.py # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x2_3 => add_1, clamp_max # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 8), kwargs = {}) triton_poi_fused_add_clamp_4 = async_compile.triton('triton_poi_fused_add_clamp_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_4(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 8, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7d/c7ddvgo2bjfafnxkgvgbvevggyedkiltn3inxf5wiyxkltb6ncmg.py # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x2_3 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul, sub, sub_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.140625), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 - tmp10 tmp12 = triton_helpers.maximum(tmp11, tmp7) tmp13 = 1.0 tmp14 = triton_helpers.minimum(tmp12, tmp13) tl.store(out_ptr0 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dq/cdqqkli4albjisqwx7qd5hp2ejkkwvbswogcx2vjlyoaxlkgy2hq.py # Topologically Sorted Source Nodes: [conv2d_4, x2_3, conv2d_5, add], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # add => add_7 # conv2d_4 => convolution_4 # conv2d_5 => convolution_5 # x2_3 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_2, mul_3, mul_4, sub_3, sub_4, sub_6 # Graph fragment: # %convolution_4 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_4, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_4, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_4, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_4, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {}) # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %convolution_5), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_mul_sub_6 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_sub_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x5 = (xindex // 4096) x2 = (xindex // 4096) % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr8 + (x6), None) tmp38 = tl.load(in_ptr9 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 9, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (9*tmp4) + (81*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp13 = tmp12 + tmp1 tmp14 = tmp12 < 0 tmp15 = tl.where(tmp14, tmp13, tmp12) tmp16 = tl.load(in_ptr2 + (tmp15 + (9*tmp4) + (81*x5)), None, eviction_policy='evict_last') tmp17 = tmp16 + tmp10 tmp18 = tmp17 - tmp11 tmp20 = tmp18 * tmp19 tmp21 = tmp11 + tmp20 tmp23 = tmp22 + tmp1 tmp24 = tmp22 < 0 tmp25 = tl.where(tmp24, tmp23, tmp22) tmp26 = tl.load(in_ptr2 + (tmp8 + (9*tmp25) + (81*x5)), None, eviction_policy='evict_last') tmp27 = tmp26 + tmp10 tmp28 = tl.load(in_ptr2 + (tmp15 + (9*tmp25) + (81*x5)), None, eviction_policy='evict_last') tmp29 = tmp28 + tmp10 tmp30 = tmp29 - tmp27 tmp31 = tmp30 * tmp19 tmp32 = tmp27 + tmp31 tmp33 = tmp32 - tmp21 tmp35 = tmp33 * tmp34 tmp36 = tmp21 + tmp35 tmp39 = tmp37 + tmp38 tmp40 = tmp36 + tmp39 tl.store(in_out_ptr0 + (x6), tmp40, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2l/c2lpoad5ul7trrenwk3eknv3rz5qgg5mxee5vfvdedshcxonhbu3.py # Topologically Sorted Source Nodes: [x2_4, sigmoid, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul_5 # sigmoid => sigmoid # x2_4 => convolution_6 # Graph fragment: # %convolution_6 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_6,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_7 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), None) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (16, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (16, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_13, (16, ), (1, )) assert_size_stride(primals_14, (64, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_15, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 31, 31), (15376, 961, 31, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 61504, grid=grid(61504), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.max_pool2d_with_indices] buf4 = torch.ops.aten.max_pool2d_with_indices.default(buf3, [7, 7], [3, 3]) buf5 = buf4[0] buf6 = buf4[1] del buf4 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 16, 9, 9), (1296, 81, 9, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x2_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf8, primals_7, 5184, grid=grid(5184), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 16, 9, 9), (1296, 81, 9, 1)) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x2_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf10, primals_9, 5184, grid=grid(5184), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 16, 9, 9), (1296, 81, 9, 1)) buf12 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_3.run(buf12, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_4.run(buf13, 64, grid=grid(64), stream=stream0) buf14 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_3.run(buf14, 64, grid=grid(64), stream=stream0) buf15 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_4.run(buf15, 64, grid=grid(64), stream=stream0) buf16 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5.run(buf16, 64, grid=grid(64), stream=stream0) buf18 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5.run(buf18, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf1, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf19 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.float32) buf21 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [conv2d_4, x2_3, conv2d_5, add], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_mul_sub_6.run(buf21, buf12, buf14, buf11, primals_11, buf15, buf16, buf13, buf18, buf20, primals_13, 262144, grid=grid(262144), stream=stream0) del buf11 del buf20 del primals_11 del primals_13 # Topologically Sorted Source Nodes: [x2_4], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf23 = buf22; del buf22 # reuse buf24 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x2_4, sigmoid, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] triton_poi_fused_convolution_mul_sigmoid_7.run(buf23, primals_15, primals_3, buf24, 1048576, grid=grid(1048576), stream=stream0) del primals_15 return (buf24, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf6, buf8, buf10, buf12, buf13, buf14, buf15, buf16, buf18, buf21, buf23, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((16, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch import autograd as autograd import torch.fft from itertools import product as product class ESA(nn.Module): def __init__(self, channel=64, reduction=4, bias=True): super(ESA, self).__init__() self.r_nc = channel // reduction self.conv1 = nn.Conv2d(channel, self.r_nc, kernel_size=1) self.conv21 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=1) self.conv2 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, stride= 2, padding=0) self.conv3 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv6 = nn.Conv2d(self.r_nc, channel, kernel_size=1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) def forward(self, x): x1 = self.conv1(x) x2 = F.max_pool2d(self.conv2(x1), kernel_size=7, stride=3) x2 = self.relu(self.conv3(x2)) x2 = self.relu(self.conv4(x2)) x2 = F.interpolate(self.conv5(x2), (x.size(2), x.size(3)), mode= 'bilinear', align_corners=False) x2 = self.conv6(x2 + self.conv21(x1)) return x.mul(self.sigmoid(x2)) def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch import autograd as autograd import torch.fft from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 61504 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 961 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 5184 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused__to_copy_3(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tl.store(out_ptr0 + x0, tmp9, xmask) @triton.jit def triton_poi_fused_add_clamp_4(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 8, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 - tmp10 tmp12 = triton_helpers.maximum(tmp11, tmp7) tmp13 = 1.0 tmp14 = triton_helpers.minimum(tmp12, tmp13) tl.store(out_ptr0 + x0, tmp14, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_sub_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x5 = xindex // 4096 x2 = xindex // 4096 % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr8 + x6, None) tmp38 = tl.load(in_ptr9 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 9, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 9 * tmp4 + 81 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp13 = tmp12 + tmp1 tmp14 = tmp12 < 0 tmp15 = tl.where(tmp14, tmp13, tmp12) tmp16 = tl.load(in_ptr2 + (tmp15 + 9 * tmp4 + 81 * x5), None, eviction_policy='evict_last') tmp17 = tmp16 + tmp10 tmp18 = tmp17 - tmp11 tmp20 = tmp18 * tmp19 tmp21 = tmp11 + tmp20 tmp23 = tmp22 + tmp1 tmp24 = tmp22 < 0 tmp25 = tl.where(tmp24, tmp23, tmp22) tmp26 = tl.load(in_ptr2 + (tmp8 + 9 * tmp25 + 81 * x5), None, eviction_policy='evict_last') tmp27 = tmp26 + tmp10 tmp28 = tl.load(in_ptr2 + (tmp15 + 9 * tmp25 + 81 * x5), None, eviction_policy='evict_last') tmp29 = tmp28 + tmp10 tmp30 = tmp29 - tmp27 tmp31 = tmp30 * tmp19 tmp32 = tmp27 + tmp31 tmp33 = tmp32 - tmp21 tmp35 = tmp33 * tmp34 tmp36 = tmp21 + tmp35 tmp39 = tmp37 + tmp38 tmp40 = tmp36 + tmp39 tl.store(in_out_ptr0 + x6, tmp40, None) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, None) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp5, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (16, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (16, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_13, (16,), (1,)) assert_size_stride(primals_14, (64, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_15, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(262144)](buf1, primals_2, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 31, 31), (15376, 961, 31, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(61504)](buf3, primals_5, 61504, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf4 = torch.ops.aten.max_pool2d_with_indices.default(buf3, [7, 7], [3, 3]) buf5 = buf4[0] buf6 = buf4[1] del buf4 buf7 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 16, 9, 9), (1296, 81, 9, 1)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_2[grid(5184)](buf8, primals_7, 5184, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 16, 9, 9), (1296, 81, 9, 1)) buf10 = buf9 del buf9 triton_poi_fused_convolution_relu_2[grid(5184)](buf10, primals_9, 5184, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 16, 9, 9), (1296, 81, 9, 1)) buf12 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_3[grid(64)](buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_4[grid(64)](buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_3[grid(64)](buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_add_clamp_4[grid(64)](buf15, 64, XBLOCK=64, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5[grid(64)](buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5[grid(64)](buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) buf20 = extern_kernels.convolution(buf1, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf19 = empty_strided_cuda((4, 16, 64, 64), (65536, 4096, 64, 1), torch.float32) buf21 = buf19 del buf19 triton_poi_fused__unsafe_index_add_convolution_mul_sub_6[grid(262144)]( buf21, buf12, buf14, buf11, primals_11, buf15, buf16, buf13, buf18, buf20, primals_13, 262144, XBLOCK=512, num_warps=8, num_stages=1) del buf11 del buf20 del primals_11 del primals_13 buf22 = extern_kernels.convolution(buf21, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf23 = buf22 del buf22 buf24 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused_convolution_mul_sigmoid_7[grid(1048576)](buf23, primals_15, primals_3, buf24, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_15 return (buf24, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf6, buf8, buf10, buf12, buf13, buf14, buf15, buf16, buf18, buf21, buf23) class ESANew(nn.Module): def __init__(self, channel=64, reduction=4, bias=True): super(ESANew, self).__init__() self.r_nc = channel // reduction self.conv1 = nn.Conv2d(channel, self.r_nc, kernel_size=1) self.conv21 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=1) self.conv2 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, stride= 2, padding=0) self.conv3 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv6 = nn.Conv2d(self.r_nc, channel, kernel_size=1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_12 = self.conv21.weight primals_5 = self.conv21.bias primals_4 = self.conv2.weight primals_7 = self.conv2.bias primals_6 = self.conv3.weight primals_9 = self.conv3.bias primals_8 = self.conv4.weight primals_11 = self.conv4.bias primals_10 = self.conv5.weight primals_13 = self.conv5.bias primals_14 = self.conv6.weight primals_15 = self.conv6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
hduba/KAIR
ESA
false
3,600
[ "MIT" ]
0
dbd7596c7e4a4667b9b7baac369fc6c02571fa58
https://github.com/hduba/KAIR/tree/dbd7596c7e4a4667b9b7baac369fc6c02571fa58
import torch import torch.nn as nn import torch.nn.functional as F from torch import autograd as autograd import torch.fft from itertools import product as product class Model(nn.Module): def __init__(self, channel=64, reduction=4, bias=True): super().__init__() self.r_nc = channel // reduction self.conv1 = nn.Conv2d(channel, self.r_nc, kernel_size=1) self.conv21 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=1) self.conv2 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, stride= 2, padding=0) self.conv3 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv6 = nn.Conv2d(self.r_nc, channel, kernel_size=1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) def forward(self, x): x1 = self.conv1(x) x2 = F.max_pool2d(self.conv2(x1), kernel_size=7, stride=3) x2 = self.relu(self.conv3(x2)) x2 = self.relu(self.conv4(x2)) x2 = F.interpolate(self.conv5(x2), (x.size(2), x.size(3)), mode= 'bilinear', align_corners=False) x2 = self.conv6(x2 + self.conv21(x1)) return x.mul(self.sigmoid(x2)) def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return []
NormalisedSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/uy/cuy6gdarw33hgvgibfpq6vliuwxhbyu3ubierr277rq4l3ywq247.py # Topologically Sorted Source Nodes: [a, normalize], Original ATen: [aten.sigmoid, aten.div] # Source node to ATen node mapping: # a => sigmoid # normalize => div # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sigmoid, %expand), kwargs = {}) triton_poi_fused_div_sigmoid_0 = async_compile.triton('triton_poi_fused_div_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tl.sigmoid(tmp2) tmp4 = tl_math.abs(tmp3) tmp6 = tl.sigmoid(tmp5) tmp7 = tl_math.abs(tmp6) tmp8 = tmp4 + tmp7 tmp10 = tl.sigmoid(tmp9) tmp11 = tl_math.abs(tmp10) tmp12 = tmp8 + tmp11 tmp14 = tl.sigmoid(tmp13) tmp15 = tl_math.abs(tmp14) tmp16 = tmp12 + tmp15 tmp17 = 1e-12 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = tmp1 / tmp18 tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a, normalize], Original ATen: [aten.sigmoid, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_sigmoid_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch import nn class NormalisedSigmoid(nn.Module): """ Normalised logistic sigmoid function. """ def __init__(self, p: 'float'=1, dim: 'int'=-1): super().__init__() self.p = p self.dim = dim def forward(self, s: 'torch.Tensor') ->torch.Tensor: a = torch.sigmoid(s) return torch.nn.functional.normalize(a, p=self.p, dim=self.dim) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = tl.sigmoid(tmp0) tmp3 = tl.sigmoid(tmp2) tmp4 = tl_math.abs(tmp3) tmp6 = tl.sigmoid(tmp5) tmp7 = tl_math.abs(tmp6) tmp8 = tmp4 + tmp7 tmp10 = tl.sigmoid(tmp9) tmp11 = tl_math.abs(tmp10) tmp12 = tmp8 + tmp11 tmp14 = tl.sigmoid(tmp13) tmp15 = tl_math.abs(tmp14) tmp16 = tmp12 + tmp15 tmp17 = 1e-12 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = tmp1 / tmp18 tl.store(out_ptr0 + x2, tmp19, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_sigmoid_0[grid(256)](arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 return buf0, class NormalisedSigmoidNew(nn.Module): """ Normalised logistic sigmoid function. """ def __init__(self, p: 'float'=1, dim: 'int'=-1): super().__init__() self.p = p self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
hoedt/stable-nalu
NormalisedSigmoid
false
3,601
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import torch import torch.utils.data from torch import nn class Model(nn.Module): """ Normalised logistic sigmoid function. """ def __init__(self, p: 'float'=1, dim: 'int'=-1): super().__init__() self.p = p self.dim = dim def forward(self, s: 'torch.Tensor') ->torch.Tensor: a = torch.sigmoid(s) return torch.nn.functional.normalize(a, p=self.p, dim=self.dim) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
DisplacementPrediction
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kg/ckg3tqxb34s5l4eseoi2lbfnmzlxcws3y3bvyn4xshh2rnwm2ljk.py # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wd/cwdoefbbaruk5rssfe563cdenrxo6ar62eftmgqtppsqkw22j5dq.py # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear_2 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jv/cjvhulxz3hm2ety6bu4724u743hrm6sydffu4ixbgfanszyq2uow.py # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear_3 => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bo/cbos5zwav545s2rmenyazi4nsnigvekmtjab5p3gxmlvtct3wo2f.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.stack] # Source node to ATen node mapping: # output => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add, %add_1, %add_2, %add_3], 1), kwargs = {}) triton_poi_fused_stack_4 = async_compile.triton('triton_poi_fused_stack_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 16 x0 = xindex % 4 x2 = (xindex // 64) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp13 & xmask, other=0.0) tmp15 = tl.load(in_ptr1 + (x0), tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 12, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr3 + (x0 + (4*((-8) + x1)) + (16*x2)), tmp22 & xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (x0), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tmp29 = tl.full([1], 16, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tl.load(in_ptr4 + (x0 + (4*((-12) + x1)) + (16*x2)), tmp28 & xmask, other=0.0) tmp32 = tl.load(in_ptr1 + (x0), tmp28 & xmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp28, tmp33, tmp34) tmp36 = tl.where(tmp22, tmp27, tmp35) tmp37 = tl.where(tmp13, tmp18, tmp36) tmp38 = tl.where(tmp4, tmp9, tmp37) tl.store(out_ptr0 + (x3), tmp38, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(primals_1, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(primals_1, buf6, 64, grid=grid(64), stream=stream0) del primals_1 buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf7) del primals_2 buf8 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.stack] triton_poi_fused_stack_4.run(buf1, primals_3, buf3, buf5, buf7, buf8, 256, grid=grid(256), stream=stream0) del buf1 del buf3 del buf5 del buf7 del primals_3 return (reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(buf6, (16, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class DisplacementPrediction(nn.Module): def __init__(self, pedestrian_num, input_size, output_size): super(DisplacementPrediction, self).__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.output_size = output_size self.fc1 = nn.Linear(input_size, output_size) def forward(self, data): output_list = [] for idx in range(0, self.pedestrian_num): output_list.append(self.fc1(data[:, idx])) output = torch.stack(output_list, 1) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'pedestrian_num': 4, 'input_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_stack_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 16 x0 = xindex % 4 x2 = xindex // 64 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp13 & xmask, other=0.0) tmp15 = tl.load(in_ptr1 + x0, tmp13 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 12, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr3 + (x0 + 4 * (-8 + x1) + 16 * x2), tmp22 & xmask, other=0.0) tmp24 = tl.load(in_ptr1 + x0, tmp22 & xmask, eviction_policy= 'evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tl.full([1], 16, tl.int64) tmp31 = tl.load(in_ptr4 + (x0 + 4 * (-12 + x1) + 16 * x2), tmp28 & xmask, other=0.0) tmp32 = tl.load(in_ptr1 + x0, tmp28 & xmask, eviction_policy= 'evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp28, tmp33, tmp34) tmp36 = tl.where(tmp22, tmp27, tmp35) tmp37 = tl.where(tmp13, tmp18, tmp36) tmp38 = tl.where(tmp4, tmp9, tmp37) tl.store(out_ptr0 + x3, tmp38, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(64)](primals_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(64)](primals_1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(64)](primals_1, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf7) del primals_2 buf8 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) triton_poi_fused_stack_4[grid(256)](buf1, primals_3, buf3, buf5, buf7, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del buf3 del buf5 del buf7 del primals_3 return reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor( buf2, (16, 4), (4, 1), 0), reinterpret_tensor(buf4, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf6, (16, 4), (4, 1), 0) class DisplacementPredictionNew(nn.Module): def __init__(self, pedestrian_num, input_size, output_size): super(DisplacementPredictionNew, self).__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.output_size = output_size self.fc1 = nn.Linear(input_size, output_size) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hk19960522/2018-DL-Final
DisplacementPrediction
false
3,602
[ "MIT" ]
0
cbc70260aa22d7df366a1d28bee472f1fc5b82c7
https://github.com/hk19960522/2018-DL-Final/tree/cbc70260aa22d7df366a1d28bee472f1fc5b82c7
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, pedestrian_num, input_size, output_size): super().__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.output_size = output_size self.fc1 = nn.Linear(input_size, output_size) def forward(self, data): output_list = [] for idx in range(0, self.pedestrian_num): output_list.append(self.fc1(data[:, idx])) output = torch.stack(output_list, 1) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
decoder5
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/5d/c5dw65h6nafj4s44sgiahjrq6lb3zgwonovnkpx75jkkuxpl34xg.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kk/ckkeehad7xvjmxduxmwzjdm4zu3f5inttmd6kj4pju55xhwrnoea.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # out_3 => add, add_1, convert_element_type, convert_element_type_1, iota_2, mul, mul_1 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/js/cjsibzhf6ubyye7gfes254fjkkbrqi7tzoox57ltdxf6tnfl6hr4.py # Topologically Sorted Source Nodes: [out_1, out_2, out_3, out_4], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # out_1 => convolution # out_2 => relu # out_3 => _unsafe_index_2 # out_4 => _unsafe_index_3, _unsafe_index_4 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_3, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 204800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 10) % 10 x0 = xindex % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 512 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/e2/ce2k4lym2nqhf3w5dsvz6zgxc3jsam7d572srar4v3rqbuyr34g6.py # Topologically Sorted Source Nodes: [out_5, out_6, out_7], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # out_5 => convolution_1 # out_6 => relu_1 # out_7 => _unsafe_index_5, _unsafe_index_6 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_5, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 204800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = (xindex // 10) % 10 x4 = (xindex // 100) x2 = (xindex // 100) % 512 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7n/c7nyyvchtptp5rbqvks7cavg63gajcswx5tpkvypdmc7ocd2zaaz.py # Topologically Sorted Source Nodes: [out_16], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # out_16 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_12, mul_4, mul_5 # Graph fragment: # %iota_12 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_12, 1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_4 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bs/cbspecvkmrhwtp6geje57vqvyhtdbzqxeh4bkirrauq3bdgepjtc.py # Topologically Sorted Source Nodes: [out_14, out_15, out_16, out_17], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # out_14 => convolution_4 # out_15 => relu_4 # out_16 => _unsafe_index_11 # out_17 => _unsafe_index_12, _unsafe_index_13 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {}) # %_unsafe_index_12 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_11, [None, None, %sub_21, None]), kwargs = {}) # %_unsafe_index_13 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_12, [None, None, None, %sub_21]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 331776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 18) % 18 x0 = xindex % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 256 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6j/c6jeyn2lxggjjpib4soswcyajwy6iz7gvwfskycudxoh6ks5elxb.py # Topologically Sorted Source Nodes: [out_18, out_19, out_20], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # out_18 => convolution_5 # out_19 => relu_5 # out_20 => _unsafe_index_14, _unsafe_index_15 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %sub_21, None]), kwargs = {}) # %_unsafe_index_15 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_14, [None, None, None, %sub_21]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 331776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = (xindex // 18) % 18 x4 = (xindex // 324) x2 = (xindex // 324) % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uw/cuwhadke7ul24n6hzb5sal45fu4ro7spo5s7tl5x4bo5jl7gz66f.py # Topologically Sorted Source Nodes: [out_29], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # out_29 => add_8, add_9, convert_element_type_8, convert_element_type_9, iota_22, mul_8, mul_9 # Graph fragment: # %iota_22 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_22, 1), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, 0), kwargs = {}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_8, torch.float32), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, 0.5), kwargs = {}) # %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_9, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_7 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/h3/ch3jm3bt3vnato3q323q7wlnky2jb7vevymckrrxpv7cesdxjfra.py # Topologically Sorted Source Nodes: [out_27, out_28, out_29, out_30], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # out_27 => convolution_8 # out_28 => relu_8 # out_29 => _unsafe_index_20 # out_30 => _unsafe_index_21, _unsafe_index_22 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_19, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) # %_unsafe_index_20 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_8, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {}) # %_unsafe_index_21 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_20, [None, None, %sub_37, None]), kwargs = {}) # %_unsafe_index_22 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_21, [None, None, None, %sub_37]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 591872 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 34) % 34 x0 = xindex % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 128 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x4)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rh/crhey53viabe4hsp6ad6i2nee7q7zyv4njq6zse35tn7cpygnnbv.py # Topologically Sorted Source Nodes: [out_31, out_32, out_33], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # out_31 => convolution_9 # out_32 => relu_9 # out_33 => _unsafe_index_23, _unsafe_index_24 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_22, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %_unsafe_index_23 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_9, [None, None, %sub_37, None]), kwargs = {}) # %_unsafe_index_24 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_23, [None, None, None, %sub_37]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_9 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 591872 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 34 x1 = (xindex // 34) % 34 x4 = (xindex // 1156) x2 = (xindex // 1156) % 128 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bu/cbuvyw4fe3xbsdcjmotlovg3kxgvi3ofzc3qlcpjtkkuyytb22ws.py # Topologically Sorted Source Nodes: [out_36], Original ATen: [aten.arange] # Source node to ATen node mapping: # out_36 => iota_28 # Graph fragment: # %iota_28 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) triton_poi_fused_arange_10 = async_compile.triton('triton_poi_fused_arange_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_10(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fn/cfndjiv3tblgvnqtytlbgh4w5inf7gba2up5wfjsuaevqfszyxak.py # Topologically Sorted Source Nodes: [out_36], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # out_36 => add_12, add_13, convert_element_type_12, convert_element_type_13, mul_12, mul_13 # Graph fragment: # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_28, 1), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, 0), kwargs = {}) # %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_12, torch.float32), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_12, 0.0), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_13, 0.5), kwargs = {}) # %convert_element_type_13 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_13, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_11 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_11(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rm/crmkhdiqj6544wyexgor4rnkds7gglwjet2cygw3o64zawf6zh7h.py # Topologically Sorted Source Nodes: [out_34, out_35, out_36, out_37], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] # Source node to ATen node mapping: # out_34 => convolution_10 # out_35 => relu_10 # out_36 => _unsafe_index_25 # out_37 => _unsafe_index_26, _unsafe_index_27 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_24, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) # %_unsafe_index_25 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_10, [None, None, %unsqueeze_3, %convert_element_type_13]), kwargs = {}) # %_unsafe_index_26 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_25, [None, None, %sub_45, None]), kwargs = {}) # %_unsafe_index_27 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_26, [None, None, None, %sub_45]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 66) % 66 x0 = xindex % 66 x4 = (xindex // 4356) x2 = (xindex // 4356) % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (32*tmp4) + (1024*x4)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x7), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3t/c3tabqt44sb4glrpzzppdivi6ri4ru3tms7yd2a263tjtky77sll.py # Topologically Sorted Source Nodes: [out_38, out_39, out_40], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # out_38 => convolution_11 # out_39 => relu_11 # out_40 => _unsafe_index_28, _unsafe_index_29 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) # %_unsafe_index_28 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_11, [None, None, %sub_45, None]), kwargs = {}) # %_unsafe_index_29 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_28, [None, None, None, %sub_45]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_13 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = (xindex // 66) % 66 x4 = (xindex // 4356) x2 = (xindex // 4356) % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ln/cln46y6bcljj5xvgyl7h2nw5krdqozyeit2hebhehl5zbzlutyda.py # Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_41 => convolution_12 # Graph fragment: # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_29, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_14 = async_compile.triton('triton_poi_fused_convolution_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cj/ccjccu7zc7ogdpljitls2hefhpl6qq2kpfnn26koefpxdfdv7teq.py # Topologically Sorted Source Nodes: [out_38, out_39], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_38 => convolution_11 # out_39 => relu_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) # %le_18 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_11, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_15 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/at/catvmzd72emtja24agoetxsfbfoouankui4el2vao7ua26an3h5e.py # Topologically Sorted Source Nodes: [out_34, out_35], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_34 => convolution_10 # out_35 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_24, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) # %le_37 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_10, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_16 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eu/ceu4vjwnu7t72daazfpt2wr6v3l3op2tzwyfbbm2wcynm5vjzmkk.py # Topologically Sorted Source Nodes: [out_31, out_32], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_31 => convolution_9 # out_32 => relu_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_22, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %le_56 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_9, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_17 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/g7/cg7u5oo3boouswvtbbyzyk3b6wbhd74gf7zcz66gyyh2akxdphhi.py # Topologically Sorted Source Nodes: [out_27, out_28], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_27 => convolution_8 # out_28 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_19, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) # %le_75 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_8, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_18 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/cl/ccl6rdg5ilfmge5dt7ngbjb3ox5h4bpvbi7ffnd7mckl4lruweqh.py # Topologically Sorted Source Nodes: [out_24, out_25], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_24 => convolution_7 # out_25 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le_94 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_19 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/m3/cm3chxnerwp2olw2trs5cfxyfg5jjej3imjwwln6dvqacawhinod.py # Topologically Sorted Source Nodes: [out_14, out_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_14 => convolution_4 # out_15 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_151 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_20 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ts/ctswyyscojlcdj3bvsxhx5ujnib7w6opid7m4lucqvluzcl3n5pv.py # Topologically Sorted Source Nodes: [out_11, out_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_11 => convolution_3 # out_12 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_8, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_170 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_21 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_21(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bb/cbbl3sfaozoe4jbyrqweizaizeix4urgms7ffifscr2veiod4gcu.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => convolution # out_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_227 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_22 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args args.clear() assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512, ), (1, )) assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_5, (512, ), (1, )) assert_size_stride(primals_6, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_7, (512, ), (1, )) assert_size_stride(primals_8, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (128, ), (1, )) assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_21, (128, ), (1, )) assert_size_stride(primals_22, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (64, ), (1, )) assert_size_stride(primals_24, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_25, (64, ), (1, )) assert_size_stride(primals_26, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_27, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 73728, grid=grid(73728), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 512, 4, 4), (8192, 16, 4, 1)) buf2 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_1.run(buf2, 8, grid=grid(8), stream=stream0) buf3 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1, out_2, out_3, out_4], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2.run(buf2, buf1, primals_3, buf3, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 512, 8, 8), (32768, 64, 8, 1)) buf5 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [out_5, out_6, out_7], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_5, buf5, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 512, 8, 8), (32768, 64, 8, 1)) buf7 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [out_8, out_9, out_10], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf6, primals_7, buf7, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 512, 8, 8), (32768, 64, 8, 1)) buf9 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [out_11, out_12, out_13], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf8, primals_9, buf9, 204800, grid=grid(204800), stream=stream0) # Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 8, 8), (16384, 64, 8, 1)) buf11 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [out_16], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_4.run(buf11, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [out_14, out_15, out_16, out_17], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5.run(buf11, buf10, primals_11, buf12, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [out_18], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 256, 16, 16), (65536, 256, 16, 1)) buf14 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [out_18, out_19, out_20], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf13, primals_13, buf14, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [out_21], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 256, 16, 16), (65536, 256, 16, 1)) buf16 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [out_21, out_22, out_23], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf15, primals_15, buf16, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [out_24], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 256, 16, 16), (65536, 256, 16, 1)) buf18 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) # Topologically Sorted Source Nodes: [out_24, out_25, out_26], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf17, primals_17, buf18, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [out_27], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf18, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1)) buf20 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [out_29], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_7.run(buf20, 32, grid=grid(32), stream=stream0) buf21 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [out_27, out_28, out_29, out_30], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8.run(buf20, buf19, primals_19, buf21, 591872, grid=grid(591872), stream=stream0) # Topologically Sorted Source Nodes: [out_31], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf23 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) # Topologically Sorted Source Nodes: [out_31, out_32, out_33], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_9.run(buf22, primals_21, buf23, 591872, grid=grid(591872), stream=stream0) # Topologically Sorted Source Nodes: [out_34], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf25 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [out_36], Original ATen: [aten.arange] triton_poi_fused_arange_10.run(buf25, 64, grid=grid(64), stream=stream0) buf26 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [out_36], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_11.run(buf26, 64, grid=grid(64), stream=stream0) buf27 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [out_34, out_35, out_36, out_37], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d] triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12.run(buf26, buf24, primals_23, buf27, 1115136, grid=grid(1115136), stream=stream0) # Topologically Sorted Source Nodes: [out_38], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf29 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) # Topologically Sorted Source Nodes: [out_38, out_39, out_40], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_13.run(buf28, primals_25, buf29, 1115136, grid=grid(1115136), stream=stream0) # Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution] triton_poi_fused_convolution_14.run(buf31, primals_27, 49152, grid=grid(49152), stream=stream0) del primals_27 buf32 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [out_38, out_39], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_15.run(buf28, primals_25, buf32, 1048576, grid=grid(1048576), stream=stream0) del buf28 del primals_25 buf33 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [out_34, out_35], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_16.run(buf24, primals_23, buf33, 262144, grid=grid(262144), stream=stream0) del buf24 del primals_23 buf34 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [out_31, out_32], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_17.run(buf22, primals_21, buf34, 524288, grid=grid(524288), stream=stream0) del buf22 del primals_21 buf35 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [out_27, out_28], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_18.run(buf19, primals_19, buf35, 131072, grid=grid(131072), stream=stream0) del buf19 del primals_19 buf36 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [out_24, out_25], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_19.run(buf17, primals_17, buf36, 262144, grid=grid(262144), stream=stream0) del buf17 del primals_17 buf37 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [out_21, out_22], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_19.run(buf15, primals_15, buf37, 262144, grid=grid(262144), stream=stream0) del buf15 del primals_15 buf38 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [out_18, out_19], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_19.run(buf13, primals_13, buf38, 262144, grid=grid(262144), stream=stream0) del buf13 del primals_13 buf39 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [out_14, out_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_20.run(buf10, primals_11, buf39, 65536, grid=grid(65536), stream=stream0) del buf10 del primals_11 buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [out_11, out_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_21.run(buf8, primals_9, buf40, 131072, grid=grid(131072), stream=stream0) del buf8 del primals_9 buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [out_8, out_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_21.run(buf6, primals_7, buf41, 131072, grid=grid(131072), stream=stream0) del buf6 del primals_7 buf42 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_21.run(buf4, primals_5, buf42, 131072, grid=grid(131072), stream=stream0) del buf4 del primals_5 buf43 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_22.run(buf1, primals_3, buf43, 32768, grid=grid(32768), stream=stream0) del buf1 del primals_3 return (buf31, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf14, buf16, buf18, buf20, buf21, buf23, buf25, buf26, buf27, buf29, buf32, buf33, buf34, buf35, buf36, buf37, buf38, buf39, buf40, buf41, buf42, buf43, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((3, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class decoder5(nn.Module): def __init__(self): super(decoder5, self).__init__() self.reflecPad15 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv15 = nn.Conv2d(512, 512, 3, 1, 0) self.relu15 = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad16 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv16 = nn.Conv2d(512, 512, 3, 1, 0) self.relu16 = nn.ReLU(inplace=True) self.reflecPad17 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv17 = nn.Conv2d(512, 512, 3, 1, 0) self.relu17 = nn.ReLU(inplace=True) self.reflecPad18 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv18 = nn.Conv2d(512, 512, 3, 1, 0) self.relu18 = nn.ReLU(inplace=True) self.reflecPad19 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv19 = nn.Conv2d(512, 256, 3, 1, 0) self.relu19 = nn.ReLU(inplace=True) self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad20 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv20 = nn.Conv2d(256, 256, 3, 1, 0) self.relu20 = nn.ReLU(inplace=True) self.reflecPad21 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv21 = nn.Conv2d(256, 256, 3, 1, 0) self.relu21 = nn.ReLU(inplace=True) self.reflecPad22 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv22 = nn.Conv2d(256, 256, 3, 1, 0) self.relu22 = nn.ReLU(inplace=True) self.reflecPad23 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv23 = nn.Conv2d(256, 128, 3, 1, 0) self.relu23 = nn.ReLU(inplace=True) self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad24 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv24 = nn.Conv2d(128, 128, 3, 1, 0) self.relu24 = nn.ReLU(inplace=True) self.reflecPad25 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv25 = nn.Conv2d(128, 64, 3, 1, 0) self.relu25 = nn.ReLU(inplace=True) self.unpool4 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad26 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv26 = nn.Conv2d(64, 64, 3, 1, 0) self.relu26 = nn.ReLU(inplace=True) self.reflecPad27 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv27 = nn.Conv2d(64, 3, 3, 1, 0) def forward(self, x): out = self.reflecPad15(x) out = self.conv15(out) out = self.relu15(out) out = self.unpool(out) out = self.reflecPad16(out) out = self.conv16(out) out = self.relu16(out) out = self.reflecPad17(out) out = self.conv17(out) out = self.relu17(out) out = self.reflecPad18(out) out = self.conv18(out) out = self.relu18(out) out = self.reflecPad19(out) out = self.conv19(out) out = self.relu19(out) out = self.unpool2(out) out = self.reflecPad20(out) out = self.conv20(out) out = self.relu20(out) out = self.reflecPad21(out) out = self.conv21(out) out = self.relu21(out) out = self.reflecPad22(out) out = self.conv22(out) out = self.relu22(out) out = self.reflecPad23(out) out = self.conv23(out) out = self.relu23(out) out = self.unpool3(out) out = self.reflecPad24(out) out = self.conv24(out) out = self.relu24(out) out = self.reflecPad25(out) out = self.conv25(out) out = self.relu25(out) out = self.unpool4(out) out = self.reflecPad26(out) out = self.conv26(out) out = self.relu26(out) out = self.reflecPad27(out) out = self.conv27(out) return out def get_inputs(): return [torch.rand([4, 512, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), None, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 10 % 10 x0 = xindex % 10 x4 = xindex // 100 x2 = xindex // 100 % 512 x7 = xindex tmp0 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1 ))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0 ))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 10 x1 = xindex // 10 % 10 x4 = xindex // 100 x2 = xindex // 100 % 512 x5 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 18 % 18 x0 = xindex % 18 x4 = xindex // 324 x2 = xindex // 324 % 256 x7 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x1))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 18 x1 = xindex // 18 % 18 x4 = xindex // 324 x2 = xindex // 324 % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 + x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 34 % 34 x0 = xindex % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 128 x7 = xindex tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x1))), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0))), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x4), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 34 x1 = xindex // 34 % 34 x4 = xindex // 1156 x2 = xindex // 1156 % 128 x5 = xindex tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 + x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, None) @triton.jit def triton_poi_fused_arange_10(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_11(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12(in_ptr0 , in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 66 % 66 x0 = xindex % 66 x4 = xindex // 4356 x2 = xindex // 4356 % 64 x7 = xindex tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x1))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 32 * tmp4 + 1024 * x4), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x7, tmp13, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 66 x1 = xindex // 66 % 66 x4 = xindex // 4356 x2 = xindex // 4356 % 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 + x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_21(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27) = args args.clear() assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1)) assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (512,), (1,)) assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_5, (512,), (1,)) assert_size_stride(primals_6, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_7, (512,), (1,)) assert_size_stride(primals_8, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (128,), (1,)) assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_21, (128,), (1,)) assert_size_stride(primals_22, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_23, (64,), (1,)) assert_size_stride(primals_24, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_25, (64,), (1,)) assert_size_stride(primals_26, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_27, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch. float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(73728)](primals_1, buf0, 73728, XBLOCK=1024, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 512, 4, 4), (8192, 16, 4, 1)) buf2 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_1[grid(8)](buf2, 8, XBLOCK =8, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2[grid (204800)](buf2, buf1, primals_3, buf3, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 512, 8, 8), (32768, 64, 8, 1)) buf5 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf4 , primals_5, buf5, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 512, 8, 8), (32768, 64, 8, 1)) buf7 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf6 , primals_7, buf7, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 512, 8, 8), (32768, 64, 8, 1)) buf9 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf8 , primals_9, buf9, 204800, XBLOCK=512, num_warps=8, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 8, 8), (16384, 64, 8, 1)) buf11 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_4[grid(16)](buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5[grid (331776)](buf11, buf10, primals_11, buf12, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 256, 16, 16), (65536, 256, 16, 1)) buf14 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)]( buf13, primals_13, buf14, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 256, 16, 16), (65536, 256, 16, 1)) buf16 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)]( buf15, primals_15, buf16, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf17 = extern_kernels.convolution(buf16, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 256, 16, 16), (65536, 256, 16, 1)) buf18 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)]( buf17, primals_17, buf18, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf19 = extern_kernels.convolution(buf18, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1)) buf20 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_7[grid(32)](buf20, 32, XBLOCK=32, num_warps=1, num_stages=1) buf21 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8[grid (591872)](buf20, buf19, primals_19, buf21, 591872, XBLOCK=1024, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf21, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf23 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_9[grid(591872)]( buf22, primals_21, buf23, 591872, XBLOCK=512, num_warps=8, num_stages=1) buf24 = extern_kernels.convolution(buf23, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf25 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_arange_10[grid(64)](buf25, 64, XBLOCK=64, num_warps=1, num_stages=1) buf26 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_11[grid(64)](buf26, 64, XBLOCK=64, num_warps=1, num_stages=1) buf27 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12[ grid(1115136)](buf26, buf24, primals_23, buf27, 1115136, XBLOCK =1024, num_warps=4, num_stages=1) buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf29 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_13[grid(1115136)]( buf28, primals_25, buf29, 1115136, XBLOCK=1024, num_warps=4, num_stages=1) buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf31 = buf30 del buf30 triton_poi_fused_convolution_14[grid(49152)](buf31, primals_27, 49152, XBLOCK=512, num_warps=4, num_stages=1) del primals_27 buf32 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_15[grid(1048576)]( buf28, primals_25, buf32, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf28 del primals_25 buf33 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_16[grid(262144)]( buf24, primals_23, buf33, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf24 del primals_23 buf34 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_17[grid(524288)]( buf22, primals_21, buf34, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf22 del primals_21 buf35 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_18[grid(131072)]( buf19, primals_19, buf35, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf19 del primals_19 buf36 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)]( buf17, primals_17, buf36, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf17 del primals_17 buf37 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)]( buf15, primals_15, buf37, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf15 del primals_15 buf38 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)]( buf13, primals_13, buf38, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf13 del primals_13 buf39 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_20[grid(65536)]( buf10, primals_11, buf39, 65536, XBLOCK=512, num_warps=4, num_stages=1) del buf10 del primals_11 buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)]( buf8, primals_9, buf40, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf8 del primals_9 buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)]( buf6, primals_7, buf41, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf6 del primals_7 buf42 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)]( buf4, primals_5, buf42, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf4 del primals_5 buf43 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_22[grid(32768)]( buf1, primals_3, buf43, 32768, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_3 return (buf31, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf14, buf16, buf18, buf20, buf21, buf23, buf25, buf26, buf27, buf29, buf32, buf33, buf34, buf35, buf36, buf37, buf38, buf39, buf40, buf41, buf42, buf43) class decoder5New(nn.Module): def __init__(self): super(decoder5New, self).__init__() self.reflecPad15 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv15 = nn.Conv2d(512, 512, 3, 1, 0) self.relu15 = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad16 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv16 = nn.Conv2d(512, 512, 3, 1, 0) self.relu16 = nn.ReLU(inplace=True) self.reflecPad17 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv17 = nn.Conv2d(512, 512, 3, 1, 0) self.relu17 = nn.ReLU(inplace=True) self.reflecPad18 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv18 = nn.Conv2d(512, 512, 3, 1, 0) self.relu18 = nn.ReLU(inplace=True) self.reflecPad19 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv19 = nn.Conv2d(512, 256, 3, 1, 0) self.relu19 = nn.ReLU(inplace=True) self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad20 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv20 = nn.Conv2d(256, 256, 3, 1, 0) self.relu20 = nn.ReLU(inplace=True) self.reflecPad21 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv21 = nn.Conv2d(256, 256, 3, 1, 0) self.relu21 = nn.ReLU(inplace=True) self.reflecPad22 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv22 = nn.Conv2d(256, 256, 3, 1, 0) self.relu22 = nn.ReLU(inplace=True) self.reflecPad23 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv23 = nn.Conv2d(256, 128, 3, 1, 0) self.relu23 = nn.ReLU(inplace=True) self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad24 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv24 = nn.Conv2d(128, 128, 3, 1, 0) self.relu24 = nn.ReLU(inplace=True) self.reflecPad25 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv25 = nn.Conv2d(128, 64, 3, 1, 0) self.relu25 = nn.ReLU(inplace=True) self.unpool4 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad26 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv26 = nn.Conv2d(64, 64, 3, 1, 0) self.relu26 = nn.ReLU(inplace=True) self.reflecPad27 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv27 = nn.Conv2d(64, 3, 3, 1, 0) def forward(self, input_0): primals_2 = self.conv15.weight primals_3 = self.conv15.bias primals_4 = self.conv16.weight primals_5 = self.conv16.bias primals_6 = self.conv17.weight primals_7 = self.conv17.bias primals_8 = self.conv18.weight primals_9 = self.conv18.bias primals_10 = self.conv19.weight primals_11 = self.conv19.bias primals_12 = self.conv20.weight primals_13 = self.conv20.bias primals_14 = self.conv21.weight primals_15 = self.conv21.bias primals_16 = self.conv22.weight primals_17 = self.conv22.bias primals_18 = self.conv23.weight primals_19 = self.conv23.bias primals_20 = self.conv24.weight primals_21 = self.conv24.bias primals_22 = self.conv25.weight primals_23 = self.conv25.bias primals_24 = self.conv26.weight primals_25 = self.conv26.bias primals_26 = self.conv27.weight primals_27 = self.conv27.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return output[0]
guswl8033/ARtists
decoder5
false
3,603
[ "Apache-2.0" ]
0
d353195872c1ef1a1aa68659a32fb47779a416fc
https://github.com/guswl8033/ARtists/tree/d353195872c1ef1a1aa68659a32fb47779a416fc
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.reflecPad15 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv15 = nn.Conv2d(512, 512, 3, 1, 0) self.relu15 = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad16 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv16 = nn.Conv2d(512, 512, 3, 1, 0) self.relu16 = nn.ReLU(inplace=True) self.reflecPad17 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv17 = nn.Conv2d(512, 512, 3, 1, 0) self.relu17 = nn.ReLU(inplace=True) self.reflecPad18 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv18 = nn.Conv2d(512, 512, 3, 1, 0) self.relu18 = nn.ReLU(inplace=True) self.reflecPad19 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv19 = nn.Conv2d(512, 256, 3, 1, 0) self.relu19 = nn.ReLU(inplace=True) self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad20 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv20 = nn.Conv2d(256, 256, 3, 1, 0) self.relu20 = nn.ReLU(inplace=True) self.reflecPad21 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv21 = nn.Conv2d(256, 256, 3, 1, 0) self.relu21 = nn.ReLU(inplace=True) self.reflecPad22 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv22 = nn.Conv2d(256, 256, 3, 1, 0) self.relu22 = nn.ReLU(inplace=True) self.reflecPad23 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv23 = nn.Conv2d(256, 128, 3, 1, 0) self.relu23 = nn.ReLU(inplace=True) self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad24 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv24 = nn.Conv2d(128, 128, 3, 1, 0) self.relu24 = nn.ReLU(inplace=True) self.reflecPad25 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv25 = nn.Conv2d(128, 64, 3, 1, 0) self.relu25 = nn.ReLU(inplace=True) self.unpool4 = nn.UpsamplingNearest2d(scale_factor=2) self.reflecPad26 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv26 = nn.Conv2d(64, 64, 3, 1, 0) self.relu26 = nn.ReLU(inplace=True) self.reflecPad27 = nn.ReflectionPad2d((1, 1, 1, 1)) self.conv27 = nn.Conv2d(64, 3, 3, 1, 0) def forward(self, x): out = self.reflecPad15(x) out = self.conv15(out) out = self.relu15(out) out = self.unpool(out) out = self.reflecPad16(out) out = self.conv16(out) out = self.relu16(out) out = self.reflecPad17(out) out = self.conv17(out) out = self.relu17(out) out = self.reflecPad18(out) out = self.conv18(out) out = self.relu18(out) out = self.reflecPad19(out) out = self.conv19(out) out = self.relu19(out) out = self.unpool2(out) out = self.reflecPad20(out) out = self.conv20(out) out = self.relu20(out) out = self.reflecPad21(out) out = self.conv21(out) out = self.relu21(out) out = self.reflecPad22(out) out = self.conv22(out) out = self.relu22(out) out = self.reflecPad23(out) out = self.conv23(out) out = self.relu23(out) out = self.unpool3(out) out = self.reflecPad24(out) out = self.conv24(out) out = self.relu24(out) out = self.reflecPad25(out) out = self.conv25(out) out = self.relu25(out) out = self.unpool4(out) out = self.reflecPad26(out) out = self.conv26(out) out = self.relu26(out) out = self.reflecPad27(out) out = self.conv27(out) return out def get_inputs(): return [torch.rand([4, 512, 4, 4])] def get_init_inputs(): return []
LocationEncoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nx/cnxhzcqzdmx72ijihpvoxpjgx5zd4hb67sbygcb53l3urrorezrj.py # Topologically Sorted Source Nodes: [output, output_3, output_6, output_9], Original ATen: [aten.relu] # Source node to ATen node mapping: # output => relu # output_3 => relu_2 # output_6 => relu_4 # output_9 => relu_6 # Graph fragment: # %add_tensor_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_7, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_7,), kwargs = {}) # %add_tensor_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_5, %primals_3), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_5,), kwargs = {}) # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_3), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr1 + (x2), xmask) tmp8 = tl.load(in_out_ptr2 + (x2), xmask) tmp11 = tl.load(in_out_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp9 = tmp8 + tmp1 tmp10 = triton_helpers.maximum(tmp3, tmp9) tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(in_out_ptr1 + (x2), tmp7, xmask) tl.store(in_out_ptr2 + (x2), tmp10, xmask) tl.store(in_out_ptr3 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/af/cafhlregx27h5d2u24jstgmsau6wtq5knpvfotqbt5pm6fmdptu5.py # Topologically Sorted Source Nodes: [output_1, output_4, output_7, output_10], Original ATen: [aten.relu] # Source node to ATen node mapping: # output_1 => relu_1 # output_10 => relu_7 # output_4 => relu_3 # output_7 => relu_5 # Graph fragment: # %add_tensor_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_6, %primals_5), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_6,), kwargs = {}) # %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_5), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {}) # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_5), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr1 + (x2), xmask) tmp8 = tl.load(in_out_ptr2 + (x2), xmask) tmp11 = tl.load(in_out_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp9 = tmp8 + tmp1 tmp10 = triton_helpers.maximum(tmp3, tmp9) tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(in_out_ptr1 + (x2), tmp7, xmask) tl.store(in_out_ptr2 + (x2), tmp10, xmask) tl.store(in_out_ptr3 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ip/cipelptzqm3qbvewnrnl7fzwwxrf7gpvkzztjdbnqcqfotsmeqn3.py # Topologically Sorted Source Nodes: [Attn_1, exp_Attn], Original ATen: [aten.sub, aten.exp] # Source node to ATen node mapping: # Attn_1 => sub # exp_Attn => exp # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %expand), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused_exp_sub_2 = async_compile.triton('triton_poi_fused_exp_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/sy/csy7lxjevlfgxsiarxivbogsfltediompwwbqh22aspy6lk4lxvj.py # Topologically Sorted Source Nodes: [Attn_2], Original ATen: [aten.div] # Source node to ATen node mapping: # Attn_2 => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %expand_1), kwargs = {}) triton_poi_fused_div_3 = async_compile.triton('triton_poi_fused_div_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (32, 4), (4, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32), (32, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf0) buf12 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 12), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf12) buf4 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 4), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf4) buf8 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 8), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf8) del primals_2 buf1 = buf0; del buf0 # reuse buf5 = buf4; del buf4 # reuse buf9 = buf8; del buf8 # reuse buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [output, output_3, output_6, output_9], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, buf5, buf9, buf13, primals_3, 128, grid=grid(128), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf2) buf10 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf9, reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf10) buf14 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf13, reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf14) buf6 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf6) buf3 = buf2; del buf2 # reuse buf7 = buf6; del buf6 # reuse buf11 = buf10; del buf10 # reuse buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [output_1, output_4, output_7, output_10], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, buf7, buf11, buf15, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 buf20 = empty_strided_cuda((4, 16), (16, 1), torch.float32) buf16 = reinterpret_tensor(buf20, (4, 4), (16, 1), 0) # alias # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.stack] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf16) buf17 = reinterpret_tensor(buf20, (4, 4), (16, 1), 4) # alias # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.stack] extern_kernels.addmm(primals_7, buf7, reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf17) buf18 = reinterpret_tensor(buf20, (4, 4), (16, 1), 8) # alias # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.stack] extern_kernels.addmm(primals_7, buf11, reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf18) buf19 = reinterpret_tensor(buf20, (4, 4), (16, 1), 12) # alias # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.stack] extern_kernels.addmm(primals_7, buf15, reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf19) del primals_7 buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [Attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf20, (4, 4, 4), (16, 1, 4), 0), out=buf21) buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [Attn_1, exp_Attn], Original ATen: [aten.sub, aten.exp] triton_poi_fused_exp_sub_2.run(buf21, buf22, 64, grid=grid(64), stream=stream0) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [Attn_2], Original ATen: [aten.div] triton_poi_fused_div_3.run(buf22, buf23, 64, grid=grid(64), stream=stream0) del buf22 return (buf23, reinterpret_tensor(primals_1, (4, 4), (16, 1), 0), buf1, buf3, reinterpret_tensor(primals_1, (4, 4), (16, 1), 4), buf5, buf7, reinterpret_tensor(primals_1, (4, 4), (16, 1), 8), buf9, buf11, reinterpret_tensor(primals_1, (4, 4), (16, 1), 12), buf13, buf15, reinterpret_tensor(buf20, (4, 4, 4), (16, 1, 4), 0), buf21, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class LocationEncoder(nn.Module): def __init__(self, pedestrian_num, input_size, hidden_size, batch_size): super(LocationEncoder, self).__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.hidden_size = hidden_size self.batch_size = batch_size self.fc1 = nn.Linear(input_size, 32) self.fc2 = nn.Linear(32, 64) self.fc3 = nn.Linear(64, self.hidden_size) self.soft = nn.Softmax(dim=1) pass def forward(self, data): outputs = self.get_hidden_output(data) output = self.Attention(outputs, outputs) return output def get_hidden_output(self, data): output_list = [] for idx in range(0, self.pedestrian_num): output = F.relu(self.fc1(data[:, idx])) output = F.relu(self.fc2(output)) output = self.fc3(output) output_list.append(output) outputs = torch.stack(output_list, 1) return outputs def Attention(self, input_data, target_data): Attn = torch.bmm(target_data, input_data.transpose(1, 2)) Attn_size = Attn.size() Attn = Attn - Attn.max(2)[0].unsqueeze(2).expand(Attn_size) exp_Attn = torch.exp(Attn) Attn = exp_Attn / exp_Attn.sum(2).unsqueeze(2).expand(Attn_size) return Attn def get_spatial_affinity(self, data): output = torch.zeros(self.batch_size, self.pedestrian_num, self. pedestrian_num) for batch in range(0, self.batch_size): for i in range(0, self.pedestrian_num): row_data = torch.Tensor([]) for j in range(0, i + 1): row_data = torch.cat([row_data, torch.dot(data[batch][i ], data[batch][j]).unsqueeze(0)], dim=0) output[batch, i, 0:i + 1] = row_data for i in range(0, self.pedestrian_num): col_data = output[batch, :, i].view(1, -1) output[batch, i, :] = col_data output[batch] = self.soft(output[batch]) """ outputs will be like this : <h1, h1>, <h2, h1>, <h3, h1> ... <h2, h1>, <h2, h2>, <h3, h2> ... <h3, h1>, <h3, h2>, <h3, h3> ... ...... """ return output def softmax(self, data): output = torch.zeros(self.batch_size, self.pedestrian_num, self. pedestrian_num) exp_data = torch.exp(data) for batch in range(0, self.batch_size): for i in range(0, self.pedestrian_num): count = 0 for j in range(0, self.pedestrian_num): count += exp_data[batch][max(i, j)][min(i, j)].item() for j in range(0, self.pedestrian_num): output[batch][i][j] = exp_data[batch][max(i, j)][min(i, j) ].item() / count return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'pedestrian_num': 4, 'input_size': 4, 'hidden_size': 4, 'batch_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr1 + x2, xmask) tmp8 = tl.load(in_out_ptr2 + x2, xmask) tmp11 = tl.load(in_out_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp9 = tmp8 + tmp1 tmp10 = triton_helpers.maximum(tmp3, tmp9) tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(in_out_ptr1 + x2, tmp7, xmask) tl.store(in_out_ptr2 + x2, tmp10, xmask) tl.store(in_out_ptr3 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr1 + x2, xmask) tmp8 = tl.load(in_out_ptr2 + x2, xmask) tmp11 = tl.load(in_out_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp9 = tmp8 + tmp1 tmp10 = triton_helpers.maximum(tmp3, tmp9) tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(in_out_ptr1 + x2, tmp7, xmask) tl.store(in_out_ptr2 + x2, tmp10, xmask) tl.store(in_out_ptr3 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_exp_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_div_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (32, 4), (4, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32), (32, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf0) buf12 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 12 ), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf12) buf4 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 4), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf4) buf8 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (16, 1), 8), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf8) del primals_2 buf1 = buf0 del buf0 buf5 = buf4 del buf4 buf9 = buf8 del buf8 buf13 = buf12 del buf12 get_raw_stream(0) triton_poi_fused_relu_0[grid(128)](buf1, buf5, buf9, buf13, primals_3, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf2) buf10 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf10) buf14 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf13, reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf14) buf6 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf6) buf3 = buf2 del buf2 buf7 = buf6 del buf6 buf11 = buf10 del buf10 buf15 = buf14 del buf14 triton_poi_fused_relu_1[grid(256)](buf3, buf7, buf11, buf15, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf20 = empty_strided_cuda((4, 16), (16, 1), torch.float32) buf16 = reinterpret_tensor(buf20, (4, 4), (16, 1), 0) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf16) buf17 = reinterpret_tensor(buf20, (4, 4), (16, 1), 4) extern_kernels.addmm(primals_7, buf7, reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf17) buf18 = reinterpret_tensor(buf20, (4, 4), (16, 1), 8) extern_kernels.addmm(primals_7, buf11, reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf18) buf19 = reinterpret_tensor(buf20, (4, 4), (16, 1), 12) extern_kernels.addmm(primals_7, buf15, reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf19) del primals_7 buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf20, (4, 4, 4), (16, 1, 4), 0), out=buf21) buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_exp_sub_2[grid(64)](buf21, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_div_3[grid(64)](buf22, buf23, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf22 return buf23, reinterpret_tensor(primals_1, (4, 4), (16, 1), 0 ), buf1, buf3, reinterpret_tensor(primals_1, (4, 4), (16, 1), 4 ), buf5, buf7, reinterpret_tensor(primals_1, (4, 4), (16, 1), 8 ), buf9, buf11, reinterpret_tensor(primals_1, (4, 4), (16, 1), 12 ), buf13, buf15, reinterpret_tensor(buf20, (4, 4, 4), (16, 1, 4), 0 ), buf21, primals_6, primals_4 class LocationEncoderNew(nn.Module): def __init__(self, pedestrian_num, input_size, hidden_size, batch_size): super(LocationEncoderNew, self).__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.hidden_size = hidden_size self.batch_size = batch_size self.fc1 = nn.Linear(input_size, 32) self.fc2 = nn.Linear(32, 64) self.fc3 = nn.Linear(64, self.hidden_size) self.soft = nn.Softmax(dim=1) pass def get_hidden_output(self, data): output_list = [] for idx in range(0, self.pedestrian_num): output = F.relu(self.fc1(data[:, idx])) output = F.relu(self.fc2(output)) output = self.fc3(output) output_list.append(output) outputs = torch.stack(output_list, 1) return outputs def Attention(self, input_data, target_data): Attn = torch.bmm(target_data, input_data.transpose(1, 2)) Attn_size = Attn.size() Attn = Attn - Attn.max(2)[0].unsqueeze(2).expand(Attn_size) exp_Attn = torch.exp(Attn) Attn = exp_Attn / exp_Attn.sum(2).unsqueeze(2).expand(Attn_size) return Attn def get_spatial_affinity(self, data): output = torch.zeros(self.batch_size, self.pedestrian_num, self. pedestrian_num) for batch in range(0, self.batch_size): for i in range(0, self.pedestrian_num): row_data = torch.Tensor([]) for j in range(0, i + 1): row_data = torch.cat([row_data, torch.dot(data[batch][i ], data[batch][j]).unsqueeze(0)], dim=0) output[batch, i, 0:i + 1] = row_data for i in range(0, self.pedestrian_num): col_data = output[batch, :, i].view(1, -1) output[batch, i, :] = col_data output[batch] = self.soft(output[batch]) """ outputs will be like this : <h1, h1>, <h2, h1>, <h3, h1> ... <h2, h1>, <h2, h2>, <h3, h2> ... <h3, h1>, <h3, h2>, <h3, h3> ... ...... """ return output def softmax(self, data): output = torch.zeros(self.batch_size, self.pedestrian_num, self. pedestrian_num) exp_data = torch.exp(data) for batch in range(0, self.batch_size): for i in range(0, self.pedestrian_num): count = 0 for j in range(0, self.pedestrian_num): count += exp_data[batch][max(i, j)][min(i, j)].item() for j in range(0, self.pedestrian_num): output[batch][i][j] = exp_data[batch][max(i, j)][min(i, j) ].item() / count return output def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
hk19960522/2018-DL-Final
LocationEncoder
false
3,604
[ "MIT" ]
0
cbc70260aa22d7df366a1d28bee472f1fc5b82c7
https://github.com/hk19960522/2018-DL-Final/tree/cbc70260aa22d7df366a1d28bee472f1fc5b82c7
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class Model(nn.Module): def __init__(self, pedestrian_num, input_size, hidden_size, batch_size): super().__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.hidden_size = hidden_size self.batch_size = batch_size self.fc1 = nn.Linear(input_size, 32) self.fc2 = nn.Linear(32, 64) self.fc3 = nn.Linear(64, self.hidden_size) self.soft = nn.Softmax(dim=1) pass def forward(self, data): outputs = self.get_hidden_output(data) output = self.Attention(outputs, outputs) return output def get_hidden_output(self, data): output_list = [] for idx in range(0, self.pedestrian_num): output = F.relu(self.fc1(data[:, idx])) output = F.relu(self.fc2(output)) output = self.fc3(output) output_list.append(output) outputs = torch.stack(output_list, 1) return outputs def Attention(self, input_data, target_data): Attn = torch.bmm(target_data, input_data.transpose(1, 2)) Attn_size = Attn.size() Attn = Attn - Attn.max(2)[0].unsqueeze(2).expand(Attn_size) exp_Attn = torch.exp(Attn) Attn = exp_Attn / exp_Attn.sum(2).unsqueeze(2).expand(Attn_size) return Attn def get_spatial_affinity(self, data): output = torch.zeros(self.batch_size, self.pedestrian_num, self. pedestrian_num) for batch in range(0, self.batch_size): for i in range(0, self.pedestrian_num): row_data = torch.Tensor([]) for j in range(0, i + 1): row_data = torch.cat([row_data, torch.dot(data[batch][i ], data[batch][j]).unsqueeze(0)], dim=0) output[batch, i, 0:i + 1] = row_data for i in range(0, self.pedestrian_num): col_data = output[batch, :, i].view(1, -1) output[batch, i, :] = col_data output[batch] = self.soft(output[batch]) """ outputs will be like this : <h1, h1>, <h2, h1>, <h3, h1> ... <h2, h1>, <h2, h2>, <h3, h2> ... <h3, h1>, <h3, h2>, <h3, h3> ... ...... """ return output def softmax(self, data): output = torch.zeros(self.batch_size, self.pedestrian_num, self. pedestrian_num) exp_data = torch.exp(data) for batch in range(0, self.batch_size): for i in range(0, self.pedestrian_num): count = 0 for j in range(0, self.pedestrian_num): count += exp_data[batch][max(i, j)][min(i, j)].item() for j in range(0, self.pedestrian_num): output[batch][i][j] = exp_data[batch][max(i, j)][min(i, j) ].item() / count return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'pedestrian_num': 4, 'input_size': 4, 'hidden_size': 4, 'batch_size': 4}]
EncoderNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tg/ctgicrga7tyksujbsb6u2lffvcpwo3edehi6erwefgwwhq6mp7sw.py # Topologically Sorted Source Nodes: [linear_6], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear_6 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/le/cle6agray5z5y3bvf2ioratctytzbz3iy5xinmz6xcvb6beeucxc.py # Topologically Sorted Source Nodes: [linear_9], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear_9 => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fo/cfoulu6dfinyiro3cxnwee7kom7kdz3kaw67llxpvrizh5alvmb7.py # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear_3 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/q2/cq2qlv2phdaezq3l67gtbb63gqfdn3op5rmnchrmzve3lzfwi7ea.py # Topologically Sorted Source Nodes: [linear, hidden_trace, linear_3, hidden_trace_3, linear_6, hidden_trace_6, linear_9, hidden_trace_9], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # hidden_trace => relu # hidden_trace_3 => relu_2 # hidden_trace_6 => relu_4 # hidden_trace_9 => relu_6 # linear => add # linear_3 => add_1 # linear_6 => add_2 # linear_9 => add_3 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_7, %primals_3), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_13, %primals_3), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_2,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %primals_3), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_3,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) # %le_5 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) # %le_7 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*i1', 7: '*i1', 8: '*i1', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_4(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_out_ptr1 + (x2), xmask) tmp11 = tl.load(in_out_ptr2 + (x2), xmask) tmp15 = tl.load(in_out_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp8 = tmp7 + tmp1 tmp9 = triton_helpers.maximum(tmp3, tmp8) tmp10 = tmp9 <= tmp5 tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tmp13 <= tmp5 tmp16 = tmp15 + tmp1 tmp17 = triton_helpers.maximum(tmp3, tmp16) tmp18 = tmp17 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(in_out_ptr1 + (x2), tmp9, xmask) tl.store(out_ptr1 + (x2), tmp10, xmask) tl.store(in_out_ptr2 + (x2), tmp13, xmask) tl.store(out_ptr2 + (x2), tmp14, xmask) tl.store(in_out_ptr3 + (x2), tmp17, xmask) tl.store(out_ptr3 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/h6/ch6w3tzs4kqel4ucmf56p4p6nionfp7jp44slx7u3jotzb6khrf5.py # Topologically Sorted Source Nodes: [hidden_trace_1, hidden_trace_4, hidden_trace_7, hidden_trace_10], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # hidden_trace_1 => relu_1 # hidden_trace_10 => relu_7 # hidden_trace_4 => relu_3 # hidden_trace_7 => relu_5 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_15,), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_21,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) # %le_6 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*i1', 7: '*i1', 8: '*i1', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_out_ptr1 + (x2), xmask) tmp11 = tl.load(in_out_ptr2 + (x2), xmask) tmp15 = tl.load(in_out_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp8 = tmp7 + tmp1 tmp9 = triton_helpers.maximum(tmp3, tmp8) tmp10 = tmp9 <= tmp5 tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tmp13 <= tmp5 tmp16 = tmp15 + tmp1 tmp17 = triton_helpers.maximum(tmp3, tmp16) tmp18 = tmp17 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(in_out_ptr1 + (x2), tmp9, xmask) tl.store(out_ptr1 + (x2), tmp10, xmask) tl.store(in_out_ptr2 + (x2), tmp13, xmask) tl.store(out_ptr2 + (x2), tmp14, xmask) tl.store(in_out_ptr3 + (x2), tmp17, xmask) tl.store(out_ptr3 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/zu/czua5znvuyo2wgzh7xs43k37nlmar4eu4cp46spj3syorclwqiuv.py # Topologically Sorted Source Nodes: [hidden_traces], Original ATen: [aten.stack] # Source node to ATen node mapping: # hidden_traces => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_5, %view_11, %view_17, %view_23], 1), kwargs = {}) triton_poi_fused_stack_6 = async_compile.triton('triton_poi_fused_stack_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 16 x0 = xindex % 4 x2 = (xindex // 64) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (4*((-8) + x1)) + (16*x2)), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x0 + (4*((-12) + x1)) + (16*x2)), tmp16 & xmask, other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x3), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (32, 4), (4, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32), (32, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((16, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_6], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_1, buf12, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((16, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_6], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf13) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_9], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(primals_1, buf18, 64, grid=grid(64), stream=stream0) buf19 = empty_strided_cuda((16, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_9], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf19) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(primals_1, buf6, 64, grid=grid(64), stream=stream0) del primals_1 buf7 = empty_strided_cuda((16, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf7) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 32), (128, 32, 1), 0); del buf1 # reuse buf32 = empty_strided_cuda((4, 4, 32), (128, 32, 1), torch.bool) buf8 = reinterpret_tensor(buf7, (4, 4, 32), (128, 32, 1), 0); del buf7 # reuse buf30 = empty_strided_cuda((4, 4, 32), (128, 32, 1), torch.bool) buf14 = reinterpret_tensor(buf13, (4, 4, 32), (128, 32, 1), 0); del buf13 # reuse buf28 = empty_strided_cuda((4, 4, 32), (128, 32, 1), torch.bool) buf20 = reinterpret_tensor(buf19, (4, 4, 32), (128, 32, 1), 0); del buf19 # reuse buf26 = empty_strided_cuda((4, 4, 32), (128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [linear, hidden_trace, linear_3, hidden_trace_3, linear_6, hidden_trace_6, linear_9, hidden_trace_9], Original ATen: [aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_relu_threshold_backward_4.run(buf2, buf8, buf14, buf20, primals_3, buf32, buf30, buf28, buf26, 512, grid=grid(512), stream=stream0) del primals_3 buf3 = empty_strided_cuda((16, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (16, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf3) buf15 = empty_strided_cuda((16, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf14, (16, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf15) buf21 = empty_strided_cuda((16, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf20, (16, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf21) buf9 = empty_strided_cuda((16, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (16, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf9) buf4 = reinterpret_tensor(buf3, (4, 4, 64), (256, 64, 1), 0); del buf3 # reuse buf31 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.bool) buf10 = reinterpret_tensor(buf9, (4, 4, 64), (256, 64, 1), 0); del buf9 # reuse buf29 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.bool) buf16 = reinterpret_tensor(buf15, (4, 4, 64), (256, 64, 1), 0); del buf15 # reuse buf27 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.bool) buf22 = reinterpret_tensor(buf21, (4, 4, 64), (256, 64, 1), 0); del buf21 # reuse buf25 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [hidden_trace_1, hidden_trace_4, hidden_trace_7, hidden_trace_10], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf4, buf10, buf16, buf22, primals_5, buf31, buf29, buf27, buf25, 1024, grid=grid(1024), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_trace_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf4, (16, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf5) buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_trace_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf10, (16, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf11) buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_trace_8], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf16, (16, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf17) buf23 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_trace_11], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf22, (16, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf23) del primals_7 buf24 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_traces], Original ATen: [aten.stack] triton_poi_fused_stack_6.run(buf5, buf11, buf17, buf23, buf24, 256, grid=grid(256), stream=stream0) del buf11 del buf17 del buf23 del buf5 return (reinterpret_tensor(buf24, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 32), (32, 1), 0), reinterpret_tensor(buf4, (16, 64), (64, 1), 0), reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(buf8, (16, 32), (32, 1), 0), reinterpret_tensor(buf10, (16, 64), (64, 1), 0), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 32), (32, 1), 0), reinterpret_tensor(buf16, (16, 64), (64, 1), 0), reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 32), (32, 1), 0), reinterpret_tensor(buf22, (16, 64), (64, 1), 0), primals_6, buf25, primals_4, buf26, buf27, buf28, buf29, buf30, buf31, buf32, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class EncoderNet(nn.Module): def __init__(self, pedestrian_num, input_size, hidden_size): super(EncoderNet, self).__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.hidden_size = hidden_size hidden1_size = 32 hidden2_size = 64 self.fc1 = torch.nn.Linear(input_size, hidden1_size) self.fc2 = torch.nn.Linear(hidden1_size, hidden2_size) self.fc3 = torch.nn.Linear(hidden2_size, hidden_size) def forward(self, input_traces): hidden_list = [] for i in range(self.pedestrian_num): input_trace = input_traces[:, i, :] hidden_trace = F.relu(self.fc1(input_trace)) hidden_trace = F.relu(self.fc2(hidden_trace)) hidden_trace = self.fc3(hidden_trace) hidden_list.append(hidden_trace) hidden_traces = torch.stack(hidden_list, 1) return hidden_traces def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'pedestrian_num': 4, 'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_4(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_out_ptr1 + x2, xmask) tmp11 = tl.load(in_out_ptr2 + x2, xmask) tmp15 = tl.load(in_out_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp8 = tmp7 + tmp1 tmp9 = triton_helpers.maximum(tmp3, tmp8) tmp10 = tmp9 <= tmp5 tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tmp13 <= tmp5 tmp16 = tmp15 + tmp1 tmp17 = triton_helpers.maximum(tmp3, tmp16) tmp18 = tmp17 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(in_out_ptr1 + x2, tmp9, xmask) tl.store(out_ptr1 + x2, tmp10, xmask) tl.store(in_out_ptr2 + x2, tmp13, xmask) tl.store(out_ptr2 + x2, tmp14, xmask) tl.store(in_out_ptr3 + x2, tmp17, xmask) tl.store(out_ptr3 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_out_ptr1 + x2, xmask) tmp11 = tl.load(in_out_ptr2 + x2, xmask) tmp15 = tl.load(in_out_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp8 = tmp7 + tmp1 tmp9 = triton_helpers.maximum(tmp3, tmp8) tmp10 = tmp9 <= tmp5 tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tmp13 <= tmp5 tmp16 = tmp15 + tmp1 tmp17 = triton_helpers.maximum(tmp3, tmp16) tmp18 = tmp17 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(in_out_ptr1 + x2, tmp9, xmask) tl.store(out_ptr1 + x2, tmp10, xmask) tl.store(in_out_ptr2 + x2, tmp13, xmask) tl.store(out_ptr2 + x2, tmp14, xmask) tl.store(in_out_ptr3 + x2, tmp17, xmask) tl.store(out_ptr3 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_stack_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 16 x0 = xindex % 4 x2 = xindex // 64 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 4 * (-8 + x1) + 16 * x2), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr3 + (x0 + 4 * (-12 + x1) + 16 * x2), tmp16 & xmask, other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x3, tmp22, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (32, 4), (4, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32), (32, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(64)](primals_1, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((16, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf13) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(64)](primals_1, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((16, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf19) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(64)](primals_1, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf7 = empty_strided_cuda((16, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 32), (1, 4), 0), out=buf7) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 32), (128, 32, 1), 0) del buf1 buf32 = empty_strided_cuda((4, 4, 32), (128, 32, 1), torch.bool) buf8 = reinterpret_tensor(buf7, (4, 4, 32), (128, 32, 1), 0) del buf7 buf30 = empty_strided_cuda((4, 4, 32), (128, 32, 1), torch.bool) buf14 = reinterpret_tensor(buf13, (4, 4, 32), (128, 32, 1), 0) del buf13 buf28 = empty_strided_cuda((4, 4, 32), (128, 32, 1), torch.bool) buf20 = reinterpret_tensor(buf19, (4, 4, 32), (128, 32, 1), 0) del buf19 buf26 = empty_strided_cuda((4, 4, 32), (128, 32, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_4[grid(512)](buf2, buf8, buf14, buf20, primals_3, buf32, buf30, buf28, buf26, 512, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = empty_strided_cuda((16, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf3) buf15 = empty_strided_cuda((16, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf14, (16, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf15) buf21 = empty_strided_cuda((16, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf20, (16, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf21) buf9 = empty_strided_cuda((16, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (16, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf9) buf4 = reinterpret_tensor(buf3, (4, 4, 64), (256, 64, 1), 0) del buf3 buf31 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.bool) buf10 = reinterpret_tensor(buf9, (4, 4, 64), (256, 64, 1), 0) del buf9 buf29 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.bool) buf16 = reinterpret_tensor(buf15, (4, 4, 64), (256, 64, 1), 0) del buf15 buf27 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.bool) buf22 = reinterpret_tensor(buf21, (4, 4, 64), (256, 64, 1), 0) del buf21 buf25 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(1024)](buf4, buf10, buf16, buf22, primals_5, buf31, buf29, buf27, buf25, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf4, (16, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf5) buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf10, (16, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf11) buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf16, (16, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf17) buf23 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf22, (16, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf23) del primals_7 buf24 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) triton_poi_fused_stack_6[grid(256)](buf5, buf11, buf17, buf23, buf24, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf11 del buf17 del buf23 del buf5 return (reinterpret_tensor(buf24, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor( buf2, (16, 32), (32, 1), 0), reinterpret_tensor(buf4, (16, 64), (64, 1), 0), reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(buf8, (16, 32), (32, 1), 0), reinterpret_tensor( buf10, (16, 64), (64, 1), 0), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 32), (32, 1), 0), reinterpret_tensor(buf16, (16, 64), (64, 1), 0), reinterpret_tensor (buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 32), ( 32, 1), 0), reinterpret_tensor(buf22, (16, 64), (64, 1), 0), primals_6, buf25, primals_4, buf26, buf27, buf28, buf29, buf30, buf31, buf32) class EncoderNetNew(nn.Module): def __init__(self, pedestrian_num, input_size, hidden_size): super(EncoderNetNew, self).__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.hidden_size = hidden_size hidden1_size = 32 hidden2_size = 64 self.fc1 = torch.nn.Linear(input_size, hidden1_size) self.fc2 = torch.nn.Linear(hidden1_size, hidden2_size) self.fc3 = torch.nn.Linear(hidden2_size, hidden_size) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
hk19960522/2018-DL-Final
EncoderNet
false
3,605
[ "MIT" ]
0
cbc70260aa22d7df366a1d28bee472f1fc5b82c7
https://github.com/hk19960522/2018-DL-Final/tree/cbc70260aa22d7df366a1d28bee472f1fc5b82c7
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class Model(nn.Module): def __init__(self, pedestrian_num, input_size, hidden_size): super().__init__() self.pedestrian_num = pedestrian_num self.input_size = input_size self.hidden_size = hidden_size hidden1_size = 32 hidden2_size = 64 self.fc1 = torch.nn.Linear(input_size, hidden1_size) self.fc2 = torch.nn.Linear(hidden1_size, hidden2_size) self.fc3 = torch.nn.Linear(hidden2_size, hidden_size) def forward(self, input_traces): hidden_list = [] for i in range(self.pedestrian_num): input_trace = input_traces[:, i, :] hidden_trace = F.relu(self.fc1(input_trace)) hidden_trace = F.relu(self.fc2(hidden_trace)) hidden_trace = self.fc3(hidden_trace) hidden_list.append(hidden_trace) hidden_traces = torch.stack(hidden_list, 1) return hidden_traces def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
PosNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/gy/cgyeivaj5xohig6bokzkqeo2uatkrsikluo6qxgc3gxiv2okwbcm.py # Topologically Sorted Source Nodes: [W], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # W => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [W], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class PosNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): torch.nn.init.xavier_normal_(self.W_hat) def forward(self, input, reuse=False): W = torch.sigmoid(self.W_hat) self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return torch.nn.functional.linear(input, W, self.bias) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import collections import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0) def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class PosNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): torch.nn.init.xavier_normal_(self.W_hat) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W_hat primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
hoedt/stable-nalu
PosNACLayer
false
3,606
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Model(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ d # ... truncated (>4000 chars) for memory efficiency
MNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qo/cqob4y7we7ssswzup73e45osaymfmr5k5ifwhqnc6qo7lydqmsmk.py # Topologically Sorted Source Nodes: [mul, add, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] # Source node to ATen node mapping: # add => add # mul => mul # sub_1 => sub_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %view_1), kwargs = {}) triton_poi_fused_add_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 1.0 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp2 tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/25/c25daqto32eti46zoqo3oi4plwezv2f3emcnmorgtd7ez3nnjfw4.py # Topologically Sorted Source Nodes: [prod], Original ATen: [aten.prod] # Source node to ATen node mapping: # prod => prod # Graph fragment: # %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%sub_1, -2), kwargs = {}) triton_poi_fused_prod_1 = async_compile.triton('triton_poi_fused_prod_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_prod_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [mul, add, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sub_0.run(primals_2, primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [prod], Original ATen: [aten.prod] triton_poi_fused_prod_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0) return (buf1, primals_1, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class MNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = math.sqrt(3.0) * std torch.nn.init.uniform_(self.W_hat, -r, r) def forward(self, x, reuse=False): W = torch.sigmoid(self.W_hat) self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return mnac(x, W) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 1])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import collections import math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 1.0 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp2 tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sub_0[grid(64)](primals_2, primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_prod_1[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf1, primals_1, primals_2, buf0 def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class MNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = math.sqrt(3.0) * std torch.nn.init.uniform_(self.W_hat, -r, r) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W_hat primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
hoedt/stable-nalu
MNACLayer
false
3,607
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() d # ... truncated (>4000 chars) for memory efficiency
GumbelMNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/uk/cukxpxu3y2z3ockiurz3auo6fuabuxyidhlinysaxu22bvje56hl.py # Topologically Sorted Source Nodes: [mul, add_2, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] # Source node to ATen node mapping: # add_2 => add_2 # mul => mul # sub_1 => sub_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %view_1), kwargs = {}) triton_poi_fused_add_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (0)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp3 = 1e-08 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = tmp3 - tmp5 tmp7 = tl_math.log(tmp6) tmp8 = -tmp7 tmp9 = tmp1 + tmp8 tmp12 = tmp9 / tmp11 tmp13 = tl.sigmoid(tmp12) tmp14 = tmp0 * tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = tmp16 - tmp13 tl.store(out_ptr0 + (x4), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/25/c25daqto32eti46zoqo3oi4plwezv2f3emcnmorgtd7ez3nnjfw4.py # Topologically Sorted Source Nodes: [prod], Original ATen: [aten.prod] # Source node to ATen node mapping: # prod => prod # Graph fragment: # %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%sub_1, -2), kwargs = {}) triton_poi_fused_prod_1 = async_compile.triton('triton_poi_fused_prod_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_prod_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ai/caimbi34x5fh62r7pvtxllp4bzj3d6tfgnrr536u5d6cfwqdnodb.py # Topologically Sorted Source Nodes: [add, log, sub, log_1, gumbel, add_1, truediv, W], Original ATen: [aten.add, aten.log, aten.rsub, aten.neg, aten.div, aten.sigmoid, aten.sigmoid_backward] # Source node to ATen node mapping: # W => sigmoid # add => add # add_1 => add_1 # gumbel => neg # log => log # log_1 => log_1 # sub => sub # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%rand, 1e-08), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1e-08, %log), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %neg), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %primals_3), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%div,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_2), kwargs = {}) triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2 = async_compile.triton('triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp9 = tl.load(in_ptr1 + (0)) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp2 = 1e-08 tmp3 = tmp1 + tmp2 tmp4 = tl_math.log(tmp3) tmp5 = tmp2 - tmp4 tmp6 = tl_math.log(tmp5) tmp7 = -tmp6 tmp8 = tmp0 + tmp7 tmp11 = tmp8 / tmp10 tmp12 = tl.sigmoid(tmp11) tmp13 = 1.0 tmp14 = tmp13 - tmp12 tmp15 = tmp12 * tmp14 tl.store(in_out_ptr0 + (x0), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [rand], Original ATen: [aten.rand] buf0 = torch.ops.aten.rand.default([4, 4], device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [mul, add_2, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sub_0.run(primals_1, primals_2, buf1, primals_3, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [prod], Original ATen: [aten.prod] triton_poi_fused_prod_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, log, sub, log_1, gumbel, add_1, truediv, W], Original ATen: [aten.add, aten.log, aten.rsub, aten.neg, aten.div, aten.sigmoid, aten.sigmoid_backward] triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2.run(buf4, primals_2, primals_3, 16, grid=grid(16), stream=stream0) del primals_2 return (buf3, primals_1, primals_3, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import torch.utils.data def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class GumbelMNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.tau = torch.nn.Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False) self.register_buffer('target_weights', torch.tensor([1, -1, 0], dtype=torch.float32)) self.U = torch.Tensor(out_features, in_features, 3) self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): torch.nn.init.constant_(self.W_hat, 0) torch.nn.init.constant_(self.tau, 1) def forward(self, x, reuse=False): if self.allow_random: gumbel = -torch.log(1e-08 - torch.log(torch.rand(self. out_features, self.in_features, device=x.device) + 1e-08)) W = torch.sigmoid((self.W_hat + gumbel) / self.tau) else: W = torch.sigmoid(self.W_hat) expected_W = torch.sigmoid(self.W_hat) self.writer.add_histogram('W', expected_W) self.writer.add_tensor('W', expected_W, verbose_only=False) return mnac(x, W) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 1])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import collections import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + 0) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp3 = 1e-08 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = tmp3 - tmp5 tmp7 = tl_math.log(tmp6) tmp8 = -tmp7 tmp9 = tmp1 + tmp8 tmp12 = tmp9 / tmp11 tmp13 = tl.sigmoid(tmp12) tmp14 = tmp0 * tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = tmp16 - tmp13 tl.store(out_ptr0 + x4, tmp17, xmask) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2( in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp9 = tl.load(in_ptr1 + 0) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp2 = 1e-08 tmp3 = tmp1 + tmp2 tmp4 = tl_math.log(tmp3) tmp5 = tmp2 - tmp4 tmp6 = tl_math.log(tmp5) tmp7 = -tmp6 tmp8 = tmp0 + tmp7 tmp11 = tmp8 / tmp10 tmp12 = tl.sigmoid(tmp11) tmp13 = 1.0 tmp14 = tmp13 - tmp12 tmp15 = tmp12 * tmp14 tl.store(in_out_ptr0 + x0, tmp15, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.rand.default([4, 4], device=device(type= 'cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sub_0[grid(64)](primals_1, primals_2, buf1, primals_3, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_prod_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = buf1 del buf1 triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2[grid (16)](buf4, primals_2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf3, primals_1, primals_3, buf2, buf4 def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class GumbelMNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.tau = torch.nn.Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False) self.register_buffer('target_weights', torch.tensor([1, -1, 0], dtype=torch.float32)) self.U = torch.Tensor(out_features, in_features, 3) self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): torch.nn.init.constant_(self.W_hat, 0) torch.nn.init.constant_(self.tau, 1) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_3 = self.tau primals_2 = self.W_hat primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hoedt/stable-nalu
GumbelMNACLayer
false
3,608
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import torch import torch.utils.data def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, Ext # ... truncated (>4000 chars) for memory efficiency
DocUnetLossPow
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/hl/chlzpja6peb5oc6vuah4oj4dgavwc6ybh3a47zefzowngmfhwfna.py # Topologically Sorted Source Nodes: [mse_loss, d, pow_1, mean, mean_1, pow_2, mul, lossf, loss], Original ATen: [aten.mse_loss, aten.sub, aten.pow, aten.mean, aten.mul, aten.add] # Source node to ATen node mapping: # d => sub # loss => add # lossf => sub_1 # mean => mean # mean_1 => mean_1 # mse_loss => mean_2, pow_3, sub_2 # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # Graph fragment: # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 0.1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean, %mul), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, %sub_1), kwargs = {}) triton_per_fused_add_mean_mse_loss_mul_pow_sub_0 = async_compile.triton('triton_per_fused_add_mean_mse_loss_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mse_loss_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mse_loss_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl.broadcast_to(tmp2, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp12 * tmp12 tmp14 = 0.1 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tmp17 = tmp11 + tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mse_loss, d, pow_1, mean, mean_1, pow_2, mul, lossf, loss], Original ATen: [aten.mse_loss, aten.sub, aten.pow, aten.mean, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mse_loss_mul_pow_sub_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DocUnetLossPow(nn.Module): """ 对应公式5的loss """ def __init__(self, r=0.1): super(DocUnetLossPow, self).__init__() self.r = r def forward(self, y, label): d = y - label lossf = d.pow(2).mean() - self.r * d.mean().pow(2) loss = F.mse_loss(y, label) + lossf return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mse_loss_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl.broadcast_to(tmp2, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tmp12 * tmp12 tmp14 = 0.1 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tmp17 = tmp11 + tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_mse_loss_mul_pow_sub_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class DocUnetLossPowNew(nn.Module): """ 对应公式5的loss """ def __init__(self, r=0.1): super(DocUnetLossPowNew, self).__init__() self.r = r def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
hologerry/DewarpNet
DocUnetLossPow
false
3,609
[ "MIT" ]
0
b0a11b9fbb98bd124e65d3165ce177d9ebf2e836
https://github.com/hologerry/DewarpNet/tree/b0a11b9fbb98bd124e65d3165ce177d9ebf2e836
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ 对应公式5的loss """ def __init__(self, r=0.1): super().__init__() self.r = r def forward(self, y, label): d = y - label lossf = d.pow(2).mean() - self.r * d.mean().pow(2) loss = F.mse_loss(y, label) + lossf return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MultiplicativeLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xz/cxzrqn5u43ogonhcex2vmgazqkvuj5hdqzhnrxmd7bf54gtvaowv.py # Topologically Sorted Source Nodes: [log], Original ATen: [aten.log] # Source node to ATen node mapping: # log => log # Graph fragment: # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_log_0 = async_compile.triton('triton_poi_fused_log_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.log(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ga/cgawzw3lhle62kotkhidf3iwjbludd5seusedcxyof2ejjwumf2c.py # Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp] # Source node to ATen node mapping: # exp => exp # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_1,), kwargs = {}) triton_poi_fused_exp_1 = async_compile.triton('triton_poi_fused_exp_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl_math.exp(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log], Original ATen: [aten.log] stream0 = get_raw_stream(0) triton_poi_fused_log_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp] triton_poi_fused_exp_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import torch.utils.data from torch import nn class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class MultiplicativeLinear(ExtendedTorchModule): def __init__(self, in_features, out_features, **kwargs): super().__init__('MulLin', **kwargs) self.fc = nn.Linear(in_features, out_features) @torch.no_grad() def reset_parameters(self): nn.init.kaiming_uniform_(self.fc.weight, nonlinearity='linear') nn.init.zeros_(self.fc.bias) def log_gradients(self): for name, parameter in self.named_parameters(): gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) def forward(self, x): return self.fc(torch.log(x)).exp() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import collections import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.log(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_exp_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl_math.exp(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_log_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_exp_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2 class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class MultiplicativeLinearNew(ExtendedTorchModule): def __init__(self, in_features, out_features, **kwargs): super().__init__('MulLin', **kwargs) self.fc = nn.Linear(in_features, out_features) @torch.no_grad() def reset_parameters(self): nn.init.kaiming_uniform_(self.fc.weight, nonlinearity='linear') nn.init.zeros_(self.fc.bias) def log_gradients(self): for name, parameter in self.named_parameters(): gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hoedt/stable-nalu
MultiplicativeLinear
false
3,610
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import torch import torch.utils.data from torch import nn class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Model(ExtendedTorchModule): def __init__(self, in_features, out_features, **kwargs): super().__init__('MulLin', **kwargs) self.fc = nn.Linear(in_features, out_features) @torch.no_grad() def reset_parameters(self): nn.init.kaiming_uniform_(self.fc.weight, nonlinearit # ... truncated (>4000 chars) for memory efficiency
DocUnetLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/si/csivaikwyoebaqj6fof2r7rzypyqqw2qunt4tpqnhzti5qew7bsk.py # Topologically Sorted Source Nodes: [mse_loss, d, abs_1, mean, mean_1, abs_2, mul, lossf, loss], Original ATen: [aten.mse_loss, aten.sub, aten.abs, aten.mean, aten.mul, aten.add] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # d => sub # loss => add # lossf => sub_1 # mean => mean # mean_1 => mean_1 # mse_loss => mean_2, pow_1, sub_2 # mul => mul # Graph fragment: # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mean_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_2, 0.1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean, %mul), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, %sub_1), kwargs = {}) triton_per_fused_abs_add_mean_mse_loss_mul_sub_0 = async_compile.triton('triton_per_fused_abs_add_mean_mse_loss_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_mean_mse_loss_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_mean_mse_loss_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl_math.abs(tmp2) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = tl.broadcast_to(tmp2, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 256.0 tmp15 = tmp6 / tmp14 tmp16 = tmp10 / tmp14 tmp17 = tmp13 / tmp14 tmp18 = tl_math.abs(tmp17) tmp19 = 0.1 tmp20 = tmp18 * tmp19 tmp21 = tmp16 - tmp20 tmp22 = tmp15 + tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp22, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mse_loss, d, abs_1, mean, mean_1, abs_2, mul, lossf, loss], Original ATen: [aten.mse_loss, aten.sub, aten.abs, aten.mean, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_per_fused_abs_add_mean_mse_loss_mul_sub_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DocUnetLoss(nn.Module): """ 只使用一个unet的loss 目前使用这个loss训练的比较好 """ def __init__(self, r=0.1): super(DocUnetLoss, self).__init__() self.r = r def forward(self, y, label): d = y - label lossf = torch.abs(d).mean() - self.r * torch.abs(d.mean()) loss = F.mse_loss(y, label) + lossf return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_mean_mse_loss_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl_math.abs(tmp2) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = tl.broadcast_to(tmp2, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 256.0 tmp15 = tmp6 / tmp14 tmp16 = tmp10 / tmp14 tmp17 = tmp13 / tmp14 tmp18 = tl_math.abs(tmp17) tmp19 = 0.1 tmp20 = tmp18 * tmp19 tmp21 = tmp16 - tmp20 tmp22 = tmp15 + tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp22, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_mean_mse_loss_mul_sub_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class DocUnetLossNew(nn.Module): """ 只使用一个unet的loss 目前使用这个loss训练的比较好 """ def __init__(self, r=0.1): super(DocUnetLossNew, self).__init__() self.r = r def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
hologerry/DewarpNet
DocUnetLoss
false
3,611
[ "MIT" ]
0
b0a11b9fbb98bd124e65d3165ce177d9ebf2e836
https://github.com/hologerry/DewarpNet/tree/b0a11b9fbb98bd124e65d3165ce177d9ebf2e836
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ 只使用一个unet的loss 目前使用这个loss训练的比较好 """ def __init__(self, r=0.1): super().__init__() self.r = r def forward(self, y, label): d = y - label lossf = torch.abs(d).mean() - self.r * torch.abs(d.mean()) loss = F.mse_loss(y, label) + lossf return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ReRegualizedLinearNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xr/cxrzzxmepxvrewbyc2d3tcsqmccjipo5vlhfxrqmlcetw2hhxr7u.py # Topologically Sorted Source Nodes: [W], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # W => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, -1.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%primals_1, -1.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%primals_1, 1.0), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_clamp_ge_le_logical_and_0 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -1.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [W], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] stream0 = get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0.run(primals_1, buf0, buf2, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class RegualizerNAUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - torch.abs(W)) * (0 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class ReRegualizedLinearNACLayer(ExtendedTorchModule): """Implements the RegualizedLinearNAC Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='nac', type='bias', shape=regualizer_shape) self._regualizer_oob = Regualizer(support='nac', type='oob', shape= regualizer_shape, zero=self.nac_oob == 'clip') self._regualizer_nau_z = RegualizerNAUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(2.0 / (self.in_features + self.out_features)) r = min(0.5, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, -r, r) def optimize(self, loss): self._regualizer_nau_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(-1.0, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nau_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def forward(self, x, reuse=False): if self.allow_random: self._regualizer_nau_z.append_input(x) W = torch.clamp(self.W, -1.0, 1.0) self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return torch.nn.functional.linear(x, W, self.bias) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import collections import math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -1.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0[grid(16)](primals_1, buf0, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2 def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class RegualizerNAUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - torch.abs(W)) * (0 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class ReRegualizedLinearNACLayerNew(ExtendedTorchModule): """Implements the RegualizedLinearNAC Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='nac', type='bias', shape=regualizer_shape) self._regualizer_oob = Regualizer(support='nac', type='oob', shape= regualizer_shape, zero=self.nac_oob == 'clip') self._regualizer_nau_z = RegualizerNAUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(2.0 / (self.in_features + self.out_features)) r = min(0.5, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, -r, r) def optimize(self, loss): self._regualizer_nau_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(-1.0, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nau_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
hoedt/stable-nalu
ReRegualizedLinearNACLayer
false
3,612
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class RegualizerNAUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_ # ... truncated (>4000 chars) for memory efficiency
ResidualBlock_noBN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # out => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/li/climin3xbj6rm2mbnxyxnqlna6vggaazmibti2uk3s4hdmjrzu3e.py # Topologically Sorted Source Nodes: [out_1, add], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # add => add # out_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution_1), kwargs = {}) triton_poi_fused_add_convolution_1 = async_compile.triton('triton_poi_fused_add_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_out_ptr0 + (x3), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 1048576, grid=grid(1048576), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_1, add], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_1.run(buf3, primals_1, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 return (buf3, primals_1, primals_2, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch import autograd as autograd import torch.nn.init as init import torch.fft from itertools import product as product def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0) class ResidualBlock_noBN(nn.Module): """Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| """ def __init__(self, nc=64): super(ResidualBlock_noBN, self).__init__() self.conv1 = nn.Conv2d(nc, nc, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(nc, nc, 3, 1, 1, bias=True) initialize_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = F.relu(self.conv1(x), inplace=True) out = self.conv2(out) return identity + out def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch import autograd as autograd import torch.nn.init as init import torch.fft from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_out_ptr0 + x3, None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_3, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_convolution_1[grid(1048576)](buf3, primals_1, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_2, primals_4, buf1 def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0) class ResidualBlock_noBNNew(nn.Module): """Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| """ def __init__(self, nc=64): super(ResidualBlock_noBNNew, self).__init__() self.conv1 = nn.Conv2d(nc, nc, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(nc, nc, 3, 1, 1, bias=True) initialize_weights([self.conv1, self.conv2], 0.1) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
hduba/KAIR
ResidualBlock_noBN
false
3,613
[ "MIT" ]
0
dbd7596c7e4a4667b9b7baac369fc6c02571fa58
https://github.com/hduba/KAIR/tree/dbd7596c7e4a4667b9b7baac369fc6c02571fa58
import torch import torch.nn as nn import torch.nn.functional as F from torch import autograd as autograd import torch.nn.init as init import torch.fft from itertools import product as product def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0) class Model(nn.Module): """Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| """ def __init__(self, nc=64): super().__init__() self.conv1 = nn.Conv2d(nc, nc, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(nc, nc, 3, 1, 1, bias=True) initialize_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = F.relu(self.conv1(x), inplace=True) out = self.conv2(out) return identity + out def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return []
ReRegualizedLinearMNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l2/cl23l5fiaxfzcbzsqcfhvlknaeors2mbghsxhr7mglikkzchqhch.py # Topologically Sorted Source Nodes: [mul, add, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] # Source node to ATen node mapping: # add => add # mul => mul # sub_1 => sub_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %view_1), kwargs = {}) triton_poi_fused_add_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp2 = 0.0 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = 1.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tmp6 = tmp0 * tmp5 tmp7 = tmp6 + tmp4 tmp8 = tmp7 - tmp5 tl.store(out_ptr0 + (x4), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/25/c25daqto32eti46zoqo3oi4plwezv2f3emcnmorgtd7ez3nnjfw4.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.prod] # Source node to ATen node mapping: # out => prod # Graph fragment: # %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%sub_1, -2), kwargs = {}) triton_poi_fused_prod_1 = async_compile.triton('triton_poi_fused_prod_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_prod_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jq/cjqhgphxfkkc24uqzov6wvxtamt3opo4zeafn2r6fmnmmd4jzchy.py # Topologically Sorted Source Nodes: [], Original ATen: [aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # Graph fragment: # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%primals_1, 0.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%primals_1, 1.0), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_ge_le_logical_and_2 = async_compile.triton('triton_poi_fused_ge_le_logical_and_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ge_le_logical_and_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_ge_le_logical_and_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 >= tmp1 tmp3 = 1.0 tmp4 = tmp0 <= tmp3 tmp5 = tmp2 & tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [mul, add, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sub_0.run(primals_2, primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.prod] triton_poi_fused_prod_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [], Original ATen: [aten.ge, aten.le, aten.logical_and] triton_poi_fused_ge_le_logical_and_2.run(primals_1, buf2, 16, grid=grid(16), stream=stream0) del primals_1 return (buf1, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class RegualizerNMUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - W) * (1 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class ReRegualizedLinearMNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', mnac_epsilon=0, mnac_normalized=False, regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.mnac_normalized = mnac_normalized self.mnac_epsilon = mnac_epsilon self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='mnac', type='bias', shape=regualizer_shape, zero_epsilon=mnac_epsilon) self._regualizer_oob = Regualizer(support='mnac', type='oob', shape =regualizer_shape, zero_epsilon=mnac_epsilon, zero=self.nac_oob == 'clip') self._regualizer_nmu_z = RegualizerNMUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = min(0.25, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, 0.5 - r, 0.5 + r) self._regualizer_nmu_z.reset() def optimize(self, loss): self._regualizer_nmu_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(0.0 + self.mnac_epsilon, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nmu_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def forward(self, x, reuse=False): if self.allow_random: self._regualizer_nmu_z.append_input(x) W = torch.clamp(self.W, 0.0 + self.mnac_epsilon, 1.0 ) if self.nac_oob == 'regualized' else self.W self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) if self.mnac_normalized: c = torch.std(x) x_normalized = x / c z_normalized = mnac(x_normalized, W, mode='prod') out = z_normalized * c ** torch.sum(W, 1) else: out = mnac(x, W, mode='prod') return out def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 1])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import collections import math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp2 = 0.0 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = 1.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tmp6 = tmp0 * tmp5 tmp7 = tmp6 + tmp4 tmp8 = tmp7 - tmp5 tl.store(out_ptr0 + x4, tmp8, xmask) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_ge_le_logical_and_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 >= tmp1 tmp3 = 1.0 tmp4 = tmp0 <= tmp3 tmp5 = tmp2 & tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sub_0[grid(64)](primals_2, primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_prod_1[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_ge_le_logical_and_2[grid(16)](primals_1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 return buf1, primals_2, buf0, buf2 def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class RegualizerNMUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - W) * (1 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class ReRegualizedLinearMNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', mnac_epsilon=0, mnac_normalized=False, regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.mnac_normalized = mnac_normalized self.mnac_epsilon = mnac_epsilon self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='mnac', type='bias', shape=regualizer_shape, zero_epsilon=mnac_epsilon) self._regualizer_oob = Regualizer(support='mnac', type='oob', shape =regualizer_shape, zero_epsilon=mnac_epsilon, zero=self.nac_oob == 'clip') self._regualizer_nmu_z = RegualizerNMUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = min(0.25, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, 0.5 - r, 0.5 + r) self._regualizer_nmu_z.reset() def optimize(self, loss): self._regualizer_nmu_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(0.0 + self.mnac_epsilon, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nmu_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
hoedt/stable-nalu
ReRegualizedLinearMNACLayer
false
3,614
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() d # ... truncated (>4000 chars) for memory efficiency
ReRegualizedLinearPosNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/37/c37tg4ls7v2pb7u3bftxslxobq4jqhy3ym7ktkzc2k4ickfvvxb2.py # Topologically Sorted Source Nodes: [W], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # W => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 0.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%primals_1, 0.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%primals_1, 1.0), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_clamp_ge_le_logical_and_0 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [W], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] stream0 = get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0.run(primals_1, buf0, buf2, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class RegualizerNMUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - W) * (1 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class ReRegualizedLinearPosNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', mnac_epsilon=0, mnac_normalized=False, regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.mnac_normalized = mnac_normalized self.mnac_epsilon = mnac_epsilon self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='mnac', type='bias', shape=regualizer_shape, zero_epsilon=mnac_epsilon) self._regualizer_oob = Regualizer(support='mnac', type='oob', shape =regualizer_shape, zero_epsilon=mnac_epsilon, zero=self.nac_oob == 'clip') self._regualizer_nmu_z = RegualizerNMUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = min(0.25, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, 0.5 - r, 0.5 + r) self._regualizer_nmu_z.reset() def optimize(self, loss): self._regualizer_nmu_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(0.0 + self.mnac_epsilon, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nmu_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def forward(self, x, reuse=False): if self.allow_random: self._regualizer_nmu_z.append_input(x) W = torch.clamp(self.W, 0.0 + self.mnac_epsilon, 1.0 ) if self.nac_oob == 'regualized' else self.W self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return torch.nn.functional.linear(x, W, self.bias) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import collections import math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0[grid(16)](primals_1, buf0, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2 def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class RegualizerNMUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - W) * (1 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class ReRegualizedLinearPosNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', mnac_epsilon=0, mnac_normalized=False, regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.mnac_normalized = mnac_normalized self.mnac_epsilon = mnac_epsilon self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='mnac', type='bias', shape=regualizer_shape, zero_epsilon=mnac_epsilon) self._regualizer_oob = Regualizer(support='mnac', type='oob', shape =regualizer_shape, zero_epsilon=mnac_epsilon, zero=self.nac_oob == 'clip') self._regualizer_nmu_z = RegualizerNMUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = min(0.25, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, 0.5 - r, 0.5 + r) self._regualizer_nmu_z.reset() def optimize(self, loss): self._regualizer_nmu_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(0.0 + self.mnac_epsilon, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nmu_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
hoedt/stable-nalu
ReRegualizedLinearPosNACLayer
false
3,615
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: # ... truncated (>4000 chars) for memory efficiency
ZeroConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/tg/ctgaykn2ev5vsympbzywhnbmo5fz5ljycgt452vxtvv7ybt7r3gf.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # out => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 1.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=1.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/3i/c3iaqwcts6h3wpjzfzg6woukwoyx2igoqvo3awmc4fkavsodfyss.py # Topologically Sorted Source Nodes: [out_1, mul, exp, out_2], Original ATen: [aten.convolution, aten.mul, aten.exp] # Source node to ATen node mapping: # exp => exp # mul => mul # out_1 => convolution # out_2 => mul_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {}) triton_poi_fused_convolution_exp_mul_1 = async_compile.triton('triton_poi_fused_convolution_exp_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_exp_mul_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1, mul, exp, out_2], Original ATen: [aten.convolution, aten.mul, aten.exp] triton_poi_fused_convolution_exp_mul_1.run(buf2, primals_3, primals_4, buf3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf3, primals_2, primals_4, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class ZeroConv2d(nn.Module): def __init__(self, in_channel, out_channel, padding=1): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 3, padding=0) self.conv.weight.data.zero_() self.conv.bias.data.zero_() self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, input): out = F.pad(input, [1, 1, 1, 1], value=1) out = self.conv(out) out = out * torch.exp(self.scale * 3) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=1.0) tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_convolution_exp_mul_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_convolution_exp_mul_1[grid(256)](buf2, primals_3, primals_4, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf3, primals_2, primals_4, buf0, buf2 class ZeroConv2dNew(nn.Module): def __init__(self, in_channel, out_channel, padding=1): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 3, padding=0) self.conv.weight.data.zero_() self.conv.bias.data.zero_() self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, input_0): primals_4 = self.scale primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
hologerry/glow-pytorch-1
ZeroConv2d
false
3,616
[ "MIT" ]
0
9d3f95f4ff7f0a1361796a9b2554e3c229aad9b7
https://github.com/hologerry/glow-pytorch-1/tree/9d3f95f4ff7f0a1361796a9b2554e3c229aad9b7
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, in_channel, out_channel, padding=1): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 3, padding=0) self.conv.weight.data.zero_() self.conv.bias.data.zero_() self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, input): out = F.pad(input, [1, 1, 1, 1], value=1) out = self.conv(out) out = out * torch.exp(self.scale * 3) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
SmoothnessLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/65/c65zpusbnk7z2du6adpqk6pfszzkt73zztao77czgocyqqfvfe43.py # Topologically Sorted Source Nodes: [l1_loss, loss_1, l1_loss_1, loss_2, l1_loss_2, loss_3, l1_loss_3, loss_4, l1_loss_4, loss_5, l1_loss_5, loss_6, l1_loss_6, loss_7, l1_loss_7, loss_8, l1_loss_8, loss_9, l1_loss_9, loss_10, l1_loss_10, loss_11, l1_loss_11, loss_12, l1_loss_12, loss_13, l1_loss_13, loss_14, l1_loss_14, loss_15, l1_loss_15, loss_16, l1_loss_16, loss_17, l1_loss_17, loss_18, loss_19], Original ATen: [aten.sub, aten.abs, aten.add, aten.sum, aten.div] # Source node to ATen node mapping: # l1_loss => abs_1, sub # l1_loss_1 => abs_2, sub_1, sum_2 # l1_loss_10 => abs_11, sub_10, sum_11 # l1_loss_11 => abs_12, sub_11, sum_12 # l1_loss_12 => abs_13, sub_12, sum_13 # l1_loss_13 => abs_14, sub_13, sum_14 # l1_loss_14 => abs_15, sub_14, sum_15 # l1_loss_15 => abs_16, sub_15, sum_16 # l1_loss_16 => abs_17, sub_16, sum_17 # l1_loss_17 => abs_18, sub_17, sum_18 # l1_loss_2 => abs_3, sub_2, sum_3 # l1_loss_3 => abs_4, sub_3, sum_4 # l1_loss_4 => abs_5, sub_4, sum_5 # l1_loss_5 => abs_6, sub_5, sum_6 # l1_loss_6 => abs_7, sub_6, sum_7 # l1_loss_7 => abs_8, sub_7, sum_8 # l1_loss_8 => abs_9, sub_8, sum_9 # l1_loss_9 => abs_10, sub_9, sum_10 # loss_1 => sum_1 # loss_10 => add_9 # loss_11 => add_10 # loss_12 => add_11 # loss_13 => add_12 # loss_14 => add_13 # loss_15 => add_14 # loss_16 => add_15 # loss_17 => add_16 # loss_18 => add_17 # loss_19 => div # loss_2 => add_1 # loss_3 => add_2 # loss_4 => add_3 # loss_5 => add_4 # loss_6 => add_5 # loss_7 => add_6 # loss_8 => add_7 # loss_9 => add_8 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %select_3), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_5, %select_7), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_9, %select_11), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_3,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %sum_3), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_13, %select_15), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_4,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %sum_4), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_17, %select_19), kwargs = {}) # %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_4,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_5,), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %sum_5), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_21, %select_23), kwargs = {}) # %abs_6 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_5,), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_6,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %sum_6), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_25, %select_27), kwargs = {}) # %abs_7 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_6,), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_7,), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %sum_7), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_29, %select_31), kwargs = {}) # %abs_8 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_7,), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_8,), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %sum_8), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_33, %select_35), kwargs = {}) # %abs_9 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_8,), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_9,), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %sum_9), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_37, %select_39), kwargs = {}) # %abs_10 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_9,), kwargs = {}) # %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_10,), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %sum_10), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_41, %select_43), kwargs = {}) # %abs_11 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_10,), kwargs = {}) # %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_11,), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %sum_11), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_45, %select_47), kwargs = {}) # %abs_12 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_11,), kwargs = {}) # %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_12,), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %sum_12), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_49, %select_51), kwargs = {}) # %abs_13 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_12,), kwargs = {}) # %sum_13 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_13,), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %sum_13), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_53, %select_55), kwargs = {}) # %abs_14 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_13,), kwargs = {}) # %sum_14 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_14,), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %sum_14), kwargs = {}) # %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_57, %select_59), kwargs = {}) # %abs_15 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_14,), kwargs = {}) # %sum_15 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_15,), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, %sum_15), kwargs = {}) # %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_61, %select_63), kwargs = {}) # %abs_16 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_15,), kwargs = {}) # %sum_16 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_16,), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_14, %sum_16), kwargs = {}) # %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_65, %select_67), kwargs = {}) # %abs_17 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_16,), kwargs = {}) # %sum_17 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_17,), kwargs = {}) # %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_15, %sum_17), kwargs = {}) # %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_69, %select_71), kwargs = {}) # %abs_18 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_17,), kwargs = {}) # %sum_18 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_18,), kwargs = {}) # %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_16, %sum_18), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_17, 16), kwargs = {}) triton_per_fused_abs_add_div_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 15, 'num_reduction': 18, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (16*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + (16*r0)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + (16*r0)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (5 + (16*r0)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (2 + (16*r0)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (6 + (16*r0)), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (3 + (16*r0)), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr0 + (8 + (16*r0)), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr0 + (9 + (16*r0)), None, eviction_policy='evict_last') tmp59 = tl.load(in_ptr0 + (10 + (16*r0)), None, eviction_policy='evict_last') tmp65 = tl.load(in_ptr0 + (7 + (16*r0)), None, eviction_policy='evict_last') tmp71 = tl.load(in_ptr0 + (12 + (16*r0)), None, eviction_policy='evict_last') tmp82 = tl.load(in_ptr0 + (13 + (16*r0)), None, eviction_policy='evict_last') tmp93 = tl.load(in_ptr0 + (14 + (16*r0)), None, eviction_policy='evict_last') tmp99 = tl.load(in_ptr0 + (11 + (16*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp8 = tmp0 - tmp7 tmp9 = tl_math.abs(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp14 = tmp7 - tmp13 tmp15 = tl_math.abs(tmp14) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp20 = tmp7 - tmp19 tmp21 = tl_math.abs(tmp20) tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.sum(tmp22, 1)[:, None] tmp26 = tmp19 - tmp25 tmp27 = tl_math.abs(tmp26) tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tmp32 = tmp19 - tmp31 tmp33 = tl_math.abs(tmp32) tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.sum(tmp34, 1)[:, None] tmp38 = tmp1 - tmp37 tmp39 = tl_math.abs(tmp38) tmp40 = tl.broadcast_to(tmp39, [XBLOCK, RBLOCK]) tmp42 = tl.sum(tmp40, 1)[:, None] tmp43 = tmp1 - tmp13 tmp44 = tl_math.abs(tmp43) tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp49 = tmp13 - tmp48 tmp50 = tl_math.abs(tmp49) tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK]) tmp53 = tl.sum(tmp51, 1)[:, None] tmp54 = tmp13 - tmp25 tmp55 = tl_math.abs(tmp54) tmp56 = tl.broadcast_to(tmp55, [XBLOCK, RBLOCK]) tmp58 = tl.sum(tmp56, 1)[:, None] tmp60 = tmp25 - tmp59 tmp61 = tl_math.abs(tmp60) tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK]) tmp64 = tl.sum(tmp62, 1)[:, None] tmp66 = tmp25 - tmp65 tmp67 = tl_math.abs(tmp66) tmp68 = tl.broadcast_to(tmp67, [XBLOCK, RBLOCK]) tmp70 = tl.sum(tmp68, 1)[:, None] tmp72 = tmp37 - tmp71 tmp73 = tl_math.abs(tmp72) tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK]) tmp76 = tl.sum(tmp74, 1)[:, None] tmp77 = tmp37 - tmp48 tmp78 = tl_math.abs(tmp77) tmp79 = tl.broadcast_to(tmp78, [XBLOCK, RBLOCK]) tmp81 = tl.sum(tmp79, 1)[:, None] tmp83 = tmp48 - tmp82 tmp84 = tl_math.abs(tmp83) tmp85 = tl.broadcast_to(tmp84, [XBLOCK, RBLOCK]) tmp87 = tl.sum(tmp85, 1)[:, None] tmp88 = tmp48 - tmp59 tmp89 = tl_math.abs(tmp88) tmp90 = tl.broadcast_to(tmp89, [XBLOCK, RBLOCK]) tmp92 = tl.sum(tmp90, 1)[:, None] tmp94 = tmp59 - tmp93 tmp95 = tl_math.abs(tmp94) tmp96 = tl.broadcast_to(tmp95, [XBLOCK, RBLOCK]) tmp98 = tl.sum(tmp96, 1)[:, None] tmp100 = tmp59 - tmp99 tmp101 = tl_math.abs(tmp100) tmp102 = tl.broadcast_to(tmp101, [XBLOCK, RBLOCK]) tmp104 = tl.sum(tmp102, 1)[:, None] tmp105 = tmp6 + tmp12 tmp106 = tmp105 + tmp18 tmp107 = tmp106 + tmp24 tmp108 = tmp107 + tmp30 tmp109 = tmp108 + tmp36 tmp110 = tmp109 + tmp42 tmp111 = tmp110 + tmp47 tmp112 = tmp111 + tmp53 tmp113 = tmp112 + tmp58 tmp114 = tmp113 + tmp64 tmp115 = tmp114 + tmp70 tmp116 = tmp115 + tmp76 tmp117 = tmp116 + tmp81 tmp118 = tmp117 + tmp87 tmp119 = tmp118 + tmp92 tmp120 = tmp119 + tmp98 tmp121 = tmp120 + tmp104 tmp122 = 0.0625 tmp123 = tmp121 * tmp122 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp123, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf16 = buf0; del buf0 # reuse buf19 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [l1_loss, loss_1, l1_loss_1, loss_2, l1_loss_2, loss_3, l1_loss_3, loss_4, l1_loss_4, loss_5, l1_loss_5, loss_6, l1_loss_6, loss_7, l1_loss_7, loss_8, l1_loss_8, loss_9, l1_loss_9, loss_10, l1_loss_10, loss_11, l1_loss_11, loss_12, l1_loss_12, loss_13, l1_loss_13, loss_14, l1_loss_14, loss_15, l1_loss_15, loss_16, l1_loss_16, loss_17, l1_loss_17, loss_18, loss_19], Original ATen: [aten.sub, aten.abs, aten.add, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_sub_sum_0.run(buf19, arg0_1, 1, 16, grid=grid(1), stream=stream0) del arg0_1 return (buf19, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SmoothnessLoss(nn.Module): def __init__(self): super().__init__() def forward(self, pred_label): _n, _c, w, h = pred_label.size() loss = torch.tensor(0.0, device=pred_label.device) for i in range(w - 1): for j in range(h - 1): loss += F.l1_loss(pred_label[:, :, i, j], pred_label[:, :, i + 1, j], reduction='sum') loss += F.l1_loss(pred_label[:, :, i, j], pred_label[:, :, i, j + 1], reduction='sum') loss /= w * h return loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 16 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + 16 * r0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + 16 * r0), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (5 + 16 * r0), None, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr0 + (2 + 16 * r0), None, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr0 + (6 + 16 * r0), None, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr0 + (3 + 16 * r0), None, eviction_policy='evict_last' ) tmp37 = tl.load(in_ptr0 + (8 + 16 * r0), None, eviction_policy='evict_last' ) tmp48 = tl.load(in_ptr0 + (9 + 16 * r0), None, eviction_policy='evict_last' ) tmp59 = tl.load(in_ptr0 + (10 + 16 * r0), None, eviction_policy= 'evict_last') tmp65 = tl.load(in_ptr0 + (7 + 16 * r0), None, eviction_policy='evict_last' ) tmp71 = tl.load(in_ptr0 + (12 + 16 * r0), None, eviction_policy= 'evict_last') tmp82 = tl.load(in_ptr0 + (13 + 16 * r0), None, eviction_policy= 'evict_last') tmp93 = tl.load(in_ptr0 + (14 + 16 * r0), None, eviction_policy= 'evict_last') tmp99 = tl.load(in_ptr0 + (11 + 16 * r0), None, eviction_policy= 'evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp8 = tmp0 - tmp7 tmp9 = tl_math.abs(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp14 = tmp7 - tmp13 tmp15 = tl_math.abs(tmp14) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp20 = tmp7 - tmp19 tmp21 = tl_math.abs(tmp20) tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.sum(tmp22, 1)[:, None] tmp26 = tmp19 - tmp25 tmp27 = tl_math.abs(tmp26) tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tmp32 = tmp19 - tmp31 tmp33 = tl_math.abs(tmp32) tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.sum(tmp34, 1)[:, None] tmp38 = tmp1 - tmp37 tmp39 = tl_math.abs(tmp38) tmp40 = tl.broadcast_to(tmp39, [XBLOCK, RBLOCK]) tmp42 = tl.sum(tmp40, 1)[:, None] tmp43 = tmp1 - tmp13 tmp44 = tl_math.abs(tmp43) tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp49 = tmp13 - tmp48 tmp50 = tl_math.abs(tmp49) tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK]) tmp53 = tl.sum(tmp51, 1)[:, None] tmp54 = tmp13 - tmp25 tmp55 = tl_math.abs(tmp54) tmp56 = tl.broadcast_to(tmp55, [XBLOCK, RBLOCK]) tmp58 = tl.sum(tmp56, 1)[:, None] tmp60 = tmp25 - tmp59 tmp61 = tl_math.abs(tmp60) tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK]) tmp64 = tl.sum(tmp62, 1)[:, None] tmp66 = tmp25 - tmp65 tmp67 = tl_math.abs(tmp66) tmp68 = tl.broadcast_to(tmp67, [XBLOCK, RBLOCK]) tmp70 = tl.sum(tmp68, 1)[:, None] tmp72 = tmp37 - tmp71 tmp73 = tl_math.abs(tmp72) tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK]) tmp76 = tl.sum(tmp74, 1)[:, None] tmp77 = tmp37 - tmp48 tmp78 = tl_math.abs(tmp77) tmp79 = tl.broadcast_to(tmp78, [XBLOCK, RBLOCK]) tmp81 = tl.sum(tmp79, 1)[:, None] tmp83 = tmp48 - tmp82 tmp84 = tl_math.abs(tmp83) tmp85 = tl.broadcast_to(tmp84, [XBLOCK, RBLOCK]) tmp87 = tl.sum(tmp85, 1)[:, None] tmp88 = tmp48 - tmp59 tmp89 = tl_math.abs(tmp88) tmp90 = tl.broadcast_to(tmp89, [XBLOCK, RBLOCK]) tmp92 = tl.sum(tmp90, 1)[:, None] tmp94 = tmp59 - tmp93 tmp95 = tl_math.abs(tmp94) tmp96 = tl.broadcast_to(tmp95, [XBLOCK, RBLOCK]) tmp98 = tl.sum(tmp96, 1)[:, None] tmp100 = tmp59 - tmp99 tmp101 = tl_math.abs(tmp100) tmp102 = tl.broadcast_to(tmp101, [XBLOCK, RBLOCK]) tmp104 = tl.sum(tmp102, 1)[:, None] tmp105 = tmp6 + tmp12 tmp106 = tmp105 + tmp18 tmp107 = tmp106 + tmp24 tmp108 = tmp107 + tmp30 tmp109 = tmp108 + tmp36 tmp110 = tmp109 + tmp42 tmp111 = tmp110 + tmp47 tmp112 = tmp111 + tmp53 tmp113 = tmp112 + tmp58 tmp114 = tmp113 + tmp64 tmp115 = tmp114 + tmp70 tmp116 = tmp115 + tmp76 tmp117 = tmp116 + tmp81 tmp118 = tmp117 + tmp87 tmp119 = tmp118 + tmp92 tmp120 = tmp119 + tmp98 tmp121 = tmp120 + tmp104 tmp122 = 0.0625 tmp123 = tmp121 * tmp122 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp123, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf16 = buf0 del buf0 buf19 = buf16 del buf16 get_raw_stream(0) triton_per_fused_abs_add_div_sub_sum_0[grid(1)](buf19, arg0_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf19, class SmoothnessLossNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
hologerry/DewarpNet
SmoothnessLoss
false
3,617
[ "MIT" ]
0
b0a11b9fbb98bd124e65d3165ce177d9ebf2e836
https://github.com/hologerry/DewarpNet/tree/b0a11b9fbb98bd124e65d3165ce177d9ebf2e836
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() def forward(self, pred_label): _n, _c, w, h = pred_label.size() loss = torch.tensor(0.0, device=pred_label.device) for i in range(w - 1): for j in range(h - 1): loss += F.l1_loss(pred_label[:, :, i, j], pred_label[:, :, i + 1, j], reduction='sum') loss += F.l1_loss(pred_label[:, :, i, j], pred_label[:, :, i, j + 1], reduction='sum') loss /= w * h return loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/vl/cvlhiduy67xn6o4lhuk4xvwnthj72fhj5ocfqllkw3dbrthiez3v.py # Topologically Sorted Source Nodes: [truediv, round_1, lof_tag_avg_gather_img, round_2, sub, tag, pull, mul_1], Original ATen: [aten.div, aten.round, aten.mul, aten.sub, aten.pow, aten.mean] # Source node to ATen node mapping: # lof_tag_avg_gather_img => mul # mul_1 => mul_1 # pull => mean # round_1 => round_1 # round_2 => round_2 # sub => sub # tag => pow_1 # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 4), kwargs = {}) # %round_1 : [num_users=1] = call_function[target=torch.ops.aten.round.default](args = (%div,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%round_1, 4), kwargs = {}) # %round_2 : [num_users=1] = call_function[target=torch.ops.aten.round.default](args = (%mul,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %round_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 4), kwargs = {}) triton_per_fused_div_mean_mul_pow_round_sub_0 = async_compile.triton('triton_per_fused_div_mean_mul_pow_round_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_mul_pow_round_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mean_mul_pow_round_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = 0.25 tmp3 = tmp1 * tmp2 tmp4 = libdevice.nearbyint(tmp3) tmp5 = 4.0 tmp6 = tmp4 * tmp5 tmp7 = libdevice.nearbyint(tmp6) tmp8 = tmp0 - tmp7 tmp9 = tmp8 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tmp15 = tmp14 * tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wh/cwh6c5rozspxfwkgtxpck2blxytwzmnff7c2kuwonwucgfcqkexw.py # Topologically Sorted Source Nodes: [dist, abs_1, dist_1, dist_2, dist_3, push, mul_2], Original ATen: [aten.sub, aten.abs, aten.rsub, aten.relu, aten.index, aten.mean, aten.mul] # Source node to ATen node mapping: # abs_1 => abs_1 # dist => sub_1 # dist_1 => sub_2 # dist_2 => relu # dist_3 => index # mul_2 => mul_2 # push => mean_1 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (8, %abs_1), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_2,), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%relu, [%arg3_1]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%index,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 4), kwargs = {}) triton_per_fused_abs_index_mean_mul_relu_rsub_sub_1 = async_compile.triton('triton_per_fused_abs_index_mean_mul_relu_rsub_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 1024], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_index_mean_mul_relu_rsub_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_index_mean_mul_relu_rsub_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 1024 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = (rindex // 256) r3 = rindex % 256 r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + (r2), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp1 = tl.full([RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp7 = tl.load(in_ptr1 + (r0 + (64*tmp4)), None) tmp8 = tmp6 - tmp7 tmp9 = tl_math.abs(tmp8) tmp10 = 8.0 tmp11 = tmp10 - tmp9 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 1024.0 tmp18 = tmp16 / tmp17 tmp19 = 4.0 tmp20 = tmp18 * tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [truediv, round_1, lof_tag_avg_gather_img, round_2, sub, tag, pull, mul_1], Original ATen: [aten.div, aten.round, aten.mul, aten.sub, aten.pow, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_div_mean_mul_pow_round_sub_0.run(buf2, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [dist, abs_1, dist_1, dist_2, dist_3, push, mul_2], Original ATen: [aten.sub, aten.abs, aten.rsub, aten.relu, aten.index, aten.mean, aten.mul] triton_per_fused_abs_index_mean_mul_relu_rsub_sub_1.run(buf3, arg3_1, arg2_1, 1, 1024, grid=grid(1), stream=stream0) del arg2_1 del arg3_1 return (buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch import nn class AELoss(nn.Module): def __init__(self, pull_factor, push_factor, distance, margin_push): super(AELoss, self).__init__() self.pull_factor = pull_factor self.push_factor = push_factor self.distance = distance self.margin_push = margin_push def forward(self, lof_tag_img, lof_tag_avg_img, lof_tag_avg_gather_img, mask, centerness_img=None): lof_tag_avg_gather_img = torch.round(lof_tag_avg_gather_img / self. distance) * self.distance tag = torch.pow(lof_tag_img - torch.round(lof_tag_avg_gather_img), 2) dist = lof_tag_avg_img.unsqueeze(0) - lof_tag_avg_img.unsqueeze(1) dist = self.distance + self.margin_push - torch.abs(dist) dist = nn.functional.relu(dist, inplace=True) dist = dist[mask] if centerness_img is not None: pull = (tag * centerness_img).sum() / centerness_img.sum() push = torch.zeros_like(pull) if mask.any(): push = dist.sum() / mask.sum().float() else: pull = tag.mean() push = dist.mean() return self.pull_factor * pull, self.push_factor * push def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'pull_factor': 4, 'push_factor': 4, 'distance': 4, 'margin_push': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mean_mul_pow_round_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = 0.25 tmp3 = tmp1 * tmp2 tmp4 = libdevice.nearbyint(tmp3) tmp5 = 4.0 tmp6 = tmp4 * tmp5 tmp7 = libdevice.nearbyint(tmp6) tmp8 = tmp0 - tmp7 tmp9 = tmp8 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tmp15 = tmp14 * tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None) @triton.jit def triton_per_fused_abs_index_mean_mul_relu_rsub_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 1024 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex // 256 r3 = rindex % 256 r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp1 = tl.full([RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp7 = tl.load(in_ptr1 + (r0 + 64 * tmp4), None) tmp8 = tmp6 - tmp7 tmp9 = tl_math.abs(tmp8) tmp10 = 8.0 tmp11 = tmp10 - tmp9 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 1024.0 tmp18 = tmp16 / tmp17 tmp19 = 4.0 tmp20 = tmp18 * tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mean_mul_pow_round_sub_0[grid(1)](buf2, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf3 = buf1 del buf1 triton_per_fused_abs_index_mean_mul_relu_rsub_sub_1[grid(1)](buf3, arg3_1, arg2_1, 1, 1024, num_warps=8, num_stages=1) del arg2_1 del arg3_1 return buf2, buf3 class AELossNew(nn.Module): def __init__(self, pull_factor, push_factor, distance, margin_push): super(AELossNew, self).__init__() self.pull_factor = pull_factor self.push_factor = push_factor self.distance = distance self.margin_push = margin_push def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1]
houweidong/FCOS
AELoss
false
3,618
[ "BSD-2-Clause" ]
0
ad7d5e5d1b162398af408a9635ce8a2012f7db8a
https://github.com/houweidong/FCOS/tree/ad7d5e5d1b162398af408a9635ce8a2012f7db8a
import torch import torch.utils.data from torch import nn class Model(nn.Module): def __init__(self, pull_factor, push_factor, distance, margin_push): super().__init__() self.pull_factor = pull_factor self.push_factor = push_factor self.distance = distance self.margin_push = margin_push def forward(self, lof_tag_img, lof_tag_avg_img, lof_tag_avg_gather_img, mask, centerness_img=None): lof_tag_avg_gather_img = torch.round(lof_tag_avg_gather_img / self. distance) * self.distance tag = torch.pow(lof_tag_img - torch.round(lof_tag_avg_gather_img), 2) dist = lof_tag_avg_img.unsqueeze(0) - lof_tag_avg_img.unsqueeze(1) dist = self.distance + self.margin_push - torch.abs(dist) dist = nn.functional.relu(dist, inplace=True) dist = dist[mask] if centerness_img is not None: pull = (tag * centerness_img).sum() / centerness_img.sum() push = torch.zeros_like(pull) if mask.any(): push = dist.sum() / mask.sum().float() else: pull = tag.mean() push = dist.mean() return self.pull_factor * pull, self.push_factor * push def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'pull_factor': 4, 'push_factor': 4, 'distance': 4, 'margin_push': 4}]
MCFullyConnected
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py # Topologically Sorted Source Nodes: [j], Original ATen: [aten._softmax] # Source node to ATen node mapping: # j => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%unsqueeze, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lz/clzlkaixbuqhzpmq2g72z5btrasjlaxo743kyualigpofe2b6dgf.py # Topologically Sorted Source Nodes: [r_1], Original ATen: [aten.view] # Source node to ATen node mapping: # r_1 => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([1, 1], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {1: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=(1,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = 1.0 tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py # Topologically Sorted Source Nodes: [j], Original ATen: [aten._softmax] # Source node to ATen node mapping: # j => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fk/cfk4pswebmvvv7ri5kuptn7b6rb73vucfjqwipjacweh7cs5xove.py # Topologically Sorted Source Nodes: [o, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # o => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %squeeze), kwargs = {}) triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x2), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [j], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((1, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [r_1], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf1, 1, grid=grid(1), stream=stream0) buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [r_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf1, reinterpret_tensor(primals_3, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 buf3 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [j], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf0, buf3, 16, grid=grid(16), stream=stream0) del buf0 buf4 = empty_strided_cuda((64, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (64, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf3, (64, 4, 4), (0, 4, 1), 0), out=buf4) del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [o, mul], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_3.run(buf2, buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf5, primals_2, buf1, buf2, buf4, reinterpret_tensor(primals_1, (64, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import torch.utils.data from torch import nn def get_redistribution(kind: 'str', num_states: 'int', num_features: 'int'= None, num_out: 'int'=None, normaliser: 'nn.Module'=None, **kwargs): if kind == 'linear': return LinearRedistribution(num_states, num_features, num_out, normaliser) elif kind == 'outer': return OuterRedistribution(num_states, num_features, num_out, normaliser, **kwargs) elif kind == 'gate': return GateRedistribution(num_states, num_features, num_out, normaliser ) else: raise ValueError('unknown kind of redistribution: {}'.format(kind)) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class NormalisedSigmoid(nn.Module): """ Normalised logistic sigmoid function. """ def __init__(self, p: 'float'=1, dim: 'int'=-1): super().__init__() self.p = p self.dim = dim def forward(self, s: 'torch.Tensor') ->torch.Tensor: a = torch.sigmoid(s) return torch.nn.functional.normalize(a, p=self.p, dim=self.dim) class Redistribution(nn.Module): """ Base class for modules that generate redistribution vectors/matrices. """ def __init__(self, num_states: 'int', num_features: 'int'=None, num_out: 'int'=None, normaliser: 'nn.Module'=None): """ Parameters ---------- num_states : int The number of states this redistribution is to be applied on. num_features : int, optional The number of features to use for configuring the redistribution. If the redistribution is not input-dependent, this argument will be ignored. num_out : int, optional The number of outputs to redistribute the states to. If nothing is specified, the redistribution matrix is assumed to be square. normaliser : Module, optional Function to use for normalising the redistribution matrix. """ super().__init__() self.num_features = num_features self.num_states = num_states self.num_out = num_out or num_states self.normaliser = normaliser or NormalisedSigmoid(dim=-1) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError('subclass must implement this method') def forward(self, x: 'torch.Tensor') ->torch.Tensor: r = self._compute(x) return self.normaliser(r) class Gate(Redistribution): """ Classic gate as used in e.g. LSTMs. Notes ----- The vector that is computed by this module gives rise to a diagonal redistribution matrix, i.e. a redistribution matrix that does not really redistribute (not normalised). """ def __init__(self, num_states, num_features, num_out=None, sigmoid=None): super().__init__(num_states, num_features, 1, sigmoid or nn.Sigmoid()) self.fc = nn.Linear(num_features, num_states) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.fc.weight) nn.init.zeros_(self.fc.bias) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: return self.fc(x) class GateRedistribution(Redistribution): """ Gate-like redistribution that only depends on input. This module directly computes all entries for the redistribution matrix from a linear combination of the input values and is normalised by the activation function. """ def __init__(self, num_states, num_features, num_out=None, normaliser=None ): super().__init__(num_states, num_features, num_out, normaliser) self.fc = nn.Linear(num_features, self.num_states * self.num_out) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.fc.weight) nn.init.zeros_(self.fc.bias) if self.num_states == self.num_out: with torch.no_grad(): self.fc.bias[0::self.num_out + 1] = 3 def _compute(self, x: 'torch.Tensor') ->torch.Tensor: logits = self.fc(x) return logits.view(-1, self.num_states, self.num_out) class LinearRedistribution(Redistribution): """ Redistribution by normalising a learned matrix. This module has an unnormalised version of the redistribution matrix as parameters and is normalised by applying a non-linearity (the normaliser). The redistribution does not depend on any of the input values, but is updated using the gradients to fit the data. """ def __init__(self, num_states, num_features=0, num_out=None, normaliser =None): super(LinearRedistribution, self).__init__(num_states, 0, num_out, normaliser) self.r = nn.Parameter(torch.empty(self.num_states, self.num_out), requires_grad=True) self.reset_parameters() @torch.no_grad() def reset_parameters(self): if self.num_states == self.num_out: nn.init.eye_(self.r) if type(self.normaliser) is NormalisedSigmoid: torch.mul(self.r, 2, out=self.r) torch.sub(self.r, 1, out=self.r) else: nn.init.orthogonal_(self.r) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: return self.r.unsqueeze(0) class OuterRedistribution(Redistribution): """ Redistribution by (weighted) outer product of two input-dependent vectors. This module computes the entries for the redistribution matrix as the outer product of two vectors that are linear combinations of the input values. There is an option to include a weight matrix parameter to weight each entry in the resulting matrix, which is then normalised using a non-linearity. The weight matrix parameter is updated through the gradients to fit the data. """ def __init__(self, num_states, num_features, num_out=None, normaliser= None, weighted: 'bool'=False): """ Parameters ---------- weighted : bool, optional Whether or not to use a weighted outer product. """ super(OuterRedistribution, self).__init__(num_states, num_features, num_out, normaliser) self.weighted = weighted self.r = nn.Parameter(torch.empty(self.num_states, self.num_out), requires_grad=weighted) self.fc1 = nn.Linear(num_features, self.num_states) self.fc2 = nn.Linear(num_features, self.num_out) self.phi = lambda x: x self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.r) nn.init.orthogonal_(self.fc1.weight) nn.init.zeros_(self.fc1.bias) nn.init.orthogonal_(self.fc2.weight) nn.init.zeros_(self.fc2.bias) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: a1 = self.phi(self.fc1(x)) a2 = self.phi(self.fc2(x)) outer = a1.unsqueeze(-1) * a2.unsqueeze(-2) if self.weighted: outer *= self.r return outer class MCFullyConnected(ExtendedTorchModule): def __init__(self, in_features: 'int', out_features: 'int', **kwargs): super().__init__('MCFC', **kwargs) self.mass_input_size = in_features self.aux_input_size = 1 self.hidden_size = out_features self.normaliser = nn.Softmax(dim=-1) self.out_gate = Gate(self.hidden_size, self.aux_input_size) self.junction = get_redistribution('linear', num_states=self. mass_input_size, num_features=self.aux_input_size, num_out=self .hidden_size, normaliser=self.normaliser) @torch.no_grad() def reset_parameters(self): self.out_gate.reset_parameters() self.junction.reset_parameters() def log_gradients(self): for name, parameter in self.named_parameters(): gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) def regualizer(self, merge_in=None): r1 = -torch.mean(self.junction.r ** 2) r2 = -torch.mean(self.out_gate.fc.weight ** 2) r3 = -torch.mean(self.out_gate.fc.bias ** 2) return super().regualizer({'W': r1 + r2 + r3}) def forward(self, x): x_m, x_a = x, x.new_ones(1) j = self.junction(x_a) o = self.out_gate(x_a) m_in = torch.matmul(x_m.unsqueeze(-2), j).squeeze(-2) return o * m_in def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import collections import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_view_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = 1.0 tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp0, None) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + x2, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](primals_2, buf0, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((1, 1), (1, 1), torch.float32) triton_poi_fused_view_1[grid(1)](buf1, 1, XBLOCK=1, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf1, reinterpret_tensor(primals_3, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 buf3 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(16)](buf0, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 buf4 = empty_strided_cuda((64, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (64, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf3, (64, 4, 4), (0, 4, 1), 0), out =buf4) del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_3[grid(256)](buf2, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf5, primals_2, buf1, buf2, buf4, reinterpret_tensor(primals_1, (64, 4, 1), (4, 1, 4), 0) def get_redistribution(kind: 'str', num_states: 'int', num_features: 'int'= None, num_out: 'int'=None, normaliser: 'nn.Module'=None, **kwargs): if kind == 'linear': return LinearRedistribution(num_states, num_features, num_out, normaliser) elif kind == 'outer': return OuterRedistribution(num_states, num_features, num_out, normaliser, **kwargs) elif kind == 'gate': return GateRedistribution(num_states, num_features, num_out, normaliser ) else: raise ValueError('unknown kind of redistribution: {}'.format(kind)) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class NormalisedSigmoid(nn.Module): """ Normalised logistic sigmoid function. """ def __init__(self, p: 'float'=1, dim: 'int'=-1): super().__init__() self.p = p self.dim = dim def forward(self, s: 'torch.Tensor') ->torch.Tensor: a = torch.sigmoid(s) return torch.nn.functional.normalize(a, p=self.p, dim=self.dim) class Redistribution(nn.Module): """ Base class for modules that generate redistribution vectors/matrices. """ def __init__(self, num_states: 'int', num_features: 'int'=None, num_out: 'int'=None, normaliser: 'nn.Module'=None): """ Parameters ---------- num_states : int The number of states this redistribution is to be applied on. num_features : int, optional The number of features to use for configuring the redistribution. If the redistribution is not input-dependent, this argument will be ignored. num_out : int, optional The number of outputs to redistribute the states to. If nothing is specified, the redistribution matrix is assumed to be square. normaliser : Module, optional Function to use for normalising the redistribution matrix. """ super().__init__() self.num_features = num_features self.num_states = num_states self.num_out = num_out or num_states self.normaliser = normaliser or NormalisedSigmoid(dim=-1) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError('subclass must implement this method') def forward(self, x: 'torch.Tensor') ->torch.Tensor: r = self._compute(x) return self.normaliser(r) class Gate(Redistribution): """ Classic gate as used in e.g. LSTMs. Notes ----- The vector that is computed by this module gives rise to a diagonal redistribution matrix, i.e. a redistribution matrix that does not really redistribute (not normalised). """ def __init__(self, num_states, num_features, num_out=None, sigmoid=None): super().__init__(num_states, num_features, 1, sigmoid or nn.Sigmoid()) self.fc = nn.Linear(num_features, num_states) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.fc.weight) nn.init.zeros_(self.fc.bias) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: return self.fc(x) class GateRedistribution(Redistribution): """ Gate-like redistribution that only depends on input. This module directly computes all entries for the redistribution matrix from a linear combination of the input values and is normalised by the activation function. """ def __init__(self, num_states, num_features, num_out=None, normaliser=None ): super().__init__(num_states, num_features, num_out, normaliser) self.fc = nn.Linear(num_features, self.num_states * self.num_out) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.fc.weight) nn.init.zeros_(self.fc.bias) if self.num_states == self.num_out: with torch.no_grad(): self.fc.bias[0::self.num_out + 1] = 3 def _compute(self, x: 'torch.Tensor') ->torch.Tensor: logits = self.fc(x) return logits.view(-1, self.num_states, self.num_out) class LinearRedistribution(Redistribution): """ Redistribution by normalising a learned matrix. This module has an unnormalised version of the redistribution matrix as parameters and is normalised by applying a non-linearity (the normaliser). The redistribution does not depend on any of the input values, but is updated using the gradients to fit the data. """ def __init__(self, num_states, num_features=0, num_out=None, normaliser =None): super(LinearRedistribution, self).__init__(num_states, 0, num_out, normaliser) self.r = nn.Parameter(torch.empty(self.num_states, self.num_out), requires_grad=True) self.reset_parameters() @torch.no_grad() def reset_parameters(self): if self.num_states == self.num_out: nn.init.eye_(self.r) if type(self.normaliser) is NormalisedSigmoid: torch.mul(self.r, 2, out=self.r) torch.sub(self.r, 1, out=self.r) else: nn.init.orthogonal_(self.r) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: return self.r.unsqueeze(0) class OuterRedistribution(Redistribution): """ Redistribution by (weighted) outer product of two input-dependent vectors. This module computes the entries for the redistribution matrix as the outer product of two vectors that are linear combinations of the input values. There is an option to include a weight matrix parameter to weight each entry in the resulting matrix, which is then normalised using a non-linearity. The weight matrix parameter is updated through the gradients to fit the data. """ def __init__(self, num_states, num_features, num_out=None, normaliser= None, weighted: 'bool'=False): """ Parameters ---------- weighted : bool, optional Whether or not to use a weighted outer product. """ super(OuterRedistribution, self).__init__(num_states, num_features, num_out, normaliser) self.weighted = weighted self.r = nn.Parameter(torch.empty(self.num_states, self.num_out), requires_grad=weighted) self.fc1 = nn.Linear(num_features, self.num_states) self.fc2 = nn.Linear(num_features, self.num_out) self.phi = lambda x: x self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.r) nn.init.orthogonal_(self.fc1.weight) nn.init.zeros_(self.fc1.bias) nn.init.orthogonal_(self.fc2.weight) nn.init.zeros_(self.fc2.bias) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: a1 = self.phi(self.fc1(x)) a2 = self.phi(self.fc2(x)) outer = a1.unsqueeze(-1) * a2.unsqueeze(-2) if self.weighted: outer *= self.r return outer class MCFullyConnectedNew(ExtendedTorchModule): def __init__(self, in_features: 'int', out_features: 'int', **kwargs): super().__init__('MCFC', **kwargs) self.mass_input_size = in_features self.aux_input_size = 1 self.hidden_size = out_features self.normaliser = nn.Softmax(dim=-1) self.out_gate = Gate(self.hidden_size, self.aux_input_size) self.junction = get_redistribution('linear', num_states=self. mass_input_size, num_features=self.aux_input_size, num_out=self .hidden_size, normaliser=self.normaliser) @torch.no_grad() def reset_parameters(self): self.out_gate.reset_parameters() self.junction.reset_parameters() def log_gradients(self): for name, parameter in self.named_parameters(): gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) def regualizer(self, merge_in=None): r1 = -torch.mean(self.junction.r ** 2) r2 = -torch.mean(self.out_gate.fc.weight ** 2) r3 = -torch.mean(self.out_gate.fc.bias ** 2) return super().regualizer({'W': r1 + r2 + r3}) def forward(self, input_0): primals_3 = self.out_gate.fc.weight primals_4 = self.out_gate.fc.bias primals_2 = self.junction.r primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
hoedt/stable-nalu
MCFullyConnected
false
3,619
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import torch import torch.utils.data from torch import nn def get_redistribution(kind: 'str', num_states: 'int', num_features: 'int'= None, num_out: 'int'=None, normaliser: 'nn.Module'=None, **kwargs): if kind == 'linear': return LinearRedistribution(num_states, num_features, num_out, normaliser) elif kind == 'outer': return OuterRedistribution(num_states, num_features, num_out, normaliser, **kwargs) elif kind == 'gate': return GateRedistribution(num_states, num_features, num_out, normaliser ) else: raise ValueError('unknown kind of redistribution: {}'.format(kind)) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): # ... truncated (>4000 chars) for memory efficiency
AdaptiveInstanceNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/52/c526p7iwll7vx7gobeuv6q3lym4ek7lbhopuykpcibc57bou263i.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jo/cjo3wxmtawsvu7opemz2xwvsknw4nxv74xivifhgb7csue6qqjbi.py # Topologically Sorted Source Nodes: [out, mul_1, out_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add] # Source node to ATen node mapping: # mul_1 => mul_2 # out => add, rsqrt, var_mean # out_1 => add_1 # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %getitem_1), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_mul_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (16*x0)), tmp31, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 32, grid=grid(32), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf3 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out, mul_1, out_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add] triton_per_fused__native_batch_norm_legit_add_mul_1.run(buf5, primals_4, buf1, primals_2, buf2, buf6, 16, 16, grid=grid(16), stream=stream0) del buf1 del primals_2 return (buf6, buf0, primals_3, primals_4, buf2, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from math import sqrt def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class AdaptiveInstanceNorm(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input, style): style = self.style(style).unsqueeze(2).unsqueeze(3) gamma, beta = style.chunk(2, 1) out = self.norm(input) out = gamma * out + beta return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'style_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from math import sqrt assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 16 * x0), tmp31, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(32)](primals_1, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4 ), 0), out=buf1) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused__native_batch_norm_legit_add_mul_1[grid(16)](buf5, primals_4, buf1, primals_2, buf2, buf6, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf1 del primals_2 return buf6, buf0, primals_3, primals_4, buf2, buf5 def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class AdaptiveInstanceNormNew(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input_0, input_1): primals_2 = self.style.linear.bias primals_1 = self.style.linear.weight_orig primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
hologerry/style-based-gan-pytorch
AdaptiveInstanceNorm
false
3,620
[ "MIT" ]
0
1a694fb3ea0288f1aaaa43aa67a570d908d9dc27
https://github.com/hologerry/style-based-gan-pytorch/tree/1a694fb3ea0288f1aaaa43aa67a570d908d9dc27
import torch from torch import nn from math import sqrt def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class Model(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input, style): style = self.style(style).unsqueeze(2).unsqueeze(3) gamma, beta = style.chunk(2, 1) out = self.norm(input) out = gamma * out + beta return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
EqualLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/oy/coy4v6ev22tv33nc6asaz3obrskaw2f3vho4q3aj4yqpth7c2y2m.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf0, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from math import sqrt def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from math import sqrt assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf0, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinearNew(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input_0): primals_2 = self.linear.bias primals_1 = self.linear.weight_orig primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hologerry/style-based-gan-pytorch
EqualLinear
false
3,621
[ "MIT" ]
0
1a694fb3ea0288f1aaaa43aa67a570d908d9dc27
https://github.com/hologerry/style-based-gan-pytorch/tree/1a694fb3ea0288f1aaaa43aa67a570d908d9dc27
import torch from torch import nn from math import sqrt def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class Model(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
CFRB
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nr/cnroakuucxovr2wbbiy63dk55fg5zyu3u6ygcqhb7ehcuitmnl6v.py # Topologically Sorted Source Nodes: [conv2d_1, add, x], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # add => add # conv2d_1 => convolution_1 # x => gt, mul, where # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_3), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.05), kwargs = {}) # %where : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 819200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 50 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.05 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tl.store(in_out_ptr0 + (x3), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mq/cmqfuii5lrrx42n457oyub5nudqfwq6fa3n2eu5rxws4jpfb6gdl.py # Topologically Sorted Source Nodes: [cat, x_4], Original ATen: [aten.cat, aten.leaky_relu] # Source node to ATen node mapping: # cat => cat # x_4 => gt_3, mul_3, where_3 # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_2, %convolution_4, %convolution_6], 1), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%cat, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat, 0.05), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %cat, %mul_3), kwargs = {}) triton_poi_fused_cat_leaky_relu_1 = async_compile.triton('triton_poi_fused_cat_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_leaky_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_leaky_relu_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr): xnumel = 1638400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 100 x0 = xindex % 4096 x2 = (xindex // 409600) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 25, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (102400*x2)), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 50, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (x0 + (4096*((-25) + x1)) + (102400*x2)), tmp13, other=0.0) tmp15 = tl.load(in_ptr3 + ((-25) + x1), tmp13, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 75, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr4 + (x0 + (4096*((-50) + x1)) + (102400*x2)), tmp22, other=0.0) tmp24 = tl.load(in_ptr5 + ((-50) + x1), tmp22, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tmp29 = tl.full([1], 100, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tl.load(in_ptr6 + (x0 + (4096*((-75) + x1)) + (102400*x2)), tmp28, other=0.0) tmp32 = tl.load(in_ptr7 + ((-75) + x1), tmp28, eviction_policy='evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp28, tmp33, tmp34) tmp36 = tl.where(tmp22, tmp27, tmp35) tmp37 = tl.where(tmp13, tmp18, tmp36) tmp38 = tl.where(tmp4, tmp9, tmp37) tmp39 = 0.0 tmp40 = tmp38 > tmp39 tmp41 = 0.05 tmp42 = tmp38 * tmp41 tmp43 = tl.where(tmp40, tmp38, tmp42) tl.store(in_out_ptr0 + (x3), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qt/cqt6k7jvb6a43mqo7gqxy7acaicyy3yhvzlytummkmdqwbvyliwj.py # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # Graph fragment: # %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 819200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 50 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/36/c36pvwfsscoy2kciztfy556cxjgqfdwssn627inbohwq3umljdgi.py # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x1 => convolution_8 # Graph fragment: # %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_7, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 196608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 12 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/fu/cfujz3wuioqd7ngkxyhek3tobqstshjil2g7hefqc2j3yuvr2rsz.py # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # Graph fragment: # %convolution_9 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_8, %primals_20, %primals_21, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 46128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 961) % 12 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/i7/ci736ek3g3ht7jxvp6kl7zivp56mrcy2prphwwd3mlkkhouwqdjc.py # Topologically Sorted Source Nodes: [conv2d_10, x2_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # x2_1 => relu # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 81) % 12 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gw/cgwa2fue73qo3kqylgd3lw7k2zlau5lhbghsgqy2hfpwmzohwjge.py # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x2_3 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) triton_poi_fused__to_copy_6 = async_compile.triton('triton_poi_fused__to_copy_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_6(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/oo/cooajaomyurcbolulushutzju7re4egukfnr6ni2d2dy3rlpbqnd.py # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x2_3 => add_4, clamp_max # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_4, 8), kwargs = {}) triton_poi_fused_add_clamp_7 = async_compile.triton('triton_poi_fused_add_clamp_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_7(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 8, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/h4/ch4x5qnvs6ohd3eb33sdszmn5mvzcobv4diiddrco6qruoadqzbi.py # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # x2_3 => add_3, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_4, sub, sub_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 0.140625), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_4, 0.5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 - tmp10 tmp12 = triton_helpers.maximum(tmp11, tmp7) tmp13 = 1.0 tmp14 = triton_helpers.minimum(tmp12, tmp13) tl.store(out_ptr0 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2q/c2qn6yigk4oejj4pzj2jvqaczqcrwbhw6q4ilakwk5g6ehtjtlv3.py # Topologically Sorted Source Nodes: [conv2d_12, x2_3, conv2d_13, add_3], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # add_3 => add_10 # conv2d_12 => convolution_12 # conv2d_13 => convolution_13 # x2_3 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_7, add_8, add_9, mul_6, mul_7, mul_8, sub_3, sub_4, sub_6 # Graph fragment: # %convolution_12 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_12, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_12, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_12, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_12, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_6), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_7), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %add_7), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %mul_8), kwargs = {}) # %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_8, %primals_28, %primals_29, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_10 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %convolution_13), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_mul_sub_9 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_sub_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK : tl.constexpr): xnumel = 196608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x5 = (xindex // 4096) x2 = (xindex // 4096) % 12 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr8 + (x6), None) tmp38 = tl.load(in_ptr9 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 9, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (9*tmp4) + (81*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp13 = tmp12 + tmp1 tmp14 = tmp12 < 0 tmp15 = tl.where(tmp14, tmp13, tmp12) tmp16 = tl.load(in_ptr2 + (tmp15 + (9*tmp4) + (81*x5)), None, eviction_policy='evict_last') tmp17 = tmp16 + tmp10 tmp18 = tmp17 - tmp11 tmp20 = tmp18 * tmp19 tmp21 = tmp11 + tmp20 tmp23 = tmp22 + tmp1 tmp24 = tmp22 < 0 tmp25 = tl.where(tmp24, tmp23, tmp22) tmp26 = tl.load(in_ptr2 + (tmp8 + (9*tmp25) + (81*x5)), None, eviction_policy='evict_last') tmp27 = tmp26 + tmp10 tmp28 = tl.load(in_ptr2 + (tmp15 + (9*tmp25) + (81*x5)), None, eviction_policy='evict_last') tmp29 = tmp28 + tmp10 tmp30 = tmp29 - tmp27 tmp31 = tmp30 * tmp19 tmp32 = tmp27 + tmp31 tmp33 = tmp32 - tmp21 tmp35 = tmp33 * tmp34 tmp36 = tmp21 + tmp35 tmp39 = tmp37 + tmp38 tmp40 = tmp36 + tmp39 tl.store(in_out_ptr0 + (x6), tmp40, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5d/c5dalygwh4tvvl5f4ui4h6g6bheefeer6yzbzd3alo7rgx4zeufi.py # Topologically Sorted Source Nodes: [x2_4, sigmoid, x_5], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # sigmoid => sigmoid # x2_4 => convolution_14 # x_5 => mul_9 # Graph fragment: # %convolution_14 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_10, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_14,), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_10 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_10(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 819200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 50 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), None) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31 = args args.clear() assert_size_stride(primals_1, (25, 50, 1, 1), (50, 1, 1, 1)) assert_size_stride(primals_2, (25, ), (1, )) assert_size_stride(primals_3, (4, 50, 64, 64), (204800, 4096, 64, 1)) assert_size_stride(primals_4, (50, 50, 3, 3), (450, 9, 3, 1)) assert_size_stride(primals_5, (50, ), (1, )) assert_size_stride(primals_6, (25, 50, 1, 1), (50, 1, 1, 1)) assert_size_stride(primals_7, (25, ), (1, )) assert_size_stride(primals_8, (50, 50, 3, 3), (450, 9, 3, 1)) assert_size_stride(primals_9, (50, ), (1, )) assert_size_stride(primals_10, (25, 50, 1, 1), (50, 1, 1, 1)) assert_size_stride(primals_11, (25, ), (1, )) assert_size_stride(primals_12, (50, 50, 3, 3), (450, 9, 3, 1)) assert_size_stride(primals_13, (50, ), (1, )) assert_size_stride(primals_14, (25, 50, 3, 3), (450, 9, 3, 1)) assert_size_stride(primals_15, (25, ), (1, )) assert_size_stride(primals_16, (50, 100, 1, 1), (100, 1, 1, 1)) assert_size_stride(primals_17, (50, ), (1, )) assert_size_stride(primals_18, (12, 50, 1, 1), (50, 1, 1, 1)) assert_size_stride(primals_19, (12, ), (1, )) assert_size_stride(primals_20, (12, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_21, (12, ), (1, )) assert_size_stride(primals_22, (12, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_23, (12, ), (1, )) assert_size_stride(primals_24, (12, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_25, (12, ), (1, )) assert_size_stride(primals_26, (12, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_27, (12, ), (1, )) assert_size_stride(primals_28, (12, 12, 1, 1), (12, 1, 1, 1)) assert_size_stride(primals_29, (12, ), (1, )) assert_size_stride(primals_30, (50, 12, 1, 1), (12, 1, 1, 1)) assert_size_stride(primals_31, (50, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [d1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 25, 64, 64), (102400, 4096, 64, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d_1, add, x], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_leaky_relu_0.run(buf2, primals_5, primals_3, 819200, grid=grid(819200), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [d2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 25, 64, 64), (102400, 4096, 64, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_3, add_1, x_1], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_convolution_leaky_relu_0.run(buf5, primals_9, buf2, 819200, grid=grid(819200), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [d3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 25, 64, 64), (102400, 4096, 64, 1)) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf5, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [conv2d_5, add_2, x_2], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_convolution_leaky_relu_0.run(buf8, primals_13, buf5, 819200, grid=grid(819200), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 25, 64, 64), (102400, 4096, 64, 1)) buf10 = empty_strided_cuda((4, 100, 64, 64), (409600, 4096, 64, 1), torch.float32) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [cat, x_4], Original ATen: [aten.cat, aten.leaky_relu] triton_poi_fused_cat_leaky_relu_1.run(buf11, buf0, primals_2, buf3, primals_7, buf6, primals_11, buf9, primals_15, 1638400, grid=grid(1638400), stream=stream0) del buf0 del buf3 del buf6 del buf9 del primals_11 del primals_15 del primals_2 del primals_7 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf13, primals_17, 819200, grid=grid(819200), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 12, 64, 64), (49152, 4096, 64, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf15, primals_19, 196608, grid=grid(196608), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_20, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 12, 31, 31), (11532, 961, 31, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf17, primals_21, 46128, grid=grid(46128), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.max_pool2d_with_indices] buf18 = torch.ops.aten.max_pool2d_with_indices.default(buf17, [7, 7], [3, 3]) buf19 = buf18[0] buf20 = buf18[1] del buf18 # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf19, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 12, 9, 9), (972, 81, 9, 1)) buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv2d_10, x2_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf22, primals_23, 3888, grid=grid(3888), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 12, 9, 9), (972, 81, 9, 1)) buf24 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [conv2d_11, x2_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf24, primals_25, 3888, grid=grid(3888), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf25 = extern_kernels.convolution(buf24, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 12, 9, 9), (972, 81, 9, 1)) buf26 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_6.run(buf26, 64, grid=grid(64), stream=stream0) buf27 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_7.run(buf27, 64, grid=grid(64), stream=stream0) buf28 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_6.run(buf28, 64, grid=grid(64), stream=stream0) buf29 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_7.run(buf29, 64, grid=grid(64), stream=stream0) buf30 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8.run(buf30, 64, grid=grid(64), stream=stream0) buf32 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x2_3], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8.run(buf32, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf34 = extern_kernels.convolution(buf15, primals_28, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 12, 64, 64), (49152, 4096, 64, 1)) buf33 = empty_strided_cuda((4, 12, 64, 64), (49152, 4096, 64, 1), torch.float32) buf35 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [conv2d_12, x2_3, conv2d_13, add_3], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_mul_sub_9.run(buf35, buf26, buf28, buf25, primals_27, buf29, buf30, buf27, buf32, buf34, primals_29, 196608, grid=grid(196608), stream=stream0) del buf25 del buf34 del primals_27 del primals_29 # Topologically Sorted Source Nodes: [x2_4], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf37 = buf36; del buf36 # reuse buf38 = empty_strided_cuda((4, 50, 64, 64), (204800, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x2_4, sigmoid, x_5], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] triton_poi_fused_convolution_mul_sigmoid_10.run(buf37, primals_31, buf13, buf38, 819200, grid=grid(819200), stream=stream0) del primals_31 return (buf38, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, buf2, buf5, buf8, buf11, buf13, buf15, buf17, buf19, buf20, buf22, buf24, buf26, buf27, buf28, buf29, buf30, buf32, buf35, buf37, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((25, 50, 1, 1), (50, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((25, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 50, 64, 64), (204800, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((50, 50, 3, 3), (450, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((25, 50, 1, 1), (50, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((25, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((50, 50, 3, 3), (450, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((25, 50, 1, 1), (50, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((25, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((50, 50, 3, 3), (450, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((25, 50, 3, 3), (450, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((25, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((50, 100, 1, 1), (100, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((12, 50, 1, 1), (50, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((12, 12, 3, 3), (108, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((12, 12, 3, 3), (108, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((12, 12, 3, 3), (108, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((12, 12, 3, 3), (108, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((12, 12, 1, 1), (12, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((50, 12, 1, 1), (12, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from collections import OrderedDict import torch.nn as nn import torch.nn.functional as F from torch import autograd as autograd import torch.fft from itertools import product as product def sequential(*args): """Advanced nn.Sequential. Args: nn.Sequential, nn.Module Returns: nn.Sequential """ if len(args) == 1: if isinstance(args[0], OrderedDict): raise NotImplementedError( 'sequential does not support OrderedDict input.') return args[0] modules = [] for module in args: if isinstance(module, nn.Sequential): for submodule in module.children(): modules.append(submodule) elif isinstance(module, nn.Module): modules.append(module) return nn.Sequential(*modules) def conv(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding= 1, bias=True, mode='CBR', negative_slope=0.2): L = [] for t in mode: if t == 'C': L.append(nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)) elif t == 'T': L.append(nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride= stride, padding=padding, bias=bias)) elif t == 'B': L.append(nn.BatchNorm2d(out_channels, momentum=0.9, eps=0.0001, affine=True)) elif t == 'I': L.append(nn.InstanceNorm2d(out_channels, affine=True)) elif t == 'R': L.append(nn.ReLU(inplace=True)) elif t == 'r': L.append(nn.ReLU(inplace=False)) elif t == 'L': L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=True)) elif t == 'l': L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=False) ) elif t == '2': L.append(nn.PixelShuffle(upscale_factor=2)) elif t == '3': L.append(nn.PixelShuffle(upscale_factor=3)) elif t == '4': L.append(nn.PixelShuffle(upscale_factor=4)) elif t == 'U': L.append(nn.Upsample(scale_factor=2, mode='nearest')) elif t == 'u': L.append(nn.Upsample(scale_factor=3, mode='nearest')) elif t == 'v': L.append(nn.Upsample(scale_factor=4, mode='nearest')) elif t == 'M': L.append(nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=0)) elif t == 'A': L.append(nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0)) else: raise NotImplementedError('Undefined type: ') return sequential(*L) class ESA(nn.Module): def __init__(self, channel=64, reduction=4, bias=True): super(ESA, self).__init__() self.r_nc = channel // reduction self.conv1 = nn.Conv2d(channel, self.r_nc, kernel_size=1) self.conv21 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=1) self.conv2 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, stride= 2, padding=0) self.conv3 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv6 = nn.Conv2d(self.r_nc, channel, kernel_size=1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) def forward(self, x): x1 = self.conv1(x) x2 = F.max_pool2d(self.conv2(x1), kernel_size=7, stride=3) x2 = self.relu(self.conv3(x2)) x2 = self.relu(self.conv4(x2)) x2 = F.interpolate(self.conv5(x2), (x.size(2), x.size(3)), mode= 'bilinear', align_corners=False) x2 = self.conv6(x2 + self.conv21(x1)) return x.mul(self.sigmoid(x2)) class CFRB(nn.Module): def __init__(self, in_channels=50, out_channels=50, kernel_size=3, stride=1, padding=1, bias=True, mode='CL', d_rate=0.5, negative_slope=0.05): super(CFRB, self).__init__() self.d_nc = int(in_channels * d_rate) self.r_nc = in_channels assert mode[0] == 'C', 'convolutional layer first' self.conv1_d = conv(in_channels, self.d_nc, kernel_size=1, stride=1, padding=0, bias=bias, mode=mode[0]) self.conv1_r = conv(in_channels, self.r_nc, kernel_size, stride, padding, bias=bias, mode=mode[0]) self.conv2_d = conv(self.r_nc, self.d_nc, kernel_size=1, stride=1, padding=0, bias=bias, mode=mode[0]) self.conv2_r = conv(self.r_nc, self.r_nc, kernel_size, stride, padding, bias=bias, mode=mode[0]) self.conv3_d = conv(self.r_nc, self.d_nc, kernel_size=1, stride=1, padding=0, bias=bias, mode=mode[0]) self.conv3_r = conv(self.r_nc, self.r_nc, kernel_size, stride, padding, bias=bias, mode=mode[0]) self.conv4_d = conv(self.r_nc, self.d_nc, kernel_size, stride, padding, bias=bias, mode=mode[0]) self.conv1x1 = conv(self.d_nc * 4, out_channels, kernel_size=1, stride=1, padding=0, bias=bias, mode=mode[0]) self.act = conv(mode=mode[-1], negative_slope=negative_slope) self.esa = ESA(in_channels, reduction=4, bias=True) def forward(self, x): d1 = self.conv1_d(x) x = self.act(self.conv1_r(x) + x) d2 = self.conv2_d(x) x = self.act(self.conv2_r(x) + x) d3 = self.conv3_d(x) x = self.act(self.conv3_r(x) + x) x = self.conv4_d(x) x = self.act(torch.cat([d1, d2, d3, x], dim=1)) x = self.esa(self.conv1x1(x)) return x def get_inputs(): return [torch.rand([4, 50, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from collections import OrderedDict import torch.nn as nn import torch.nn.functional as F from torch import autograd as autograd import torch.fft from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 50 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.05 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tl.store(in_out_ptr0 + x3, tmp9, None) @triton.jit def triton_poi_fused_cat_leaky_relu_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 100 x0 = xindex % 4096 x2 = xindex // 409600 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 25, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 102400 * x2), tmp4, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 50, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (x0 + 4096 * (-25 + x1) + 102400 * x2), tmp13, other=0.0) tmp15 = tl.load(in_ptr3 + (-25 + x1), tmp13, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 75, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr4 + (x0 + 4096 * (-50 + x1) + 102400 * x2), tmp22, other=0.0) tmp24 = tl.load(in_ptr5 + (-50 + x1), tmp22, eviction_policy= 'evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tl.full([1], 100, tl.int64) tmp31 = tl.load(in_ptr6 + (x0 + 4096 * (-75 + x1) + 102400 * x2), tmp28, other=0.0) tmp32 = tl.load(in_ptr7 + (-75 + x1), tmp28, eviction_policy= 'evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp28, tmp33, tmp34) tmp36 = tl.where(tmp22, tmp27, tmp35) tmp37 = tl.where(tmp13, tmp18, tmp36) tmp38 = tl.where(tmp4, tmp9, tmp37) tmp39 = 0.0 tmp40 = tmp38 > tmp39 tmp41 = 0.05 tmp42 = tmp38 * tmp41 tmp43 = tl.where(tmp40, tmp38, tmp42) tl.store(in_out_ptr0 + x3, tmp43, None) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 50 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 12 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 46128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 961 % 12 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 12 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused__to_copy_6(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tl.store(out_ptr0 + x0, tmp9, xmask) @triton.jit def triton_poi_fused_add_clamp_7(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 8, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.140625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tmp9.to(tl.float32) tmp11 = tmp8 - tmp10 tmp12 = triton_helpers.maximum(tmp11, tmp7) tmp13 = 1.0 tmp14 = triton_helpers.minimum(tmp12, tmp13) tl.store(out_ptr0 + x0, tmp14, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_sub_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x5 = xindex // 4096 x2 = xindex // 4096 % 12 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr8 + x6, None) tmp38 = tl.load(in_ptr9 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 9, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 9 * tmp4 + 81 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp13 = tmp12 + tmp1 tmp14 = tmp12 < 0 tmp15 = tl.where(tmp14, tmp13, tmp12) tmp16 = tl.load(in_ptr2 + (tmp15 + 9 * tmp4 + 81 * x5), None, eviction_policy='evict_last') tmp17 = tmp16 + tmp10 tmp18 = tmp17 - tmp11 tmp20 = tmp18 * tmp19 tmp21 = tmp11 + tmp20 tmp23 = tmp22 + tmp1 tmp24 = tmp22 < 0 tmp25 = tl.where(tmp24, tmp23, tmp22) tmp26 = tl.load(in_ptr2 + (tmp8 + 9 * tmp25 + 81 * x5), None, eviction_policy='evict_last') tmp27 = tmp26 + tmp10 tmp28 = tl.load(in_ptr2 + (tmp15 + 9 * tmp25 + 81 * x5), None, eviction_policy='evict_last') tmp29 = tmp28 + tmp10 tmp30 = tmp29 - tmp27 tmp31 = tmp30 * tmp19 tmp32 = tmp27 + tmp31 tmp33 = tmp32 - tmp21 tmp35 = tmp33 * tmp34 tmp36 = tmp21 + tmp35 tmp39 = tmp37 + tmp38 tmp40 = tmp36 + tmp39 tl.store(in_out_ptr0 + x6, tmp40, None) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_10(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 50 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, None) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp5, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31) = args args.clear() assert_size_stride(primals_1, (25, 50, 1, 1), (50, 1, 1, 1)) assert_size_stride(primals_2, (25,), (1,)) assert_size_stride(primals_3, (4, 50, 64, 64), (204800, 4096, 64, 1)) assert_size_stride(primals_4, (50, 50, 3, 3), (450, 9, 3, 1)) assert_size_stride(primals_5, (50,), (1,)) assert_size_stride(primals_6, (25, 50, 1, 1), (50, 1, 1, 1)) assert_size_stride(primals_7, (25,), (1,)) assert_size_stride(primals_8, (50, 50, 3, 3), (450, 9, 3, 1)) assert_size_stride(primals_9, (50,), (1,)) assert_size_stride(primals_10, (25, 50, 1, 1), (50, 1, 1, 1)) assert_size_stride(primals_11, (25,), (1,)) assert_size_stride(primals_12, (50, 50, 3, 3), (450, 9, 3, 1)) assert_size_stride(primals_13, (50,), (1,)) assert_size_stride(primals_14, (25, 50, 3, 3), (450, 9, 3, 1)) assert_size_stride(primals_15, (25,), (1,)) assert_size_stride(primals_16, (50, 100, 1, 1), (100, 1, 1, 1)) assert_size_stride(primals_17, (50,), (1,)) assert_size_stride(primals_18, (12, 50, 1, 1), (50, 1, 1, 1)) assert_size_stride(primals_19, (12,), (1,)) assert_size_stride(primals_20, (12, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_21, (12,), (1,)) assert_size_stride(primals_22, (12, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_23, (12,), (1,)) assert_size_stride(primals_24, (12, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_25, (12,), (1,)) assert_size_stride(primals_26, (12, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_27, (12,), (1,)) assert_size_stride(primals_28, (12, 12, 1, 1), (12, 1, 1, 1)) assert_size_stride(primals_29, (12,), (1,)) assert_size_stride(primals_30, (50, 12, 1, 1), (12, 1, 1, 1)) assert_size_stride(primals_31, (50,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 25, 64, 64), (102400, 4096, 64, 1)) buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_convolution_leaky_relu_0[grid(819200)](buf2, primals_5, primals_3, 819200, XBLOCK=512, num_warps=8, num_stages=1 ) del primals_5 buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 25, 64, 64), (102400, 4096, 64, 1)) buf4 = extern_kernels.convolution(buf2, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf5 = buf4 del buf4 triton_poi_fused_add_convolution_leaky_relu_0[grid(819200)](buf5, primals_9, buf2, 819200, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf6 = extern_kernels.convolution(buf5, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 25, 64, 64), (102400, 4096, 64, 1)) buf7 = extern_kernels.convolution(buf5, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf8 = buf7 del buf7 triton_poi_fused_add_convolution_leaky_relu_0[grid(819200)](buf8, primals_13, buf5, 819200, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf9 = extern_kernels.convolution(buf8, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 25, 64, 64), (102400, 4096, 64, 1)) buf10 = empty_strided_cuda((4, 100, 64, 64), (409600, 4096, 64, 1), torch.float32) buf11 = buf10 del buf10 triton_poi_fused_cat_leaky_relu_1[grid(1638400)](buf11, buf0, primals_2, buf3, primals_7, buf6, primals_11, buf9, primals_15, 1638400, XBLOCK=512, num_warps=8, num_stages=1) del buf0 del buf3 del buf6 del buf9 del primals_11 del primals_15 del primals_2 del primals_7 buf12 = extern_kernels.convolution(buf11, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_2[grid(819200)](buf13, primals_17, 819200, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf14 = extern_kernels.convolution(buf13, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 12, 64, 64), (49152, 4096, 64, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_3[grid(196608)](buf15, primals_19, 196608, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf16 = extern_kernels.convolution(buf15, primals_20, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 12, 31, 31), (11532, 961, 31, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_4[grid(46128)](buf17, primals_21, 46128, XBLOCK=512, num_warps=4, num_stages=1) del primals_21 buf18 = torch.ops.aten.max_pool2d_with_indices.default(buf17, [7, 7 ], [3, 3]) buf19 = buf18[0] buf20 = buf18[1] del buf18 buf21 = extern_kernels.convolution(buf19, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 12, 9, 9), (972, 81, 9, 1)) buf22 = buf21 del buf21 triton_poi_fused_convolution_relu_5[grid(3888)](buf22, primals_23, 3888, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf23 = extern_kernels.convolution(buf22, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 12, 9, 9), (972, 81, 9, 1)) buf24 = buf23 del buf23 triton_poi_fused_convolution_relu_5[grid(3888)](buf24, primals_25, 3888, XBLOCK=256, num_warps=4, num_stages=1) del primals_25 buf25 = extern_kernels.convolution(buf24, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 12, 9, 9), (972, 81, 9, 1)) buf26 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_6[grid(64)](buf26, 64, XBLOCK=64, num_warps=1, num_stages=1) buf27 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_7[grid(64)](buf27, 64, XBLOCK=64, num_warps=1, num_stages=1) buf28 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_6[grid(64)](buf28, 64, XBLOCK=64, num_warps=1, num_stages=1) buf29 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_add_clamp_7[grid(64)](buf29, 64, XBLOCK=64, num_warps=1, num_stages=1) buf30 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8[grid(64)](buf30, 64, XBLOCK=64, num_warps=1, num_stages=1) buf32 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_8[grid(64)](buf32, 64, XBLOCK=64, num_warps=1, num_stages=1) buf34 = extern_kernels.convolution(buf15, primals_28, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 12, 64, 64), (49152, 4096, 64, 1)) buf33 = empty_strided_cuda((4, 12, 64, 64), (49152, 4096, 64, 1), torch.float32) buf35 = buf33 del buf33 triton_poi_fused__unsafe_index_add_convolution_mul_sub_9[grid(196608)]( buf35, buf26, buf28, buf25, primals_27, buf29, buf30, buf27, buf32, buf34, primals_29, 196608, XBLOCK=512, num_warps=8, num_stages=1) del buf25 del buf34 del primals_27 del primals_29 buf36 = extern_kernels.convolution(buf35, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 50, 64, 64), (204800, 4096, 64, 1)) buf37 = buf36 del buf36 buf38 = empty_strided_cuda((4, 50, 64, 64), (204800, 4096, 64, 1), torch.float32) triton_poi_fused_convolution_mul_sigmoid_10[grid(819200)](buf37, primals_31, buf13, buf38, 819200, XBLOCK=512, num_warps=8, num_stages=1) del primals_31 return (buf38, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, buf2, buf5, buf8, buf11, buf13, buf15, buf17, buf19, buf20, buf22, buf24, buf26, buf27, buf28, buf29, buf30, buf32, buf35, buf37) def sequential(*args): """Advanced nn.Sequential. Args: nn.Sequential, nn.Module Returns: nn.Sequential """ if len(args) == 1: if isinstance(args[0], OrderedDict): raise NotImplementedError( 'sequential does not support OrderedDict input.') return args[0] modules = [] for module in args: if isinstance(module, nn.Sequential): for submodule in module.children(): modules.append(submodule) elif isinstance(module, nn.Module): modules.append(module) return nn.Sequential(*modules) def conv(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding= 1, bias=True, mode='CBR', negative_slope=0.2): L = [] for t in mode: if t == 'C': L.append(nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)) elif t == 'T': L.append(nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride= stride, padding=padding, bias=bias)) elif t == 'B': L.append(nn.BatchNorm2d(out_channels, momentum=0.9, eps=0.0001, affine=True)) elif t == 'I': L.append(nn.InstanceNorm2d(out_channels, affine=True)) elif t == 'R': L.append(nn.ReLU(inplace=True)) elif t == 'r': L.append(nn.ReLU(inplace=False)) elif t == 'L': L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=True)) elif t == 'l': L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=False) ) elif t == '2': L.append(nn.PixelShuffle(upscale_factor=2)) elif t == '3': L.append(nn.PixelShuffle(upscale_factor=3)) elif t == '4': L.append(nn.PixelShuffle(upscale_factor=4)) elif t == 'U': L.append(nn.Upsample(scale_factor=2, mode='nearest')) elif t == 'u': L.append(nn.Upsample(scale_factor=3, mode='nearest')) elif t == 'v': L.append(nn.Upsample(scale_factor=4, mode='nearest')) elif t == 'M': L.append(nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=0)) elif t == 'A': L.append(nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0)) else: raise NotImplementedError('Undefined type: ') return sequential(*L) class ESA(nn.Module): def __init__(self, channel=64, reduction=4, bias=True): super(ESA, self).__init__() self.r_nc = channel // reduction self.conv1 = nn.Conv2d(channel, self.r_nc, kernel_size=1) self.conv21 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=1) self.conv2 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, stride= 2, padding=0) self.conv3 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv6 = nn.Conv2d(self.r_nc, channel, kernel_size=1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) def forward(self, x): x1 = self.conv1(x) x2 = F.max_pool2d(self.conv2(x1), kernel_size=7, stride=3) x2 = self.relu(self.conv3(x2)) x2 = self.relu(self.conv4(x2)) x2 = F.interpolate(self.conv5(x2), (x.size(2), x.size(3)), mode= 'bilinear', align_corners=False) x2 = self.conv6(x2 + self.conv21(x1)) return x.mul(self.sigmoid(x2)) class CFRBNew(nn.Module): def __init__(self, in_channels=50, out_channels=50, kernel_size=3, stride=1, padding=1, bias=True, mode='CL', d_rate=0.5, negative_slope=0.05): super(CFRBNew, self).__init__() self.d_nc = int(in_channels * d_rate) self.r_nc = in_channels assert mode[0] == 'C', 'convolutional layer first' self.conv1_d = conv(in_channels, self.d_nc, kernel_size=1, stride=1, padding=0, bias=bias, mode=mode[0]) self.conv1_r = conv(in_channels, self.r_nc, kernel_size, stride, padding, bias=bias, mode=mode[0]) self.conv2_d = conv(self.r_nc, self.d_nc, kernel_size=1, stride=1, padding=0, bias=bias, mode=mode[0]) self.conv2_r = conv(self.r_nc, self.r_nc, kernel_size, stride, padding, bias=bias, mode=mode[0]) self.conv3_d = conv(self.r_nc, self.d_nc, kernel_size=1, stride=1, padding=0, bias=bias, mode=mode[0]) self.conv3_r = conv(self.r_nc, self.r_nc, kernel_size, stride, padding, bias=bias, mode=mode[0]) self.conv4_d = conv(self.r_nc, self.d_nc, kernel_size, stride, padding, bias=bias, mode=mode[0]) self.conv1x1 = conv(self.d_nc * 4, out_channels, kernel_size=1, stride=1, padding=0, bias=bias, mode=mode[0]) self.act = conv(mode=mode[-1], negative_slope=negative_slope) self.esa = ESA(in_channels, reduction=4, bias=True) def forward(self, input_0): primals_1 = self.conv1_d.weight primals_2 = self.conv1_d.bias primals_4 = self.conv1_r.weight primals_5 = self.conv1_r.bias primals_6 = self.conv2_d.weight primals_7 = self.conv2_d.bias primals_8 = self.conv2_r.weight primals_9 = self.conv2_r.bias primals_10 = self.conv3_d.weight primals_11 = self.conv3_d.bias primals_12 = self.conv3_r.weight primals_13 = self.conv3_r.bias primals_14 = self.conv4_d.weight primals_15 = self.conv4_d.bias primals_16 = self.conv1x1.weight primals_17 = self.conv1x1.bias primals_18 = self.esa.conv1.weight primals_19 = self.esa.conv1.bias primals_28 = self.esa.conv21.weight primals_21 = self.esa.conv21.bias primals_20 = self.esa.conv2.weight primals_23 = self.esa.conv2.bias primals_22 = self.esa.conv3.weight primals_25 = self.esa.conv3.bias primals_24 = self.esa.conv4.weight primals_27 = self.esa.conv4.bias primals_26 = self.esa.conv5.weight primals_29 = self.esa.conv5.bias primals_30 = self.esa.conv6.weight primals_31 = self.esa.conv6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31]) return output[0]
hduba/KAIR
CFRB
false
3,622
[ "MIT" ]
0
dbd7596c7e4a4667b9b7baac369fc6c02571fa58
https://github.com/hduba/KAIR/tree/dbd7596c7e4a4667b9b7baac369fc6c02571fa58
import torch from collections import OrderedDict import torch.nn as nn import torch.nn.functional as F from torch import autograd as autograd import torch.fft from itertools import product as product def sequential(*args): """Advanced nn.Sequential. Args: nn.Sequential, nn.Module Returns: nn.Sequential """ if len(args) == 1: if isinstance(args[0], OrderedDict): raise NotImplementedError( 'sequential does not support OrderedDict input.') return args[0] modules = [] for module in args: if isinstance(module, nn.Sequential): for submodule in module.children(): modules.append(submodule) elif isinstance(module, nn.Module): modules.append(module) return nn.Sequential(*modules) def conv(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding= 1, bias=True, mode='CBR', negative_slope=0.2): L = [] for t in mode: if t == 'C': L.append(nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)) elif t == 'T': L.append(nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride= stride, padding=padding, bias=bias)) elif t == 'B': L.append(nn.BatchNorm2d(out_channels, momentum=0.9, eps=0.0001, affine=True)) elif t == 'I': L.append(nn.InstanceNorm2d(out_channels, affine=True)) elif t == 'R': L.append(nn.ReLU(inplace=True)) elif t == 'r': L.append(nn.ReLU(inplace=False)) elif t == 'L': L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=True)) elif t == 'l': L.append(nn.LeakyReLU(negative_slope=negative_slope, inplace=False) ) elif t == '2': L.append(nn.PixelShuffle(upscale_factor=2)) elif t == '3': L.append(nn.PixelShuffle(upscale_factor=3)) elif t == '4': L.append(nn.PixelShuffle(upscale_factor=4)) elif t == 'U': L.append(nn.Upsample(scale_factor=2, mode='nearest')) elif t == 'u': L.append(nn.Upsample(scale_factor=3, mode='nearest')) elif t == 'v': L.append(nn.Upsample(scale_factor=4, mode='nearest')) elif t == 'M': L.append(nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=0)) elif t == 'A': L.append(nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0)) else: raise NotImplementedError('Undefined type: ') return sequential(*L) class ESA(nn.Module): def __init__(self, channel=64, reduction=4, bias=True): super().__init__() self.r_nc = channel // reduction self.conv1 = nn.Conv2d(channel, self.r_nc, kernel_size=1) self.conv21 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=1) self.conv2 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, stride= 2, padding=0) self.conv3 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(self.r_nc, self.r_nc, kernel_size=3, padding=1) self.conv6 = nn.Conv2d(self.r_nc, channel, kernel_size=1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) def forward(self, x): x1 = self.conv1(x) x2 = F.max_pool2d(self.conv2(x1), kernel_size=7, stride=3) x2 = self.relu(self.conv3(x2)) x2 = self.relu(self.conv4(x2)) x2 = F.interpolate(self.conv5(x2), (x.size(2), x.size(3)), mode= 'bilinear', align_corners=False) x2 = self.conv6(x2 + self.conv21(x1)) return x.mul(se # ... truncated (>4000 chars) for memory efficiency
EqualConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/mr/cmrzofxtfa5fe3ax4o3n5qvgpvhbgcrspjauzarmp4t443npav4h.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.1767766952966369), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.1767766952966369 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %mul, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_3, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 return (buf2, buf0, primals_3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from math import sqrt def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualConv2d(nn.Module): def __init__(self, *args, **kwargs): super().__init__() conv = nn.Conv2d(*args, **kwargs) conv.weight.data.normal_() conv.bias.data.zero_() self.conv = equal_lr(conv) def forward(self, input): return self.conv(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from math import sqrt assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.1767766952966369 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(primals_3, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf2, buf0, primals_3, buf0 def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualConv2dNew(nn.Module): def __init__(self, *args, **kwargs): super().__init__() conv = nn.Conv2d(*args, **kwargs) conv.weight.data.normal_() conv.bias.data.zero_() self.conv = equal_lr(conv) def forward(self, input_0): primals_2 = self.conv.bias primals_1 = self.conv.weight_orig primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hologerry/style-based-gan-pytorch
EqualConv2d
false
3,623
[ "MIT" ]
0
1a694fb3ea0288f1aaaa43aa67a570d908d9dc27
https://github.com/hologerry/style-based-gan-pytorch/tree/1a694fb3ea0288f1aaaa43aa67a570d908d9dc27
import torch from torch import nn from math import sqrt def equal_lr(module, name='weight'): """Rescale weights after every updates. """ EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class Model(nn.Module): def __init__(self, *args, **kwargs): super().__init__() conv = nn.Conv2d(*args, **kwargs) conv.weight.data.normal_() conv.bias.data.zero_() self.conv = equal_lr(conv) def forward(self, input): return self.conv(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
NoiseInjection
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sh/cshxt5kdwvwrnmv4y7fquk3nnie6s6bpxlie6ihvmgv7xekouvha.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x3), xmask) tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_3, primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_3 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class NoiseInjection(nn.Module): def __init__(self, channel): super().__init__() self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1)) def forward(self, image, noise): return image + self.weight * noise def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x3, xmask) tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_3, primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_3 return buf0, primals_2 class NoiseInjectionNew(nn.Module): def __init__(self, channel): super().__init__() self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1)) def forward(self, input_0, input_1): primals_1 = self.weight primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
hologerry/style-based-gan-pytorch
NoiseInjection
false
3,624
[ "MIT" ]
0
1a694fb3ea0288f1aaaa43aa67a570d908d9dc27
https://github.com/hologerry/style-based-gan-pytorch/tree/1a694fb3ea0288f1aaaa43aa67a570d908d9dc27
import torch from torch import nn class Model(nn.Module): def __init__(self, channel): super().__init__() self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1)) def forward(self, image, noise): return image + self.weight * noise def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
DocUnetLoss_DL_batch
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6l/c6l77yqizb2ussrwpql2sgy6aibsneaicpoedl5xmi5qhui5vhw4.py # Topologically Sorted Source Nodes: [abs_1, mean, mean_1, loss1], Original ATen: [aten.abs, aten.mean, aten.stack] # Source node to ATen node mapping: # abs_1 => abs_1 # loss1 => cat # mean => mean # mean_1 => mean_1 # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select,), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3],), kwargs = {}) triton_per_fused_abs_mean_stack_0 = async_compile.triton('triton_per_fused_abs_mean_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_stack_0(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/c4/cc4tj5vi742je3y7znxvoicmpmdhmlfc25j2auyjf6n6654deott.py # Topologically Sorted Source Nodes: [abs_3, mean_2, mean_3, loss1], Original ATen: [aten.abs, aten.mean, aten.stack] # Source node to ATen node mapping: # abs_3 => abs_3 # loss1 => cat # mean_2 => mean_2 # mean_3 => mean_3 # Graph fragment: # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_1,), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_3,), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_1,), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3],), kwargs = {}) triton_per_fused_abs_mean_stack_1 = async_compile.triton('triton_per_fused_abs_mean_stack_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_stack_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_stack_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (64 + r0), None) tmp1 = tl.load(in_ptr1 + (64 + r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/4b/c4bckej6djvjnbkodmvc7m5kmqjulnsjemywn7ygch5hhtqptqa7.py # Topologically Sorted Source Nodes: [abs_5, mean_4, mean_5, loss1], Original ATen: [aten.abs, aten.mean, aten.stack] # Source node to ATen node mapping: # abs_5 => abs_5 # loss1 => cat # mean_4 => mean_4 # mean_5 => mean_5 # Graph fragment: # %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_2,), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_5,), kwargs = {}) # %mean_5 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_2,), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3],), kwargs = {}) triton_per_fused_abs_mean_stack_2 = async_compile.triton('triton_per_fused_abs_mean_stack_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_stack_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_stack_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (128 + r0), None) tmp1 = tl.load(in_ptr1 + (128 + r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mu/cmu3psc3iyhuo2tyzjfqgyu6vwyob6ysqcpnehonoiu6swzme645.py # Topologically Sorted Source Nodes: [abs_7, mean_6, mean_7, loss1], Original ATen: [aten.abs, aten.mean, aten.stack] # Source node to ATen node mapping: # abs_7 => abs_7 # loss1 => cat # mean_6 => mean_6 # mean_7 => mean_7 # Graph fragment: # %abs_7 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_3,), kwargs = {}) # %mean_6 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_7,), kwargs = {}) # %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_3,), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3],), kwargs = {}) triton_per_fused_abs_mean_stack_3 = async_compile.triton('triton_per_fused_abs_mean_stack_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_stack_3(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (192 + r0), None) tmp1 = tl.load(in_ptr1 + (192 + r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ry/cryijeflk5r7nerkz63c6t3pdp4ki6lwy6rx7y3nfbwihcgqyjev.py # Topologically Sorted Source Nodes: [loss1_1], Original ATen: [aten.mean] # Source node to ATen node mapping: # loss1_1 => mean_9 # Graph fragment: # %mean_9 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%cat,), kwargs = {}) triton_per_fused_mean_4 = async_compile.triton('triton_per_fused_mean_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_4(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yd/cyd45563hxh7zu4baq6rnch5pz6nf4lfcve3aitxbieufmqj3fff.py # Topologically Sorted Source Nodes: [loss1_1, loss2, add], Original ATen: [aten.mean, aten.mse_loss, aten.add] # Source node to ATen node mapping: # add => add # loss1_1 => mean_9 # loss2 => mean_8, pow_1, sub_5 # Graph fragment: # %mean_9 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%cat,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_5, 2), kwargs = {}) # %mean_8 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_9, %mean_8), kwargs = {}) triton_per_fused_add_mean_mse_loss_5 = async_compile.triton('triton_per_fused_add_mean_mse_loss_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mse_loss_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mse_loss_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp7 = tl.load(in_out_ptr0 + (0)) tmp8 = tl.broadcast_to(tmp7, [1]) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = 256.0 tmp12 = tmp6 / tmp11 tmp13 = tmp10 + tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf12 = empty_strided_cuda((4, ), (1, ), torch.float32) buf8 = reinterpret_tensor(buf12, (1, ), (1, ), 0) # alias # Topologically Sorted Source Nodes: [abs_1, mean, mean_1, loss1], Original ATen: [aten.abs, aten.mean, aten.stack] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_stack_0.run(arg0_1, arg1_1, buf8, 1, 64, grid=grid(1), stream=stream0) buf9 = reinterpret_tensor(buf12, (1, ), (1, ), 1) # alias # Topologically Sorted Source Nodes: [abs_3, mean_2, mean_3, loss1], Original ATen: [aten.abs, aten.mean, aten.stack] triton_per_fused_abs_mean_stack_1.run(arg0_1, arg1_1, buf9, 1, 64, grid=grid(1), stream=stream0) buf10 = reinterpret_tensor(buf12, (1, ), (1, ), 2) # alias # Topologically Sorted Source Nodes: [abs_5, mean_4, mean_5, loss1], Original ATen: [aten.abs, aten.mean, aten.stack] triton_per_fused_abs_mean_stack_2.run(arg0_1, arg1_1, buf10, 1, 64, grid=grid(1), stream=stream0) buf11 = reinterpret_tensor(buf12, (1, ), (1, ), 3) # alias # Topologically Sorted Source Nodes: [abs_7, mean_6, mean_7, loss1], Original ATen: [aten.abs, aten.mean, aten.stack] triton_per_fused_abs_mean_stack_3.run(arg0_1, arg1_1, buf11, 1, 64, grid=grid(1), stream=stream0) buf13 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [loss1_1], Original ATen: [aten.mean] triton_per_fused_mean_4.run(buf12, buf13, 1, 4, grid=grid(1), stream=stream0) del buf10 del buf11 del buf12 del buf8 del buf9 buf15 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [loss1_1, loss2, add], Original ATen: [aten.mean, aten.mse_loss, aten.add] triton_per_fused_add_mean_mse_loss_5.run(buf15, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DocUnetLoss_DL_batch(nn.Module): """ 只使用一个unet的loss 目前使用这个loss训练的比较好 """ def __init__(self, r=0.0, reduction='mean'): super(DocUnetLoss_DL_batch, self).__init__() assert reduction in ['mean', 'sum' ], " reduction must in ['mean','sum']" self.r = r self.reduction = reduction def forward(self, y, label): _bs, _n, _h, _w = y.size() d = y - label loss1 = [] for d_i in d: loss1.append(torch.abs(d_i).mean() - self.r * torch.abs(d_i.mean()) ) loss1 = torch.stack(loss1) loss2 = F.mse_loss(y, label, reduction=self.reduction) if self.reduction == 'mean': loss1 = loss1.mean() elif self.reduction == 'sum': loss1 = loss1.sum() return loss1 + loss2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_abs_mean_stack_0(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) @triton.jit def triton_per_fused_abs_mean_stack_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (64 + r0), None) tmp1 = tl.load(in_ptr1 + (64 + r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) @triton.jit def triton_per_fused_abs_mean_stack_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (128 + r0), None) tmp1 = tl.load(in_ptr1 + (128 + r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) @triton.jit def triton_per_fused_abs_mean_stack_3(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (192 + r0), None) tmp1 = tl.load(in_ptr1 + (192 + r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp6 / tmp10 tmp12 = tmp9 / tmp10 tmp13 = tl_math.abs(tmp12) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tmp11 - tmp15 tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) @triton.jit def triton_per_fused_mean_4(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) @triton.jit def triton_per_fused_add_mean_mse_loss_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp7 = tl.load(in_out_ptr0 + 0) tmp8 = tl.broadcast_to(tmp7, [1]) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = 256.0 tmp12 = tmp6 / tmp11 tmp13 = tmp10 + tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf12 = empty_strided_cuda((4,), (1,), torch.float32) buf8 = reinterpret_tensor(buf12, (1,), (1,), 0) get_raw_stream(0) triton_per_fused_abs_mean_stack_0[grid(1)](arg0_1, arg1_1, buf8, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf9 = reinterpret_tensor(buf12, (1,), (1,), 1) triton_per_fused_abs_mean_stack_1[grid(1)](arg0_1, arg1_1, buf9, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf10 = reinterpret_tensor(buf12, (1,), (1,), 2) triton_per_fused_abs_mean_stack_2[grid(1)](arg0_1, arg1_1, buf10, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf11 = reinterpret_tensor(buf12, (1,), (1,), 3) triton_per_fused_abs_mean_stack_3[grid(1)](arg0_1, arg1_1, buf11, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf13 = empty_strided_cuda((), (), torch.float32) triton_per_fused_mean_4[grid(1)](buf12, buf13, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf10 del buf11 del buf12 del buf8 del buf9 buf15 = buf13 del buf13 triton_per_fused_add_mean_mse_loss_5[grid(1)](buf15, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf15, class DocUnetLoss_DL_batchNew(nn.Module): """ 只使用一个unet的loss 目前使用这个loss训练的比较好 """ def __init__(self, r=0.0, reduction='mean'): super(DocUnetLoss_DL_batchNew, self).__init__() assert reduction in ['mean', 'sum' ], " reduction must in ['mean','sum']" self.r = r self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
hologerry/DewarpNet
DocUnetLoss_DL_batch
false
3,625
[ "MIT" ]
0
b0a11b9fbb98bd124e65d3165ce177d9ebf2e836
https://github.com/hologerry/DewarpNet/tree/b0a11b9fbb98bd124e65d3165ce177d9ebf2e836
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ 只使用一个unet的loss 目前使用这个loss训练的比较好 """ def __init__(self, r=0.0, reduction='mean'): super().__init__() assert reduction in ['mean', 'sum' ], " reduction must in ['mean','sum']" self.r = r self.reduction = reduction def forward(self, y, label): _bs, _n, _h, _w = y.size() d = y - label loss1 = [] for d_i in d: loss1.append(torch.abs(d_i).mean() - self.r * torch.abs(d_i.mean()) ) loss1 = torch.stack(loss1) loss2 = F.mse_loss(y, label, reduction=self.reduction) if self.reduction == 'mean': loss1 = loss1.mean() elif self.reduction == 'sum': loss1 = loss1.sum() return loss1 + loss2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LgRegv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2j/c2j7dvnxrx3ly5pt7vnj4etodychbw6lchmygcbkwtwusaz5zc4f.py # Topologically Sorted Source Nodes: [truediv, pow_1, sum_1, ba, y_hat, y_hat_1], Original ATen: [aten.div, aten.pow, aten.sum, aten.neg, aten.add, aten.sigmoid] # Source node to ATen node mapping: # ba => neg # pow_1 => pow_1 # sum_1 => sum_1 # truediv => div # y_hat => add # y_hat_1 => sigmoid # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, 2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %neg), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) triton_poi_fused_add_div_neg_pow_sigmoid_sum_0 = async_compile.triton('triton_poi_fused_add_div_neg_pow_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_neg_pow_sigmoid_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_neg_pow_sigmoid_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp2 tmp7 = tmp6 * tmp6 tmp8 = tmp4 + tmp7 tmp10 = tmp9 * tmp2 tmp11 = tmp10 * tmp10 tmp12 = tmp8 + tmp11 tmp14 = tmp13 * tmp2 tmp15 = tmp14 * tmp14 tmp16 = tmp12 + tmp15 tmp17 = -tmp16 tmp18 = tmp0 + tmp17 tmp19 = tl.sigmoid(tmp18) tl.store(in_out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [truediv, pow_1, sum_1, ba, y_hat, y_hat_1], Original ATen: [aten.div, aten.pow, aten.sum, aten.neg, aten.add, aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_add_div_neg_pow_sigmoid_sum_0.run(buf1, primals_1, 256, grid=grid(256), stream=stream0) return (buf1, primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LgRegv(torch.nn.Module): """ TODO: pre-training from power to voronoi """ def __init__(self, dim, nla): super(LgRegv, self).__init__() self.linear = nn.Linear(dim, nla, bias=False) def forward(self, x): ba = -torch.sum((self.linear.weight / 2) ** 2, dim=1) y_hat = self.linear(x) + ba y_hat = torch.sigmoid(y_hat) return y_hat def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'nla': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_neg_pow_sigmoid_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp2 tmp7 = tmp6 * tmp6 tmp8 = tmp4 + tmp7 tmp10 = tmp9 * tmp2 tmp11 = tmp10 * tmp10 tmp12 = tmp8 + tmp11 tmp14 = tmp13 * tmp2 tmp15 = tmp14 * tmp14 tmp16 = tmp12 + tmp15 tmp17 = -tmp16 tmp18 = tmp0 + tmp17 tmp19 = tl.sigmoid(tmp18) tl.store(in_out_ptr0 + x2, tmp19, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_div_neg_pow_sigmoid_sum_0[grid(256)](buf1, primals_1, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf1, primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), buf1 class LgRegvNew(torch.nn.Module): """ TODO: pre-training from power to voronoi """ def __init__(self, dim, nla): super(LgRegvNew, self).__init__() self.linear = nn.Linear(dim, nla, bias=False) def forward(self, input_0): primals_1 = self.linear.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
horsepurve/DeepVoro
LgRegv
false
3,626
[ "MIT" ]
0
1b67a8e0d51e1c966a2af96d4b6a495f8390f608
https://github.com/horsepurve/DeepVoro/tree/1b67a8e0d51e1c966a2af96d4b6a495f8390f608
import torch import torch.nn as nn class Model(torch.nn.Module): """ TODO: pre-training from power to voronoi """ def __init__(self, dim, nla): super().__init__() self.linear = nn.Linear(dim, nla, bias=False) def forward(self, x): ba = -torch.sum((self.linear.weight / 2) ** 2, dim=1) y_hat = self.linear(x) + ba y_hat = torch.sigmoid(y_hat) return y_hat def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
distLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/m6/cm645lheesrjji6wgkstt4nu675ugbbjruised3fke4juyuyosol.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => pow_3, pow_4, sum_2 # Graph fragment: # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {}) # %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) triton_poi_fused__weight_norm_interface_0 = async_compile.triton('triton_poi_fused__weight_norm_interface_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__weight_norm_interface_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dp/cdpmihjazxc2dpfye4tlkemiovtq5jgmt3cquzgrtbm3gn32us7u.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => div_1, mul # Graph fragment: # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_4), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %div_1), kwargs = {}) triton_poi_fused__weight_norm_interface_1 = async_compile.triton('triton_poi_fused__weight_norm_interface_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__weight_norm_interface_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 / tmp2 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/v2/cv2bongkb2dgiiqtf7a3gfmvfar5me3uzhr5tfvzijs3i7yi2oub.py # Topologically Sorted Source Nodes: [add, x_normalized], Original ATen: [aten.add, aten.div] # Source node to ATen node mapping: # add => add # x_normalized => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %add), kwargs = {}) triton_poi_fused_add_div_2 = async_compile.triton('triton_poi_fused_add_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-05 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nq/cnqverg3qpl5ed2t36fkymquzuwlsmkpmbft4egnvgh24e2ct6wu.py # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.mul] # Source node to ATen node mapping: # scores => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 2), kwargs = {}) triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_3(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] stream0 = get_raw_stream(0) triton_poi_fused__weight_norm_interface_0.run(primals_3, buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] triton_poi_fused__weight_norm_interface_1.run(primals_3, primals_2, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, x_normalized], Original ATen: [aten.add, aten.div] triton_poi_fused_add_div_2.run(primals_1, buf2, 256, grid=grid(256), stream=stream0) del primals_1 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cos_dist], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(buf4, 256, grid=grid(256), stream=stream0) return (buf4, buf1, primals_2, primals_3, buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.utils.weight_norm import WeightNorm class distLinear(nn.Module): def __init__(self, indim, outdim): super(distLinear, self).__init__() self.L = nn.Linear(indim, outdim, bias=False) self.class_wise_learnable_norm = True if self.class_wise_learnable_norm: WeightNorm.apply(self.L, 'weight', dim=0) if outdim <= 200: self.scale_factor = 2 else: self.scale_factor = 10 def forward(self, x): x_norm = torch.norm(x, p=2, dim=1).unsqueeze(1).expand_as(x) x_normalized = x.div(x_norm + 1e-05) if not self.class_wise_learnable_norm: L_norm = torch.norm(self.L.weight.data, p=2, dim=1).unsqueeze(1 ).expand_as(self.L.weight.data) self.L.weight.data = self.L.weight.data.div(L_norm + 1e-05) cos_dist = self.L(x_normalized) scores = self.scale_factor * cos_dist return scores def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'indim': 4, 'outdim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn.utils.weight_norm import WeightNorm assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__weight_norm_interface_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__weight_norm_interface_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 / tmp2 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-05 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x3, tmp15, xmask) @triton.jit def triton_poi_fused_mul_3(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) get_raw_stream(0) triton_poi_fused__weight_norm_interface_0[grid(4)](primals_3, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__weight_norm_interface_1[grid(16)](primals_3, primals_2, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_2[grid(256)](primals_1, buf2, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_1 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_mul_3[grid(256)](buf4, 256, XBLOCK=256, num_warps= 4, num_stages=1) return buf4, buf1, primals_2, primals_3, buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0) class distLinearNew(nn.Module): def __init__(self, indim, outdim): super(distLinearNew, self).__init__() self.L = nn.Linear(indim, outdim, bias=False) self.class_wise_learnable_norm = True if self.class_wise_learnable_norm: WeightNorm.apply(self.L, 'weight', dim=0) if outdim <= 200: self.scale_factor = 2 else: self.scale_factor = 10 def forward(self, input_0): primals_2 = self.L.weight_g primals_3 = self.L.weight_v primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
horsepurve/DeepVoro
distLinear
false
3,627
[ "MIT" ]
0
1b67a8e0d51e1c966a2af96d4b6a495f8390f608
https://github.com/horsepurve/DeepVoro/tree/1b67a8e0d51e1c966a2af96d4b6a495f8390f608
import torch import torch.nn as nn from torch.nn.utils.weight_norm import WeightNorm class Model(nn.Module): def __init__(self, indim, outdim): super().__init__() self.L = nn.Linear(indim, outdim, bias=False) self.class_wise_learnable_norm = True if self.class_wise_learnable_norm: WeightNorm.apply(self.L, 'weight', dim=0) if outdim <= 200: self.scale_factor = 2 else: self.scale_factor = 10 def forward(self, x): x_norm = torch.norm(x, p=2, dim=1).unsqueeze(1).expand_as(x) x_normalized = x.div(x_norm + 1e-05) if not self.class_wise_learnable_norm: L_norm = torch.norm(self.L.weight.data, p=2, dim=1).unsqueeze(1 ).expand_as(self.L.weight.data) self.L.weight.data = self.L.weight.data.div(L_norm + 1e-05) cos_dist = self.L(x_normalized) scores = self.scale_factor * cos_dist return scores def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Conv2d_fw
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_2, %primals_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_1, 16, grid=grid(16), stream=stream0) del primals_1 return (buf1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Conv2d_fw(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True): super(Conv2d_fw, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) self.weight.fast = None if self.bias is not None: self.bias.fast = None def forward(self, x): if self.bias is None: if self.weight.fast is not None: out = F.conv2d(x, self.weight.fast, None, stride=self. stride, padding=self.padding) else: out = super(Conv2d_fw, self).forward(x) elif self.weight.fast is not None and self.bias.fast is not None: out = F.conv2d(x, self.weight.fast, self.bias.fast, stride=self .stride, padding=self.padding) else: out = super(Conv2d_fw, self).forward(x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 return buf1, primals_2, primals_3 class Conv2d_fwNew(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True): super(Conv2d_fwNew, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) self.weight.fast = None if self.bias is not None: self.bias.fast = None def forward(self, input_0): primals_2 = self.weight primals_1 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
horsepurve/DeepVoro
Conv2d_fw
false
3,628
[ "MIT" ]
0
1b67a8e0d51e1c966a2af96d4b6a495f8390f608
https://github.com/horsepurve/DeepVoro/tree/1b67a8e0d51e1c966a2af96d4b6a495f8390f608
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True): super().__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) self.weight.fast = None if self.bias is not None: self.bias.fast = None def forward(self, x): if self.bias is None: if self.weight.fast is not None: out = F.conv2d(x, self.weight.fast, None, stride=self. stride, padding=self.padding) else: out = super(Conv2d_fw, self).forward(x) elif self.weight.fast is not None and self.bias.fast is not None: out = F.conv2d(x, self.weight.fast, self.bias.fast, stride=self .stride, padding=self.padding) else: out = super(Conv2d_fw, self).forward(x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
EdgeGCN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ux/cux2kj4j23h4b5kjcpqvakmsbkccsrsrilj6bhge75g6lhpywqij.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%abs_1, %unsqueeze_2], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) % 4 x2 = (xindex // 20) x3 = (xindex // 5) x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + ((4*x2) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 - tmp6 tmp8 = tl_math.abs(tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 5, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr1 + (x3), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp4, tmp10, tmp14) tl.store(out_ptr0 + (x4), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 5), (5, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 80, grid=grid(80), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 5), (5, 1), 0), reinterpret_tensor(primals_3, (5, 4), (1, 5), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 return (buf1, reinterpret_tensor(buf0, (16, 5), (5, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 5), (5, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch.nn.modules.module import Module import torch.nn as nn class EdgeGCN(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, include_adj=True, bias=True): super(EdgeGCN, self).__init__() self.include_adj = include_adj self.in_features = in_features + 1 if self.include_adj else in_features self.out_features = out_features self.fc = nn.Linear(self.in_features, self.out_features, bias=bias) def forward(self, feat, adj): feat_diff = (feat.unsqueeze(0).repeat(feat.shape[0], 1, 1) - feat. unsqueeze(1).repeat(1, feat.shape[0], 1)).abs() if self.include_adj: x = torch.cat((feat_diff, adj.unsqueeze(2)), 2).view(feat.shape [0] * feat.shape[0], -1) else: x = feat_diff.view(feat.shape[0] * feat.shape[0], -1) output = self.fc(x) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module from torch.nn.modules.module import Module import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 % 4 x2 = xindex // 20 x3 = xindex // 5 x4 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (4 * x2 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 - tmp6 tmp8 = tl_math.abs(tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 5, tl.int64) tmp14 = tl.load(in_ptr1 + x3, tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.where(tmp4, tmp10, tmp14) tl.store(out_ptr0 + x4, tmp15, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 5), (5, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(80)](primals_1, primals_2, buf0, 80, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 5), ( 5, 1), 0), reinterpret_tensor(primals_3, (5, 4), (1, 5), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 return buf1, reinterpret_tensor(buf0, (16, 5), (5, 1), 0) class EdgeGCNNew(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, include_adj=True, bias=True): super(EdgeGCNNew, self).__init__() self.include_adj = include_adj self.in_features = in_features + 1 if self.include_adj else in_features self.out_features = out_features self.fc = nn.Linear(self.in_features, self.out_features, bias=bias) def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' def forward(self, input_0, input_1): primals_3 = self.fc.weight primals_4 = self.fc.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
hou-yz/pygcn
EdgeGCN
false
3,629
[ "MIT" ]
0
26195954035c5eaae2d6e086cfec24cad2642f2e
https://github.com/hou-yz/pygcn/tree/26195954035c5eaae2d6e086cfec24cad2642f2e
from torch.nn import Module import torch from torch.nn.modules.module import Module import torch.nn as nn class Model(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, include_adj=True, bias=True): super().__init__() self.include_adj = include_adj self.in_features = in_features + 1 if self.include_adj else in_features self.out_features = out_features self.fc = nn.Linear(self.in_features, self.out_features, bias=bias) def forward(self, feat, adj): feat_diff = (feat.unsqueeze(0).repeat(feat.shape[0], 1, 1) - feat. unsqueeze(1).repeat(1, feat.shape[0], 1)).abs() if self.include_adj: x = torch.cat((feat_diff, adj.unsqueeze(2)), 2).view(feat.shape [0] * feat.shape[0], -1) else: x = feat_diff.view(feat.shape[0] * feat.shape[0], -1) output = self.fc(x) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
DimReduction
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ah/cahn74rhxveqfo4x3pmwyf3gvrqji5yd4cpkuzlrxcuulbtucrgi.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.view, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu, view_3 # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %view_3 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_2, [4, 4, 4, 512]), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_8, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_view_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_view_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_view_0(in_out_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(out_ptr0 + (x0), tmp2, None) tl.store(out_ptr1 + (x0), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.view, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_view_0.run(buf1, buf2, buf3, 32768, grid=grid(32768), stream=stream0) del buf1 return (buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class residual_block(nn.Module): def __init__(self, nChn=512): super(residual_block, self).__init__() self.block = nn.Sequential(nn.Linear(nChn, nChn, bias=False), nn. ReLU(inplace=True), nn.Linear(nChn, nChn, bias=False), nn.ReLU( inplace=True)) def forward(self, x): tt = self.block(x) x = x + tt return x class DimReduction(nn.Module): def __init__(self, n_channels, m_dim=512, numLayer_Res=0): super(DimReduction, self).__init__() self.fc1 = nn.Linear(n_channels, m_dim, bias=False) self.relu1 = nn.ReLU(inplace=True) self.numRes = numLayer_Res self.resBlocks = [] for ii in range(numLayer_Res): self.resBlocks.append(residual_block(m_dim)) self.resBlocks = nn.Sequential(*self.resBlocks) def forward(self, x): x = self.fc1(x) x = self.relu1(x) if self.numRes > 0: x = self.resBlocks(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_view_0(in_out_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(out_ptr0 + x0, tmp2, None) tl.store(out_ptr1 + x0, tmp4, None) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0 ) del buf0 buf2 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_view_0[grid(32768)](buf1, buf2, buf3, 32768, XBLOCK=128, num_warps=4, num_stages=1) del buf1 return buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf3 class residual_block(nn.Module): def __init__(self, nChn=512): super(residual_block, self).__init__() self.block = nn.Sequential(nn.Linear(nChn, nChn, bias=False), nn. ReLU(inplace=True), nn.Linear(nChn, nChn, bias=False), nn.ReLU( inplace=True)) def forward(self, x): tt = self.block(x) x = x + tt return x class DimReductionNew(nn.Module): def __init__(self, n_channels, m_dim=512, numLayer_Res=0): super(DimReductionNew, self).__init__() self.fc1 = nn.Linear(n_channels, m_dim, bias=False) self.relu1 = nn.ReLU(inplace=True) self.numRes = numLayer_Res self.resBlocks = [] for ii in range(numLayer_Res): self.resBlocks.append(residual_block(m_dim)) self.resBlocks = nn.Sequential(*self.resBlocks) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
hrzhang1123/DTFD-MIL
DimReduction
false
3,630
[ "MIT" ]
0
5cf22db83d0c031e69b17d5b668b546940d829bc
https://github.com/hrzhang1123/DTFD-MIL/tree/5cf22db83d0c031e69b17d5b668b546940d829bc
import torch import torch.nn as nn class residual_block(nn.Module): def __init__(self, nChn=512): super().__init__() self.block = nn.Sequential(nn.Linear(nChn, nChn, bias=False), nn. ReLU(inplace=True), nn.Linear(nChn, nChn, bias=False), nn.ReLU( inplace=True)) def forward(self, x): tt = self.block(x) x = x + tt return x class Model(nn.Module): def __init__(self, n_channels, m_dim=512, numLayer_Res=0): super().__init__() self.fc1 = nn.Linear(n_channels, m_dim, bias=False) self.relu1 = nn.ReLU(inplace=True) self.numRes = numLayer_Res self.resBlocks = [] for ii in range(numLayer_Res): self.resBlocks.append(residual_block(m_dim)) self.resBlocks = nn.Sequential(*self.resBlocks) def forward(self, x): x = self.fc1(x) x = self.relu1(x) if self.numRes > 0: x = self.resBlocks(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
RNNMLClassification
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ih/cihkol22ojnmrk724q4odcm6ilz575wmbnulie74gzdcgue24tib.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%addmm, %addmm_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (8*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gd/cgdq755g3clp3t5icrbudwx4ir4xygtoz6ug4jo2euegtyg5mdnp.py # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # output_2 => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/j5/cj5hwj7ockkcleq56wmrpwxavcu7lllqodtnsxnd6sbzznn7lu6j.py # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # output_2 => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_3 = async_compile.triton('triton_poi_fused__log_softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4) # alias # Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0) # alias # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf3, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_3.run(buf6, buf7, 16, grid=grid(16), stream=stream0) del buf6 return (buf7, buf1, buf0, buf4, buf7, primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class RNNMLClassification(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNNMLClassification, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.o2o = nn.Linear(hidden_size + output_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.o2o(torch.cat((hidden, output), 1)) output = self.softmax(output) return output, hidden def init_hidden(self): return torch.zeros(1, self.hidden_size) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 8 * x1), tmp0, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4) extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0) triton_poi_fused_cat_1[grid(16)](buf1, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = buf5 del buf5 triton_poi_fused__log_softmax_3[grid(16)](buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf6 return buf7, buf1, buf0, buf4, buf7, primals_7 class RNNMLClassificationNew(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNNMLClassificationNew, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.o2o = nn.Linear(hidden_size + output_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def init_hidden(self): return torch.zeros(1, self.hidden_size) def forward(self, input_0, input_1): primals_3 = self.i2h.weight primals_4 = self.i2h.bias primals_5 = self.i2o.weight primals_6 = self.i2o.bias primals_7 = self.o2o.weight primals_8 = self.o2o.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
hotbaby/kkb-nlp
RNNMLClassification
false
3,631
[ "MIT" ]
0
614cd0f37aa969d21b2fbe3d9f8b2b08db1d0eb1
https://github.com/hotbaby/kkb-nlp/tree/614cd0f37aa969d21b2fbe3d9f8b2b08db1d0eb1
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.o2o = nn.Linear(hidden_size + output_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.o2o(torch.cat((hidden, output), 1)) output = self.softmax(output) return output, hidden def init_hidden(self): return torch.zeros(1, self.hidden_size) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
FcCat
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ie/ciettq2a3562jfpgfe75iig4ki2hbm6pmbwujlvp6mw26i2odufm.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] # Source node to ATen node mapping: # out => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %view_1], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 8 x0 = xindex % 16 x2 = (xindex // 128) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_2, buf0, buf1, 512, grid=grid(512), stream=stream0) del buf0 return (buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FcCat(nn.Module): def __init__(self, nIn, nOut): super(FcCat, self).__init__() self.fc = nn.Linear(nIn, nOut, bias=False) def forward(self, x): out = torch.cat((x, self.fc(x)), 1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nIn': 4, 'nOut': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 8 x0 = xindex % 16 x2 = xindex // 128 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](primals_2, buf0, buf1, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf0 return buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0) class FcCatNew(nn.Module): def __init__(self, nIn, nOut): super(FcCatNew, self).__init__() self.fc = nn.Linear(nIn, nOut, bias=False) def forward(self, input_0): primals_1 = self.fc.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
huangzsdy/pytorch_basic_learning
FcCat
false
3,633
[ "Apache-2.0" ]
0
7880bc3fcee1d38623d93fa2a36482ccde0e335a
https://github.com/huangzsdy/pytorch_basic_learning/tree/7880bc3fcee1d38623d93fa2a36482ccde0e335a
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, nIn, nOut): super().__init__() self.fc = nn.Linear(nIn, nOut, bias=False) def forward(self, x): out = torch.cat((x, self.fc(x)), 1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Fadein
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ai/cai2poorsup7nq2otw37m3ij7xgd7zz7yh67qrptmbrb5helnvpb.py # Topologically Sorted Source Nodes: [mul, mul_1, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # mul_1 => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, 0.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr0 + (64 + x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = 0.0 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.utils.data class Fadein(nn.Module): def __init__(self, cfg): super(Fadein, self).__init__() self.alpha = 0.0 def update_alpha(self, delta): self.alpha = self.alpha + delta self.alpha = max(0, min(self.alpha, 1.0)) def forward(self, x): return torch.add(x[0].mul(1.0 - self.alpha), x[1].mul(self.alpha)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'cfg': _mock_config()}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr0 + (64 + x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = 0.0 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class FadeinNew(nn.Module): def __init__(self, cfg): super(FadeinNew, self).__init__() self.alpha = 0.0 def update_alpha(self, delta): self.alpha = self.alpha + delta self.alpha = max(0, min(self.alpha, 1.0)) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
hyunobae/SRGAN
Fadein
false
3,634
[ "MIT" ]
0
9a967312c08e608833d2037398948617e1200c35
https://github.com/hyunobae/SRGAN/tree/9a967312c08e608833d2037398948617e1200c35
from _paritybench_helpers import _mock_config import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, cfg): super().__init__() self.alpha = 0.0 def update_alpha(self, delta): self.alpha = self.alpha + delta self.alpha = max(0, min(self.alpha, 1.0)) def forward(self, x): return torch.add(x[0].mul(1.0 - self.alpha), x[1].mul(self.alpha)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MulMCFC
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/mz/cmzggcufrudhcxbs54wcdqp6m6pkyknmtvr6y5vrlwnrrksqtcye.py # Topologically Sorted Source Nodes: [j], Original ATen: [aten._softmax] # Source node to ATen node mapping: # j => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%unsqueeze, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (5*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (5*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (5*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (5*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (5*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp0 - tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tmp1 - tmp8 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp8 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/hp/chpgaxjmfea3iltrobasajt6dfuvw23vqc72imv4luy3xwlhmj5l.py # Topologically Sorted Source Nodes: [j], Original ATen: [aten._softmax] # Source node to ATen node mapping: # j => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%unsqueeze, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 5) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/77/c77fzlbbirm4s52xcl6wixpwu6fb5paaithoa547xxck3vwqoi3l.py # Topologically Sorted Source Nodes: [r_1], Original ATen: [aten.view] # Source node to ATen node mapping: # r_1 => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([1, 1], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_view_2 = async_compile.triton('triton_poi_fused_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {1: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=(1,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_2(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = 1.0 tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mz/cmz72f3f3w3wlapqxei3eeokxsml27mism6a47wuqnhqq4xvto5u.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.view] # Source node to ATen node mapping: # matmul => view_2 # Graph fragment: # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%unsqueeze_1, [4, 4]), kwargs = {}) triton_poi_fused_view_3 = async_compile.triton('triton_poi_fused_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.log(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/j2/cj24z5wiqbewlsbpgaxnwgd6fvcvx2jl37z2yhhzlgeznoniu7ww.py # Topologically Sorted Source Nodes: [add, exp], Original ATen: [aten.add, aten.exp] # Source node to ATen node mapping: # add => add # exp => exp_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, %primals_5), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%add,), kwargs = {}) triton_poi_fused_add_exp_4 = async_compile.triton('triton_poi_fused_add_exp_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x0 + (5*x1)), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp5 = tmp3 + tmp4 tmp6 = tl_math.exp(tmp5) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 5), (5, 1)) assert_size_stride(primals_3, (5, 1), (1, 1)) assert_size_stride(primals_4, (5, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 1), (4, 1, 4), torch.float32) buf1 = empty_strided_cuda((1, 4, 1), (4, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [j], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(primals_2, buf0, buf1, 4, grid=grid(4), stream=stream0) buf2 = empty_strided_cuda((1, 4, 5), (20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [j], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(primals_2, buf0, buf1, buf2, 20, grid=grid(20), stream=stream0) del buf0 del buf1 del primals_2 buf3 = empty_strided_cuda((1, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [r_1], Original ATen: [aten.view] triton_poi_fused_view_2.run(buf3, 1, grid=grid(1), stream=stream0) buf4 = empty_strided_cuda((1, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [r_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf3, reinterpret_tensor(primals_3, (1, 5), (1, 1), 0), alpha=1, beta=1, out=buf4) del primals_3 del primals_4 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.view] triton_poi_fused_view_3.run(primals_1, buf5, 16, grid=grid(16), stream=stream0) del primals_1 buf6 = empty_strided_cuda((4, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf5, reinterpret_tensor(buf2, (4, 5), (5, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, exp], Original ATen: [aten.add, aten.exp] triton_poi_fused_add_exp_4.run(buf4, buf6, primals_5, buf7, 16, grid=grid(16), stream=stream0) del primals_5 return (buf7, buf2, buf3, buf4, buf6, buf7, reinterpret_tensor(buf5, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 5), (5, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((5, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import torch.utils.data from torch import nn def get_redistribution(kind: 'str', num_states: 'int', num_features: 'int'= None, num_out: 'int'=None, normaliser: 'nn.Module'=None, **kwargs): if kind == 'linear': return LinearRedistribution(num_states, num_features, num_out, normaliser) elif kind == 'outer': return OuterRedistribution(num_states, num_features, num_out, normaliser, **kwargs) elif kind == 'gate': return GateRedistribution(num_states, num_features, num_out, normaliser ) else: raise ValueError('unknown kind of redistribution: {}'.format(kind)) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class NormalisedSigmoid(nn.Module): """ Normalised logistic sigmoid function. """ def __init__(self, p: 'float'=1, dim: 'int'=-1): super().__init__() self.p = p self.dim = dim def forward(self, s: 'torch.Tensor') ->torch.Tensor: a = torch.sigmoid(s) return torch.nn.functional.normalize(a, p=self.p, dim=self.dim) class Redistribution(nn.Module): """ Base class for modules that generate redistribution vectors/matrices. """ def __init__(self, num_states: 'int', num_features: 'int'=None, num_out: 'int'=None, normaliser: 'nn.Module'=None): """ Parameters ---------- num_states : int The number of states this redistribution is to be applied on. num_features : int, optional The number of features to use for configuring the redistribution. If the redistribution is not input-dependent, this argument will be ignored. num_out : int, optional The number of outputs to redistribute the states to. If nothing is specified, the redistribution matrix is assumed to be square. normaliser : Module, optional Function to use for normalising the redistribution matrix. """ super().__init__() self.num_features = num_features self.num_states = num_states self.num_out = num_out or num_states self.normaliser = normaliser or NormalisedSigmoid(dim=-1) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError('subclass must implement this method') def forward(self, x: 'torch.Tensor') ->torch.Tensor: r = self._compute(x) return self.normaliser(r) class Gate(Redistribution): """ Classic gate as used in e.g. LSTMs. Notes ----- The vector that is computed by this module gives rise to a diagonal redistribution matrix, i.e. a redistribution matrix that does not really redistribute (not normalised). """ def __init__(self, num_states, num_features, num_out=None, sigmoid=None): super().__init__(num_states, num_features, 1, sigmoid or nn.Sigmoid()) self.fc = nn.Linear(num_features, num_states) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.fc.weight) nn.init.zeros_(self.fc.bias) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: return self.fc(x) class GateRedistribution(Redistribution): """ Gate-like redistribution that only depends on input. This module directly computes all entries for the redistribution matrix from a linear combination of the input values and is normalised by the activation function. """ def __init__(self, num_states, num_features, num_out=None, normaliser=None ): super().__init__(num_states, num_features, num_out, normaliser) self.fc = nn.Linear(num_features, self.num_states * self.num_out) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.fc.weight) nn.init.zeros_(self.fc.bias) if self.num_states == self.num_out: with torch.no_grad(): self.fc.bias[0::self.num_out + 1] = 3 def _compute(self, x: 'torch.Tensor') ->torch.Tensor: logits = self.fc(x) return logits.view(-1, self.num_states, self.num_out) class LinearRedistribution(Redistribution): """ Redistribution by normalising a learned matrix. This module has an unnormalised version of the redistribution matrix as parameters and is normalised by applying a non-linearity (the normaliser). The redistribution does not depend on any of the input values, but is updated using the gradients to fit the data. """ def __init__(self, num_states, num_features=0, num_out=None, normaliser =None): super(LinearRedistribution, self).__init__(num_states, 0, num_out, normaliser) self.r = nn.Parameter(torch.empty(self.num_states, self.num_out), requires_grad=True) self.reset_parameters() @torch.no_grad() def reset_parameters(self): if self.num_states == self.num_out: nn.init.eye_(self.r) if type(self.normaliser) is NormalisedSigmoid: torch.mul(self.r, 2, out=self.r) torch.sub(self.r, 1, out=self.r) else: nn.init.orthogonal_(self.r) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: return self.r.unsqueeze(0) class OuterRedistribution(Redistribution): """ Redistribution by (weighted) outer product of two input-dependent vectors. This module computes the entries for the redistribution matrix as the outer product of two vectors that are linear combinations of the input values. There is an option to include a weight matrix parameter to weight each entry in the resulting matrix, which is then normalised using a non-linearity. The weight matrix parameter is updated through the gradients to fit the data. """ def __init__(self, num_states, num_features, num_out=None, normaliser= None, weighted: 'bool'=False): """ Parameters ---------- weighted : bool, optional Whether or not to use a weighted outer product. """ super(OuterRedistribution, self).__init__(num_states, num_features, num_out, normaliser) self.weighted = weighted self.r = nn.Parameter(torch.empty(self.num_states, self.num_out), requires_grad=weighted) self.fc1 = nn.Linear(num_features, self.num_states) self.fc2 = nn.Linear(num_features, self.num_out) self.phi = lambda x: x self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.r) nn.init.orthogonal_(self.fc1.weight) nn.init.zeros_(self.fc1.bias) nn.init.orthogonal_(self.fc2.weight) nn.init.zeros_(self.fc2.bias) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: a1 = self.phi(self.fc1(x)) a2 = self.phi(self.fc2(x)) outer = a1.unsqueeze(-1) * a2.unsqueeze(-2) if self.weighted: outer *= self.r return outer class MCFullyConnected(ExtendedTorchModule): def __init__(self, in_features: 'int', out_features: 'int', **kwargs): super().__init__('MCFC', **kwargs) self.mass_input_size = in_features self.aux_input_size = 1 self.hidden_size = out_features self.normaliser = nn.Softmax(dim=-1) self.out_gate = Gate(self.hidden_size, self.aux_input_size) self.junction = get_redistribution('linear', num_states=self. mass_input_size, num_features=self.aux_input_size, num_out=self .hidden_size, normaliser=self.normaliser) @torch.no_grad() def reset_parameters(self): self.out_gate.reset_parameters() self.junction.reset_parameters() def log_gradients(self): for name, parameter in self.named_parameters(): gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) def regualizer(self, merge_in=None): r1 = -torch.mean(self.junction.r ** 2) r2 = -torch.mean(self.out_gate.fc.weight ** 2) r3 = -torch.mean(self.out_gate.fc.bias ** 2) return super().regualizer({'W': r1 + r2 + r3}) def forward(self, x): x_m, x_a = x, x.new_ones(1) j = self.junction(x_a) o = self.out_gate(x_a) m_in = torch.matmul(x_m.unsqueeze(-2), j).squeeze(-2) return o * m_in class MulMCFC(ExtendedTorchModule): def __init__(self, in_features, out_features, **kwargs): super().__init__('MulMCFC', **kwargs) self.mcfc = MCFullyConnected(in_features, out_features + 1, **kwargs) self.bias = nn.Parameter(torch.zeros(out_features)) def reset_parameters(self): self.mcfc.reset_parameters() nn.init.zeros_(self.bias) def forward(self, x): log_sum = self.mcfc(torch.log(x))[:, :-1] return torch.exp(log_sum + self.bias) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import collections import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 5 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 5 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 5 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 5 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + 5 * x0), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp0 - tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tmp1 - tmp8 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp8 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 5 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_view_2(out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = 1.0 tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp0, None) @triton.jit def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.log(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_add_exp_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x0 + 5 * x1), xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp5 = tmp3 + tmp4 tmp6 = tl_math.exp(tmp5) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 5), (5, 1)) assert_size_stride(primals_3, (5, 1), (1, 1)) assert_size_stride(primals_4, (5,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 1), (4, 1, 4), torch.float32) buf1 = empty_strided_cuda((1, 4, 1), (4, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(4)](primals_2, buf0, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((1, 4, 5), (20, 5, 1), torch.float32) triton_poi_fused__softmax_1[grid(20)](primals_2, buf0, buf1, buf2, 20, XBLOCK=32, num_warps=1, num_stages=1) del buf0 del buf1 del primals_2 buf3 = empty_strided_cuda((1, 1), (1, 1), torch.float32) triton_poi_fused_view_2[grid(1)](buf3, 1, XBLOCK=1, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((1, 5), (5, 1), torch.float32) extern_kernels.addmm(primals_4, buf3, reinterpret_tensor(primals_3, (1, 5), (1, 1), 0), alpha=1, beta=1, out=buf4) del primals_3 del primals_4 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_view_3[grid(16)](primals_1, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf6 = empty_strided_cuda((4, 5), (5, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(buf2, (4, 5), (5, 1), 0), out=buf6) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_exp_4[grid(16)](buf4, buf6, primals_5, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return buf7, buf2, buf3, buf4, buf6, buf7, reinterpret_tensor(buf5, (4, 4), (1, 4), 0) def get_redistribution(kind: 'str', num_states: 'int', num_features: 'int'= None, num_out: 'int'=None, normaliser: 'nn.Module'=None, **kwargs): if kind == 'linear': return LinearRedistribution(num_states, num_features, num_out, normaliser) elif kind == 'outer': return OuterRedistribution(num_states, num_features, num_out, normaliser, **kwargs) elif kind == 'gate': return GateRedistribution(num_states, num_features, num_out, normaliser ) else: raise ValueError('unknown kind of redistribution: {}'.format(kind)) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class NormalisedSigmoid(nn.Module): """ Normalised logistic sigmoid function. """ def __init__(self, p: 'float'=1, dim: 'int'=-1): super().__init__() self.p = p self.dim = dim def forward(self, s: 'torch.Tensor') ->torch.Tensor: a = torch.sigmoid(s) return torch.nn.functional.normalize(a, p=self.p, dim=self.dim) class Redistribution(nn.Module): """ Base class for modules that generate redistribution vectors/matrices. """ def __init__(self, num_states: 'int', num_features: 'int'=None, num_out: 'int'=None, normaliser: 'nn.Module'=None): """ Parameters ---------- num_states : int The number of states this redistribution is to be applied on. num_features : int, optional The number of features to use for configuring the redistribution. If the redistribution is not input-dependent, this argument will be ignored. num_out : int, optional The number of outputs to redistribute the states to. If nothing is specified, the redistribution matrix is assumed to be square. normaliser : Module, optional Function to use for normalising the redistribution matrix. """ super().__init__() self.num_features = num_features self.num_states = num_states self.num_out = num_out or num_states self.normaliser = normaliser or NormalisedSigmoid(dim=-1) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError('subclass must implement this method') def forward(self, x: 'torch.Tensor') ->torch.Tensor: r = self._compute(x) return self.normaliser(r) class Gate(Redistribution): """ Classic gate as used in e.g. LSTMs. Notes ----- The vector that is computed by this module gives rise to a diagonal redistribution matrix, i.e. a redistribution matrix that does not really redistribute (not normalised). """ def __init__(self, num_states, num_features, num_out=None, sigmoid=None): super().__init__(num_states, num_features, 1, sigmoid or nn.Sigmoid()) self.fc = nn.Linear(num_features, num_states) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.fc.weight) nn.init.zeros_(self.fc.bias) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: return self.fc(x) class GateRedistribution(Redistribution): """ Gate-like redistribution that only depends on input. This module directly computes all entries for the redistribution matrix from a linear combination of the input values and is normalised by the activation function. """ def __init__(self, num_states, num_features, num_out=None, normaliser=None ): super().__init__(num_states, num_features, num_out, normaliser) self.fc = nn.Linear(num_features, self.num_states * self.num_out) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.fc.weight) nn.init.zeros_(self.fc.bias) if self.num_states == self.num_out: with torch.no_grad(): self.fc.bias[0::self.num_out + 1] = 3 def _compute(self, x: 'torch.Tensor') ->torch.Tensor: logits = self.fc(x) return logits.view(-1, self.num_states, self.num_out) class LinearRedistribution(Redistribution): """ Redistribution by normalising a learned matrix. This module has an unnormalised version of the redistribution matrix as parameters and is normalised by applying a non-linearity (the normaliser). The redistribution does not depend on any of the input values, but is updated using the gradients to fit the data. """ def __init__(self, num_states, num_features=0, num_out=None, normaliser =None): super(LinearRedistribution, self).__init__(num_states, 0, num_out, normaliser) self.r = nn.Parameter(torch.empty(self.num_states, self.num_out), requires_grad=True) self.reset_parameters() @torch.no_grad() def reset_parameters(self): if self.num_states == self.num_out: nn.init.eye_(self.r) if type(self.normaliser) is NormalisedSigmoid: torch.mul(self.r, 2, out=self.r) torch.sub(self.r, 1, out=self.r) else: nn.init.orthogonal_(self.r) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: return self.r.unsqueeze(0) class OuterRedistribution(Redistribution): """ Redistribution by (weighted) outer product of two input-dependent vectors. This module computes the entries for the redistribution matrix as the outer product of two vectors that are linear combinations of the input values. There is an option to include a weight matrix parameter to weight each entry in the resulting matrix, which is then normalised using a non-linearity. The weight matrix parameter is updated through the gradients to fit the data. """ def __init__(self, num_states, num_features, num_out=None, normaliser= None, weighted: 'bool'=False): """ Parameters ---------- weighted : bool, optional Whether or not to use a weighted outer product. """ super(OuterRedistribution, self).__init__(num_states, num_features, num_out, normaliser) self.weighted = weighted self.r = nn.Parameter(torch.empty(self.num_states, self.num_out), requires_grad=weighted) self.fc1 = nn.Linear(num_features, self.num_states) self.fc2 = nn.Linear(num_features, self.num_out) self.phi = lambda x: x self.reset_parameters() def reset_parameters(self): nn.init.ones_(self.r) nn.init.orthogonal_(self.fc1.weight) nn.init.zeros_(self.fc1.bias) nn.init.orthogonal_(self.fc2.weight) nn.init.zeros_(self.fc2.bias) def _compute(self, x: 'torch.Tensor') ->torch.Tensor: a1 = self.phi(self.fc1(x)) a2 = self.phi(self.fc2(x)) outer = a1.unsqueeze(-1) * a2.unsqueeze(-2) if self.weighted: outer *= self.r return outer class MCFullyConnected(ExtendedTorchModule): def __init__(self, in_features: 'int', out_features: 'int', **kwargs): super().__init__('MCFC', **kwargs) self.mass_input_size = in_features self.aux_input_size = 1 self.hidden_size = out_features self.normaliser = nn.Softmax(dim=-1) self.out_gate = Gate(self.hidden_size, self.aux_input_size) self.junction = get_redistribution('linear', num_states=self. mass_input_size, num_features=self.aux_input_size, num_out=self .hidden_size, normaliser=self.normaliser) @torch.no_grad() def reset_parameters(self): self.out_gate.reset_parameters() self.junction.reset_parameters() def log_gradients(self): for name, parameter in self.named_parameters(): gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) def regualizer(self, merge_in=None): r1 = -torch.mean(self.junction.r ** 2) r2 = -torch.mean(self.out_gate.fc.weight ** 2) r3 = -torch.mean(self.out_gate.fc.bias ** 2) return super().regualizer({'W': r1 + r2 + r3}) def forward(self, x): x_m, x_a = x, x.new_ones(1) j = self.junction(x_a) o = self.out_gate(x_a) m_in = torch.matmul(x_m.unsqueeze(-2), j).squeeze(-2) return o * m_in class MulMCFCNew(ExtendedTorchModule): def __init__(self, in_features, out_features, **kwargs): super().__init__('MulMCFC', **kwargs) self.mcfc = MCFullyConnected(in_features, out_features + 1, **kwargs) self.bias = nn.Parameter(torch.zeros(out_features)) def reset_parameters(self): self.mcfc.reset_parameters() nn.init.zeros_(self.bias) def forward(self, input_0): primals_5 = self.bias primals_3 = self.mcfc.out_gate.fc.weight primals_4 = self.mcfc.out_gate.fc.bias primals_2 = self.mcfc.junction.r primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
hoedt/stable-nalu
MulMCFC
false
3,635
[ "MIT" ]
0
64b3d240db8bff4da857d955f213ef3c7e38e035
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
import collections import torch import torch.utils.data from torch import nn def get_redistribution(kind: 'str', num_states: 'int', num_features: 'int'= None, num_out: 'int'=None, normaliser: 'nn.Module'=None, **kwargs): if kind == 'linear': return LinearRedistribution(num_states, num_features, num_out, normaliser) elif kind == 'outer': return OuterRedistribution(num_states, num_features, num_out, normaliser, **kwargs) elif kind == 'gate': return GateRedistribution(num_states, num_features, num_out, normaliser ) else: raise ValueError('unknown kind of redistribution: {}'.format(kind)) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): # ... truncated (>4000 chars) for memory efficiency
LinearPool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/3u/c3ubhztv6npzgtnviydzbdg2mikvp6gcelukqxtrq2fawmzbasgw.py # Topologically Sorted Source Nodes: [sum_input, sum_input_1, linear_weight, weighted_value, sum_2], Original ATen: [aten.sum, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # linear_weight => div # sum_2 => sum_2 # sum_input => sum_1 # sum_input_1 => add # weighted_value => mul # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [-1, -2], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-07), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %div), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1, -2], True), kwargs = {}) triton_per_fused_add_div_mul_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 1e-07 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp8 = tmp0 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tl.store(in_out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [sum_input, sum_input_1, linear_weight, weighted_value, sum_2], Original ATen: [aten.sum, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_sum_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class LinearPool(nn.Module): def __init__(self): super(LinearPool, self).__init__() def forward(self, feat_map): """ Arguments: feat_map(Tensor): tensor with shape (N, C, H, W) return(Tensor): tensor with shape (N, C, 1, 1) """ EPSILON = 1e-07 _N, _C, _H, _W = feat_map.shape sum_input = torch.sum(feat_map, dim=(-1, -2), keepdim=True) sum_input += EPSILON linear_weight = feat_map / sum_input weighted_value = feat_map * linear_weight return torch.sum(weighted_value, dim=(-1, -2), keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 1e-07 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp8 = tmp0 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tl.store(in_out_ptr0 + x0, tmp12, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_sum_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf1, class LinearPoolNew(nn.Module): def __init__(self): super(LinearPoolNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
iampartho/EEE426
LinearPool
false
3,636
[ "Apache-2.0" ]
0
a706660c0efcd4adea44d54c57a34bcaa4439ec1
https://github.com/iampartho/EEE426/tree/a706660c0efcd4adea44d54c57a34bcaa4439ec1
import torch from torch import nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, feat_map): """ Arguments: feat_map(Tensor): tensor with shape (N, C, H, W) return(Tensor): tensor with shape (N, C, 1, 1) """ EPSILON = 1e-07 _N, _C, _H, _W = feat_map.shape sum_input = torch.sum(feat_map, dim=(-1, -2), keepdim=True) sum_input += EPSILON linear_weight = feat_map / sum_input weighted_value = feat_map * linear_weight return torch.sum(weighted_value, dim=(-1, -2), keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LayerNormChannel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zf/czfnaeipqg4a3qzttb2l6zy5ng44vshk3lfmp25jc2er665hxsmw.py # Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # sub => sub # u => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xv/cxvd7z437vxfpacdwxehqwb4b4td64d2z3gex2vzjg46iitryrpn.py # Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # pow_1 => pow_1 # s => mean_1 # sqrt => sqrt # x => div # x_1 => add_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_1, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %unsqueeze_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x3), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [u, sub], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNormChannel(nn.Module): """ LayerNorm only for Channel Dimension. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, eps=1e-05): super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight.unsqueeze(-1).unsqueeze(-1) * x + self.bias.unsqueeze( -1).unsqueeze(-1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x3, tmp21, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(256)](primals_2, buf0, primals_3, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 del primals_3 return buf1, primals_1 class LayerNormChannelNew(nn.Module): """ LayerNorm only for Channel Dimension. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, eps=1e-05): super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
hyenal/tensorflow-image-models
LayerNormChannel
false
3,637
[ "Apache-2.0" ]
0
2012be8ecc7bc23e84dc2488d3e4fe1c80dbfb2c
https://github.com/hyenal/tensorflow-image-models/tree/2012be8ecc7bc23e84dc2488d3e4fe1c80dbfb2c
import torch import torch.nn as nn class Model(nn.Module): """ LayerNorm only for Channel Dimension. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, eps=1e-05): super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x): u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight.unsqueeze(-1).unsqueeze(-1) * x + self.bias.unsqueeze( -1).unsqueeze(-1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
GAT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/7n/c7nlxt7lv2ymidvoden6ljwymxnph6k2wwwgwme3hbkuba5g3ae7.py # Topologically Sorted Source Nodes: [repeat, repeat_1, sub, a_input], Original ATen: [aten.repeat, aten.sub, aten.abs, aten.sgn] # Source node to ATen node mapping: # a_input => abs_1 # repeat => repeat # repeat_1 => repeat_1 # sub => sub # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [4, 1, 1]), kwargs = {}) # %repeat_1 : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_1, [1, 4, 1]), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat, %repeat_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sign_3 : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub,), kwargs = {}) triton_poi_fused_abs_repeat_sgn_sub_0 = async_compile.triton('triton_poi_fused_abs_repeat_sgn_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_repeat_sgn_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_repeat_sgn_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex % 512 x0 = xindex % 128 x2 = (xindex // 512) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x0 + (128*x2)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.full([1], 0, tl.int32) tmp5 = tmp4 < tmp2 tmp6 = tmp5.to(tl.int8) tmp7 = tmp2 < tmp4 tmp8 = tmp7.to(tl.int8) tmp9 = tmp6 - tmp8 tmp10 = tmp9.to(tmp2.dtype) tl.store(out_ptr0 + (x4), tmp3, None) tl.store(out_ptr1 + (x4), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k2/ck2qvrsga6qzh3n4zrcqhgn3gcw55gg5hx55rqebdhhoptcty66e.py # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] # Source node to ATen node mapping: # gt => gt # Graph fragment: # %gt : [num_users=4] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_4, 0), kwargs = {}) triton_poi_fused_gt_1 = async_compile.triton('triton_poi_fused_gt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/24/c24kgtmxijly2ixnl5boq5l3fydtuuhudmzon7z53h5pabovbct3.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1], Original ATen: [aten.relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where # attention_1 => amax, exp, sub_1, sum_1 # e => relu # zero_vec => full_default # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %full_default : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %relu, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__softmax_mul_relu_where_2 = async_compile.triton('triton_poi_fused__softmax_mul_relu_where_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_relu_where_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_relu_where_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tl.full([1], 0, tl.int32) tmp3 = triton_helpers.maximum(tmp2, tmp1) tmp4 = -8999999815811072.0 tmp5 = tl.where(tmp0, tmp3, tmp4) tmp8 = triton_helpers.maximum(tmp2, tmp7) tmp9 = tl.where(tmp6, tmp8, tmp4) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = triton_helpers.maximum(tmp2, tmp12) tmp14 = tl.where(tmp11, tmp13, tmp4) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = triton_helpers.maximum(tmp2, tmp17) tmp19 = tl.where(tmp16, tmp18, tmp4) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp9 - tmp20 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp14 - tmp20 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tmp19 - tmp20 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tl.store(out_ptr0 + (x0), tmp20, xmask) tl.store(out_ptr1 + (x0), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dg/cdgttj5wetiapnfmuoyma7v5qsakp3k4ghmgomzythzlapxeajm6.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1], Original ATen: [aten.relu, aten.mul, aten.where, aten._softmax, aten.threshold_backward] # Source node to ATen node mapping: # attention => where # attention_1 => amax, div, exp, sub_1 # e => relu # zero_vec => full_default # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %full_default : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %relu, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %le_5 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused__softmax_mul_relu_threshold_backward_where_3 = async_compile.triton('triton_poi_fused__softmax_mul_relu_threshold_backward_where_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_relu_threshold_backward_where_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_relu_threshold_backward_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp6 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.full([1], 0, tl.int32) tmp3 = triton_helpers.maximum(tmp2, tmp1) tmp4 = -8999999815811072.0 tmp5 = tl.where(tmp0, tmp3, tmp4) tmp7 = tmp5 - tmp6 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tmp11 = 0.0 tmp12 = tmp3 <= tmp11 tl.store(out_ptr0 + (x2), tmp10, xmask) tl.store(out_ptr1 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qv/cqvn65ibkjrlfzwuaha5jcy7542wxhj4hk7ogd354htwtyshseem.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] # Source node to ATen node mapping: # x => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mm_2,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/pe/cpe2fn2ekq2v6vx5ktgalvl3dywenbssl3bxnbmmdzsss3sdztwm.py # Topologically Sorted Source Nodes: [repeat_6, repeat_7, sub_3, feat_diff], Original ATen: [aten.repeat, aten.sub, aten.abs, aten.sgn] # Source node to ATen node mapping: # feat_diff => abs_4 # repeat_6 => repeat_6 # repeat_7 => repeat_7 # sub_3 => sub_6 # Graph fragment: # %repeat_6 : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_6, [4, 1, 1]), kwargs = {}) # %repeat_7 : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze_7, [1, 4, 1]), kwargs = {}) # %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%repeat_6, %repeat_7), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_6,), kwargs = {}) # %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%sub_6,), kwargs = {}) triton_poi_fused_abs_repeat_sgn_sub_5 = async_compile.triton('triton_poi_fused_abs_repeat_sgn_sub_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_repeat_sgn_sub_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_repeat_sgn_sub_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex % 512 x0 = xindex % 128 x2 = (xindex // 512) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (x0 + (128*x2)), None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp5) tmp7 = tmp1 < tmp5 tmp8 = tmp7.to(tl.int8) tmp9 = tmp5 < tmp1 tmp10 = tmp9.to(tl.int8) tmp11 = tmp8 - tmp10 tmp12 = tmp11.to(tmp5.dtype) tl.store(out_ptr0 + (x4), tmp6, None) tl.store(out_ptr1 + (x4), tmp12, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k4/ck4fjenyfjidd4znygnuktfundwe4kc4ysjizfxaoiqctd2ye4xc.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu_5 # Graph fragment: # %relu_5 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%mm_8,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 128), (128, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (128, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 128), (128, 1)) assert_size_stride(primals_6, (128, 1), (1, 1)) assert_size_stride(primals_7, (128, 128), (128, 1)) assert_size_stride(primals_8, (128, 1), (1, 1)) assert_size_stride(primals_9, (4, 128), (128, 1)) assert_size_stride(primals_10, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) buf33 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat, repeat_1, sub, a_input], Original ATen: [aten.repeat, aten.sub, aten.abs, aten.sgn] stream0 = get_raw_stream(0) triton_poi_fused_abs_repeat_sgn_sub_0.run(buf0, buf1, buf33, 2048, grid=grid(2048), stream=stream0) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (16, 128), (128, 1), 0), primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] triton_poi_fused_gt_1.run(primals_4, buf3, 16, grid=grid(16), stream=stream0) del primals_4 buf4 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1], Original ATen: [aten.relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_mul_relu_where_2.run(buf3, buf2, buf4, buf5, 4, grid=grid(4), stream=stream0) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf32 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1], Original ATen: [aten.relu, aten.mul, aten.where, aten._softmax, aten.threshold_backward] triton_poi_fused__softmax_mul_relu_threshold_backward_where_3.run(buf3, buf2, buf4, buf5, buf6, buf32, 16, grid=grid(16), stream=stream0) buf7 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.mm] extern_kernels.mm(buf6, buf0, out=buf7) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf8, 512, grid=grid(512), stream=stream0) buf9 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.mm] extern_kernels.mm(buf8, primals_5, out=buf9) buf10 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) buf31 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat_2, repeat_3, sub_1, a_input_1], Original ATen: [aten.repeat, aten.sub, aten.abs, aten.sgn] triton_poi_fused_abs_repeat_sgn_sub_0.run(buf9, buf10, buf31, 2048, grid=grid(2048), stream=stream0) buf11 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf10, (16, 128), (128, 1), 0), primals_6, out=buf11) buf12 = buf5; del buf5 # reuse buf13 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [zero_vec, e_1, attention_3, attention_4], Original ATen: [aten.mul, aten.relu, aten.where, aten._softmax] triton_poi_fused__softmax_mul_relu_where_2.run(buf3, buf11, buf12, buf13, 4, grid=grid(4), stream=stream0) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf30 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [zero_vec, e_1, attention_3, attention_4], Original ATen: [aten.mul, aten.relu, aten.where, aten._softmax, aten.threshold_backward] triton_poi_fused__softmax_mul_relu_threshold_backward_where_3.run(buf3, buf11, buf12, buf13, buf14, buf30, 16, grid=grid(16), stream=stream0) buf15 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.mm] extern_kernels.mm(buf14, buf9, out=buf15) buf16 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf16, 512, grid=grid(512), stream=stream0) buf17 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.mm] extern_kernels.mm(buf16, primals_7, out=buf17) buf18 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) buf29 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat_4, repeat_5, sub_2, a_input_2], Original ATen: [aten.repeat, aten.sub, aten.abs, aten.sgn] triton_poi_fused_abs_repeat_sgn_sub_0.run(buf17, buf18, buf29, 2048, grid=grid(2048), stream=stream0) buf19 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf18, (16, 128), (128, 1), 0), primals_8, out=buf19) buf20 = buf13; del buf13 # reuse buf21 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [zero_vec, e_2, attention_6, attention_7], Original ATen: [aten.mul, aten.relu, aten.where, aten._softmax] triton_poi_fused__softmax_mul_relu_where_2.run(buf3, buf19, buf20, buf21, 4, grid=grid(4), stream=stream0) buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [zero_vec, e_2, attention_6, attention_7], Original ATen: [aten.mul, aten.relu, aten.where, aten._softmax, aten.threshold_backward] triton_poi_fused__softmax_mul_relu_threshold_backward_where_3.run(buf3, buf19, buf20, buf21, buf22, buf28, 16, grid=grid(16), stream=stream0) del buf19 del buf20 del buf21 buf23 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [h_5], Original ATen: [aten.mm] extern_kernels.mm(buf22, buf17, out=buf23) buf24 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) buf26 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat_6, repeat_7, sub_3, feat_diff], Original ATen: [aten.repeat, aten.sub, aten.abs, aten.sgn] triton_poi_fused_abs_repeat_sgn_sub_5.run(buf23, buf24, buf26, 2048, grid=grid(2048), stream=stream0) buf25 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf24, (16, 128), (128, 1), 0), reinterpret_tensor(primals_9, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf25) del primals_10 buf27 = empty_strided_cuda((4, 128), (128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_6.run(buf23, buf27, 512, grid=grid(512), stream=stream0) del buf23 return (buf25, buf3, buf6, buf8, buf14, buf16, buf22, reinterpret_tensor(buf24, (16, 128), (128, 1), 0), primals_9, buf26, buf27, reinterpret_tensor(buf17, (128, 4), (1, 128), 0), buf28, reinterpret_tensor(buf18, (128, 16), (1, 128), 0), reinterpret_tensor(primals_8, (1, 128), (1, 1), 0), buf29, reinterpret_tensor(primals_7, (128, 128), (1, 128), 0), reinterpret_tensor(buf9, (128, 4), (1, 128), 0), buf30, reinterpret_tensor(buf10, (128, 16), (1, 128), 0), reinterpret_tensor(primals_6, (1, 128), (1, 1), 0), buf31, reinterpret_tensor(primals_5, (128, 128), (1, 128), 0), reinterpret_tensor(buf0, (128, 4), (1, 128), 0), buf32, reinterpret_tensor(buf1, (128, 16), (1, 128), 0), reinterpret_tensor(primals_3, (1, 128), (1, 1), 0), buf33, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch.nn.modules.module import Module import torch.nn as nn import torch.nn.functional as F class EdgeGCN(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, include_adj=True, bias=True): super(EdgeGCN, self).__init__() self.include_adj = include_adj self.in_features = in_features + 1 if self.include_adj else in_features self.out_features = out_features self.fc = nn.Linear(self.in_features, self.out_features, bias=bias) def forward(self, feat, adj): feat_diff = (feat.unsqueeze(0).repeat(feat.shape[0], 1, 1) - feat. unsqueeze(1).repeat(1, feat.shape[0], 1)).abs() if self.include_adj: x = torch.cat((feat_diff, adj.unsqueeze(2)), 2).view(feat.shape [0] * feat.shape[0], -1) else: x = feat_diff.view(feat.shape[0] * feat.shape[0], -1) output = self.fc(x) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout=0, alpha=0.2, concat=True): super(GATLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] a_input = (h.unsqueeze(0).repeat(h.shape[0], 1, 1) - h.unsqueeze(1) .repeat(1, h.shape[0], 1)).abs() e = F.relu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h = torch.matmul(attention, h) if self.concat: return F.relu(h) else: return h def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GAT(nn.Module): def __init__(self, nfeat, nclass): super(GAT, self).__init__() self.gat1 = GATLayer(nfeat, 128) self.gat2 = GATLayer(128, 128) self.gat3 = GATLayer(128, 128) self.edge_gc = EdgeGCN(128, nclass, include_adj=False) def forward(self, feat, adj): x = self.gat1(feat, adj) x = self.gat2(x, adj) x = self.gat3(x, adj) a = self.edge_gc(x, adj) return a def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nclass': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module from torch.nn.modules.module import Module import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_abs_repeat_sgn_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex % 512 x0 = xindex % 128 x2 = xindex // 512 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x0 + 128 * x2), None, eviction_policy= 'evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.full([1], 0, tl.int32) tmp5 = tmp4 < tmp2 tmp6 = tmp5.to(tl.int8) tmp7 = tmp2 < tmp4 tmp8 = tmp7.to(tl.int8) tmp9 = tmp6 - tmp8 tmp10 = tmp9.to(tmp2.dtype) tl.store(out_ptr0 + x4, tmp3, None) tl.store(out_ptr1 + x4, tmp10, None) @triton.jit def triton_poi_fused_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_mul_relu_where_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tl.full([1], 0, tl.int32) tmp3 = triton_helpers.maximum(tmp2, tmp1) tmp4 = -8999999815811072.0 tmp5 = tl.where(tmp0, tmp3, tmp4) tmp8 = triton_helpers.maximum(tmp2, tmp7) tmp9 = tl.where(tmp6, tmp8, tmp4) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp13 = triton_helpers.maximum(tmp2, tmp12) tmp14 = tl.where(tmp11, tmp13, tmp4) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp18 = triton_helpers.maximum(tmp2, tmp17) tmp19 = tl.where(tmp16, tmp18, tmp4) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp5 - tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp9 - tmp20 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tmp14 - tmp20 tmp27 = tl_math.exp(tmp26) tmp28 = tmp25 + tmp27 tmp29 = tmp19 - tmp20 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tl.store(out_ptr0 + x0, tmp20, xmask) tl.store(out_ptr1 + x0, tmp31, xmask) @triton.jit def triton_poi_fused__softmax_mul_relu_threshold_backward_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp6 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.full([1], 0, tl.int32) tmp3 = triton_helpers.maximum(tmp2, tmp1) tmp4 = -8999999815811072.0 tmp5 = tl.where(tmp0, tmp3, tmp4) tmp7 = tmp5 - tmp6 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tmp11 = 0.0 tmp12 = tmp3 <= tmp11 tl.store(out_ptr0 + x2, tmp10, xmask) tl.store(out_ptr1 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_abs_repeat_sgn_sub_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex % 512 x0 = xindex % 128 x2 = xindex // 512 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (x0 + 128 * x2), None, eviction_policy= 'evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp5) tmp7 = tmp1 < tmp5 tmp8 = tmp7.to(tl.int8) tmp9 = tmp5 < tmp1 tmp10 = tmp9.to(tl.int8) tmp11 = tmp8 - tmp10 tmp12 = tmp11.to(tmp5.dtype) tl.store(out_ptr0 + x4, tmp6, None) tl.store(out_ptr1 + x4, tmp12, None) @triton.jit def triton_poi_fused_relu_threshold_backward_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 128), (128, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (128, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 128), (128, 1)) assert_size_stride(primals_6, (128, 1), (1, 1)) assert_size_stride(primals_7, (128, 128), (128, 1)) assert_size_stride(primals_8, (128, 1), (1, 1)) assert_size_stride(primals_9, (4, 128), (128, 1)) assert_size_stride(primals_10, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) buf33 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_repeat_sgn_sub_0[grid(2048)](buf0, buf1, buf33, 2048, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (16, 128), (128, 1), 0), primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_gt_1[grid(16)](primals_4, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 buf4 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused__softmax_mul_relu_where_2[grid(4)](buf3, buf2, buf4, buf5, 4, XBLOCK=4, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf32 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused__softmax_mul_relu_threshold_backward_where_3[grid(16) ](buf3, buf2, buf4, buf5, buf6, buf32, 16, XBLOCK=16, num_warps =1, num_stages=1) buf7 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf6, buf0, out=buf7) buf8 = buf7 del buf7 triton_poi_fused_relu_4[grid(512)](buf8, 512, XBLOCK=256, num_warps =4, num_stages=1) buf9 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf8, primals_5, out=buf9) buf10 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) buf31 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) triton_poi_fused_abs_repeat_sgn_sub_0[grid(2048)](buf9, buf10, buf31, 2048, XBLOCK=128, num_warps=4, num_stages=1) buf11 = buf2 del buf2 extern_kernels.mm(reinterpret_tensor(buf10, (16, 128), (128, 1), 0), primals_6, out=buf11) buf12 = buf5 del buf5 buf13 = buf4 del buf4 triton_poi_fused__softmax_mul_relu_where_2[grid(4)](buf3, buf11, buf12, buf13, 4, XBLOCK=4, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf30 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused__softmax_mul_relu_threshold_backward_where_3[grid(16) ](buf3, buf11, buf12, buf13, buf14, buf30, 16, XBLOCK=16, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf14, buf9, out=buf15) buf16 = buf15 del buf15 triton_poi_fused_relu_4[grid(512)](buf16, 512, XBLOCK=256, num_warps=4, num_stages=1) buf17 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf16, primals_7, out=buf17) buf18 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) buf29 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) triton_poi_fused_abs_repeat_sgn_sub_0[grid(2048)](buf17, buf18, buf29, 2048, XBLOCK=128, num_warps=4, num_stages=1) buf19 = buf11 del buf11 extern_kernels.mm(reinterpret_tensor(buf18, (16, 128), (128, 1), 0), primals_8, out=buf19) buf20 = buf13 del buf13 buf21 = buf12 del buf12 triton_poi_fused__softmax_mul_relu_where_2[grid(4)](buf3, buf19, buf20, buf21, 4, XBLOCK=4, num_warps=1, num_stages=1) buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused__softmax_mul_relu_threshold_backward_where_3[grid(16) ](buf3, buf19, buf20, buf21, buf22, buf28, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf19 del buf20 del buf21 buf23 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf22, buf17, out=buf23) buf24 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) buf26 = empty_strided_cuda((4, 4, 128), (512, 128, 1), torch.float32) triton_poi_fused_abs_repeat_sgn_sub_5[grid(2048)](buf23, buf24, buf26, 2048, XBLOCK=256, num_warps=4, num_stages=1) buf25 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_10, reinterpret_tensor(buf24, (16, 128 ), (128, 1), 0), reinterpret_tensor(primals_9, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf25) del primals_10 buf27 = empty_strided_cuda((4, 128), (128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_6[grid(512)](buf23, buf27, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf23 return buf25, buf3, buf6, buf8, buf14, buf16, buf22, reinterpret_tensor( buf24, (16, 128), (128, 1), 0 ), primals_9, buf26, buf27, reinterpret_tensor(buf17, (128, 4), (1, 128), 0), buf28, reinterpret_tensor(buf18, (128, 16), (1, 128), 0 ), reinterpret_tensor(primals_8, (1, 128), (1, 1), 0 ), buf29, reinterpret_tensor(primals_7, (128, 128), (1, 128), 0 ), reinterpret_tensor(buf9, (128, 4), (1, 128), 0 ), buf30, reinterpret_tensor(buf10, (128, 16), (1, 128), 0 ), reinterpret_tensor(primals_6, (1, 128), (1, 1), 0 ), buf31, reinterpret_tensor(primals_5, (128, 128), (1, 128), 0 ), reinterpret_tensor(buf0, (128, 4), (1, 128), 0 ), buf32, reinterpret_tensor(buf1, (128, 16), (1, 128), 0 ), reinterpret_tensor(primals_3, (1, 128), (1, 1), 0 ), buf33, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class EdgeGCN(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, include_adj=True, bias=True): super(EdgeGCN, self).__init__() self.include_adj = include_adj self.in_features = in_features + 1 if self.include_adj else in_features self.out_features = out_features self.fc = nn.Linear(self.in_features, self.out_features, bias=bias) def forward(self, feat, adj): feat_diff = (feat.unsqueeze(0).repeat(feat.shape[0], 1, 1) - feat. unsqueeze(1).repeat(1, feat.shape[0], 1)).abs() if self.include_adj: x = torch.cat((feat_diff, adj.unsqueeze(2)), 2).view(feat.shape [0] * feat.shape[0], -1) else: x = feat_diff.view(feat.shape[0] * feat.shape[0], -1) output = self.fc(x) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout=0, alpha=0.2, concat=True): super(GATLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] a_input = (h.unsqueeze(0).repeat(h.shape[0], 1, 1) - h.unsqueeze(1) .repeat(1, h.shape[0], 1)).abs() e = F.relu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h = torch.matmul(attention, h) if self.concat: return F.relu(h) else: return h def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATNew(nn.Module): def __init__(self, nfeat, nclass): super(GATNew, self).__init__() self.gat1 = GATLayer(nfeat, 128) self.gat2 = GATLayer(128, 128) self.gat3 = GATLayer(128, 128) self.edge_gc = EdgeGCN(128, nclass, include_adj=False) def forward(self, input_0, input_1): primals_1 = self.gat1.W primals_3 = self.gat1.a primals_5 = self.gat2.W primals_6 = self.gat2.a primals_7 = self.gat3.W primals_8 = self.gat3.a primals_9 = self.edge_gc.fc.weight primals_10 = self.edge_gc.fc.bias primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
hou-yz/pygcn
GAT
false
3,638
[ "MIT" ]
0
26195954035c5eaae2d6e086cfec24cad2642f2e
https://github.com/hou-yz/pygcn/tree/26195954035c5eaae2d6e086cfec24cad2642f2e
from torch.nn import Module import torch from torch.nn.modules.module import Module import torch.nn as nn import torch.nn.functional as F class EdgeGCN(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, include_adj=True, bias=True): super().__init__() self.include_adj = include_adj self.in_features = in_features + 1 if self.include_adj else in_features self.out_features = out_features self.fc = nn.Linear(self.in_features, self.out_features, bias=bias) def forward(self, feat, adj): feat_diff = (feat.unsqueeze(0).repeat(feat.shape[0], 1, 1) - feat. unsqueeze(1).repeat(1, feat.shape[0], 1)).abs() if self.include_adj: x = torch.cat((feat_diff, adj.unsqueeze(2)), 2).view(feat.shape [0] * feat.shape[0], -1) else: x = feat_diff.view(feat.shape[0] * feat.shape[0], -1) output = self.fc(x) return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout=0, alpha=0.2, concat=True): super().__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] a_input = (h.unsqueeze(0).repeat(h.shape[0], 1, 1) - h.unsqueeze(1) .repeat(1, h.shape[0], 1)).abs() e = F.relu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h = torch.matmul(attention, h) if self.concat: return F.relu(h) else: return h def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class Model(nn.Module): def __init__(self, nfeat, nclass): super().__init__() self.gat1 = GATLayer(nfeat, 128) self.gat2 = GATLayer(128, 128) self.gat3 = GATLayer(128, 128) self.edge_gc = EdgeGCN(128, nclass, include_adj=False) def forward(self, feat, adj): x = self.gat1(feat, adj) x = self.gat2(x, adj) x = self.gat3(x, adj) a = self.edge_gc(x, adj) return a def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
InvConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2v/c2vp4wevd4mmk6p3qeilou7zqojjaarvm3pedrgkmrhhjbggkpqu.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/4m/c4mesezrsrzdxpuuyqxvdzjuqjyrphys7ucdqbdgokmbugszibng.py # Topologically Sorted Source Nodes: [double], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # double => convert_element_type # Graph fragment: # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%squeeze, torch.float64), kwargs = {}) triton_poi_fused__to_copy_1 = async_compile.triton('triton_poi_fused__to_copy_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.float64) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/lz/clzjrdoqlebi4pdm72l7bnqxgktieirugz3rrrldxhmugh4eiwfe.py # Topologically Sorted Source Nodes: [float_1, logdet], Original ATen: [aten._to_copy, aten.mul] # Source node to ATen node mapping: # float_1 => convert_element_type_1 # logdet => mul # Graph fragment: # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%getitem_1, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, 16), kwargs = {}) triton_poi_fused__to_copy_mul_2 = async_compile.triton('triton_poi_fused__to_copy_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_mul_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tmp1.to(tl.float32) tmp3 = 16.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (1, 4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_2, buf0, 4, 4, grid=grid(4, 4), stream=stream0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_1, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) del buf0 buf2 = empty_strided_cuda((4, 4), (1, 4), torch.float64) # Topologically Sorted Source Nodes: [double], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_1.run(primals_2, buf2, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [double, slogdet], Original ATen: [aten._to_copy, aten._linalg_slogdet] buf3 = torch.ops.aten._linalg_slogdet.default(buf2) del buf2 buf5 = buf3[1] buf6 = buf3[2] buf7 = buf3[3] del buf3 buf8 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [float_1, logdet], Original ATen: [aten._to_copy, aten.mul] triton_poi_fused__to_copy_mul_2.run(buf5, buf8, 1, grid=grid(1), stream=stream0) del buf5 return (buf1, buf8, primals_1, primals_2, buf6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (1, 4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class InvConv2d(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = torch.qr(weight) weight = q.unsqueeze(2).unsqueeze(3) self.weight = nn.Parameter(weight) def forward(self, input): _, _, height, width = input.shape out = F.conv2d(input, self.weight) logdet = height * width * torch.slogdet(self.weight.squeeze().double() )[1].float() return out, logdet def reverse(self, output): return F.conv2d(output, self.weight.squeeze().inverse().unsqueeze(2 ).unsqueeze(3)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__to_copy_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.float64) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused__to_copy_mul_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tmp1.to(tl.float32) tmp3 = 16.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp4, None) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (1, 4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(4, 4)](primals_2, buf0, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(primals_1, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) del buf0 buf2 = empty_strided_cuda((4, 4), (1, 4), torch.float64) triton_poi_fused__to_copy_1[grid(16)](primals_2, buf2, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf3 = torch.ops.aten._linalg_slogdet.default(buf2) del buf2 buf5 = buf3[1] buf6 = buf3[2] buf7 = buf3[3] del buf3 buf8 = empty_strided_cuda((), (), torch.float32) triton_poi_fused__to_copy_mul_2[grid(1)](buf5, buf8, 1, XBLOCK=1, num_warps=1, num_stages=1) del buf5 return buf1, buf8, primals_1, primals_2, buf6, buf7 class InvConv2dNew(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = torch.qr(weight) weight = q.unsqueeze(2).unsqueeze(3) self.weight = nn.Parameter(weight) def reverse(self, output): return F.conv2d(output, self.weight.squeeze().inverse().unsqueeze(2 ).unsqueeze(3)) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
hologerry/glow-pytorch-1
InvConv2d
false
3,639
[ "MIT" ]
0
9d3f95f4ff7f0a1361796a9b2554e3c229aad9b7
https://github.com/hologerry/glow-pytorch-1/tree/9d3f95f4ff7f0a1361796a9b2554e3c229aad9b7
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = torch.qr(weight) weight = q.unsqueeze(2).unsqueeze(3) self.weight = nn.Parameter(weight) def forward(self, input): _, _, height, width = input.shape out = F.conv2d(input, self.weight) logdet = height * width * torch.slogdet(self.weight.squeeze().double() )[1].float() return out, logdet def reverse(self, output): return F.conv2d(output, self.weight.squeeze().inverse().unsqueeze(2 ).unsqueeze(3)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ExpPool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/d2/cd2gaochkaqs7zlrmbwim7yawid2opolmo4kl6i5dataqqdodzhb.py # Topologically Sorted Source Nodes: [max_1, max_2, sub_1, exp_1, sub, exp, sum_exp, sum_exp_1, exp_weight, weighted_value, sum_2], Original ATen: [aten.max, aten.sub, aten.exp, aten.sum, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # exp => exp # exp_1 => exp_1 # exp_weight => div # max_1 => max_1 # max_2 => max_2 # sub => sub # sub_1 => sub_1 # sum_2 => sum_2 # sum_exp => sum_1 # sum_exp_1 => add # weighted_value => mul # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%arg0_1, -1, True), kwargs = {}) # %max_2 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%getitem, -2, True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %getitem_2), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %getitem_2), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1, -2], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-07), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %div), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1, -2], True), kwargs = {}) triton_per_fused_add_div_exp_max_mul_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_exp_max_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_max_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_exp_max_mul_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = triton_helpers.maximum(tmp6, tmp13) tmp17 = triton_helpers.maximum(tmp15, tmp16) tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp14, tmp21) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp27 = triton_helpers.maximum(tmp25, tmp26) tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = triton_helpers.maximum(tmp22, tmp29) tmp32 = tmp31 - tmp30 tmp33 = tl_math.exp(tmp32) tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.where(xmask, tmp34, 0) tmp37 = tl.sum(tmp36, 1)[:, None] tmp38 = 1e-07 tmp39 = tmp37 + tmp38 tmp40 = tmp33 / tmp39 tmp41 = tmp31 * tmp40 tmp42 = tl.broadcast_to(tmp41, [XBLOCK, RBLOCK]) tmp44 = tl.where(xmask, tmp42, 0) tmp45 = tl.sum(tmp44, 1)[:, None] tl.store(in_out_ptr0 + (x0), tmp45, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [max_1, max_2, sub_1, exp_1, sub, exp, sum_exp, sum_exp_1, exp_weight, weighted_value, sum_2], Original ATen: [aten.max, aten.sub, aten.exp, aten.sum, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_exp_max_mul_sub_sum_0.run(buf2, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ExpPool(nn.Module): def __init__(self): super(ExpPool, self).__init__() def forward(self, feat_map): """ Numerically stable implementation of the operation Arguments: feat_map(Tensor): tensor with shape (N, C, H, W) return(Tensor): tensor with shape (N, C, 1, 1) """ EPSILON = 1e-07 _N, _C, _H, _W = feat_map.shape m, _ = torch.max(feat_map, dim=-1, keepdim=True)[0].max(dim=-2, keepdim=True) sum_exp = torch.sum(torch.exp(feat_map - m), dim=(-1, -2), keepdim=True ) sum_exp += EPSILON exp_weight = torch.exp(feat_map - m) / sum_exp weighted_value = feat_map * exp_weight return torch.sum(weighted_value, dim=(-1, -2), keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_exp_max_mul_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = triton_helpers.maximum(tmp6, tmp13) tmp17 = triton_helpers.maximum(tmp15, tmp16) tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp14, tmp21) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp27 = triton_helpers.maximum(tmp25, tmp26) tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = triton_helpers.maximum(tmp22, tmp29) tmp32 = tmp31 - tmp30 tmp33 = tl_math.exp(tmp32) tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.where(xmask, tmp34, 0) tmp37 = tl.sum(tmp36, 1)[:, None] tmp38 = 1e-07 tmp39 = tmp37 + tmp38 tmp40 = tmp33 / tmp39 tmp41 = tmp31 * tmp40 tmp42 = tl.broadcast_to(tmp41, [XBLOCK, RBLOCK]) tmp44 = tl.where(xmask, tmp42, 0) tmp45 = tl.sum(tmp44, 1)[:, None] tl.store(in_out_ptr0 + x0, tmp45, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf1 get_raw_stream(0) triton_per_fused_add_div_exp_max_mul_sub_sum_0[grid(16)](buf2, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, class ExpPoolNew(nn.Module): def __init__(self): super(ExpPoolNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
iampartho/EEE426
ExpPool
false
3,640
[ "Apache-2.0" ]
0
a706660c0efcd4adea44d54c57a34bcaa4439ec1
https://github.com/iampartho/EEE426/tree/a706660c0efcd4adea44d54c57a34bcaa4439ec1
import torch from torch import nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, feat_map): """ Numerically stable implementation of the operation Arguments: feat_map(Tensor): tensor with shape (N, C, H, W) return(Tensor): tensor with shape (N, C, 1, 1) """ EPSILON = 1e-07 _N, _C, _H, _W = feat_map.shape m, _ = torch.max(feat_map, dim=-1, keepdim=True)[0].max(dim=-2, keepdim=True) sum_exp = torch.sum(torch.exp(feat_map - m), dim=(-1, -2), keepdim=True ) sum_exp += EPSILON exp_weight = torch.exp(feat_map - m) / sum_exp weighted_value = feat_map * exp_weight return torch.sum(weighted_value, dim=(-1, -2), keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CNNCifar
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zv/czvfpj3ah2lefbwpcuw4esv23bxs5a3ab63ply3ntgbsdktepd5v.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 784) % 6 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/v7/cv7qi7gg3bpfwb3hj7zgy5jlgh7x7wdgqsfsodkjsoverxdjlf6z.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = (xindex // 14) x2 = (xindex // 1176) x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + (1184*x2)), tmp6, xmask) tl.store(out_ptr1 + (x4 + (1280*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xe/cxelxvpw3asckozc53rh36773aohp5hqpbp2nos5ymcdqhxvo4bl.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 100) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tn/ctnw4tbgfy47ppke77vu7rtiz7dl5o3ahickx4p64n7c5rmrrix6.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/jn/cjnqv3sgcv5x2iz7ij5zdad6ofabcnonrlksgsxu2ob7n274gz6b.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6m/c6m6u2ctjb4r4ra3sizrwezzkzegfp2ombflmfg3dwjfci2pen7h.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/gs/cgsvpzwol2pyh6klnjmwgbogbcrewrnkr3diy2tntyhkzjwywqsz.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {}) triton_poi_fused__log_softmax_6 = async_compile.triton('triton_poi_fused__log_softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/o6/co6cntxjesemjsuiiy4lyctyi4xtwek53cbirwghtvdb5hcnjiws.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_7 = async_compile.triton('triton_poi_fused__log_softmax_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6, ), (1, )) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120, ), (1, )) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84, ), (1, )) assert_size_stride(primals_10, (4, 84), (84, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 18816, grid=grid(18816), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4704, grid=grid(4704), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1600, grid=grid(1600), stream=stream0) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 480, grid=grid(480), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf11, primals_9, 336, grid=grid(336), stream=stream0) del primals_9 buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(primals_10, (84, 4), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_6.run(buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_7.run(buf13, buf14, 16, grid=grid(16), stream=stream0) del buf13 return (buf14, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, buf14, primals_10, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((120, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 84), (84, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.nn.functional as F class CNNCifar(nn.Module): def __init__(self, args): super(CNNCifar, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, args.num_classes) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {'args': _mock_config(num_classes=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (4, 84), (84, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (84, 4), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_6[grid(16)](buf12, buf13, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf14 = buf12 del buf12 triton_poi_fused__log_softmax_7[grid(16)](buf13, buf14, 16, XBLOCK= 16, num_warps=1, num_stages=1) del buf13 return (buf14, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, buf14, primals_10, primals_8, primals_6) class CNNCifarNew(nn.Module): def __init__(self, args): super(CNNCifarNew, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, args.num_classes) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
EugeneYuZ/RL-FL
CNNCifar
false
3,641
[ "MIT" ]
0
cb4cc2a17eda1dbf60d696e361f31e433d8dbdea
https://github.com/EugeneYuZ/RL-FL/tree/cb4cc2a17eda1dbf60d696e361f31e433d8dbdea
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, args): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, args.num_classes) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return []
Pooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/je/cje3udpfj5nwaq4lakytobuhk4kwgcmkt62m7sy65mea2frdue7u.py # Topologically Sorted Source Nodes: [avg_pool2d, sub], Original ATen: [aten.avg_pool2d, aten.sub] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # sub => sub # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [3, 3], [1, 1], [1, 1], False, False), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %arg0_1), kwargs = {}) triton_poi_fused_avg_pool2d_sub_0 = async_compile.triton('triton_poi_fused_avg_pool2d_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x3 = xindex tmp54 = tl.load(in_ptr0 + (x3), xmask) tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + x3), tmp10 & xmask, other=0.0) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + x3), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + x3), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + x3), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x3), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x3), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x3), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x3), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x3), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))*((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) + (((4) * ((4) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (4)))*((4) * ((4) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))*((4) * ((4) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))*((4) * ((4) <= (2 + x0)) + (2 + x0) * ((2 + x0) < (4)))) tmp53 = tmp51 / tmp52 tmp55 = tmp53 - tmp54 tl.store(in_out_ptr0 + (x3), tmp55, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [avg_pool2d, sub], Original ATen: [aten.avg_pool2d, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_sub_0.run(buf1, arg0_1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x3 = xindex tmp54 = tl.load(in_ptr0 + x3, xmask) tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + x3), tmp10 & xmask, other=0.0) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + x3), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + x3), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + x3), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x3, tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x3), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x3), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x3), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x3), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= - 1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (4 * (4 <= 2 + x0) + (2 + x0 ) * (2 + x0 < 4)) * (4 * (4 <= 2 + x1) + (2 + x1) * (2 + x1 < 4) ) + -1 * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (4 * (4 <= 2 + x1) + (2 + x1) * (2 + x1 < 4)) + -1 * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (4 * (4 <= 2 + x0) + (2 + x0) * (2 + x0 < 4)) tmp53 = tmp51 / tmp52 tmp55 = tmp53 - tmp54 tl.store(in_out_ptr0 + x3, tmp55, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_avg_pool2d_sub_0[grid(256)](buf1, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf1, class PoolingNew(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
hyenal/tensorflow-image-models
Pooling
false
3,642
[ "Apache-2.0" ]
0
2012be8ecc7bc23e84dc2488d3e4fe1c80dbfb2c
https://github.com/hyenal/tensorflow-image-models/tree/2012be8ecc7bc23e84dc2488d3e4fe1c80dbfb2c
import torch import torch.nn as nn class Model(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ExtResNetBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nq/cnqfeo5iu3yeiof2x33r7xnbaj7fk2w7g5swc25ak43vd4xaupdu.py # Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.native_group_norm, aten.elu] # Source node to ATen node mapping: # input_2 => add, add_1, mul_1, rsqrt, var_mean # input_3 => expm1, gt, mul_2, mul_4, where # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_6), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_3), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_2,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul_2, %mul_4), kwargs = {}) triton_per_fused_elu_native_group_norm_0 = async_compile.triton('triton_per_fused_elu_native_group_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_elu_native_group_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_elu_native_group_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp28 = 0.0 tmp29 = tmp27 > tmp28 tmp30 = 1.0 tmp31 = tmp27 * tmp30 tmp32 = libdevice.expm1(tmp31) tmp33 = tmp32 * tmp30 tmp34 = tl.where(tmp29, tmp31, tmp33) tl.store(in_out_ptr0 + (r1 + (64*x0)), tmp34, xmask) tl.store(out_ptr2 + (x0), tmp22, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/u5/cu5cyt57jdnmvmp7ergqhphxhmiitnaocaheuhyvmg4limh7mwlo.py # Topologically Sorted Source Nodes: [input_8, out, out_1], Original ATen: [aten.native_group_norm, aten.add, aten.elu] # Source node to ATen node mapping: # input_8 => add_4, add_5, mul_11, rsqrt_2, var_mean_2 # out => add_6 # out_1 => expm1_2, gt_2, mul_12, mul_14, where_2 # Graph fragment: # %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_22), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_11, %unsqueeze_19), kwargs = {}) # %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %where), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_6, 0), kwargs = {}) # %mul_12 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 1.0), kwargs = {}) # %expm1_2 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_12,), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_2, 1.0), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %mul_12, %mul_14), kwargs = {}) triton_per_fused_add_elu_native_group_norm_1 = async_compile.triton('triton_per_fused_add_elu_native_group_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_elu_native_group_norm_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_elu_native_group_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr3 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = 0.0 tmp31 = tmp29 > tmp30 tmp32 = 1.0 tmp33 = tmp29 * tmp32 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp32 tmp36 = tl.where(tmp31, tmp33, tmp35) tl.store(in_out_ptr0 + (r1 + (64*x0)), tmp36, xmask) tl.store(out_ptr2 + (x0), tmp22, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf4; del buf4 # reuse buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.native_group_norm, aten.elu] stream0 = get_raw_stream(0) triton_per_fused_elu_native_group_norm_0.run(buf6, buf0, primals_3, primals_4, buf1, buf5, 4, 64, grid=grid(4), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_5, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf7, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf8 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = buf11; del buf11 # reuse buf12 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [input_5, input_6], Original ATen: [aten.native_group_norm, aten.elu] triton_per_fused_elu_native_group_norm_0.run(buf13, buf7, primals_6, primals_7, buf8, buf12, 4, 64, grid=grid(4), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [input_7], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf14, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf15 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf19 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf20 = buf19; del buf19 # reuse buf18 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [input_8, out, out_1], Original ATen: [aten.native_group_norm, aten.add, aten.elu] triton_per_fused_add_elu_native_group_norm_1.run(buf20, buf14, primals_9, primals_10, buf6, buf15, buf18, 4, 64, grid=grid(4), stream=stream0) del primals_10 return (buf20, primals_1, primals_3, primals_5, primals_6, primals_8, primals_9, reinterpret_tensor(primals_2, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf0, reinterpret_tensor(buf1, (4, 1), (1, 1), 0), reinterpret_tensor(buf5, (4, 1), (1, 1), 0), buf6, buf7, reinterpret_tensor(buf8, (4, 1), (1, 1), 0), reinterpret_tensor(buf12, (4, 1), (1, 1), 0), buf13, buf14, reinterpret_tensor(buf15, (4, 1), (1, 1), 0), reinterpret_tensor(buf18, (4, 1), (1, 1), 0), buf20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn def conv3d(in_channels, out_channels, kernel_size, bias, padding=1): return nn.Conv3d(in_channels, out_channels, kernel_size, padding= padding, bias=bias) def create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=1): """ Create a list of modules with together constitute a single conv layer with non-linearity and optional batchnorm/groupnorm. Args: in_channels (int): number of input channels out_channels (int): number of output channels order (string): order of things, e.g. 'cr' -> conv + ReLU 'gcr' -> groupnorm + conv + ReLU 'cl' -> conv + LeakyReLU 'ce' -> conv + ELU 'bcr' -> batchnorm + conv + ReLU num_groups (int): number of groups for the GroupNorm padding (int): add zero-padding to the input Return: list of tuple (name, module) """ assert 'c' in order, 'Conv layer MUST be present' assert order[0 ] not in 'rle', 'Non-linearity cannot be the first operation in the layer' modules = [] for i, char in enumerate(order): if char == 'r': modules.append(('ReLU', nn.ReLU(inplace=True))) elif char == 'l': modules.append(('LeakyReLU', nn.LeakyReLU(negative_slope=0.1, inplace=True))) elif char == 'e': modules.append(('ELU', nn.ELU(inplace=True))) elif char == 'c': bias = not ('g' in order or 'b' in order) modules.append(('conv', conv3d(in_channels, out_channels, kernel_size, bias, padding=padding))) elif char == 'g': is_before_conv = i < order.index('c') if is_before_conv: num_channels = in_channels else: num_channels = out_channels if num_channels < num_groups: num_groups = 1 assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}' modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups, num_channels=num_channels))) elif char == 'b': is_before_conv = i < order.index('c') if is_before_conv: modules.append(('batchnorm', nn.BatchNorm3d(in_channels))) else: modules.append(('batchnorm', nn.BatchNorm3d(out_channels))) else: raise ValueError( f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']" ) return modules class SingleConv(nn.Sequential): """ Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order of operations can be specified via the `order` parameter Args: in_channels (int): number of input channels out_channels (int): number of output channels kernel_size (int): size of the convolving kernel order (string): determines the order of layers, e.g. 'cr' -> conv + ReLU 'crg' -> conv + ReLU + groupnorm 'cl' -> conv + LeakyReLU 'ce' -> conv + ELU num_groups (int): number of groups for the GroupNorm """ def __init__(self, in_channels, out_channels, kernel_size=3, order= 'crg', num_groups=8, padding=1): super(SingleConv, self).__init__() for name, module in create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=padding): self.add_module(name, module) class ExtResNetBlock(nn.Module): """ Basic UNet block consisting of a SingleConv followed by the residual block. The SingleConv takes care of increasing/decreasing the number of channels and also ensures that the number of output channels is compatible with the residual block that follows. This block can be used instead of standard DoubleConv in the Encoder module. Motivated by: https://arxiv.org/pdf/1706.00120.pdf Notice we use ELU instead of ReLU (order='cge') and put non-linearity after the groupnorm. """ def __init__(self, in_channels, out_channels, kernel_size=3, order= 'cge', num_groups=8, **kwargs): super(ExtResNetBlock, self).__init__() self.conv1 = SingleConv(in_channels, out_channels, kernel_size= kernel_size, order=order, num_groups=num_groups) self.conv2 = SingleConv(out_channels, out_channels, kernel_size= kernel_size, order=order, num_groups=num_groups) n_order = order for c in 'rel': n_order = n_order.replace(c, '') self.conv3 = SingleConv(out_channels, out_channels, kernel_size= kernel_size, order=n_order, num_groups=num_groups) if 'l' in order: self.non_linearity = nn.LeakyReLU(negative_slope=0.1, inplace=True) elif 'e' in order: self.non_linearity = nn.ELU(inplace=True) else: self.non_linearity = nn.ReLU(inplace=True) def forward(self, x): out = self.conv1(x) residual = out out = self.conv2(out) out = self.conv3(out) out += residual out = self.non_linearity(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_elu_native_group_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp28 = 0.0 tmp29 = tmp27 > tmp28 tmp30 = 1.0 tmp31 = tmp27 * tmp30 tmp32 = libdevice.expm1(tmp31) tmp33 = tmp32 * tmp30 tmp34 = tl.where(tmp29, tmp31, tmp33) tl.store(in_out_ptr0 + (r1 + 64 * x0), tmp34, xmask) tl.store(out_ptr2 + x0, tmp22, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_per_fused_add_elu_native_group_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr3 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tmp29 = tmp27 + tmp28 tmp30 = 0.0 tmp31 = tmp29 > tmp30 tmp32 = 1.0 tmp33 = tmp29 * tmp32 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp32 tmp36 = tl.where(tmp31, tmp33, tmp35) tl.store(in_out_ptr0 + (r1 + 64 * x0), tmp36, xmask) tl.store(out_ptr2 + x0, tmp22, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf4 del buf4 buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) get_raw_stream(0) triton_per_fused_elu_native_group_norm_0[grid(4)](buf6, buf0, primals_3, primals_4, buf1, buf5, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_4 buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_5, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf7, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf8 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = buf11 del buf11 buf12 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) triton_per_fused_elu_native_group_norm_0[grid(4)](buf13, buf7, primals_6, primals_7, buf8, buf12, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_7 buf14 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf14, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf15 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf19 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf20 = buf19 del buf19 buf18 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) triton_per_fused_add_elu_native_group_norm_1[grid(4)](buf20, buf14, primals_9, primals_10, buf6, buf15, buf18, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_10 return (buf20, primals_1, primals_3, primals_5, primals_6, primals_8, primals_9, reinterpret_tensor(primals_2, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf0, reinterpret_tensor(buf1, (4, 1), (1, 1), 0), reinterpret_tensor(buf5, (4, 1), (1, 1), 0), buf6, buf7, reinterpret_tensor(buf8, (4, 1), (1, 1), 0), reinterpret_tensor( buf12, (4, 1), (1, 1), 0), buf13, buf14, reinterpret_tensor(buf15, (4, 1), (1, 1), 0), reinterpret_tensor(buf18, (4, 1), (1, 1), 0), buf20 ) def conv3d(in_channels, out_channels, kernel_size, bias, padding=1): return nn.Conv3d(in_channels, out_channels, kernel_size, padding= padding, bias=bias) def create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=1): """ Create a list of modules with together constitute a single conv layer with non-linearity and optional batchnorm/groupnorm. Args: in_channels (int): number of input channels out_channels (int): number of output channels order (string): order of things, e.g. 'cr' -> conv + ReLU 'gcr' -> groupnorm + conv + ReLU 'cl' -> conv + LeakyReLU 'ce' -> conv + ELU 'bcr' -> batchnorm + conv + ReLU num_groups (int): number of groups for the GroupNorm padding (int): add zero-padding to the input Return: list of tuple (name, module) """ assert 'c' in order, 'Conv layer MUST be present' assert order[0 ] not in 'rle', 'Non-linearity cannot be the first operation in the layer' modules = [] for i, char in enumerate(order): if char == 'r': modules.append(('ReLU', nn.ReLU(inplace=True))) elif char == 'l': modules.append(('LeakyReLU', nn.LeakyReLU(negative_slope=0.1, inplace=True))) elif char == 'e': modules.append(('ELU', nn.ELU(inplace=True))) elif char == 'c': bias = not ('g' in order or 'b' in order) modules.append(('conv', conv3d(in_channels, out_channels, kernel_size, bias, padding=padding))) elif char == 'g': is_before_conv = i < order.index('c') if is_before_conv: num_channels = in_channels else: num_channels = out_channels if num_channels < num_groups: num_groups = 1 assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}' modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups, num_channels=num_channels))) elif char == 'b': is_before_conv = i < order.index('c') if is_before_conv: modules.append(('batchnorm', nn.BatchNorm3d(in_channels))) else: modules.append(('batchnorm', nn.BatchNorm3d(out_channels))) else: raise ValueError( f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']" ) return modules class SingleConv(nn.Sequential): """ Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order of operations can be specified via the `order` parameter Args: in_channels (int): number of input channels out_channels (int): number of output channels kernel_size (int): size of the convolving kernel order (string): determines the order of layers, e.g. 'cr' -> conv + ReLU 'crg' -> conv + ReLU + groupnorm 'cl' -> conv + LeakyReLU 'ce' -> conv + ELU num_groups (int): number of groups for the GroupNorm """ def __init__(self, in_channels, out_channels, kernel_size=3, order= 'crg', num_groups=8, padding=1): super(SingleConv, self).__init__() for name, module in create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=padding): self.add_module(name, module) class ExtResNetBlockNew(nn.Module): """ Basic UNet block consisting of a SingleConv followed by the residual block. The SingleConv takes care of increasing/decreasing the number of channels and also ensures that the number of output channels is compatible with the residual block that follows. This block can be used instead of standard DoubleConv in the Encoder module. Motivated by: https://arxiv.org/pdf/1706.00120.pdf Notice we use ELU instead of ReLU (order='cge') and put non-linearity after the groupnorm. """ def __init__(self, in_channels, out_channels, kernel_size=3, order= 'cge', num_groups=8, **kwargs): super(ExtResNetBlockNew, self).__init__() self.conv1 = SingleConv(in_channels, out_channels, kernel_size= kernel_size, order=order, num_groups=num_groups) self.conv2 = SingleConv(out_channels, out_channels, kernel_size= kernel_size, order=order, num_groups=num_groups) n_order = order for c in 'rel': n_order = n_order.replace(c, '') self.conv3 = SingleConv(out_channels, out_channels, kernel_size= kernel_size, order=n_order, num_groups=num_groups) if 'l' in order: self.non_linearity = nn.LeakyReLU(negative_slope=0.1, inplace=True) elif 'e' in order: self.non_linearity = nn.ELU(inplace=True) else: self.non_linearity = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.conv1.conv.weight primals_3 = self.conv1.groupnorm.weight primals_4 = self.conv1.groupnorm.bias primals_5 = self.conv2.conv.weight primals_6 = self.conv2.groupnorm.weight primals_7 = self.conv2.groupnorm.bias primals_8 = self.conv3.conv.weight primals_9 = self.conv3.groupnorm.weight primals_10 = self.conv3.groupnorm.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
hummat/convolutional_occupancy_networks
ExtResNetBlock
false
3,643
[ "MIT" ]
0
bb351edff59c196e01aa687943e19fee4ac11077
https://github.com/hummat/convolutional_occupancy_networks/tree/bb351edff59c196e01aa687943e19fee4ac11077
import torch from torch import nn def conv3d(in_channels, out_channels, kernel_size, bias, padding=1): return nn.Conv3d(in_channels, out_channels, kernel_size, padding= padding, bias=bias) def create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=1): """ Create a list of modules with together constitute a single conv layer with non-linearity and optional batchnorm/groupnorm. Args: in_channels (int): number of input channels out_channels (int): number of output channels order (string): order of things, e.g. 'cr' -> conv + ReLU 'gcr' -> groupnorm + conv + ReLU 'cl' -> conv + LeakyReLU 'ce' -> conv + ELU 'bcr' -> batchnorm + conv + ReLU num_groups (int): number of groups for the GroupNorm padding (int): add zero-padding to the input Return: list of tuple (name, module) """ assert 'c' in order, 'Conv layer MUST be present' assert order[0 ] not in 'rle', 'Non-linearity cannot be the first operation in the layer' modules = [] for i, char in enumerate(order): if char == 'r': modules.append(('ReLU', nn.ReLU(inplace=True))) elif char == 'l': modules.append(('LeakyReLU', nn.LeakyReLU(negative_slope=0.1, inplace=True))) elif char == 'e': modules.append(('ELU', nn.ELU(inplace=True))) elif char == 'c': bias = not ('g' in order or 'b' in order) modules.append(('conv', conv3d(in_channels, out_channels, kernel_size, bias, padding=padding))) elif char == 'g': is_before_conv = i < order.index('c') if is_before_conv: num_channels = in_channels else: num_channels = out_channels if num_channels < num_groups: num_groups = 1 assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}' modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups, num_channels=num_channels))) elif char == 'b': is_before_conv = i < order.index('c') if is_before_conv: modules.append(('batchnorm', nn.BatchNorm3d(in_channels))) else: modules.append(('batchnorm', nn.BatchNorm3d(out_channels))) else: raise ValueError( f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']" ) return modules class SingleConv(nn.Sequential): """ Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order of operations can be specified via the `order` parameter Args: in_channels (int): number of input channels out_channels (int): number of output channels kernel_size (int): size of the convolving kernel order (string): determines the order of layers, e.g. 'cr' -> conv + ReLU 'crg' -> conv + ReLU + groupnorm 'cl' -> conv + LeakyReLU 'ce' -> conv + ELU num_groups (int): number of groups for the GroupNorm """ def __init__(self, in_channels, out_channels, kernel_size=3, order= 'crg', num_groups=8, padding=1): super().__init__() for name, module in create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=padding): self.add_module(name, module) class Model(nn.Module): """ Basic UNet block consisting of a SingleConv followed by the residual block. The SingleConv takes care of increasing/decreasing the number of channels and also ensures that the number of output channels is compatible with the residual block that follows. This bl # ... truncated (>4000 chars) for memory efficiency
PcamPool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/4b/c4bgdlpypj3woeewvt2i3rksrpsq5fwizgew7fc2qg4hekpjtaic.py # Topologically Sorted Source Nodes: [prob_map, sum_1, sum_2], Original ATen: [aten.sigmoid, aten.sum] # Source node to ATen node mapping: # prob_map => sigmoid # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sigmoid, [2], True), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_1, [3], True), kwargs = {}) triton_poi_fused_sigmoid_sum_0 = async_compile.triton('triton_poi_fused_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tl.sigmoid(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl.sigmoid(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl.sigmoid(tmp11) tmp14 = tl.sigmoid(tmp13) tmp15 = tmp12 + tmp14 tmp17 = tl.sigmoid(tmp16) tmp18 = tmp15 + tmp17 tmp20 = tl.sigmoid(tmp19) tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = tl.sigmoid(tmp23) tmp26 = tl.sigmoid(tmp25) tmp27 = tmp24 + tmp26 tmp29 = tl.sigmoid(tmp28) tmp30 = tmp27 + tmp29 tmp32 = tl.sigmoid(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp22 + tmp33 tmp36 = tl.sigmoid(tmp35) tmp38 = tl.sigmoid(tmp37) tmp39 = tmp36 + tmp38 tmp41 = tl.sigmoid(tmp40) tmp42 = tmp39 + tmp41 tmp44 = tl.sigmoid(tmp43) tmp45 = tmp42 + tmp44 tmp46 = tmp34 + tmp45 tl.store(out_ptr0 + (x0), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wa/cwa4zte2kbak7nfbarayipc3unmldhhf2ercj6hghohcfm22vxs6.py # Topologically Sorted Source Nodes: [prob_map, weight_map, mul, sum_3], Original ATen: [aten.sigmoid, aten.div, aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # prob_map => sigmoid # sum_3 => sum_3 # weight_map => div # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sigmoid, %sum_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %div), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2], True), kwargs = {}) triton_poi_fused_div_mul_sigmoid_sum_1 = async_compile.triton('triton_poi_fused_div_mul_sigmoid_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sigmoid_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_sigmoid_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp7 = tl.load(in_ptr1 + (4 + x0 + (16*x1)), xmask) tmp12 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp13 = tl.load(in_ptr1 + (8 + x0 + (16*x1)), xmask) tmp18 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp19 = tl.load(in_ptr1 + (12 + x0 + (16*x1)), xmask) tmp2 = tl.sigmoid(tmp1) tmp4 = tmp2 / tmp3 tmp5 = tmp0 * tmp4 tmp8 = tl.sigmoid(tmp7) tmp9 = tmp8 / tmp3 tmp10 = tmp6 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tl.sigmoid(tmp13) tmp15 = tmp14 / tmp3 tmp16 = tmp12 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tl.sigmoid(tmp19) tmp21 = tmp20 / tmp3 tmp22 = tmp18 * tmp21 tmp23 = tmp17 + tmp22 tl.store(out_ptr0 + (x2), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/22/c22ds4dhddfi2vv7kw3j6vphvcnvlghhb2l5dprws7csq7qma25k.py # Topologically Sorted Source Nodes: [feat], Original ATen: [aten.sum] # Source node to ATen node mapping: # feat => sum_4 # Graph fragment: # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_3, [3], True), kwargs = {}) triton_poi_fused_sum_2 = async_compile.triton('triton_poi_fused_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [prob_map, sum_1, sum_2], Original ATen: [aten.sigmoid, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_sum_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [prob_map, weight_map, mul, sum_3], Original ATen: [aten.sigmoid, aten.div, aten.mul, aten.sum] triton_poi_fused_div_mul_sigmoid_sum_1.run(arg1_1, arg0_1, buf0, buf1, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [feat], Original ATen: [aten.sum] triton_poi_fused_sum_2.run(buf1, buf2, 16, grid=grid(16), stream=stream0) del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class PcamPool(nn.Module): def __init__(self): super(PcamPool, self).__init__() def forward(self, feat_map, logit_map): assert logit_map is not None prob_map = torch.sigmoid(logit_map) weight_map = prob_map / prob_map.sum(dim=2, keepdim=True).sum(dim=3, keepdim=True) feat = (feat_map * weight_map).sum(dim=2, keepdim=True).sum(dim=3, keepdim=True) return feat def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp35 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp37 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp40 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp43 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp1 = tl.sigmoid(tmp0) tmp3 = tl.sigmoid(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl.sigmoid(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl.sigmoid(tmp11) tmp14 = tl.sigmoid(tmp13) tmp15 = tmp12 + tmp14 tmp17 = tl.sigmoid(tmp16) tmp18 = tmp15 + tmp17 tmp20 = tl.sigmoid(tmp19) tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = tl.sigmoid(tmp23) tmp26 = tl.sigmoid(tmp25) tmp27 = tmp24 + tmp26 tmp29 = tl.sigmoid(tmp28) tmp30 = tmp27 + tmp29 tmp32 = tl.sigmoid(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp22 + tmp33 tmp36 = tl.sigmoid(tmp35) tmp38 = tl.sigmoid(tmp37) tmp39 = tmp36 + tmp38 tmp41 = tl.sigmoid(tmp40) tmp42 = tmp39 + tmp41 tmp44 = tl.sigmoid(tmp43) tmp45 = tmp42 + tmp44 tmp46 = tmp34 + tmp45 tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_poi_fused_div_mul_sigmoid_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp7 = tl.load(in_ptr1 + (4 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp13 = tl.load(in_ptr1 + (8 + x0 + 16 * x1), xmask) tmp18 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp19 = tl.load(in_ptr1 + (12 + x0 + 16 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp4 = tmp2 / tmp3 tmp5 = tmp0 * tmp4 tmp8 = tl.sigmoid(tmp7) tmp9 = tmp8 / tmp3 tmp10 = tmp6 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tl.sigmoid(tmp13) tmp15 = tmp14 / tmp3 tmp16 = tmp12 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tl.sigmoid(tmp19) tmp21 = tmp20 / tmp3 tmp22 = tmp18 * tmp21 tmp23 = tmp17 + tmp22 tl.store(out_ptr0 + x2, tmp23, xmask) @triton.jit def triton_poi_fused_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_sigmoid_sum_0[grid(16)](arg0_1, buf0, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) triton_poi_fused_div_mul_sigmoid_sum_1[grid(64)](arg1_1, arg0_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 triton_poi_fused_sum_2[grid(16)](buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 return buf2, class PcamPoolNew(nn.Module): def __init__(self): super(PcamPoolNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
iampartho/EEE426
PcamPool
false
3,644
[ "Apache-2.0" ]
0
a706660c0efcd4adea44d54c57a34bcaa4439ec1
https://github.com/iampartho/EEE426/tree/a706660c0efcd4adea44d54c57a34bcaa4439ec1
import torch from torch import nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, feat_map, logit_map): assert logit_map is not None prob_map = torch.sigmoid(logit_map) weight_map = prob_map / prob_map.sum(dim=2, keepdim=True).sum(dim=3, keepdim=True) feat = (feat_map * weight_map).sum(dim=2, keepdim=True).sum(dim=3, keepdim=True) return feat def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CAModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [gap_out], Original ATen: [aten.mean] # Source node to ATen node mapping: # gap_out => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/eb/cebpbupczy3a7z6yffgxybumq5trdt3jp5hxwuoo6w6cunzz7d7h.py # Topologically Sorted Source Nodes: [fc1_out], Original ATen: [aten.relu] # Source node to ATen node mapping: # fc1_out => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/xv/cxvgsfj3x2o5ls6evsy4rhywutbtjkwezlavric3plphgvn75mea.py # Topologically Sorted Source Nodes: [feat_map], Original ATen: [aten.mul] # Source node to ATen node mapping: # feat_map => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [gap_out], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2) del primals_2 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [fc1_out], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_3, 8, grid=grid(8), stream=stream0) del primals_3 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [feat_map], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(primals_1, buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf5, primals_1, buf1, buf3, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class CAModule(nn.Module): """ Re-implementation of Squeeze-and-Excitation (SE) block described in: *Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507* code reference: https://github.com/kobiso/CBAM-keras/blob/master/models/attention_module.py """ def __init__(self, num_channels, reduc_ratio=2): super(CAModule, self).__init__() self.num_channels = num_channels self.reduc_ratio = reduc_ratio self.fc1 = nn.Linear(num_channels, num_channels // reduc_ratio, bias=True) self.fc2 = nn.Linear(num_channels // reduc_ratio, num_channels, bias=True) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, feat_map): gap_out = feat_map.view(feat_map.size()[0], self.num_channels, -1 ).mean(dim=2) fc1_out = self.relu(self.fc1(gap_out)) fc2_out = self.sigmoid(self.fc2(fc1_out)) fc2_out = fc2_out.view(fc2_out.size()[0], fc2_out.size()[1], 1, 1) feat_map = torch.mul(feat_map, fc2_out) return feat_map def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_2, (4, 2), (1, 4 ), 0), out=buf2) del primals_2 buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(8)](buf3, primals_3, 8, XBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_2[grid(256)](primals_1, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf5, primals_1, buf1, buf3, buf4, primals_4 class CAModuleNew(nn.Module): """ Re-implementation of Squeeze-and-Excitation (SE) block described in: *Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507* code reference: https://github.com/kobiso/CBAM-keras/blob/master/models/attention_module.py """ def __init__(self, num_channels, reduc_ratio=2): super(CAModuleNew, self).__init__() self.num_channels = num_channels self.reduc_ratio = reduc_ratio self.fc1 = nn.Linear(num_channels, num_channels // reduc_ratio, bias=True) self.fc2 = nn.Linear(num_channels // reduc_ratio, num_channels, bias=True) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
iampartho/EEE426
CAModule
false
3,645
[ "Apache-2.0" ]
0
a706660c0efcd4adea44d54c57a34bcaa4439ec1
https://github.com/iampartho/EEE426/tree/a706660c0efcd4adea44d54c57a34bcaa4439ec1
import torch from torch import nn class Model(nn.Module): """ Re-implementation of Squeeze-and-Excitation (SE) block described in: *Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507* code reference: https://github.com/kobiso/CBAM-keras/blob/master/models/attention_module.py """ def __init__(self, num_channels, reduc_ratio=2): super().__init__() self.num_channels = num_channels self.reduc_ratio = reduc_ratio self.fc1 = nn.Linear(num_channels, num_channels // reduc_ratio, bias=True) self.fc2 = nn.Linear(num_channels // reduc_ratio, num_channels, bias=True) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, feat_map): gap_out = feat_map.view(feat_map.size()[0], self.num_channels, -1 ).mean(dim=2) fc1_out = self.relu(self.fc1(gap_out)) fc2_out = self.sigmoid(self.fc2(fc1_out)) fc2_out = fc2_out.view(fc2_out.size()[0], fc2_out.size()[1], 1, 1) feat_map = torch.mul(feat_map, fc2_out) return feat_map def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LogSumExpPool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/gd/cgd6udvfrxzdhsqeekexd6iof44ctktu4htfyssixsk6vr4a3ntn.py # Topologically Sorted Source Nodes: [max_1, max_2, value0, mul, exp, sum_1, mul_1, log, mul_2, add], Original ATen: [aten.max, aten.sub, aten.mul, aten.exp, aten.sum, aten.log, aten.add] # Source node to ATen node mapping: # add => add # exp => exp # log => log # max_1 => max_1 # max_2 => max_2 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # sum_1 => sum_1 # value0 => sub # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%arg0_1, -1, True), kwargs = {}) # %max_2 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%getitem, -2, True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %getitem_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 4), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1, -2], True), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.0625), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log, 0.25), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul_2), kwargs = {}) triton_per_fused_add_exp_log_max_mul_sub_sum_0 = async_compile.triton('triton_per_fused_add_exp_log_max_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_log_max_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_exp_log_max_mul_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = triton_helpers.maximum(tmp6, tmp13) tmp17 = triton_helpers.maximum(tmp15, tmp16) tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp14, tmp21) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp27 = triton_helpers.maximum(tmp25, tmp26) tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = triton_helpers.maximum(tmp22, tmp29) tmp32 = tmp31 - tmp30 tmp33 = 4.0 tmp34 = tmp32 * tmp33 tmp35 = tl_math.exp(tmp34) tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK]) tmp38 = tl.where(xmask, tmp36, 0) tmp39 = tl.sum(tmp38, 1)[:, None] tmp40 = 0.0625 tmp41 = tmp39 * tmp40 tmp42 = tl_math.log(tmp41) tmp43 = 0.25 tmp44 = tmp42 * tmp43 tmp45 = tmp30 + tmp44 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp45, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [max_1, max_2, value0, mul, exp, sum_1, mul_1, log, mul_2, add], Original ATen: [aten.max, aten.sub, aten.mul, aten.exp, aten.sum, aten.log, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_exp_log_max_mul_sub_sum_0.run(buf2, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class LogSumExpPool(nn.Module): def __init__(self, gamma): super(LogSumExpPool, self).__init__() self.gamma = gamma def forward(self, feat_map): """ Numerically stable implementation of the operation Arguments: feat_map(Tensor): tensor with shape (N, C, H, W) return(Tensor): tensor with shape (N, C, 1, 1) """ _N, _C, H, W = feat_map.shape m, _ = torch.max(feat_map, dim=-1, keepdim=True)[0].max(dim=-2, keepdim=True) value0 = feat_map - m area = 1.0 / (H * W) g = self.gamma return m + 1 / g * torch.log(area * torch.sum(torch.exp(g * value0), dim=(-1, -2), keepdim=True)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'gamma': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_exp_log_max_mul_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = triton_helpers.maximum(tmp6, tmp13) tmp17 = triton_helpers.maximum(tmp15, tmp16) tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = triton_helpers.maximum(tmp14, tmp21) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp27 = triton_helpers.maximum(tmp25, tmp26) tmp29 = triton_helpers.maximum(tmp27, tmp28) tmp30 = triton_helpers.maximum(tmp22, tmp29) tmp32 = tmp31 - tmp30 tmp33 = 4.0 tmp34 = tmp32 * tmp33 tmp35 = tl_math.exp(tmp34) tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK]) tmp38 = tl.where(xmask, tmp36, 0) tmp39 = tl.sum(tmp38, 1)[:, None] tmp40 = 0.0625 tmp41 = tmp39 * tmp40 tmp42 = tl_math.log(tmp41) tmp43 = 0.25 tmp44 = tmp42 * tmp43 tmp45 = tmp30 + tmp44 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp45, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf2 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf1 get_raw_stream(0) triton_per_fused_add_exp_log_max_mul_sub_sum_0[grid(16)](buf2, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, class LogSumExpPoolNew(nn.Module): def __init__(self, gamma): super(LogSumExpPoolNew, self).__init__() self.gamma = gamma def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
iampartho/EEE426
LogSumExpPool
false
3,647
[ "Apache-2.0" ]
0
a706660c0efcd4adea44d54c57a34bcaa4439ec1
https://github.com/iampartho/EEE426/tree/a706660c0efcd4adea44d54c57a34bcaa4439ec1
import torch from torch import nn class Model(nn.Module): def __init__(self, gamma): super().__init__() self.gamma = gamma def forward(self, feat_map): """ Numerically stable implementation of the operation Arguments: feat_map(Tensor): tensor with shape (N, C, H, W) return(Tensor): tensor with shape (N, C, 1, 1) """ _N, _C, H, W = feat_map.shape m, _ = torch.max(feat_map, dim=-1, keepdim=True)[0].max(dim=-2, keepdim=True) value0 = feat_map - m area = 1.0 / (H * W) g = self.gamma return m + 1 / g * torch.log(area * torch.sum(torch.exp(g * value0), dim=(-1, -2), keepdim=True)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SoftCrossEntropyLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nr/cnrkptzsuv7qm3ss6i6xgoxkou23z76h2vmwqkwz2zkgpdbxhedc.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ph/cph62rmrb4cnc6oylbfoig3dqp5t4t3s5ngu4raqzl4cqonxbhho.py # Topologically Sorted Source Nodes: [neg, log_softmax, loss, sum_1, truediv], Original ATen: [aten.neg, aten._log_softmax, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # loss => mul # neg => neg # sum_1 => sum_2 # truediv => div # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sub_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {}) triton_per_fused__log_softmax_div_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r1 = (rindex // 4) tmp0 = tl.load(in_ptr0 + (r2), None) tmp2 = tl.load(in_ptr1 + (r2), None) tmp3 = tl.load(in_ptr1 + (4*r1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp1 = -tmp0 tmp4 = tl_math.exp(tmp3) tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tl_math.log(tmp13) tmp15 = tmp2 - tmp14 tmp16 = tmp1 * tmp15 tmp17 = tl.broadcast_to(tmp16, [RBLOCK]) tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp20 = 0.25 tmp21 = tmp19 * tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [neg, log_softmax, loss, sum_1, truediv], Original ATen: [aten.neg, aten._log_softmax, aten.mul, aten.sum, aten.div] triton_per_fused__log_softmax_div_mul_neg_sum_1.run(buf2, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data class SoftCrossEntropyLoss(torch.nn.Module): """SoftCrossEntropyLoss (useful for label smoothing and mixup). Identical to torch.nn.CrossEntropyLoss if used with one-hot labels.""" def __init__(self): super(SoftCrossEntropyLoss, self).__init__() def forward(self, x, y): loss = -y * torch.nn.functional.log_softmax(x, -1) return torch.sum(loss) / x.shape[0] def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + r2, None) tmp2 = tl.load(in_ptr1 + r2, None) tmp3 = tl.load(in_ptr1 + 4 * r1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp1 = -tmp0 tmp4 = tl_math.exp(tmp3) tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tl_math.log(tmp13) tmp15 = tmp2 - tmp14 tmp16 = tmp1 * tmp15 tmp17 = tl.broadcast_to(tmp16, [RBLOCK]) tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp20 = 0.25 tmp21 = tmp19 * tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_div_mul_neg_sum_1[grid(1)](buf2, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, class SoftCrossEntropyLossNew(torch.nn.Module): """SoftCrossEntropyLoss (useful for label smoothing and mixup). Identical to torch.nn.CrossEntropyLoss if used with one-hot labels.""" def __init__(self): super(SoftCrossEntropyLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
i-murray/pycls
SoftCrossEntropyLoss
false
3,648
[ "MIT" ]
0
858dac527eb11732ba08b94162d18b53454b9018
https://github.com/i-murray/pycls/tree/858dac527eb11732ba08b94162d18b53454b9018
import torch import torch.utils.data class Model(torch.nn.Module): """SoftCrossEntropyLoss (useful for label smoothing and mixup). Identical to torch.nn.CrossEntropyLoss if used with one-hot labels.""" def __init__(self): super().__init__() def forward(self, x, y): loss = -y * torch.nn.functional.log_softmax(x, -1) return torch.sum(loss) / x.shape[0] def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/mc/cmcxguhvrckxnxqkhfotbmj3vdlzapdgkp6bawdnt3h7re2njhzt.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 200 xnumel = 50 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 50 y1 = (yindex // 50) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (50*x2) + (2500*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (50*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kp/ckpuihwg5hrdcezmnbt7fwnjnbs5scxo3ktawi5uinylb34bgv5e.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 51200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 50) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 50, 50), (2500, 50, 1)) assert_size_stride(primals_2, (256, 50, 3), (150, 3, 1)) assert_size_stride(primals_3, (256, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 50, 50), (2500, 50, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 200, 50, grid=grid(200, 50), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 256, 50), (12800, 50, 1)) del buf0 buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 256, 50), (12800, 50, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_3, buf3, 51200, grid=grid(51200), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 50, 256), (12800, 1, 50), 0), primals_2, reinterpret_tensor(primals_1, (4, 50, 50), (2500, 1, 50), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 50, 50), (2500, 50, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, 50, 3), (150, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CNN(nn.Module): def __init__(self, input_size=50, hidden_size=256, dropout=0, kernel_size=3, padding=1, activation_function=F.relu): """ Args: input_size: dimention of input embedding kernel_size: kernel_size for CNN padding: padding for CNN hidden_size: hidden size """ super().__init__() self.conv = nn.Conv1d(input_size, hidden_size, kernel_size, padding =padding) self.act = activation_function self.dropout = nn.Dropout(dropout) def forward(self, x): """ Args: input features: (B, L, I_EMBED) Return: output features: (B, H_EMBED) """ x = x.transpose(1, 2) x = self.conv(x) x = self.act(x) x = self.dropout(x) x = x.transpose(1, 2) return x def get_inputs(): return [torch.rand([4, 50, 50])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 200 xnumel = 50 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 50 y1 = yindex // 50 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 50 * x2 + 2500 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 50 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 50 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 50, 50), (2500, 50, 1)) assert_size_stride(primals_2, (256, 50, 3), (150, 3, 1)) assert_size_stride(primals_3, (256,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 50, 50), (2500, 50, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(200, 50)](primals_1, buf0, 200, 50, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 256, 50), (12800, 50, 1)) del buf0 buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 256, 50), (12800, 50, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_1[grid(51200)]( buf2, primals_3, buf3, 51200, XBLOCK=256, num_warps=4, num_stages=1 ) del primals_3 return reinterpret_tensor(buf2, (4, 50, 256), (12800, 1, 50), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 50, 50), (2500, 1, 50), 0), buf3 class CNNNew(nn.Module): def __init__(self, input_size=50, hidden_size=256, dropout=0, kernel_size=3, padding=1, activation_function=F.relu): """ Args: input_size: dimention of input embedding kernel_size: kernel_size for CNN padding: padding for CNN hidden_size: hidden size """ super().__init__() self.conv = nn.Conv1d(input_size, hidden_size, kernel_size, padding =padding) self.act = activation_function self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
igorvlnascimento/DeepREF
CNN
false
3,649
[ "MIT" ]
0
0fed8120571e44e12ee3d1861289bc101c0a275f
https://github.com/igorvlnascimento/DeepREF/tree/0fed8120571e44e12ee3d1861289bc101c0a275f
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_size=50, hidden_size=256, dropout=0, kernel_size=3, padding=1, activation_function=F.relu): """ Args: input_size: dimention of input embedding kernel_size: kernel_size for CNN padding: padding for CNN hidden_size: hidden size """ super().__init__() self.conv = nn.Conv1d(input_size, hidden_size, kernel_size, padding =padding) self.act = activation_function self.dropout = nn.Dropout(dropout) def forward(self, x): """ Args: input features: (B, L, I_EMBED) Return: output features: (B, H_EMBED) """ x = x.transpose(1, 2) x = self.conv(x) x = self.act(x) x = self.dropout(x) x = x.transpose(1, 2) return x def get_inputs(): return [torch.rand([4, 50, 50])] def get_init_inputs(): return []
ConvNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/2a/c2a5x3lmijjikcbyyqr7oqp3aa6mlrzop2vdgza4cek7rufodq4n.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 900) % 5 x2 = (xindex // 4500) x4 = xindex % 4500 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4 + (4512*x2)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ry/cryp45wy5tetyxe6x4uzgcaaplymg2eg7uh4zc3y32mf2gi6swnn.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4500 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 15 x1 = (xindex // 15) % 75 x2 = (xindex // 1125) x3 = xindex % 1125 tmp0 = tl.load(in_ptr0 + ((2*x0) + (60*x1) + (4512*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (60*x1) + (4512*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (30 + (2*x0) + (60*x1) + (4512*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + (2*x0) + (60*x1) + (4512*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3 + (1152*x2)), tmp6, xmask) tl.store(out_ptr1 + (x3 + (1152*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/dj/cdjrmswdpo2ny6lxtz44ln4wwfd6vucmvhuhlqmadddizfibfau6.py # Topologically Sorted Source Nodes: [x_3, x_5], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_3 => convolution_1 # x_5 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 169) % 8 x2 = (xindex // 1352) x4 = xindex % 1352 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4 + (1376*x2)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ng/cngpiqxf2niome2ouzfex2ypeconezjym5pzdh6ruogifl2sgjja.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_6 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) % 8 x3 = (xindex // 288) x4 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (26*x1) + (169*x2) + (1376*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (26*x1) + (169*x2) + (1376*x3)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (13 + (2*x0) + (26*x1) + (169*x2) + (1376*x3)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (14 + (2*x0) + (26*x1) + (169*x2) + (1376*x3)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x4), tmp15, xmask) tl.store(out_ptr1 + (x4), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (5, 1, 6, 6), (36, 36, 6, 1)) assert_size_stride(primals_2, (5, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (8, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_5, (8, ), (1, )) assert_size_stride(primals_6, (10, 288), (288, 1)) assert_size_stride(primals_7, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 5, 30, 30), (4500, 900, 30, 1)) buf1 = empty_strided_cuda((4, 5, 30, 30), (4512, 900, 30, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 18000, grid=grid(18000), stream=stream0) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 5, 15, 15), (1152, 225, 15, 1), torch.float32) buf3 = empty_strided_cuda((4, 5, 15, 15), (1152, 225, 15, 1), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4500, grid=grid(4500), stream=stream0) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 8, 13, 13), (1352, 169, 13, 1)) buf5 = empty_strided_cuda((4, 8, 13, 13), (1376, 169, 13, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf4, primals_5, buf5, 5408, grid=grid(5408), stream=stream0) del buf4 del primals_5 buf6 = empty_strided_cuda((4, 8, 6, 6), (288, 36, 6, 1), torch.int8) buf7 = empty_strided_cuda((4, 8, 6, 6), (288, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1152, grid=grid(1152), stream=stream0) buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 288), (288, 1), 0), reinterpret_tensor(primals_6, (288, 10), (1, 288), 0), alpha=1, beta=1, out=buf8) del primals_7 return (buf8, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 288), (288, 1), 0), primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((5, 1, 6, 6), (36, 36, 6, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((10, 288), (288, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 5, 6, 2) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(5, 8, 3, 1) self.drp1 = nn.Dropout2d(0.25) self.pool2 = nn.MaxPool2d(2, 2) self.lin1 = nn.Linear(288, 10) def forward(self, x): x = self.conv1(x) x = torch.relu(x) x = self.pool1(x) x = self.conv2(x) x = self.drp1(x) x = torch.relu(x) x = self.pool2(x) x = x.view(-1, 288) x = self.lin1(x) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 900 % 5 x2 = xindex // 4500 x4 = xindex % 4500 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4 + 4512 * x2), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4500 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 15 x1 = xindex // 15 % 75 x2 = xindex // 1125 x3 = xindex % 1125 tmp0 = tl.load(in_ptr0 + (2 * x0 + 60 * x1 + 4512 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 60 * x1 + 4512 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (30 + 2 * x0 + 60 * x1 + 4512 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (31 + 2 * x0 + 60 * x1 + 4512 * x2), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3 + 1152 * x2), tmp6, xmask) tl.store(out_ptr1 + (x3 + 1152 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 5408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 169 % 8 x2 = xindex // 1352 x4 = xindex % 1352 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4 + 1376 * x2), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 % 8 x3 = xindex // 288 x4 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 26 * x1 + 169 * x2 + 1376 * x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 26 * x1 + 169 * x2 + 1376 * x3), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (13 + 2 * x0 + 26 * x1 + 169 * x2 + 1376 * x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (14 + 2 * x0 + 26 * x1 + 169 * x2 + 1376 * x3 ), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x4, tmp15, xmask) tl.store(out_ptr1 + x4, tmp16, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (5, 1, 6, 6), (36, 36, 6, 1)) assert_size_stride(primals_2, (5,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (8, 5, 3, 3), (45, 9, 3, 1)) assert_size_stride(primals_5, (8,), (1,)) assert_size_stride(primals_6, (10, 288), (288, 1)) assert_size_stride(primals_7, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 5, 30, 30), (4500, 900, 30, 1)) buf1 = empty_strided_cuda((4, 5, 30, 30), (4512, 900, 30, 1), torch .float32) get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18000)](buf0, primals_2, buf1, 18000, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 5, 15, 15), (1152, 225, 15, 1), torch .float32) buf3 = empty_strided_cuda((4, 5, 15, 15), (1152, 225, 15, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4500)](buf1, buf2, buf3, 4500, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 8, 13, 13), (1352, 169, 13, 1)) buf5 = empty_strided_cuda((4, 8, 13, 13), (1376, 169, 13, 1), torch .float32) triton_poi_fused_convolution_relu_2[grid(5408)](buf4, primals_5, buf5, 5408, XBLOCK=128, num_warps=4, num_stages=1) del buf4 del primals_5 buf6 = empty_strided_cuda((4, 8, 6, 6), (288, 36, 6, 1), torch.int8) buf7 = empty_strided_cuda((4, 8, 6, 6), (288, 36, 6, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_3[grid(1152)](buf5, buf6, buf7, 1152, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 288), (288, 1), 0), reinterpret_tensor(primals_6, (288, 10), (1, 288), 0), alpha=1, beta=1, out=buf8) del primals_7 return (buf8, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 288), (288, 1), 0), primals_6) class ConvNetNew(nn.Module): def __init__(self): super(ConvNetNew, self).__init__() self.conv1 = nn.Conv2d(1, 5, 6, 2) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(5, 8, 3, 1) self.drp1 = nn.Dropout2d(0.25) self.pool2 = nn.MaxPool2d(2, 2) self.lin1 = nn.Linear(288, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.lin1.weight primals_7 = self.lin1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
iOsnaaente/Faculdade_ECA-UFSM
ConvNet
false
3,650
[ "MIT" ]
0
aea8b8d66169b073c439b47ad990e45695cbe953
https://github.com/iOsnaaente/Faculdade_ECA-UFSM/tree/aea8b8d66169b073c439b47ad990e45695cbe953
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 5, 6, 2) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(5, 8, 3, 1) self.drp1 = nn.Dropout2d(0.25) self.pool2 = nn.MaxPool2d(2, 2) self.lin1 = nn.Linear(288, 10) def forward(self, x): x = self.conv1(x) x = torch.relu(x) x = self.pool1(x) x = self.conv2(x) x = self.drp1(x) x = torch.relu(x) x = self.pool2(x) x = x.view(-1, 288) x = self.lin1(x) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
RAddFloat
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/xd/cxdyxohs354ae5dmhtjnb76wzcmq2n5iq7hex5kfcfnaovy4nsee.py # Topologically Sorted Source Nodes: [y, add_1, y_1, add_3, y_2, x], Original ATen: [aten.add] # Source node to ATen node mapping: # add_1 => add_1 # add_3 => add_3 # x => add_5 # y => add # y_1 => add_2 # y_2 => add_4 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_2), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, 1), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %arg0_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tmp2 + tmp2 tmp4 = tmp3 + tmp1 tmp5 = tmp4 + tmp4 tmp6 = tmp5 + tmp1 tmp7 = tmp6 + tmp0 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y, add_1, y_1, add_3, y_2, x], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch._utils class RAddFloat(torch.nn.Module): def __init__(self): super(RAddFloat, self).__init__() def forward(self, x): y = 1.0 + x y = y + y + 1 y = y + y + 1 x = y + x return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tmp2 + tmp2 tmp4 = tmp3 + tmp1 tmp5 = tmp4 + tmp4 tmp6 = tmp5 + tmp1 tmp7 = tmp6 + tmp0 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class RAddFloatNew(torch.nn.Module): def __init__(self): super(RAddFloatNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ijinjay/torch2mindspore
RAddFloat
false
3,652
[ "MIT" ]
0
e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
https://github.com/ijinjay/torch2mindspore/tree/e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
import torch import torch._utils class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): y = 1.0 + x y = y + y + 1 y = y + y + 1 x = y + x return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6s/c6se4jw6f7lnlu6va32hwqcub3je5ji3beewgwugqkhierl6x4dq.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 9 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2u/c2ugr235lp7hjoeji4mzlplxg2zvzygy2xvsjv2bvmzp6eggn7yk.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (9, 4), (4, 1)) assert_size_stride(primals_2, (9, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 9), (9, 1)) assert_size_stride(primals_5, (2, ), (1, )) assert_size_stride(primals_6, (9, 2), (2, 1)) assert_size_stride(primals_7, (9, ), (1, )) assert_size_stride(primals_8, (4, 9), (9, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 9), (9, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 9), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 9), (144, 36, 9, 1), 0); del buf0 # reuse buf9 = empty_strided_cuda((4, 4, 4, 9), (144, 36, 9, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 576, grid=grid(576), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 9), (9, 1), 0), reinterpret_tensor(primals_4, (9, 2), (1, 9), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf8, 128, grid=grid(128), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 9), (9, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 2), (2, 1), 0), reinterpret_tensor(primals_6, (2, 9), (1, 2), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 9), (144, 36, 9, 1), 0); del buf4 # reuse buf7 = empty_strided_cuda((4, 4, 4, 9), (144, 36, 9, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_7, buf7, 576, grid=grid(576), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 9), (9, 1), 0), reinterpret_tensor(primals_8, (9, 4), (1, 9), 0), alpha=1, beta=1, out=buf6) del primals_9 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 9), (9, 1), 0), reinterpret_tensor(buf3, (64, 2), (2, 1), 0), reinterpret_tensor(buf5, (64, 9), (9, 1), 0), primals_8, buf7, primals_6, buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((9, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((9, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 9), (9, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((9, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((9, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 9), (9, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_size, output_size): super(Model, self).__init__() hidden2_size = int(input_size / 2) hidden1_size = int((input_size + hidden2_size) * 3 / 2) hidden3_size = int((output_size + hidden2_size) * 3 / 2) self.hidden1 = nn.Linear(input_size, hidden1_size) self.hidden2 = nn.Linear(hidden1_size, hidden2_size) self.hidden3 = nn.Linear(hidden2_size, hidden3_size) nn.init.xavier_uniform_(self.hidden1.weight) nn.init.xavier_uniform_(self.hidden2.weight) nn.init.xavier_uniform_(self.hidden3.weight) self.predict = nn.Linear(hidden3_size, output_size) nn.init.xavier_uniform_(self.predict.weight) def forward(self, x): x = F.relu(self.hidden1(x)) x = F.relu(self.hidden2(x)) x = F.relu(self.hidden3(x)) x = self.predict(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 9 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (9, 4), (4, 1)) assert_size_stride(primals_2, (9,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 9), (9, 1)) assert_size_stride(primals_5, (2,), (1,)) assert_size_stride(primals_6, (9, 2), (2, 1)) assert_size_stride(primals_7, (9,), (1,)) assert_size_stride(primals_8, (4, 9), (9, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 9), (9, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 9), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 9), (144, 36, 9, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 9), (144, 36, 9, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(576)](buf1, primals_2, buf9, 576, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 9), (9, 1), 0), reinterpret_tensor(primals_4, (9, 2), (1, 9), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(128)](buf3, primals_5, buf8, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 9), (9, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 2), (2, 1), 0), reinterpret_tensor(primals_6, (2, 9), (1, 2), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 9), (144, 36, 9, 1), 0) del buf4 buf7 = empty_strided_cuda((4, 4, 4, 9), (144, 36, 9, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(576)](buf5, primals_7, buf7, 576, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 9), ( 9, 1), 0), reinterpret_tensor(primals_8, (9, 4), (1, 9), 0), alpha=1, beta=1, out=buf6) del primals_9 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 9), (9, 1), 0), reinterpret_tensor( buf3, (64, 2), (2, 1), 0), reinterpret_tensor(buf5, (64, 9), (9, 1), 0 ), primals_8, buf7, primals_6, buf8, primals_4, buf9 class ModelNew(nn.Module): def __init__(self, input_size, output_size): super(ModelNew, self).__init__() hidden2_size = int(input_size / 2) hidden1_size = int((input_size + hidden2_size) * 3 / 2) hidden3_size = int((output_size + hidden2_size) * 3 / 2) self.hidden1 = nn.Linear(input_size, hidden1_size) self.hidden2 = nn.Linear(hidden1_size, hidden2_size) self.hidden3 = nn.Linear(hidden2_size, hidden3_size) nn.init.xavier_uniform_(self.hidden1.weight) nn.init.xavier_uniform_(self.hidden2.weight) nn.init.xavier_uniform_(self.hidden3.weight) self.predict = nn.Linear(hidden3_size, output_size) nn.init.xavier_uniform_(self.predict.weight) def forward(self, input_0): primals_1 = self.hidden1.weight primals_2 = self.hidden1.bias primals_4 = self.hidden2.weight primals_5 = self.hidden2.bias primals_6 = self.hidden3.weight primals_7 = self.hidden3.bias primals_8 = self.predict.weight primals_9 = self.predict.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
iasakura/tiramisu
Model
false
3,653
[ "MIT" ]
0
71aae95424dcca6ab920ab13e6e882006f13629d
https://github.com/iasakura/tiramisu/tree/71aae95424dcca6ab920ab13e6e882006f13629d
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_size, output_size): super(Model, self).__init__() hidden2_size = int(input_size / 2) hidden1_size = int((input_size + hidden2_size) * 3 / 2) hidden3_size = int((output_size + hidden2_size) * 3 / 2) self.hidden1 = nn.Linear(input_size, hidden1_size) self.hidden2 = nn.Linear(hidden1_size, hidden2_size) self.hidden3 = nn.Linear(hidden2_size, hidden3_size) nn.init.xavier_uniform_(self.hidden1.weight) nn.init.xavier_uniform_(self.hidden2.weight) nn.init.xavier_uniform_(self.hidden3.weight) self.predict = nn.Linear(hidden3_size, output_size) nn.init.xavier_uniform_(self.predict.weight) def forward(self, x): x = F.relu(self.hidden1(x)) x = F.relu(self.hidden2(x)) x = F.relu(self.hidden3(x)) x = self.predict(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Padding2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/iq/ciqp5xonkke4zoz2evvj4naf46bmpwho72gfpyhpnulzri7k6phd.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # y => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [1, 0, 0, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tl.full([1], 7, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = (-1) + x0 tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + ((-1) + x0 + (7*x1) + (49*x2)), tmp6 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 return (buf1, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch._utils class Padding2(torch.nn.Module): def __init__(self, input_channel): super(Padding2, self).__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, x): x1 = self.conv(x) y = torch.nn.functional.pad(x1, (1, 0, 0, 1)) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tl.full([1], 7, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = -1 + x0 tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + (-1 + x0 + 7 * x1 + 49 * x2), tmp6 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(1024)](buf0, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 return buf1, primals_1, primals_2 class Padding2New(torch.nn.Module): def __init__(self, input_channel): super(Padding2New, self).__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
ijinjay/torch2mindspore
Padding2
false
3,654
[ "MIT" ]
0
e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
https://github.com/ijinjay/torch2mindspore/tree/e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
import torch import torch._utils class Model(torch.nn.Module): def __init__(self, input_channel): super().__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, x): x1 = self.conv(x) y = torch.nn.functional.pad(x1, (1, 0, 0, 1)) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MolDQN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/az/cazao7d5hdb3kcfc76acvd3yerra6cq3h4spci3xujm27v6xwinj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/bf/cbfbt6sdm6aj5xj3lrjyhjocam5bavcembflar6dda7e5yjj6ple.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/h7/ch7av6xnulewt5b7odqowg5upc5aaxv4uylilvlgoap3w6rnompj.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/t3/ct3tdcx6qlvdx65jxeldoblalngufi4gct7wnoypbb646arghfyk.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu_3 # Graph fragment: # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (1024, 4), (4, 1)) assert_size_stride(primals_2, (1024, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (512, 1024), (1024, 1)) assert_size_stride(primals_5, (512, ), (1, )) assert_size_stride(primals_6, (128, 512), (512, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (32, 128), (128, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (4, 32), (32, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf0 # reuse buf12 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf12, 65536, grid=grid(65536), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_4, (1024, 512), (1, 1024), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf2 # reuse buf11 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf11, 32768, grid=grid(32768), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 128), (1, 512), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf4 # reuse buf10 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf10, 8192, grid=grid(8192), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 32), (1, 128), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf6 # reuse buf9 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf7, primals_9, buf9, 2048, grid=grid(2048), stream=stream0) del primals_9 buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 32), (32, 1), 0), reinterpret_tensor(primals_10, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf8) del primals_11 return (reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf3, (64, 512), (512, 1), 0), reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(buf7, (64, 32), (32, 1), 0), primals_10, buf9, primals_8, buf10, primals_6, buf11, primals_4, buf12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MolDQN(nn.Module): def __init__(self, input_length, output_length): super(MolDQN, self).__init__() self.linear_1 = nn.Linear(input_length, 1024) self.linear_2 = nn.Linear(1024, 512) self.linear_3 = nn.Linear(512, 128) self.linear_4 = nn.Linear(128, 32) self.linear_5 = nn.Linear(32, output_length) self.activation = nn.ReLU() def forward(self, x): x = self.activation(self.linear_1(x)) x = self.activation(self.linear_2(x)) x = self.activation(self.linear_3(x)) x = self.activation(self.linear_4(x)) x = self.linear_5(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_length': 4, 'output_length': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 1024 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (1024, 4), (4, 1)) assert_size_stride(primals_2, (1024,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (512, 1024), (1024, 1)) assert_size_stride(primals_5, (512,), (1,)) assert_size_stride(primals_6, (128, 512), (512, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (32, 128), (128, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (4, 32), (32, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0) del buf0 buf12 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf1, primals_2, buf12, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0 ), reinterpret_tensor(primals_4, (1024, 512), (1, 1024), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 512), (8192, 2048, 512, 1), 0 ) del buf2 buf11 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(32768)](buf3, primals_5, buf11, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 128), (1, 512), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf4 buf10 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(8192)](buf5, primals_7, buf10, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 32), (1, 128), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf6 buf9 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(2048)](buf7, primals_9, buf9, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 32), (32, 1), 0), reinterpret_tensor(primals_10, (32, 4), (1, 32), 0 ), alpha=1, beta=1, out=buf8) del primals_11 return reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0 ), reinterpret_tensor(buf3, (64, 512), (512, 1), 0 ), reinterpret_tensor(buf5, (64, 128), (128, 1), 0 ), reinterpret_tensor(buf7, (64, 32), (32, 1), 0 ), primals_10, buf9, primals_8, buf10, primals_6, buf11, primals_4, buf12 class MolDQNNew(nn.Module): def __init__(self, input_length, output_length): super(MolDQNNew, self).__init__() self.linear_1 = nn.Linear(input_length, 1024) self.linear_2 = nn.Linear(1024, 512) self.linear_3 = nn.Linear(512, 128) self.linear_4 = nn.Linear(128, 32) self.linear_5 = nn.Linear(32, output_length) self.activation = nn.ReLU() def forward(self, input_0): primals_1 = self.linear_1.weight primals_2 = self.linear_1.bias primals_4 = self.linear_2.weight primals_5 = self.linear_2.bias primals_6 = self.linear_3.weight primals_7 = self.linear_3.bias primals_8 = self.linear_4.weight primals_9 = self.linear_4.bias primals_10 = self.linear_5.weight primals_11 = self.linear_5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
iamchosenlee/MolDQN-pytorch
MolDQN
false
3,655
[ "MIT" ]
0
66bd1e067e439e49abc77d21089d3baf065317d4
https://github.com/iamchosenlee/MolDQN-pytorch/tree/66bd1e067e439e49abc77d21089d3baf065317d4
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_length, output_length): super().__init__() self.linear_1 = nn.Linear(input_length, 1024) self.linear_2 = nn.Linear(1024, 512) self.linear_3 = nn.Linear(512, 128) self.linear_4 = nn.Linear(128, 32) self.linear_5 = nn.Linear(32, output_length) self.activation = nn.ReLU() def forward(self, x): x = self.activation(self.linear_1(x)) x = self.activation(self.linear_2(x)) x = self.activation(self.linear_3(x)) x = self.activation(self.linear_4(x)) x = self.linear_5(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Padding1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nz/cnzfzttz4bre3dpu3mwjslpg46o6h7g2lz7i2hur6iedmy4iym2h.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # y => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [0, 1, 0, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 7, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (x0 + (7*x1) + (49*x2)), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 return (buf1, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch._utils class Padding1(torch.nn.Module): def __init__(self, input_channel): super(Padding1, self).__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, x): x1 = self.conv(x) y = torch.nn.functional.pad(x1, (0, 1, 0, 1)) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 7, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (x0 + 7 * x1 + 49 * x2), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(1024)](buf0, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 return buf1, primals_1, primals_2 class Padding1New(torch.nn.Module): def __init__(self, input_channel): super(Padding1New, self).__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
ijinjay/torch2mindspore
Padding1
false
3,656
[ "MIT" ]
0
e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
https://github.com/ijinjay/torch2mindspore/tree/e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
import torch import torch._utils class Model(torch.nn.Module): def __init__(self, input_channel): super().__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, x): x1 = self.conv(x) y = torch.nn.functional.pad(x1, (0, 1, 0, 1)) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Padding3
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/26/c26a3tkhncw62apcux73ofp7eshrfuwpsu53giiy6sjx6auxypfy.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # y => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [0, 1, 1, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x3 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = x0 tmp4 = tl.full([1], 7, tl.int64) tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + ((-7) + x0 + (7*x1) + (49*x2)), tmp6 & xmask, other=0.0) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 return (buf1, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch._utils class Padding3(torch.nn.Module): def __init__(self, input_channel): super(Padding3, self).__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, x): x1 = self.conv(x) y = torch.nn.functional.pad(x1, (0, 1, 1, 0)) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x3 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = x0 tmp4 = tl.full([1], 7, tl.int64) tmp5 = tmp3 < tmp4 tmp6 = tmp2 & tmp5 tmp7 = tl.load(in_ptr0 + (-7 + x0 + 7 * x1 + 49 * x2), tmp6 & xmask, other=0.0) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(1024)](buf0, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 return buf1, primals_1, primals_2 class Padding3New(torch.nn.Module): def __init__(self, input_channel): super(Padding3New, self).__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
ijinjay/torch2mindspore
Padding3
false
3,657
[ "MIT" ]
0
e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
https://github.com/ijinjay/torch2mindspore/tree/e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
import torch import torch._utils class Model(torch.nn.Module): def __init__(self, input_channel): super().__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, x): x1 = self.conv(x) y = torch.nn.functional.pad(x1, (0, 1, 1, 0)) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SP
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/l5/cl5b6spvyoawk3rk5eatjxs6crkxt5h56dutf76hem45gsxd2mev.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_12, %slice_16, %slice_20, %slice_24], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 4) % 16 x0 = xindex % 2 x1 = (xindex // 2) % 2 x3 = (xindex // 64) x4 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2) + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1) + (16*((-4) + x2)) + (64*x3)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1) + (16*((-8) + x2)) + (64*x3)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1) + (16*((-12) + x2)) + (64*x3)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x4), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._utils def sp_init(x): x01 = x[:, :, 0::2, :] x02 = x[:, :, 1::2, :] x_LL = x01[:, :, :, 0::2] x_HL = x02[:, :, :, 0::2] x_LH = x01[:, :, :, 1::2] x_HH = x02[:, :, :, 1::2] return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) class SP(nn.Module): def __init__(self): super(SP, self).__init__() self.requires_grad = False def forward(self, x): return sp_init(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 4 % 16 x0 = xindex % 2 x1 = xindex // 2 % 2 x3 = xindex // 64 x4 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2 + 64 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1 + 16 * (-4 + x2) + 64 * x3), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1 + 16 * (-8 + x2) + 64 * x3), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1 + 16 * (-12 + x2) + 64 * x3), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x4, tmp22, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, def sp_init(x): x01 = x[:, :, 0::2, :] x02 = x[:, :, 1::2, :] x_LL = x01[:, :, :, 0::2] x_HL = x02[:, :, :, 0::2] x_LH = x01[:, :, :, 1::2] x_HH = x02[:, :, :, 1::2] return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) class SPNew(nn.Module): def __init__(self): super(SPNew, self).__init__() self.requires_grad = False def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ijinjay/torch2mindspore
SP
false
3,658
[ "MIT" ]
0
e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
https://github.com/ijinjay/torch2mindspore/tree/e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
import torch import torch.nn as nn import torch._utils def sp_init(x): x01 = x[:, :, 0::2, :] x02 = x[:, :, 1::2, :] x_LL = x01[:, :, :, 0::2] x_HL = x02[:, :, :, 0::2] x_LH = x01[:, :, :, 1::2] x_HH = x02[:, :, :, 1::2] return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) class Model(nn.Module): def __init__(self): super().__init__() self.requires_grad = False def forward(self, x): return sp_init(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Padding4
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pt/cptfjfcwjhflkrbhdtbd6tuvc2sqx5mql6ugmfunn7e3gzkwwk34.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # y => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [1, 0, 1, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = (-1) + x0 tmp4 = tmp3 >= tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-8) + x0 + (7*x1) + (49*x2)), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 return (buf1, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch._utils class Padding4(torch.nn.Module): def __init__(self, input_channel): super(Padding4, self).__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, x): x1 = self.conv(x) y = torch.nn.functional.pad(x1, (1, 0, 1, 0)) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = -1 + x0 tmp4 = tmp3 >= tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-8 + x0 + 7 * x1 + 49 * x2), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp6, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(1024)](buf0, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 return buf1, primals_1, primals_2 class Padding4New(torch.nn.Module): def __init__(self, input_channel): super(Padding4New, self).__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
ijinjay/torch2mindspore
Padding4
false
3,659
[ "MIT" ]
0
e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
https://github.com/ijinjay/torch2mindspore/tree/e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
import torch import torch._utils class Model(torch.nn.Module): def __init__(self, input_channel): super().__init__() self.requires_grad = False self.conv = torch.nn.ConvTranspose2d(input_channel, input_channel, 1, stride=2, padding=0, groups=input_channel, bias=False) torch.nn.init.constant_(self.conv.weight, 1) def forward(self, x): x1 = self.conv(x) y = torch.nn.functional.pad(x1, (1, 0, 1, 0)) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Custom
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ur/curzudn4ai4j7lgrmbqwy57jpcw3gylwk4nkg6jt7lqh577w5ku7.py # Topologically Sorted Source Nodes: [_], Original ATen: [aten.convolution] # Source node to ATen node mapping: # _ => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/in/cinswjsjwlmxk4nr2epnggdxu4eqcic7pf43hu6ojzplqle5apj2.py # Topologically Sorted Source Nodes: [__1, __2, __3], Original ATen: [aten.convolution, aten.add, aten.relu] # Source node to ATen node mapping: # __1 => convolution_1 # __2 => add # __3 => relu # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %convolution_1), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_convolution_relu_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_out_ptr0 + (x3), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rj/crjvv777wxf2xg6pxvgf7663moytml2mcsdf4hsnnclmph6txke6.py # Topologically Sorted Source Nodes: [r, mul], Original ATen: [aten.cat, aten.mul] # Source node to ATen node mapping: # mul => mul # r => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1],), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat, 100), kwargs = {}) triton_poi_fused_cat_mul_2 = async_compile.triton('triton_poi_fused_cat_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 98304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 12288) x3 = xindex % 12288 x1 = (xindex // 4096) % 3 x4 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3 + (12288*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x3 + (12288*((-4) + x2))), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tmp17 = 100.0 tmp18 = tmp16 * tmp17 tl.store(out_ptr0 + (x4), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nm/cnmozhicmvlhl7mhd7vsq5jh7kkjwvhfkeo4s6u4a3uefml7e366.py # Topologically Sorted Source Nodes: [t, t_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # t => convolution_2 # t_1 => relu_1 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_2, (3, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_5, (3, ), (1, )) assert_size_stride(primals_6, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_7, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [_], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [_], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 49152, grid=grid(49152), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [__1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [__1, __2, __3], Original ATen: [aten.convolution, aten.add, aten.relu] triton_poi_fused_add_convolution_relu_1.run(buf3, primals_3, primals_5, 49152, grid=grid(49152), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [t], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf5 = empty_strided_cuda((8, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [r, mul], Original ATen: [aten.cat, aten.mul] triton_poi_fused_cat_mul_2.run(buf3, buf4, primals_7, buf5, 98304, grid=grid(98304), stream=stream0) buf6 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [t, t_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf4, primals_7, buf6, 49152, grid=grid(49152), stream=stream0) del buf4 del primals_7 return (buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch._utils class Custom(torch.nn.Module): def __init__(self): super(Custom, self).__init__() self.conv = torch.nn.Conv2d(3, 3, 1, 1) self.conv1 = torch.nn.Conv2d(3, 3, 1, 1) self.conv2 = torch.nn.Conv2d(3, 3, 1, 1) self.relu = torch.nn.ReLU() def forward(self, x): _ = self.conv(x) _ = self.conv1(_) _ = x + _ _ = self.relu(_) t = self.conv2(_) t = self.relu(t) r = torch.cat([_, t]) return r * 100 def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_add_convolution_relu_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_out_ptr0 + x3, None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(in_out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_cat_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 12288 x3 = xindex % 12288 x1 = xindex // 4096 % 3 x4 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3 + 12288 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (x3 + 12288 * (-4 + x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + x1, tmp6, eviction_policy='evict_last', other=0.0 ) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp6, tmp13, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tmp17 = 100.0 tmp18 = tmp16 * tmp17 tl.store(out_ptr0 + x4, tmp18, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_2, (3,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_5, (3,), (1,)) assert_size_stride(primals_6, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_7, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(49152)](buf1, primals_2, 49152, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_convolution_relu_1[grid(49152)](buf3, primals_3, primals_5, 49152, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf5 = empty_strided_cuda((8, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) triton_poi_fused_cat_mul_2[grid(98304)](buf3, buf4, primals_7, buf5, 98304, XBLOCK=1024, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(49152)]( buf4, primals_7, buf6, 49152, XBLOCK=256, num_warps=4, num_stages=1 ) del buf4 del primals_7 return buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3, buf6 class CustomNew(torch.nn.Module): def __init__(self): super(CustomNew, self).__init__() self.conv = torch.nn.Conv2d(3, 3, 1, 1) self.conv1 = torch.nn.Conv2d(3, 3, 1, 1) self.conv2 = torch.nn.Conv2d(3, 3, 1, 1) self.relu = torch.nn.ReLU() def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.conv1.weight primals_5 = self.conv1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
ijinjay/torch2mindspore
Custom
false
3,660
[ "MIT" ]
0
e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
https://github.com/ijinjay/torch2mindspore/tree/e4c06bd5e8a3b25b72bf158393a66c5cd1b572d2
import torch import torch._utils class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 3, 1, 1) self.conv1 = torch.nn.Conv2d(3, 3, 1, 1) self.conv2 = torch.nn.Conv2d(3, 3, 1, 1) self.relu = torch.nn.ReLU() def forward(self, x): _ = self.conv(x) _ = self.conv1(_) _ = x + _ _ = self.relu(_) t = self.conv2(_) t = self.relu(t) r = torch.cat([_, t]) return r * 100 def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
SALayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pv/cpvzba5z5hurvohplshghpiunftkpnqnt25gawhbbfifsgygplv7.py # Topologically Sorted Source Nodes: [y, mul], Original ATen: [aten.convolution, aten.mul] # Source node to ATen node mapping: # mul => mul # y => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 4), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %convolution), kwargs = {}) triton_poi_fused_convolution_mul_0 = async_compile.triton('triton_poi_fused_convolution_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 * tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y, mul], Original ATen: [aten.convolution, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_convolution_mul_0.run(buf1, primals_3, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo class SALayer(nn.Module): def __init__(self, channel, kernel_size=3): super(SALayer, self).__init__() self.conv_sa = nn.Conv2d(channel, channel, kernel_size, padding=1, groups=channel) def forward(self, x): y = self.conv_sa(x) return x * y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 * tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_mul_0[grid(256)](buf1, primals_3, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class SALayerNew(nn.Module): def __init__(self, channel, kernel_size=3): super(SALayerNew, self).__init__() self.conv_sa = nn.Conv2d(channel, channel, kernel_size, padding=1, groups=channel) def forward(self, input_0): primals_1 = self.conv_sa.weight primals_2 = self.conv_sa.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
iariav/EDSR-PyTorch
SALayer
false
3,661
[ "MIT" ]
0
c709b3d43adb6c2457cf87c37c1f34a7bcfc48bb
https://github.com/iariav/EDSR-PyTorch/tree/c709b3d43adb6c2457cf87c37c1f34a7bcfc48bb
import torch import torch.nn as nn import torch.utils.model_zoo class Model(nn.Module): def __init__(self, channel, kernel_size=3): super().__init__() self.conv_sa = nn.Conv2d(channel, channel, kernel_size, padding=1, groups=channel) def forward(self, x): y = self.conv_sa(x) return x * y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Generator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] # Source node to ATen node mapping: # out => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7b/c7bf34fgn2dhohe7ejneqlees25vyq6sbe4c5lfvoehzliak2nz6.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] # Source node to ATen node mapping: # out => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Generator(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, size, vocab): super(Generator, self).__init__() self.size = size self.proj = nn.Linear(self.size, vocab) def forward(self, x): sliced_x = x[:, 0, :] out = self.proj(sliced_x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size': 4, 'vocab': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0) class GeneratorNew(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, size, vocab): super(GeneratorNew, self).__init__() self.size = size self.proj = nn.Linear(self.size, vocab) def forward(self, input_0): primals_2 = self.proj.weight primals_3 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
icdmtlog/icdm2021tlog
Generator
false
3,662
[ "Apache-2.0" ]
0
6f92cce926b923d8f03689ddbeef3ac09d23712e
https://github.com/icdmtlog/icdm2021tlog/tree/6f92cce926b923d8f03689ddbeef3ac09d23712e
import torch import torch.nn as nn class Model(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, size, vocab): super().__init__() self.size = size self.proj = nn.Linear(self.size, vocab) def forward(self, x): sliced_x = x[:, 0, :] out = self.proj(sliced_x) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
GLU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6v/c6vzcw3gyn5uqhyxbbwmpum2zzhvhs66tjq2oznzcap5zo7izpvb.py # Topologically Sorted Source Nodes: [g, x], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # g => sigmoid # x => mul # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %view_3), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [g, x], Original ATen: [aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn as nn import torch.nn.functional as F class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class FeedForward(nn.Module): """ ## FFN module source [FeedForward network](https://arxiv.org/abs/2002.05202) """ def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1, activation=nn.ReLU(), is_gated: 'bool'=False, bias1: 'bool'=True, bias2: 'bool'=True, bias_gate: 'bool'=True): """ * `d_model` is the number of features in a token embedding * `d_ff` is the number of features in the hidden layer of the FFN * `dropout` is dropout probability for the hidden layer, compatible with Monte Carlo dropout at inference time * `is_gated` specifies whether the hidden layer is gated * `bias1` specified whether the first fully connected layer should have a learnable bias * `bias2` specified whether the second fully connected layer should have a learnable bias * `bias_gate` specified whether the fully connected layer for the gate should have a learnable bias """ super().__init__() self.layer1 = nn.Linear(d_model, d_ff, bias=bias1) self.layer2 = nn.Linear(d_ff, d_model, bias=bias2) self.dropout = MonteCarloDropout(dropout) self.activation = activation self.is_gated = is_gated if is_gated: self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate) def forward(self, x: 'torch.Tensor'): g = self.activation(self.layer1(x)) if self.is_gated: x = g * self.linear_v(x) else: x = g x = self.dropout(x) return self.layer2(x) class GLU(nn.Module): def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1): super().__init__() self.ffn = FeedForward(d_model, d_ff, dropout, nn.Sigmoid(), True, False, False, False) def forward(self, x: 'torch.Tensor'): return self.ffn(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_ff': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import Tensor from torch import nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](buf0, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), buf0, buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4 class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class FeedForward(nn.Module): """ ## FFN module source [FeedForward network](https://arxiv.org/abs/2002.05202) """ def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1, activation=nn.ReLU(), is_gated: 'bool'=False, bias1: 'bool'=True, bias2: 'bool'=True, bias_gate: 'bool'=True): """ * `d_model` is the number of features in a token embedding * `d_ff` is the number of features in the hidden layer of the FFN * `dropout` is dropout probability for the hidden layer, compatible with Monte Carlo dropout at inference time * `is_gated` specifies whether the hidden layer is gated * `bias1` specified whether the first fully connected layer should have a learnable bias * `bias2` specified whether the second fully connected layer should have a learnable bias * `bias_gate` specified whether the fully connected layer for the gate should have a learnable bias """ super().__init__() self.layer1 = nn.Linear(d_model, d_ff, bias=bias1) self.layer2 = nn.Linear(d_ff, d_model, bias=bias2) self.dropout = MonteCarloDropout(dropout) self.activation = activation self.is_gated = is_gated if is_gated: self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate) def forward(self, x: 'torch.Tensor'): g = self.activation(self.layer1(x)) if self.is_gated: x = g * self.linear_v(x) else: x = g x = self.dropout(x) return self.layer2(x) class GLUNew(nn.Module): def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1): super().__init__() self.ffn = FeedForward(d_model, d_ff, dropout, nn.Sigmoid(), True, False, False, False) def forward(self, input_0): primals_1 = self.ffn.layer1.weight primals_3 = self.ffn.layer2.weight primals_4 = self.ffn.linear_v.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
gdevos010/darts
GLU
false
3,663
[ "Apache-2.0" ]
0
96c97c1e241500ae7b91d32bbfa21d811e4a7d71
https://github.com/gdevos010/darts/tree/96c97c1e241500ae7b91d32bbfa21d811e4a7d71
import torch from torch import Tensor from torch import nn as nn import torch.nn.functional as F class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class FeedForward(nn.Module): """ ## FFN module source [FeedForward network](https://arxiv.org/abs/2002.05202) """ def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1, activation=nn.ReLU(), is_gated: 'bool'=False, bias1: 'bool'=True, bias2: 'bool'=True, bias_gate: 'bool'=True): """ * `d_model` is the number of features in a token embedding * `d_ff` is the number of features in the hidden layer of the FFN * `dropout` is dropout probability for the hidden layer, compatible with Monte Carlo dropout at inference time * `is_gated` specifies whether the hidden layer is gated * `bias1` specified whether the first fully connected layer should have a learnable bias * `bias2` specified whether the second fully connected layer should have a learnable bias * `bias_gate` specified whether the fully connected layer for the gate should have a learnable bias """ super().__init__() self.layer1 = nn.Linear(d_model, d_ff, bias=bias1) self.layer2 = nn.Linear(d_ff, d_model, bias=bias2) self.dropout = MonteCarloDropout(dropout) self.activation = activation self.is_gated = is_gated if is_gated: self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate) def forward(self, x: 'torch.Tensor'): g = self.activation(self.layer1(x)) if self.is_gated: x = g * self.linear_v(x) else: x = g x = self.dropout(x) return self.layer2(x) class Model(nn.Module): def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1): super().__init__() self.ffn = FeedForward(d_model, d_ff, dropout, nn.Sigmoid(), True, False, False, False) def forward(self, x: 'torch.Tensor'): return self.ffn(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ConvHeadPooling
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6r/c6rkywilfuy64m6cuftgkvjhytprq2kemqwqphmypsicig6wdmin.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 9) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 1, 2, 2), (4, 4, 2, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 144, grid=grid(144), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cls_token], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 return (buf1, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_3, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 2, 2), (4, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from typing import Tuple class ConvHeadPooling(nn.Module): def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): super(ConvHeadPooling, self).__init__() self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=stride + 1, padding=stride // 2, stride=stride, padding_mode= padding_mode, groups=in_feature) self.fc = nn.Linear(in_feature, out_feature) def forward(self, x, cls_token) ->Tuple[torch.Tensor, torch.Tensor]: x = self.conv(x) cls_token = self.fc(cls_token) return x, cls_token def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_feature': 4, 'out_feature': 4, 'stride': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 9 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 1, 2, 2), (4, 4, 2, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(144)](buf1, primals_2, 144, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 return buf1, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, primals_3, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0) class ConvHeadPoolingNew(nn.Module): def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): super(ConvHeadPoolingNew, self).__init__() self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=stride + 1, padding=stride // 2, stride=stride, padding_mode= padding_mode, groups=in_feature) self.fc = nn.Linear(in_feature, out_feature) def forward(self, input_0, input_1): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.fc.weight primals_5 = self.fc.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
iliasprc/Compact-Transformers
ConvHeadPooling
false
3,664
[ "Apache-2.0" ]
0
31975a0b4469854dfb0e0cbcedd8f0698cf84a7e
https://github.com/iliasprc/Compact-Transformers/tree/31975a0b4469854dfb0e0cbcedd8f0698cf84a7e
import torch import torch.nn as nn from typing import Tuple class Model(nn.Module): def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): super().__init__() self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=stride + 1, padding=stride // 2, stride=stride, padding_mode= padding_mode, groups=in_feature) self.fc = nn.Linear(in_feature, out_feature) def forward(self, x, cls_token) ->Tuple[torch.Tensor, torch.Tensor]: x = self.conv(x) cls_token = self.fc(cls_token) return x, cls_token def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 1]
ContrastiveLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/lh/clhtaboxxs526aw4bqcb7s6xoig5vzwco55tfg6waaga3ao3elgd.py # Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm] # Source node to ATen node mapping: # euclidean_distance => add, pow_1, pow_2, sub, sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_poi_fused_add_norm_sub_0 = async_compile.triton('triton_poi_fused_add_norm_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + (x0), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2l/c2l2efhstxzxtce6u6qjwkvh7vawevxafq4szecegv75l7dernch.py # Topologically Sorted Source Nodes: [sub, pow_1, mul, sub_1, clamp, pow_2, mul_1, add, loss_contrastive], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.clamp, aten.add, aten.mean] # Source node to ATen node mapping: # add => add_1 # clamp => clamp_min # loss_contrastive => mean # mul => mul # mul_1 => mul_1 # pow_1 => pow_3 # pow_2 => pow_4 # sub => sub_1 # sub_1 => sub_2 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg2_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %pow_3), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (2, %pow_2), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_clamp_mean_mul_pow_rsub_1 = async_compile.triton('triton_per_fused_add_clamp_mean_mul_pow_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mean_mul_pow_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_mean_mul_pow_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + (r2), None) tmp3 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp3 tmp5 = tmp2 * tmp4 tmp6 = 2.0 tmp7 = tmp6 - tmp3 tmp8 = 0.0 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tmp9 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm] stream0 = get_raw_stream(0) triton_poi_fused_add_norm_sub_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, mul, sub_1, clamp, pow_2, mul_1, add, loss_contrastive], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.clamp, aten.add, aten.mean] triton_per_fused_add_clamp_mean_mul_pow_rsub_1.run(buf2, arg2_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg2_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from numpy.random import * import torch.onnx import torch.nn.functional as F class ContrastiveLoss(torch.nn.Module): def __init__(self, margin=2): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2) loss_contrastive = torch.mean((1 - label) * torch.pow( euclidean_distance, 2) + label * torch.pow(torch.clamp(self. margin - euclidean_distance, min=0.0), 2)) return loss_contrastive def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from numpy.random import * import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + x0, tmp24, xmask) @triton.jit def triton_per_fused_add_clamp_mean_mul_pow_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp3 tmp5 = tmp2 * tmp4 tmp6 = 2.0 tmp7 = tmp6 - tmp3 tmp8 = 0.0 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tmp9 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_norm_sub_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_add_clamp_mean_mul_pow_rsub_1[grid(1)](buf2, arg2_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 return buf2, class ContrastiveLossNew(torch.nn.Module): def __init__(self, margin=2): super(ContrastiveLossNew, self).__init__() self.margin = margin def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
ioarun/pcb-fault-detection
ContrastiveLoss
false
3,665
[ "MIT" ]
0
d05deb724f86c4f89bdb816c07229bfba6420c14
https://github.com/ioarun/pcb-fault-detection/tree/d05deb724f86c4f89bdb816c07229bfba6420c14
import torch from numpy.random import * import torch.onnx import torch.nn.functional as F class Model(torch.nn.Module): def __init__(self, margin=2): super().__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2) loss_contrastive = torch.mean((1 - label) * torch.pow( euclidean_distance, 2) + label * torch.pow(torch.clamp(self. margin - euclidean_distance, min=0.0), 2)) return loss_contrastive def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
SoftDetectionModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/72/c72xsm4j2ydy65cd6s2dqcf73hjvkqbi2lraxbqgd3vljynafcgn.py # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] # Source node to ATen node mapping: # max_1 => max_1 # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view, 1), kwargs = {}) triton_per_fused_max_0 = async_compile.triton('triton_per_fused_max_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_max_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/yh/cyhmw3wd3ttwv3gwn5pdrawto4dhpm5r565oikeygp4rncuwxbr2.py # Topologically Sorted Source Nodes: [batch, truediv, exp, pad], Original ATen: [aten.relu, aten.div, aten.exp, aten.constant_pad_nd] # Source node to ATen node mapping: # batch => relu # exp => exp # pad => constant_pad_nd # truediv => div # Graph fragment: # %relu : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%relu, %view_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {}) # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%exp, [1, 1, 1, 1], 1.0), kwargs = {}) triton_poi_fused_constant_pad_nd_div_exp_relu_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_div_exp_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_div_exp_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_div_exp_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x4 = (xindex // 36) x3 = (xindex // 144) x6 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x4)), tmp10 & xmask, other=0.0) tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.load(in_ptr1 + (x3), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 / tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tl.full(tmp16.shape, 1.0, tmp16.dtype) tmp18 = tl.where(tmp10, tmp16, tmp17) tl.store(out_ptr0 + (x6), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/av/cavduzqn2kcecsivfbdoiquab64kxakphvxa2ir5glbkv2uxr56x.py # Topologically Sorted Source Nodes: [batch, truediv, exp, pad, avg_pool2d], Original ATen: [aten.relu, aten.div, aten.exp, aten.constant_pad_nd, aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # batch => relu # exp => exp # pad => constant_pad_nd # truediv => div # Graph fragment: # %relu : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%relu, %view_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {}) # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%exp, [1, 1, 1, 1], 1.0), kwargs = {}) # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%constant_pad_nd, [3, 3], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_constant_pad_nd_div_exp_relu_2 = async_compile.triton('triton_poi_fused_avg_pool2d_constant_pad_nd_div_exp_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_constant_pad_nd_div_exp_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_constant_pad_nd_div_exp_relu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (6*x1) + (36*x2)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (6*x1) + (36*x2)), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + (6*x1) + (36*x2)), xmask) tmp5 = tl.load(in_ptr0 + (6 + x0 + (6*x1) + (36*x2)), xmask) tmp7 = tl.load(in_ptr0 + (7 + x0 + (6*x1) + (36*x2)), xmask) tmp9 = tl.load(in_ptr0 + (8 + x0 + (6*x1) + (36*x2)), xmask) tmp11 = tl.load(in_ptr0 + (12 + x0 + (6*x1) + (36*x2)), xmask) tmp13 = tl.load(in_ptr0 + (13 + x0 + (6*x1) + (36*x2)), xmask) tmp15 = tl.load(in_ptr0 + (14 + x0 + (6*x1) + (36*x2)), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp17 = 0.1111111111111111 tmp18 = tmp16 * tmp17 tl.store(out_ptr0 + (x3), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6v/c6v2dq4j27mrmzkudmd2l2ookfsao2o6sqtsagdumpcc33lwpchn.py # Topologically Sorted Source Nodes: [batch, truediv, exp, sum_exp, local_max_score, depth_wise_max_score, all_scores, max_3, sum_1, score_1], Original ATen: [aten.relu, aten.div, aten.exp, aten.mul, aten.max, aten.sum] # Source node to ATen node mapping: # all_scores => mul_1 # batch => relu # depth_wise_max_score => div_2 # exp => exp # local_max_score => div_1 # max_3 => max_3 # score_1 => div_3 # sum_1 => sum_1 # sum_exp => mul # truediv => div # Graph fragment: # %relu : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%relu, %view_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 9), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %mul), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%relu, %unsqueeze), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div_2), kwargs = {}) # %max_3 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%mul_1, 1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_2, [1]), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%getitem_4, %view_3), kwargs = {}) triton_per_fused_div_exp_max_mul_relu_sum_3 = async_compile.triton('triton_per_fused_div_exp_max_mul_relu_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_exp_max_mul_relu_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_exp_max_mul_relu_sum_3(in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (r1 + (64*x0)), xmask, other=0.0) tmp10 = tl.load(in_ptr0 + (16 + r1 + (64*x0)), xmask, other=0.0) tmp13 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), xmask, other=0.0) tmp16 = tl.load(in_ptr0 + (48 + r1 + (64*x0)), xmask, other=0.0) tmp23 = tl.load(in_ptr2 + (16 + r1 + (64*x0)), xmask, other=0.0) tmp31 = tl.load(in_ptr2 + (32 + r1 + (64*x0)), xmask, other=0.0) tmp39 = tl.load(in_ptr2 + (48 + r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 / tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = 9.0 tmp8 = tmp6 * tmp7 tmp9 = tmp5 / tmp8 tmp11 = triton_helpers.maximum(tmp1, tmp10) tmp12 = triton_helpers.maximum(tmp2, tmp11) tmp14 = triton_helpers.maximum(tmp1, tmp13) tmp15 = triton_helpers.maximum(tmp12, tmp14) tmp17 = triton_helpers.maximum(tmp1, tmp16) tmp18 = triton_helpers.maximum(tmp15, tmp17) tmp19 = tmp2 / tmp18 tmp20 = tmp9 * tmp19 tmp21 = tmp11 / tmp3 tmp22 = tl_math.exp(tmp21) tmp24 = tmp23 * tmp7 tmp25 = tmp22 / tmp24 tmp26 = tmp11 / tmp18 tmp27 = tmp25 * tmp26 tmp28 = triton_helpers.maximum(tmp20, tmp27) tmp29 = tmp14 / tmp3 tmp30 = tl_math.exp(tmp29) tmp32 = tmp31 * tmp7 tmp33 = tmp30 / tmp32 tmp34 = tmp14 / tmp18 tmp35 = tmp33 * tmp34 tmp36 = triton_helpers.maximum(tmp28, tmp35) tmp37 = tmp17 / tmp3 tmp38 = tl_math.exp(tmp37) tmp40 = tmp39 * tmp7 tmp41 = tmp38 / tmp40 tmp42 = tmp17 / tmp18 tmp43 = tmp41 * tmp42 tmp44 = triton_helpers.maximum(tmp36, tmp43) tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK]) tmp47 = tl.where(xmask, tmp45, 0) tmp48 = tl.sum(tmp47, 1)[:, None] tmp49 = tmp44 / tmp48 tl.store(out_ptr2 + (r1 + (16*x0)), tmp49, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] stream0 = get_raw_stream(0) triton_per_fused_max_0.run(arg0_1, buf0, 4, 64, grid=grid(4), stream=stream0) buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [batch, truediv, exp, pad], Original ATen: [aten.relu, aten.div, aten.exp, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_div_exp_relu_1.run(arg0_1, buf0, buf2, 576, grid=grid(576), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [batch, truediv, exp, pad, avg_pool2d], Original ATen: [aten.relu, aten.div, aten.exp, aten.constant_pad_nd, aten.avg_pool2d] triton_poi_fused_avg_pool2d_constant_pad_nd_div_exp_relu_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0) del buf2 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [batch, truediv, exp, sum_exp, local_max_score, depth_wise_max_score, all_scores, max_3, sum_1, score_1], Original ATen: [aten.relu, aten.div, aten.exp, aten.mul, aten.max, aten.sum] triton_per_fused_div_exp_max_mul_relu_sum_3.run(arg0_1, buf0, buf3, buf6, 4, 16, grid=grid(4), stream=stream0) del arg0_1 del buf0 del buf3 return (buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class SoftDetectionModule(nn.Module): def __init__(self, soft_local_max_size=3): super(SoftDetectionModule, self).__init__() self.soft_local_max_size = soft_local_max_size self.pad = self.soft_local_max_size // 2 def forward(self, batch): b = batch.size(0) batch = F.relu(batch) max_per_sample = torch.max(batch.view(b, -1), dim=1)[0] exp = torch.exp(batch / max_per_sample.view(b, 1, 1, 1)) sum_exp = self.soft_local_max_size ** 2 * F.avg_pool2d(F.pad(exp, [ self.pad] * 4, mode='constant', value=1.0), self. soft_local_max_size, stride=1) local_max_score = exp / sum_exp depth_wise_max = torch.max(batch, dim=1)[0] depth_wise_max_score = batch / depth_wise_max.unsqueeze(1) all_scores = local_max_score * depth_wise_max_score score = torch.max(all_scores, dim=1)[0] score = score / torch.sum(score.view(b, -1), dim=1).view(b, 1, 1) return score def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_max_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_div_exp_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x4 = xindex // 36 x3 = xindex // 144 x6 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x4), tmp10 & xmask, other=0.0) tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.load(in_ptr1 + x3, tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tmp13 / tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tl.full(tmp16.shape, 1.0, tmp16.dtype) tmp18 = tl.where(tmp10, tmp16, tmp17) tl.store(out_ptr0 + x6, tmp18, xmask) @triton.jit def triton_poi_fused_avg_pool2d_constant_pad_nd_div_exp_relu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 6 * x1 + 36 * x2), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 6 * x1 + 36 * x2), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + 6 * x1 + 36 * x2), xmask) tmp5 = tl.load(in_ptr0 + (6 + x0 + 6 * x1 + 36 * x2), xmask) tmp7 = tl.load(in_ptr0 + (7 + x0 + 6 * x1 + 36 * x2), xmask) tmp9 = tl.load(in_ptr0 + (8 + x0 + 6 * x1 + 36 * x2), xmask) tmp11 = tl.load(in_ptr0 + (12 + x0 + 6 * x1 + 36 * x2), xmask) tmp13 = tl.load(in_ptr0 + (13 + x0 + 6 * x1 + 36 * x2), xmask) tmp15 = tl.load(in_ptr0 + (14 + x0 + 6 * x1 + 36 * x2), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp17 = 0.1111111111111111 tmp18 = tmp16 * tmp17 tl.store(out_ptr0 + x3, tmp18, xmask) @triton.jit def triton_per_fused_div_exp_max_mul_relu_sum_3(in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (r1 + 64 * x0), xmask, other=0.0) tmp10 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0) tmp13 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0) tmp16 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0) tmp23 = tl.load(in_ptr2 + (16 + r1 + 64 * x0), xmask, other=0.0) tmp31 = tl.load(in_ptr2 + (32 + r1 + 64 * x0), xmask, other=0.0) tmp39 = tl.load(in_ptr2 + (48 + r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 / tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = 9.0 tmp8 = tmp6 * tmp7 tmp9 = tmp5 / tmp8 tmp11 = triton_helpers.maximum(tmp1, tmp10) tmp12 = triton_helpers.maximum(tmp2, tmp11) tmp14 = triton_helpers.maximum(tmp1, tmp13) tmp15 = triton_helpers.maximum(tmp12, tmp14) tmp17 = triton_helpers.maximum(tmp1, tmp16) tmp18 = triton_helpers.maximum(tmp15, tmp17) tmp19 = tmp2 / tmp18 tmp20 = tmp9 * tmp19 tmp21 = tmp11 / tmp3 tmp22 = tl_math.exp(tmp21) tmp24 = tmp23 * tmp7 tmp25 = tmp22 / tmp24 tmp26 = tmp11 / tmp18 tmp27 = tmp25 * tmp26 tmp28 = triton_helpers.maximum(tmp20, tmp27) tmp29 = tmp14 / tmp3 tmp30 = tl_math.exp(tmp29) tmp32 = tmp31 * tmp7 tmp33 = tmp30 / tmp32 tmp34 = tmp14 / tmp18 tmp35 = tmp33 * tmp34 tmp36 = triton_helpers.maximum(tmp28, tmp35) tmp37 = tmp17 / tmp3 tmp38 = tl_math.exp(tmp37) tmp40 = tmp39 * tmp7 tmp41 = tmp38 / tmp40 tmp42 = tmp17 / tmp18 tmp43 = tmp41 * tmp42 tmp44 = triton_helpers.maximum(tmp36, tmp43) tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK]) tmp47 = tl.where(xmask, tmp45, 0) tmp48 = tl.sum(tmp47, 1)[:, None] tmp49 = tmp44 / tmp48 tl.store(out_ptr2 + (r1 + 16 * x0), tmp49, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_per_fused_max_0[grid(4)](arg0_1, buf0, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) triton_poi_fused_constant_pad_nd_div_exp_relu_1[grid(576)](arg0_1, buf0, buf2, 576, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_avg_pool2d_constant_pad_nd_div_exp_relu_2[grid(256)]( buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_per_fused_div_exp_max_mul_relu_sum_3[grid(4)](arg0_1, buf0, buf3, buf6, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 del buf3 return buf6, class SoftDetectionModuleNew(nn.Module): def __init__(self, soft_local_max_size=3): super(SoftDetectionModuleNew, self).__init__() self.soft_local_max_size = soft_local_max_size self.pad = self.soft_local_max_size // 2 def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
imelekhov/d2-net
SoftDetectionModule
false
3,666
[ "BSD-3-Clause-Clear" ]
0
68a61797c40a4d6226c1774d84d97c4f493c9955
https://github.com/imelekhov/d2-net/tree/68a61797c40a4d6226c1774d84d97c4f493c9955
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, soft_local_max_size=3): super().__init__() self.soft_local_max_size = soft_local_max_size self.pad = self.soft_local_max_size // 2 def forward(self, batch): b = batch.size(0) batch = F.relu(batch) max_per_sample = torch.max(batch.view(b, -1), dim=1)[0] exp = torch.exp(batch / max_per_sample.view(b, 1, 1, 1)) sum_exp = self.soft_local_max_size ** 2 * F.avg_pool2d(F.pad(exp, [ self.pad] * 4, mode='constant', value=1.0), self. soft_local_max_size, stride=1) local_max_score = exp / sum_exp depth_wise_max = torch.max(batch, dim=1)[0] depth_wise_max_score = batch / depth_wise_max.unsqueeze(1) all_scores = local_max_score * depth_wise_max_score score = torch.max(all_scores, dim=1)[0] score = score / torch.sum(score.view(b, -1), dim=1).view(b, 1, 1) return score def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Bilinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/p3/cp3qleddjiuuytozrtebx5pzf2ycpwtw4mkq2jsx7qqswymv2bm6.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] # Source node to ATen node mapping: # x => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view_3), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [g], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn as nn import torch.nn.functional as F class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class FeedForward(nn.Module): """ ## FFN module source [FeedForward network](https://arxiv.org/abs/2002.05202) """ def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1, activation=nn.ReLU(), is_gated: 'bool'=False, bias1: 'bool'=True, bias2: 'bool'=True, bias_gate: 'bool'=True): """ * `d_model` is the number of features in a token embedding * `d_ff` is the number of features in the hidden layer of the FFN * `dropout` is dropout probability for the hidden layer, compatible with Monte Carlo dropout at inference time * `is_gated` specifies whether the hidden layer is gated * `bias1` specified whether the first fully connected layer should have a learnable bias * `bias2` specified whether the second fully connected layer should have a learnable bias * `bias_gate` specified whether the fully connected layer for the gate should have a learnable bias """ super().__init__() self.layer1 = nn.Linear(d_model, d_ff, bias=bias1) self.layer2 = nn.Linear(d_ff, d_model, bias=bias2) self.dropout = MonteCarloDropout(dropout) self.activation = activation self.is_gated = is_gated if is_gated: self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate) def forward(self, x: 'torch.Tensor'): g = self.activation(self.layer1(x)) if self.is_gated: x = g * self.linear_v(x) else: x = g x = self.dropout(x) return self.layer2(x) class Bilinear(nn.Module): def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1): super().__init__() self.ffn = FeedForward(d_model, d_ff, dropout, nn.Identity(), True, False, False, False) def forward(self, x: 'torch.Tensor'): return self.ffn(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_ff': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import Tensor from torch import nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](buf0, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), buf0, buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4 class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class FeedForward(nn.Module): """ ## FFN module source [FeedForward network](https://arxiv.org/abs/2002.05202) """ def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1, activation=nn.ReLU(), is_gated: 'bool'=False, bias1: 'bool'=True, bias2: 'bool'=True, bias_gate: 'bool'=True): """ * `d_model` is the number of features in a token embedding * `d_ff` is the number of features in the hidden layer of the FFN * `dropout` is dropout probability for the hidden layer, compatible with Monte Carlo dropout at inference time * `is_gated` specifies whether the hidden layer is gated * `bias1` specified whether the first fully connected layer should have a learnable bias * `bias2` specified whether the second fully connected layer should have a learnable bias * `bias_gate` specified whether the fully connected layer for the gate should have a learnable bias """ super().__init__() self.layer1 = nn.Linear(d_model, d_ff, bias=bias1) self.layer2 = nn.Linear(d_ff, d_model, bias=bias2) self.dropout = MonteCarloDropout(dropout) self.activation = activation self.is_gated = is_gated if is_gated: self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate) def forward(self, x: 'torch.Tensor'): g = self.activation(self.layer1(x)) if self.is_gated: x = g * self.linear_v(x) else: x = g x = self.dropout(x) return self.layer2(x) class BilinearNew(nn.Module): def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1): super().__init__() self.ffn = FeedForward(d_model, d_ff, dropout, nn.Identity(), True, False, False, False) def forward(self, input_0): primals_1 = self.ffn.layer1.weight primals_3 = self.ffn.layer2.weight primals_4 = self.ffn.linear_v.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
gdevos010/darts
Bilinear
false
3,667
[ "Apache-2.0" ]
0
96c97c1e241500ae7b91d32bbfa21d811e4a7d71
https://github.com/gdevos010/darts/tree/96c97c1e241500ae7b91d32bbfa21d811e4a7d71
import torch from torch import Tensor from torch import nn as nn import torch.nn.functional as F class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class FeedForward(nn.Module): """ ## FFN module source [FeedForward network](https://arxiv.org/abs/2002.05202) """ def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1, activation=nn.ReLU(), is_gated: 'bool'=False, bias1: 'bool'=True, bias2: 'bool'=True, bias_gate: 'bool'=True): """ * `d_model` is the number of features in a token embedding * `d_ff` is the number of features in the hidden layer of the FFN * `dropout` is dropout probability for the hidden layer, compatible with Monte Carlo dropout at inference time * `is_gated` specifies whether the hidden layer is gated * `bias1` specified whether the first fully connected layer should have a learnable bias * `bias2` specified whether the second fully connected layer should have a learnable bias * `bias_gate` specified whether the fully connected layer for the gate should have a learnable bias """ super().__init__() self.layer1 = nn.Linear(d_model, d_ff, bias=bias1) self.layer2 = nn.Linear(d_ff, d_model, bias=bias2) self.dropout = MonteCarloDropout(dropout) self.activation = activation self.is_gated = is_gated if is_gated: self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate) def forward(self, x: 'torch.Tensor'): g = self.activation(self.layer1(x)) if self.is_gated: x = g * self.linear_v(x) else: x = g x = self.dropout(x) return self.layer2(x) class Model(nn.Module): def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1): super().__init__() self.ffn = FeedForward(d_model, d_ff, dropout, nn.Identity(), True, False, False, False) def forward(self, x: 'torch.Tensor'): return self.ffn(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
AdaIN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qe/cqeosomkjl2wyhgautbj64zvn2r6slesq4xiplyeynuljwzp4fnz.py # Topologically Sorted Source Nodes: [add, instance_norm, mul, add_1], Original ATen: [aten.add, aten._native_batch_norm_legit, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_2 # instance_norm => add_1, rsqrt, var_mean # mul => mul_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %view_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %getitem_1), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_mul_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr1 + (4 + x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = 1.0 tmp26 = tmp24 + tmp25 tmp27 = tmp0 - tmp10 tmp28 = tmp27 * tmp21 tmp29 = tmp26 * tmp28 tmp32 = tmp30 + tmp31 tmp33 = tmp29 + tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (16*x0)), tmp33, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf4 = reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, instance_norm, mul, add_1], Original ATen: [aten.add, aten._native_batch_norm_legit, aten.mul] stream0 = get_raw_stream(0) triton_per_fused__native_batch_norm_legit_add_mul_0.run(buf4, primals_4, buf0, primals_2, buf1, buf5, 16, 16, grid=grid(16), stream=stream0) del buf0 del primals_2 return (buf5, primals_3, primals_4, buf1, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AdaIN(nn.Module): def __init__(self, style_dim, num_features): super().__init__() self.norm = nn.InstanceNorm2d(num_features, affine=False) self.fc = nn.Linear(style_dim, num_features * 2) def forward(self, x, s): h = self.fc(s) h = h.view(h.size(0), h.size(1), 1, 1) gamma, beta = torch.chunk(h, chunks=2, dim=1) return (1 + gamma) * self.norm(x) + beta def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'style_dim': 4, 'num_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = 1.0 tmp26 = tmp24 + tmp25 tmp27 = tmp0 - tmp10 tmp28 = tmp27 * tmp21 tmp29 = tmp26 * tmp28 tmp32 = tmp30 + tmp31 tmp33 = tmp29 + tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 16 * x0), tmp33, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf4 = reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused__native_batch_norm_legit_add_mul_0[grid(16)](buf4, primals_4, buf0, primals_2, buf1, buf5, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf0 del primals_2 return buf5, primals_3, primals_4, buf1, buf4 class AdaINNew(nn.Module): def __init__(self, style_dim, num_features): super().__init__() self.norm = nn.InstanceNorm2d(num_features, affine=False) self.fc = nn.Linear(style_dim, num_features * 2) def forward(self, input_0, input_1): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
innerverz/CodeTemplate
AdaIN
false
3,668
[ "MIT" ]
0
a20f5d24b0b79871aa39b5cde33e3bb4d2507d13
https://github.com/innerverz/CodeTemplate/tree/a20f5d24b0b79871aa39b5cde33e3bb4d2507d13
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, style_dim, num_features): super().__init__() self.norm = nn.InstanceNorm2d(num_features, affine=False) self.fc = nn.Linear(style_dim, num_features * 2) def forward(self, x, s): h = self.fc(s) h = h.view(h.size(0), h.size(1), 1, 1) gamma, beta = torch.chunk(h, chunks=2, dim=1) return (1 + gamma) * self.norm(x) + beta def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
TwoLayerCNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/q5/cq5wusjiorttrifgkbgmb575ri5bohmulexkpd7lpcdrnw7myr2f.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/q2/cq2ab4zm7eyvynktpy632nombwctzki5grvf6od7jvr4qq7wwtqo.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 2], [1, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr1 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0; del buf0 # reuse buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, buf5, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 1, 2), (8, 2, 2, 1), torch.int8) buf3 = empty_strided_cuda((4, 4, 1, 2), (8, 2, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 32, grid=grid(32), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf3, (4, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_4 return (buf4, primals_2, primals_1, reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0), buf2, reinterpret_tensor(buf3, (4, 8), (8, 1), 0), primals_3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class TwoLayerCNN(nn.Module): def __init__(self, C, M, embedding, channel, mtc_input, *args, **kwargs): super(TwoLayerCNN, self).__init__() self.C = C self.M = M self.embedding = embedding self.mtc_input = C if mtc_input else 1 self.conv1 = nn.Conv1d(self.mtc_input, channel, 3, 1, padding=1, bias=False) self.flat_size = M // 2 * C // self.mtc_input * channel self.fc1 = nn.Linear(self.flat_size, embedding) def forward(self, x): N = len(x) x = x.view(-1, self.mtc_input, self.M) x = F.relu(self.conv1(x)) x = F.max_pool1d(x, 2) x = x.view(N, self.flat_size) x = self.fc1(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'C': 4, 'M': 4, 'embedding': 4, 'channel': 4, 'mtc_input': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr1 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0 del buf0 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(64)](buf1, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 1, 2), (8, 2, 2, 1), torch.int8) buf3 = empty_strided_cuda((4, 4, 1, 2), (8, 2, 2, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_1[grid(32)](buf1, buf2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf3, (4, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha =1, beta=1, out=buf4) del primals_4 return buf4, primals_2, primals_1, reinterpret_tensor(buf1, (4, 4, 1, 4 ), (16, 4, 4, 1), 0), buf2, reinterpret_tensor(buf3, (4, 8), (8, 1), 0 ), primals_3, buf5 class TwoLayerCNNNew(nn.Module): def __init__(self, C, M, embedding, channel, mtc_input, *args, **kwargs): super(TwoLayerCNNNew, self).__init__() self.C = C self.M = M self.embedding = embedding self.mtc_input = C if mtc_input else 1 self.conv1 = nn.Conv1d(self.mtc_input, channel, 3, 1, padding=1, bias=False) self.flat_size = M // 2 * C // self.mtc_input * channel self.fc1 = nn.Linear(self.flat_size, embedding) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
imvladikon/string-embed
TwoLayerCNN
false
3,669
[ "MIT" ]
0
49e5ab0ada37b497dac51974aff16eeac65627a0
https://github.com/imvladikon/string-embed/tree/49e5ab0ada37b497dac51974aff16eeac65627a0
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, C, M, embedding, channel, mtc_input, *args, **kwargs): super().__init__() self.C = C self.M = M self.embedding = embedding self.mtc_input = C if mtc_input else 1 self.conv1 = nn.Conv1d(self.mtc_input, channel, 3, 1, padding=1, bias=False) self.flat_size = M // 2 * C // self.mtc_input * channel self.fc1 = nn.Linear(self.flat_size, embedding) def forward(self, x): N = len(x) x = x.view(-1, self.mtc_input, self.M) x = F.relu(self.conv1(x)) x = F.max_pool1d(x, 2) x = x.view(N, self.flat_size) x = self.fc1(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 4, 4]
ResBlk
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/wo/cwo5hzyj7r5kfs5qkbujhau55erj2h3367t3krgxxma4ysrszby7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %primals_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/vo/cvo56aotw4yuhuax6oyrf43t5ssqhzuwodjmjfylt42bqssid7vq.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => gt_1, mul_1, where_1 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/iz/ciznb73q5a3l5esh4sw5ejdw3d2b6uuntjcpgiok5w7sbiizunre.py # Topologically Sorted Source Nodes: [x_3, x_4, truediv], Original ATen: [aten.convolution, aten.add, aten.div] # Source node to ATen node mapping: # truediv => div # x_3 => convolution_1 # x_4 => add # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 1.4142135623730951), kwargs = {}) triton_poi_fused_add_convolution_div_2 = async_compile.triton('triton_poi_fused_add_convolution_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_div_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp5 = 0.7071067811865475 tmp6 = tmp4 * tmp5 tl.store(in_out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, buf3, 256, grid=grid(256), stream=stream0) del buf1 del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_3, x_4, truediv], Original ATen: [aten.convolution, aten.add, aten.div] triton_poi_fused_add_convolution_div_2.run(buf5, primals_1, primals_5, 256, grid=grid(256), stream=stream0) del primals_1 del primals_5 return (buf5, primals_2, primals_4, buf0, buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn.functional as F import torch.nn as nn class ResBlk(nn.Module): def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), normalize= False, downsample=False): super().__init__() self.actv = actv self.normalize = normalize self.downsample = downsample self.learned_sc = dim_in != dim_out self._build_weights(dim_in, dim_out) def _build_weights(self, dim_in, dim_out): self.conv1 = nn.Conv2d(dim_in, dim_in, 3, 1, 1) self.conv2 = nn.Conv2d(dim_in, dim_out, 3, 1, 1) if self.normalize: self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) if self.learned_sc: self.conv1x1 = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False) def _shortcut(self, x): if self.learned_sc: x = self.conv1x1(x) if self.downsample: x = F.avg_pool2d(x, 2) return x def _residual(self, x): if self.normalize: x = self.norm1(x) x = self.actv(x) x = self.conv1(x) if self.downsample: x = F.avg_pool2d(x, 2) if self.normalize: x = self.norm2(x) x = self.actv(x) x = self.conv2(x) return x def forward(self, x): x = self._shortcut(x) + self._residual(x) return x / math.sqrt(2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_add_convolution_div_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp5 = 0.7071067811865475 tmp6 = tmp4 * tmp5 tl.store(in_out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_1[grid(256)](buf1, primals_3, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_add_convolution_div_2[grid(256)](buf5, primals_1, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_5 return buf5, primals_2, primals_4, buf0, buf2, buf3 class ResBlkNew(nn.Module): def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), normalize= False, downsample=False): super().__init__() self.actv = actv self.normalize = normalize self.downsample = downsample self.learned_sc = dim_in != dim_out self._build_weights(dim_in, dim_out) def _build_weights(self, dim_in, dim_out): self.conv1 = nn.Conv2d(dim_in, dim_in, 3, 1, 1) self.conv2 = nn.Conv2d(dim_in, dim_out, 3, 1, 1) if self.normalize: self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) if self.learned_sc: self.conv1x1 = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False) def _shortcut(self, x): if self.learned_sc: x = self.conv1x1(x) if self.downsample: x = F.avg_pool2d(x, 2) return x def _residual(self, x): if self.normalize: x = self.norm1(x) x = self.actv(x) x = self.conv1(x) if self.downsample: x = F.avg_pool2d(x, 2) if self.normalize: x = self.norm2(x) x = self.actv(x) x = self.conv2(x) return x def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
innerverz/CodeTemplate
ResBlk
false
3,670
[ "MIT" ]
0
a20f5d24b0b79871aa39b5cde33e3bb4d2507d13
https://github.com/innerverz/CodeTemplate/tree/a20f5d24b0b79871aa39b5cde33e3bb4d2507d13
import math import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), normalize= False, downsample=False): super().__init__() self.actv = actv self.normalize = normalize self.downsample = downsample self.learned_sc = dim_in != dim_out self._build_weights(dim_in, dim_out) def _build_weights(self, dim_in, dim_out): self.conv1 = nn.Conv2d(dim_in, dim_in, 3, 1, 1) self.conv2 = nn.Conv2d(dim_in, dim_out, 3, 1, 1) if self.normalize: self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) if self.learned_sc: self.conv1x1 = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False) def _shortcut(self, x): if self.learned_sc: x = self.conv1x1(x) if self.downsample: x = F.avg_pool2d(x, 2) return x def _residual(self, x): if self.normalize: x = self.norm1(x) x = self.actv(x) x = self.conv1(x) if self.downsample: x = F.avg_pool2d(x, 2) if self.normalize: x = self.norm2(x) x = self.actv(x) x = self.conv2(x) return x def forward(self, x): x = self._shortcut(x) + self._residual(x) return x / math.sqrt(2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
_GatedResidualNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/ck/cck6zsxedo53nyj2po2pvkfjvrr75ansuu3rjjhu6zyrx6xzssqo.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] # Source node to ATen node mapping: # x_1 => expm1, gt, mul, mul_2, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/g2/cg2n33ecqurwkyiyucsylguej6exc6zpz6fyhk7hcbdsevf2l4sr.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.glu] # Source node to ATen node mapping: # x_5 => glu # Graph fragment: # %glu : [num_users=2] = call_function[target=torch.ops.aten.glu.default](args = (%view_5,), kwargs = {}) triton_poi_fused_glu_1 = async_compile.triton('triton_poi_fused_glu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_glu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_glu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ug/cug3tl2jlnwqshzkisx4mst6uxoyc5sgz3jeqwxup5r7eoieamdp.py # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # output => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%glu, %primals_1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_2 = async_compile.triton('triton_poi_fused_add_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/uz/cuzkkvrgtcbz6vvu6omkkiofk54nlyp34lpauxhrah7fmpyygjuq.py # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # output => add_1, add_2, mul_3, mul_4, rsqrt, sub # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%glu, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_3 = async_compile.triton('triton_poi_fused_add_native_layer_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (8, 4), (4, 1)) assert_size_stride(primals_7, (8, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_elu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.glu] triton_poi_fused_glu_1.run(buf3, buf4, 256, grid=grid(256), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_2.run(buf4, primals_1, buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_3.run(buf4, primals_1, buf5, buf6, primals_8, primals_9, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 del primals_9 return (buf7, primals_1, primals_8, buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, reinterpret_tensor(buf3, (4, 4, 4, 8), (128, 32, 8, 1), 0), buf4, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn as nn import torch.nn.functional as F class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class _TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class _GatedLinearUnit(nn.Module): """Gated Linear Unit""" def __init__(self, input_size: 'int', hidden_size: 'int'=None, dropout: 'float'=None): super().__init__() if dropout is not None: self.dropout = MonteCarloDropout(dropout) else: self.dropout = dropout self.hidden_size = hidden_size or input_size self.fc = nn.Linear(input_size, self.hidden_size * 2) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'fc' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x): if self.dropout is not None: x = self.dropout(x) x = self.fc(x) x = F.glu(x, dim=-1) return x class _ResampleNorm(nn.Module): def __init__(self, input_size: 'int', output_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.output_size = output_size or input_size if self.input_size != self.output_size: self.resample = _TimeDistributedInterpolation(self.output_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.output_size) def forward(self, x: 'torch.Tensor') ->torch.Tensor: if self.input_size != self.output_size: x = self.resample(x) if self.trainable_add: x = x * self.gate(self.mask) * 2.0 output = self.norm(x) return output class _AddNorm(nn.Module): def __init__(self, input_size: 'int', skip_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.skip_size = skip_size or input_size if self.input_size != self.skip_size: self.resample = _TimeDistributedInterpolation(self.input_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.input_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.input_size) def forward(self, x: 'torch.Tensor', skip: 'torch.Tensor'): if self.input_size != self.skip_size: skip = self.resample(skip) if self.trainable_add: skip = skip * self.gate(self.mask) * 2.0 output = self.norm(x + skip) return output class _GateAddNorm(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int'=None, skip_size: 'int'=None, trainable_add: 'bool'=False, dropout: 'float'=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size or input_size self.skip_size = skip_size or self.hidden_size self.dropout = dropout self.glu = _GatedLinearUnit(self.input_size, hidden_size=self. hidden_size, dropout=self.dropout) self.add_norm = _AddNorm(self.hidden_size, skip_size=self.skip_size, trainable_add=trainable_add) def forward(self, x, skip): output = self.glu(x) output = self.add_norm(output, skip) return output class _GatedResidualNetwork(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int', output_size: 'int', dropout: 'float'=0.1, context_size: 'int'=None, residual: 'bool'=False): super().__init__() self.input_size = input_size self.output_size = output_size self.context_size = context_size self.hidden_size = hidden_size self.dropout = dropout self.residual = residual if self.input_size != self.output_size and not self.residual: residual_size = self.input_size else: residual_size = self.output_size if self.output_size != residual_size: self.resample_norm = _ResampleNorm(residual_size, self.output_size) self.fc1 = nn.Linear(self.input_size, self.hidden_size) self.elu = nn.ELU() if self.context_size is not None: self.context = nn.Linear(self.context_size, self.hidden_size, bias=False) self.fc2 = nn.Linear(self.hidden_size, self.hidden_size) self.init_weights() self.gate_norm = _GateAddNorm(input_size=self.hidden_size, skip_size=self.output_size, hidden_size=self.output_size, dropout=self.dropout, trainable_add=False) def init_weights(self): for name, p in self.named_parameters(): if 'bias' in name: torch.nn.init.zeros_(p) elif 'fc1' in name or 'fc2' in name: torch.nn.init.kaiming_normal_(p, a=0, mode='fan_in', nonlinearity='leaky_relu') elif 'context' in name: torch.nn.init.xavier_uniform_(p) def forward(self, x, context=None, residual=None): if residual is None: residual = x if self.input_size != self.output_size and not self.residual: residual = self.resample_norm(residual) x = self.fc1(x) if context is not None: context = self.context(context) x = x + context x = self.elu(x) x = self.fc2(x) x = self.gate_norm(x, residual) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import Tensor from torch import nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_glu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (8, 4), (4, 1)) assert_size_stride(primals_7, (8,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_glu_1[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_add_native_layer_norm_2[grid(64)](buf4, primals_1, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_3[grid(256)](buf4, primals_1, buf5, buf6, primals_8, primals_9, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 del buf6 del primals_9 return buf7, primals_1, primals_8, buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, reinterpret_tensor(buf3, (4, 4, 4, 8), (128, 32, 8, 1), 0), buf4, primals_6, primals_4 class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class _TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class _GatedLinearUnit(nn.Module): """Gated Linear Unit""" def __init__(self, input_size: 'int', hidden_size: 'int'=None, dropout: 'float'=None): super().__init__() if dropout is not None: self.dropout = MonteCarloDropout(dropout) else: self.dropout = dropout self.hidden_size = hidden_size or input_size self.fc = nn.Linear(input_size, self.hidden_size * 2) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'fc' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x): if self.dropout is not None: x = self.dropout(x) x = self.fc(x) x = F.glu(x, dim=-1) return x class _ResampleNorm(nn.Module): def __init__(self, input_size: 'int', output_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.output_size = output_size or input_size if self.input_size != self.output_size: self.resample = _TimeDistributedInterpolation(self.output_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.output_size) def forward(self, x: 'torch.Tensor') ->torch.Tensor: if self.input_size != self.output_size: x = self.resample(x) if self.trainable_add: x = x * self.gate(self.mask) * 2.0 output = self.norm(x) return output class _AddNorm(nn.Module): def __init__(self, input_size: 'int', skip_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.skip_size = skip_size or input_size if self.input_size != self.skip_size: self.resample = _TimeDistributedInterpolation(self.input_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.input_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.input_size) def forward(self, x: 'torch.Tensor', skip: 'torch.Tensor'): if self.input_size != self.skip_size: skip = self.resample(skip) if self.trainable_add: skip = skip * self.gate(self.mask) * 2.0 output = self.norm(x + skip) return output class _GateAddNorm(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int'=None, skip_size: 'int'=None, trainable_add: 'bool'=False, dropout: 'float'=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size or input_size self.skip_size = skip_size or self.hidden_size self.dropout = dropout self.glu = _GatedLinearUnit(self.input_size, hidden_size=self. hidden_size, dropout=self.dropout) self.add_norm = _AddNorm(self.hidden_size, skip_size=self.skip_size, trainable_add=trainable_add) def forward(self, x, skip): output = self.glu(x) output = self.add_norm(output, skip) return output class _GatedResidualNetworkNew(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int', output_size: 'int', dropout: 'float'=0.1, context_size: 'int'=None, residual: 'bool'=False): super().__init__() self.input_size = input_size self.output_size = output_size self.context_size = context_size self.hidden_size = hidden_size self.dropout = dropout self.residual = residual if self.input_size != self.output_size and not self.residual: residual_size = self.input_size else: residual_size = self.output_size if self.output_size != residual_size: self.resample_norm = _ResampleNorm(residual_size, self.output_size) self.fc1 = nn.Linear(self.input_size, self.hidden_size) self.elu = nn.ELU() if self.context_size is not None: self.context = nn.Linear(self.context_size, self.hidden_size, bias=False) self.fc2 = nn.Linear(self.hidden_size, self.hidden_size) self.init_weights() self.gate_norm = _GateAddNorm(input_size=self.hidden_size, skip_size=self.output_size, hidden_size=self.output_size, dropout=self.dropout, trainable_add=False) def init_weights(self): for name, p in self.named_parameters(): if 'bias' in name: torch.nn.init.zeros_(p) elif 'fc1' in name or 'fc2' in name: torch.nn.init.kaiming_normal_(p, a=0, mode='fan_in', nonlinearity='leaky_relu') elif 'context' in name: torch.nn.init.xavier_uniform_(p) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.gate_norm.glu.fc.weight primals_7 = self.gate_norm.glu.fc.bias primals_8 = self.gate_norm.add_norm.norm.weight primals_9 = self.gate_norm.add_norm.norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
gdevos010/darts
_GatedResidualNetwork
false
3,671
[ "Apache-2.0" ]
0
96c97c1e241500ae7b91d32bbfa21d811e4a7d71
https://github.com/gdevos010/darts/tree/96c97c1e241500ae7b91d32bbfa21d811e4a7d71
import torch from torch import Tensor from torch import nn as nn import torch.nn.functional as F class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class _TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class _GatedLinearUnit(nn.Module): """Gated Linear Unit""" def __init__(self, input_size: 'int', hidden_size: 'int'=None, dropout: 'float'=None): super().__init__() if dropout is not None: self.dropout = MonteCarloDropout(dropout) else: self.dropout = dropout self.hidden_size = hidden_size or input_size self.fc = nn.Linear(input_size, self.hidden_size * 2) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'fc' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x): if self.dropout is not None: x = self.dropout(x) x = self.fc(x) x = F.glu(x, dim=-1) return x class _ResampleNorm(nn.Module): def __init__(self, input_size: 'int', output_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.output_size = output_size or input_size if self.input_size != self.output_size: self.resample = _TimeDistributedInterpolation(self.output_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.output_size) def forward(self, x: 'torch.Tensor') ->torch.Tensor: if self.input_size != self.output_size: x = self.resample(x) if self.trainable_add: x = x * self.gate(self.mask) * 2.0 output = self.norm(x) return output class _AddNorm(nn.Module): def __init__(self, input_size: 'int', # ... truncated (>4000 chars) for memory efficiency
ApplyStyle
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/nv/cnv2cfzltirhxx5nrlgpu3y2z52edcp46ghvhflb6widkfyhynj4.py # Topologically Sorted Source Nodes: [mul, add, mul_1, mul_2, x], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # x => add_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %add), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, 1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 4 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1 + (8*x2)), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (4 + x1 + (8*x2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (4 + x1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 + tmp4 tmp7 = tmp0 * tmp6 tmp10 = tmp8 + tmp9 tmp11 = tmp10 * tmp4 tmp12 = tmp7 + tmp11 tl.store(out_ptr0 + (x3), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add, mul_1, mul_2, x], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_4, buf0, primals_2, buf1, 4096, grid=grid(4096), stream=stream0) del buf0 del primals_2 return (buf1, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ApplyStyle(nn.Module): """ @ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb """ def __init__(self, latent_size, channels): super(ApplyStyle, self).__init__() self.linear = nn.Linear(latent_size, channels * 2) def forward(self, x, latent): style = self.linear(latent) shape = [-1, 2, x.size(1), 1, 1] style = style.view(shape) x = x * (style[:, 0] * 1 + 1.0) + style[:, 1] * 1 return x def get_inputs(): return [torch.rand([64, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'latent_size': 4, 'channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 4 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x1 + 8 * x2), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (4 + x1 + 8 * x2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr2 + (4 + x1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 + tmp4 tmp7 = tmp0 * tmp6 tmp10 = tmp8 + tmp9 tmp11 = tmp10 * tmp4 tmp12 = tmp7 + tmp11 tl.store(out_ptr0 + x3, tmp12, None) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(4096)](primals_4, buf0, primals_2, buf1, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return buf1, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class ApplyStyleNew(nn.Module): """ @ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb """ def __init__(self, latent_size, channels): super(ApplyStyleNew, self).__init__() self.linear = nn.Linear(latent_size, channels * 2) def forward(self, input_0, input_1): primals_1 = self.linear.weight primals_2 = self.linear.bias primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
innerverz/CodeTemplate
ApplyStyle
false
3,672
[ "MIT" ]
0
a20f5d24b0b79871aa39b5cde33e3bb4d2507d13
https://github.com/innerverz/CodeTemplate/tree/a20f5d24b0b79871aa39b5cde33e3bb4d2507d13
import torch import torch.nn as nn class Model(nn.Module): """ @ref: https://github.com/lernapparat/lernapparat/blob/master/style_gan/pytorch_style_gan.ipynb """ def __init__(self, latent_size, channels): super().__init__() self.linear = nn.Linear(latent_size, channels * 2) def forward(self, x, latent): style = self.linear(latent) shape = [-1, 2, x.size(1), 1, 1] style = style.view(shape) x = x * (style[:, 0] * 1 + 1.0) + style[:, 1] * 1 return x def get_inputs(): return [torch.rand([64, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
_GateAddNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/pt/cpt3kou2mafw4tfe5tp2oixeb4z2kkf6adwejs6l7mux2qvryb27.py # Topologically Sorted Source Nodes: [x_1, add], Original ATen: [aten.glu, aten.add] # Source node to ATen node mapping: # add => add # x_1 => glu # Graph fragment: # %glu : [num_users=1] = call_function[target=torch.ops.aten.glu.default](args = (%view_1,), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%glu, %primals_4), kwargs = {}) triton_poi_fused_add_glu_0 = async_compile.triton('triton_poi_fused_add_glu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_glu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_glu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask) tmp4 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/6n/c6nwltytpo33ssumvxlcryrpvlql2hsjrmxl624j4dkkjxt5qgkm.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # output => add_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/mn/cmntyljhuirhsdjg2yosgzllpkpxqedxgoyk6gunquq2rf3kl7u5.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # output => add_1, add_2, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_6), kwargs = {}) triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, add], Original ATen: [aten.glu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_glu_0.run(buf0, primals_4, buf1, 256, grid=grid(256), stream=stream0) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf1, buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_2.run(buf1, buf2, buf3, primals_5, primals_6, buf4, 256, grid=grid(256), stream=stream0) del buf2 del buf3 del primals_6 return (buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn as nn import torch.nn.functional as F class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class _TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class _GatedLinearUnit(nn.Module): """Gated Linear Unit""" def __init__(self, input_size: 'int', hidden_size: 'int'=None, dropout: 'float'=None): super().__init__() if dropout is not None: self.dropout = MonteCarloDropout(dropout) else: self.dropout = dropout self.hidden_size = hidden_size or input_size self.fc = nn.Linear(input_size, self.hidden_size * 2) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'fc' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x): if self.dropout is not None: x = self.dropout(x) x = self.fc(x) x = F.glu(x, dim=-1) return x class _AddNorm(nn.Module): def __init__(self, input_size: 'int', skip_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.skip_size = skip_size or input_size if self.input_size != self.skip_size: self.resample = _TimeDistributedInterpolation(self.input_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.input_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.input_size) def forward(self, x: 'torch.Tensor', skip: 'torch.Tensor'): if self.input_size != self.skip_size: skip = self.resample(skip) if self.trainable_add: skip = skip * self.gate(self.mask) * 2.0 output = self.norm(x + skip) return output class _GateAddNorm(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int'=None, skip_size: 'int'=None, trainable_add: 'bool'=False, dropout: 'float'=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size or input_size self.skip_size = skip_size or self.hidden_size self.dropout = dropout self.glu = _GatedLinearUnit(self.input_size, hidden_size=self. hidden_size, dropout=self.dropout) self.add_norm = _AddNorm(self.hidden_size, skip_size=self.skip_size, trainable_add=trainable_add) def forward(self, x, skip): output = self.glu(x) output = self.add_norm(output, skip) return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import Tensor from torch import nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_glu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask) tmp4 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_glu_0[grid(256)](buf0, primals_4, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](buf1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_2[grid(256)](buf1, buf2, buf3, primals_5, primals_6, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del buf3 del primals_6 return buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0), buf1 class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class _TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class _GatedLinearUnit(nn.Module): """Gated Linear Unit""" def __init__(self, input_size: 'int', hidden_size: 'int'=None, dropout: 'float'=None): super().__init__() if dropout is not None: self.dropout = MonteCarloDropout(dropout) else: self.dropout = dropout self.hidden_size = hidden_size or input_size self.fc = nn.Linear(input_size, self.hidden_size * 2) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'fc' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x): if self.dropout is not None: x = self.dropout(x) x = self.fc(x) x = F.glu(x, dim=-1) return x class _AddNorm(nn.Module): def __init__(self, input_size: 'int', skip_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.skip_size = skip_size or input_size if self.input_size != self.skip_size: self.resample = _TimeDistributedInterpolation(self.input_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.input_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.input_size) def forward(self, x: 'torch.Tensor', skip: 'torch.Tensor'): if self.input_size != self.skip_size: skip = self.resample(skip) if self.trainable_add: skip = skip * self.gate(self.mask) * 2.0 output = self.norm(x + skip) return output class _GateAddNormNew(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int'=None, skip_size: 'int'=None, trainable_add: 'bool'=False, dropout: 'float'=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size or input_size self.skip_size = skip_size or self.hidden_size self.dropout = dropout self.glu = _GatedLinearUnit(self.input_size, hidden_size=self. hidden_size, dropout=self.dropout) self.add_norm = _AddNorm(self.hidden_size, skip_size=self.skip_size, trainable_add=trainable_add) def forward(self, input_0, input_1): primals_1 = self.glu.fc.weight primals_2 = self.glu.fc.bias primals_5 = self.add_norm.norm.weight primals_6 = self.add_norm.norm.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
gdevos010/darts
_GateAddNorm
false
3,673
[ "Apache-2.0" ]
0
96c97c1e241500ae7b91d32bbfa21d811e4a7d71
https://github.com/gdevos010/darts/tree/96c97c1e241500ae7b91d32bbfa21d811e4a7d71
import torch from torch import Tensor from torch import nn as nn import torch.nn.functional as F class MonteCarloDropout(nn.Dropout): """ Defines Monte Carlo dropout Module as defined in the paper https://arxiv.org/pdf/1506.02142.pdf. In summary, This technique uses the regular dropout which can be interpreted as a Bayesian approximation of a well-known probabilistic model: the Gaussian process. We can treat the many different networks (with different neurons dropped out) as Monte Carlo samples from the space of all available models. This provides mathematical grounds to reason about the model’s uncertainty and, as it turns out, often improves its performance. """ mc_dropout_enabled: 'bool' = False def train(self, mode: 'bool'=True): if mode: self.mc_dropout_enabled = True def forward(self, input: 'Tensor') ->Tensor: return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) class _TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class _GatedLinearUnit(nn.Module): """Gated Linear Unit""" def __init__(self, input_size: 'int', hidden_size: 'int'=None, dropout: 'float'=None): super().__init__() if dropout is not None: self.dropout = MonteCarloDropout(dropout) else: self.dropout = dropout self.hidden_size = hidden_size or input_size self.fc = nn.Linear(input_size, self.hidden_size * 2) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'fc' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x): if self.dropout is not None: x = self.dropout(x) x = self.fc(x) x = F.glu(x, dim=-1) return x class _AddNorm(nn.Module): def __init__(self, input_size: 'int', skip_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.skip_size = skip_size or input_size if self.input_size != self.skip_size: self.resample = _TimeDistributedInterpolation(self.input_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.input_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.input_size) def forward(self, x: 'torch.Tensor', skip: 'torch.Tensor'): if self.input_size != self.skip_size: skip = self.resample(skip) if self.trainable_add: skip = skip * self.gate(self.mask) * 2.0 output = self.norm(x + skip) return output class Model(nn.Module): def __init__(self, input_size: ' # ... truncated (>4000 chars) for memory efficiency
GAT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/rn/crnvqrppxb3ocltksxzamskmx3mpvscqlqbanvhmgkmj5b53kfuf.py # Topologically Sorted Source Nodes: [add, e], Original ATen: [aten.add, aten.leaky_relu] # Source node to ATen node mapping: # add => add # e => gt # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %permute), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {}) triton_poi_fused_add_leaky_relu_0 = async_compile.triton('triton_poi_fused_add_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/k2/ck2qvrsga6qzh3n4zrcqhgn3gcw55gg5hx55rqebdhhoptcty66e.py # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] # Source node to ATen node mapping: # gt => gt_1 # Graph fragment: # %gt_1 : [num_users=5] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_5, 0), kwargs = {}) triton_poi_fused_gt_1 = async_compile.triton('triton_poi_fused_gt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/7p/c7pzocdj4z66742c4x73l2mmqga3yo74menkparuudjxrge7crrh.py # Topologically Sorted Source Nodes: [add, e, zero_vec, attention, attention_1, add_1, e_1, attention_3, attention_4, add_2, e_2, attention_6, attention_7, add_3, e_3, attention_9, attention_10], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # attention => where_1 # attention_1 => amax # attention_10 => amax_3 # attention_3 => where_3 # attention_4 => amax_1 # attention_6 => where_5 # attention_7 => amax_2 # attention_9 => where_7 # e => mul, where # e_1 => mul_2, where_2 # e_2 => mul_4, where_4 # e_3 => mul_6, where_6 # zero_vec => full_default # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %permute), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {}) # %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [1], True), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_5, %permute_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 4), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_1, %mul_2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_2, %full_default), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_3, [1], True), kwargs = {}) # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_9, %permute_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 4), kwargs = {}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %add_2, %mul_4), kwargs = {}) # %where_5 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_4, %full_default), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_5, [1], True), kwargs = {}) # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_13, %permute_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %add_3, %mul_6), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_7, [1], True), kwargs = {}) triton_poi_fused__softmax_add_leaky_relu_mul_where_2 = async_compile.triton('triton_poi_fused__softmax_add_leaky_relu_mul_where_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: '*fp32', 10: '*i1', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_leaky_relu_mul_where_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 40, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (x0), xmask) tmp3 = tl.load(in_ptr3 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp12 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp13 = tl.load(in_ptr3 + (1)) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp20 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp22 = tl.load(in_ptr3 + (2)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp29 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp31 = tl.load(in_ptr3 + (3)) tmp32 = tl.broadcast_to(tmp31, [XBLOCK]) tmp38 = tl.load(in_ptr4 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr5 + (x0), xmask) tmp40 = tl.load(in_ptr6 + (0)) tmp41 = tl.broadcast_to(tmp40, [XBLOCK]) tmp46 = tl.load(in_ptr4 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp47 = tl.load(in_ptr6 + (1)) tmp48 = tl.broadcast_to(tmp47, [XBLOCK]) tmp54 = tl.load(in_ptr4 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp55 = tl.load(in_ptr6 + (2)) tmp56 = tl.broadcast_to(tmp55, [XBLOCK]) tmp62 = tl.load(in_ptr4 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp63 = tl.load(in_ptr6 + (3)) tmp64 = tl.broadcast_to(tmp63, [XBLOCK]) tmp70 = tl.load(in_ptr7 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp71 = tl.load(in_ptr8 + (x0), xmask) tmp72 = tl.load(in_ptr9 + (0)) tmp73 = tl.broadcast_to(tmp72, [XBLOCK]) tmp78 = tl.load(in_ptr7 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp79 = tl.load(in_ptr9 + (1)) tmp80 = tl.broadcast_to(tmp79, [XBLOCK]) tmp86 = tl.load(in_ptr7 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp87 = tl.load(in_ptr9 + (2)) tmp88 = tl.broadcast_to(tmp87, [XBLOCK]) tmp94 = tl.load(in_ptr7 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp95 = tl.load(in_ptr9 + (3)) tmp96 = tl.broadcast_to(tmp95, [XBLOCK]) tmp102 = tl.load(in_ptr10 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp103 = tl.load(in_ptr11 + (x0), xmask) tmp104 = tl.load(in_ptr12 + (0)) tmp105 = tl.broadcast_to(tmp104, [XBLOCK]) tmp110 = tl.load(in_ptr10 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp111 = tl.load(in_ptr12 + (1)) tmp112 = tl.broadcast_to(tmp111, [XBLOCK]) tmp118 = tl.load(in_ptr10 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp119 = tl.load(in_ptr12 + (2)) tmp120 = tl.broadcast_to(tmp119, [XBLOCK]) tmp126 = tl.load(in_ptr10 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp127 = tl.load(in_ptr12 + (3)) tmp128 = tl.broadcast_to(tmp127, [XBLOCK]) tmp5 = tmp2 + tmp4 tmp6 = 4.0 tmp7 = tmp5 * tmp6 tmp8 = tl.where(tmp1, tmp5, tmp7) tmp9 = -8999999815811072.0 tmp10 = tl.where(tmp0, tmp8, tmp9) tmp15 = tmp2 + tmp14 tmp16 = tmp15 * tmp6 tmp17 = tl.where(tmp12, tmp15, tmp16) tmp18 = tl.where(tmp11, tmp17, tmp9) tmp19 = triton_helpers.maximum(tmp10, tmp18) tmp24 = tmp2 + tmp23 tmp25 = tmp24 * tmp6 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp20, tmp26, tmp9) tmp28 = triton_helpers.maximum(tmp19, tmp27) tmp33 = tmp2 + tmp32 tmp34 = tmp33 * tmp6 tmp35 = tl.where(tmp30, tmp33, tmp34) tmp36 = tl.where(tmp29, tmp35, tmp9) tmp37 = triton_helpers.maximum(tmp28, tmp36) tmp42 = tmp39 + tmp41 tmp43 = tmp42 * tmp6 tmp44 = tl.where(tmp38, tmp42, tmp43) tmp45 = tl.where(tmp0, tmp44, tmp9) tmp49 = tmp39 + tmp48 tmp50 = tmp49 * tmp6 tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = tl.where(tmp11, tmp51, tmp9) tmp53 = triton_helpers.maximum(tmp45, tmp52) tmp57 = tmp39 + tmp56 tmp58 = tmp57 * tmp6 tmp59 = tl.where(tmp54, tmp57, tmp58) tmp60 = tl.where(tmp20, tmp59, tmp9) tmp61 = triton_helpers.maximum(tmp53, tmp60) tmp65 = tmp39 + tmp64 tmp66 = tmp65 * tmp6 tmp67 = tl.where(tmp62, tmp65, tmp66) tmp68 = tl.where(tmp29, tmp67, tmp9) tmp69 = triton_helpers.maximum(tmp61, tmp68) tmp74 = tmp71 + tmp73 tmp75 = tmp74 * tmp6 tmp76 = tl.where(tmp70, tmp74, tmp75) tmp77 = tl.where(tmp0, tmp76, tmp9) tmp81 = tmp71 + tmp80 tmp82 = tmp81 * tmp6 tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = tl.where(tmp11, tmp83, tmp9) tmp85 = triton_helpers.maximum(tmp77, tmp84) tmp89 = tmp71 + tmp88 tmp90 = tmp89 * tmp6 tmp91 = tl.where(tmp86, tmp89, tmp90) tmp92 = tl.where(tmp20, tmp91, tmp9) tmp93 = triton_helpers.maximum(tmp85, tmp92) tmp97 = tmp71 + tmp96 tmp98 = tmp97 * tmp6 tmp99 = tl.where(tmp94, tmp97, tmp98) tmp100 = tl.where(tmp29, tmp99, tmp9) tmp101 = triton_helpers.maximum(tmp93, tmp100) tmp106 = tmp103 + tmp105 tmp107 = tmp106 * tmp6 tmp108 = tl.where(tmp102, tmp106, tmp107) tmp109 = tl.where(tmp0, tmp108, tmp9) tmp113 = tmp103 + tmp112 tmp114 = tmp113 * tmp6 tmp115 = tl.where(tmp110, tmp113, tmp114) tmp116 = tl.where(tmp11, tmp115, tmp9) tmp117 = triton_helpers.maximum(tmp109, tmp116) tmp121 = tmp103 + tmp120 tmp122 = tmp121 * tmp6 tmp123 = tl.where(tmp118, tmp121, tmp122) tmp124 = tl.where(tmp20, tmp123, tmp9) tmp125 = triton_helpers.maximum(tmp117, tmp124) tmp129 = tmp103 + tmp128 tmp130 = tmp129 * tmp6 tmp131 = tl.where(tmp126, tmp129, tmp130) tmp132 = tl.where(tmp29, tmp131, tmp9) tmp133 = triton_helpers.maximum(tmp125, tmp132) tl.store(out_ptr0 + (x0), tmp37, xmask) tl.store(out_ptr1 + (x0), tmp69, xmask) tl.store(out_ptr2 + (x0), tmp101, xmask) tl.store(out_ptr3 + (x0), tmp133, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/si/csiextwu44e63m7askimz3girudboqtyp45f2wu2wmll5iovqchv.py # Topologically Sorted Source Nodes: [add, e, zero_vec, attention, attention_1, add_1, e_1, attention_3, attention_4, add_2, e_2, attention_6, attention_7, add_3, e_3, attention_9, attention_10], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # attention => where_1 # attention_1 => exp, sub # attention_10 => exp_3, sub_3 # attention_3 => where_3 # attention_4 => exp_1, sub_1 # attention_6 => where_5 # attention_7 => exp_2, sub_2 # attention_9 => where_7 # e => mul, where # e_1 => mul_2, where_2 # e_2 => mul_4, where_4 # e_3 => mul_6, where_6 # zero_vec => full_default # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %permute), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {}) # %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_5, %permute_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 4), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_1, %mul_2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_2, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_3, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_9, %permute_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 4), kwargs = {}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %add_2, %mul_4), kwargs = {}) # %where_5 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_4, %full_default), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_5, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_13, %permute_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %add_3, %mul_6), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) triton_poi_fused__softmax_add_leaky_relu_mul_where_3 = async_compile.triton('triton_poi_fused__softmax_add_leaky_relu_mul_where_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i1', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*i1', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_leaky_relu_mul_where_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr5 + (x2), xmask).to(tl.int1) tmp14 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr7 + (x0), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr9 + (x2), xmask).to(tl.int1) tmp24 = tl.load(in_ptr10 + (x1), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr11 + (x0), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr12 + (x1), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr13 + (x2), xmask).to(tl.int1) tmp34 = tl.load(in_ptr14 + (x1), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr15 + (x0), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr16 + (x1), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = 4.0 tmp6 = tmp4 * tmp5 tmp7 = tl.where(tmp1, tmp4, tmp6) tmp8 = -8999999815811072.0 tmp9 = tl.where(tmp0, tmp7, tmp8) tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tmp16 = tmp14 + tmp15 tmp17 = tmp16 * tmp5 tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tl.where(tmp0, tmp18, tmp8) tmp21 = tmp19 - tmp20 tmp22 = tl_math.exp(tmp21) tmp26 = tmp24 + tmp25 tmp27 = tmp26 * tmp5 tmp28 = tl.where(tmp23, tmp26, tmp27) tmp29 = tl.where(tmp0, tmp28, tmp8) tmp31 = tmp29 - tmp30 tmp32 = tl_math.exp(tmp31) tmp36 = tmp34 + tmp35 tmp37 = tmp36 * tmp5 tmp38 = tl.where(tmp33, tmp36, tmp37) tmp39 = tl.where(tmp0, tmp38, tmp8) tmp41 = tmp39 - tmp40 tmp42 = tl_math.exp(tmp41) tl.store(out_ptr0 + (x2), tmp12, xmask) tl.store(out_ptr1 + (x2), tmp22, xmask) tl.store(out_ptr2 + (x2), tmp32, xmask) tl.store(out_ptr3 + (x2), tmp42, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/rr/crrmj7r54x5uk325xkhuskxp4m5prz3fpx53yc2st4o5pwbhq32p.py # Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/s2/cs2da62esedbp7cc5pkrkaaov26vqav3xrbyiivqo7k7yeqiw6pv.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%sigmoid, %sigmoid_1, %sigmoid_2, %sigmoid_3], 1), kwargs = {}) triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype) tmp8 = tl.where(tmp4, tmp6, tmp7) tmp9 = tmp0 >= tmp3 tmp10 = tl.full([1], 8, tl.int64) tmp11 = tmp0 < tmp10 tmp12 = tmp9 & tmp11 tmp13 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.sigmoid(tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp12, tmp14, tmp15) tmp17 = tmp0 >= tmp10 tmp18 = tl.full([1], 12, tl.int64) tmp19 = tmp0 < tmp18 tmp20 = tmp17 & tmp19 tmp21 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tl.sigmoid(tmp21) tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp20, tmp22, tmp23) tmp25 = tmp0 >= tmp18 tmp26 = tl.full([1], 16, tl.int64) tmp27 = tmp0 < tmp26 tmp28 = tl.load(in_ptr3 + ((4*x1) + ((-12) + x0)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tl.sigmoid(tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tl.where(tmp20, tmp24, tmp31) tmp33 = tl.where(tmp12, tmp16, tmp32) tmp34 = tl.where(tmp4, tmp8, tmp33) tl.store(out_ptr0 + (x2), tmp34, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 1), (1, 1)) assert_size_stride(primals_8, (4, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, 1), (1, 1)) assert_size_stride(primals_11, (4, 1), (1, 1)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, 1), (1, 1)) assert_size_stride(primals_14, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_1], Original ATen: [aten.mm] extern_kernels.mm(buf0, primals_3, out=buf1) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_2], Original ATen: [aten.mm] extern_kernels.mm(buf0, primals_4, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add, e], Original ATen: [aten.add, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_add_leaky_relu_0.run(buf1, buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] triton_poi_fused_gt_1.run(primals_5, buf4, 16, grid=grid(16), stream=stream0) del primals_5 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_6, out=buf9) del primals_6 buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_3], Original ATen: [aten.mm] extern_kernels.mm(buf9, primals_7, out=buf10) buf11 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_4], Original ATen: [aten.mm] extern_kernels.mm(buf9, primals_8, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add_1, e_1], Original ATen: [aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_0.run(buf10, buf11, buf12, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_9, out=buf17) del primals_9 buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_5], Original ATen: [aten.mm] extern_kernels.mm(buf17, primals_10, out=buf18) buf19 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_6], Original ATen: [aten.mm] extern_kernels.mm(buf17, primals_11, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add_2, e_2], Original ATen: [aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_0.run(buf18, buf19, buf20, 16, grid=grid(16), stream=stream0) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_12, out=buf25) del primals_12 buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_7], Original ATen: [aten.mm] extern_kernels.mm(buf25, primals_13, out=buf26) buf27 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [f_8], Original ATen: [aten.mm] extern_kernels.mm(buf25, primals_14, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add_3, e_3], Original ATen: [aten.add, aten.leaky_relu] triton_poi_fused_add_leaky_relu_0.run(buf26, buf27, buf28, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [add, e, zero_vec, attention, attention_1, add_1, e_1, attention_3, attention_4, add_2, e_2, attention_6, attention_7, add_3, e_3, attention_9, attention_10], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_add_leaky_relu_mul_where_2.run(buf4, buf3, buf1, buf2, buf12, buf10, buf11, buf20, buf18, buf19, buf28, buf26, buf27, buf5, buf13, buf21, buf29, 4, grid=grid(4), stream=stream0) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf30 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, e, zero_vec, attention, attention_1, add_1, e_1, attention_3, attention_4, add_2, e_2, attention_6, attention_7, add_3, e_3, attention_9, attention_10], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_add_leaky_relu_mul_where_3.run(buf4, buf3, buf1, buf2, buf5, buf12, buf10, buf11, buf13, buf20, buf18, buf19, buf21, buf28, buf26, buf27, buf29, buf6, buf14, buf22, buf30, 16, grid=grid(16), stream=stream0) del buf1 del buf10 del buf11 del buf13 del buf18 del buf19 del buf2 del buf21 del buf26 del buf27 del buf29 del buf5 buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf6, buf7, 16, grid=grid(16), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.mm] extern_kernels.mm(buf7, buf0, out=buf8) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.mm] extern_kernels.mm(buf15, buf9, out=buf16) buf23 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_7], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf22, buf23, 16, grid=grid(16), stream=stream0) buf24 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.mm] extern_kernels.mm(buf23, buf17, out=buf24) buf31 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_10], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf30, buf31, 16, grid=grid(16), stream=stream0) buf32 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.mm] extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_5.run(buf8, buf16, buf24, buf32, buf33, 64, grid=grid(64), stream=stream0) return (buf33, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor(primals_14, (1, 4), (1, 1), 0), reinterpret_tensor(primals_13, (1, 4), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor(primals_11, (1, 4), (1, 1), 0), reinterpret_tensor(primals_10, (1, 4), (1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(primals_8, (1, 4), (1, 1), 0), reinterpret_tensor(primals_7, (1, 4), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), reinterpret_tensor(primals_3, (1, 4), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( in_features, out_features).type(torch.FloatTensor if torch.cuda .is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.a1 = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( out_features, 1).type(torch.FloatTensor if torch.cuda. is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.a2 = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( out_features, 1).type(torch.FloatTensor if torch.cuda. is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] f_1 = h @ self.a1 f_2 = h @ self.a2 e = self.leakyrelu(f_1 + f_2.transpose(0, 1)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.sigmoid(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GAT(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): super(GAT, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) def forward(self, x, adj): x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=1) x = F.dropout(x, self.dropout, training=self.training) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'dropout': 0.5, 'alpha': 4, 'nheads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + x0, xmask) tmp3 = tl.load(in_ptr3 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp11 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp12 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp13 = tl.load(in_ptr3 + 1) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp20 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp21 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp22 = tl.load(in_ptr3 + 2) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp29 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp30 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp31 = tl.load(in_ptr3 + 3) tmp32 = tl.broadcast_to(tmp31, [XBLOCK]) tmp38 = tl.load(in_ptr4 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp39 = tl.load(in_ptr5 + x0, xmask) tmp40 = tl.load(in_ptr6 + 0) tmp41 = tl.broadcast_to(tmp40, [XBLOCK]) tmp46 = tl.load(in_ptr4 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp47 = tl.load(in_ptr6 + 1) tmp48 = tl.broadcast_to(tmp47, [XBLOCK]) tmp54 = tl.load(in_ptr4 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp55 = tl.load(in_ptr6 + 2) tmp56 = tl.broadcast_to(tmp55, [XBLOCK]) tmp62 = tl.load(in_ptr4 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp63 = tl.load(in_ptr6 + 3) tmp64 = tl.broadcast_to(tmp63, [XBLOCK]) tmp70 = tl.load(in_ptr7 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp71 = tl.load(in_ptr8 + x0, xmask) tmp72 = tl.load(in_ptr9 + 0) tmp73 = tl.broadcast_to(tmp72, [XBLOCK]) tmp78 = tl.load(in_ptr7 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp79 = tl.load(in_ptr9 + 1) tmp80 = tl.broadcast_to(tmp79, [XBLOCK]) tmp86 = tl.load(in_ptr7 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp87 = tl.load(in_ptr9 + 2) tmp88 = tl.broadcast_to(tmp87, [XBLOCK]) tmp94 = tl.load(in_ptr7 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp95 = tl.load(in_ptr9 + 3) tmp96 = tl.broadcast_to(tmp95, [XBLOCK]) tmp102 = tl.load(in_ptr10 + 4 * x0, xmask, eviction_policy='evict_last' ).to(tl.int1) tmp103 = tl.load(in_ptr11 + x0, xmask) tmp104 = tl.load(in_ptr12 + 0) tmp105 = tl.broadcast_to(tmp104, [XBLOCK]) tmp110 = tl.load(in_ptr10 + (1 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp111 = tl.load(in_ptr12 + 1) tmp112 = tl.broadcast_to(tmp111, [XBLOCK]) tmp118 = tl.load(in_ptr10 + (2 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp119 = tl.load(in_ptr12 + 2) tmp120 = tl.broadcast_to(tmp119, [XBLOCK]) tmp126 = tl.load(in_ptr10 + (3 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp127 = tl.load(in_ptr12 + 3) tmp128 = tl.broadcast_to(tmp127, [XBLOCK]) tmp5 = tmp2 + tmp4 tmp6 = 4.0 tmp7 = tmp5 * tmp6 tmp8 = tl.where(tmp1, tmp5, tmp7) tmp9 = -8999999815811072.0 tmp10 = tl.where(tmp0, tmp8, tmp9) tmp15 = tmp2 + tmp14 tmp16 = tmp15 * tmp6 tmp17 = tl.where(tmp12, tmp15, tmp16) tmp18 = tl.where(tmp11, tmp17, tmp9) tmp19 = triton_helpers.maximum(tmp10, tmp18) tmp24 = tmp2 + tmp23 tmp25 = tmp24 * tmp6 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp20, tmp26, tmp9) tmp28 = triton_helpers.maximum(tmp19, tmp27) tmp33 = tmp2 + tmp32 tmp34 = tmp33 * tmp6 tmp35 = tl.where(tmp30, tmp33, tmp34) tmp36 = tl.where(tmp29, tmp35, tmp9) tmp37 = triton_helpers.maximum(tmp28, tmp36) tmp42 = tmp39 + tmp41 tmp43 = tmp42 * tmp6 tmp44 = tl.where(tmp38, tmp42, tmp43) tmp45 = tl.where(tmp0, tmp44, tmp9) tmp49 = tmp39 + tmp48 tmp50 = tmp49 * tmp6 tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = tl.where(tmp11, tmp51, tmp9) tmp53 = triton_helpers.maximum(tmp45, tmp52) tmp57 = tmp39 + tmp56 tmp58 = tmp57 * tmp6 tmp59 = tl.where(tmp54, tmp57, tmp58) tmp60 = tl.where(tmp20, tmp59, tmp9) tmp61 = triton_helpers.maximum(tmp53, tmp60) tmp65 = tmp39 + tmp64 tmp66 = tmp65 * tmp6 tmp67 = tl.where(tmp62, tmp65, tmp66) tmp68 = tl.where(tmp29, tmp67, tmp9) tmp69 = triton_helpers.maximum(tmp61, tmp68) tmp74 = tmp71 + tmp73 tmp75 = tmp74 * tmp6 tmp76 = tl.where(tmp70, tmp74, tmp75) tmp77 = tl.where(tmp0, tmp76, tmp9) tmp81 = tmp71 + tmp80 tmp82 = tmp81 * tmp6 tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = tl.where(tmp11, tmp83, tmp9) tmp85 = triton_helpers.maximum(tmp77, tmp84) tmp89 = tmp71 + tmp88 tmp90 = tmp89 * tmp6 tmp91 = tl.where(tmp86, tmp89, tmp90) tmp92 = tl.where(tmp20, tmp91, tmp9) tmp93 = triton_helpers.maximum(tmp85, tmp92) tmp97 = tmp71 + tmp96 tmp98 = tmp97 * tmp6 tmp99 = tl.where(tmp94, tmp97, tmp98) tmp100 = tl.where(tmp29, tmp99, tmp9) tmp101 = triton_helpers.maximum(tmp93, tmp100) tmp106 = tmp103 + tmp105 tmp107 = tmp106 * tmp6 tmp108 = tl.where(tmp102, tmp106, tmp107) tmp109 = tl.where(tmp0, tmp108, tmp9) tmp113 = tmp103 + tmp112 tmp114 = tmp113 * tmp6 tmp115 = tl.where(tmp110, tmp113, tmp114) tmp116 = tl.where(tmp11, tmp115, tmp9) tmp117 = triton_helpers.maximum(tmp109, tmp116) tmp121 = tmp103 + tmp120 tmp122 = tmp121 * tmp6 tmp123 = tl.where(tmp118, tmp121, tmp122) tmp124 = tl.where(tmp20, tmp123, tmp9) tmp125 = triton_helpers.maximum(tmp117, tmp124) tmp129 = tmp103 + tmp128 tmp130 = tmp129 * tmp6 tmp131 = tl.where(tmp126, tmp129, tmp130) tmp132 = tl.where(tmp29, tmp131, tmp9) tmp133 = triton_helpers.maximum(tmp125, tmp132) tl.store(out_ptr0 + x0, tmp37, xmask) tl.store(out_ptr1 + x0, tmp69, xmask) tl.store(out_ptr2 + x0, tmp101, xmask) tl.store(out_ptr3 + x0, tmp133, xmask) @triton.jit def triton_poi_fused__softmax_add_leaky_relu_mul_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr5 + x2, xmask).to(tl.int1) tmp14 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr7 + x0, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr9 + x2, xmask).to(tl.int1) tmp24 = tl.load(in_ptr10 + x1, xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr11 + x0, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr12 + x1, xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr13 + x2, xmask).to(tl.int1) tmp34 = tl.load(in_ptr14 + x1, xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr15 + x0, xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr16 + x1, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp5 = 4.0 tmp6 = tmp4 * tmp5 tmp7 = tl.where(tmp1, tmp4, tmp6) tmp8 = -8999999815811072.0 tmp9 = tl.where(tmp0, tmp7, tmp8) tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tmp16 = tmp14 + tmp15 tmp17 = tmp16 * tmp5 tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tl.where(tmp0, tmp18, tmp8) tmp21 = tmp19 - tmp20 tmp22 = tl_math.exp(tmp21) tmp26 = tmp24 + tmp25 tmp27 = tmp26 * tmp5 tmp28 = tl.where(tmp23, tmp26, tmp27) tmp29 = tl.where(tmp0, tmp28, tmp8) tmp31 = tmp29 - tmp30 tmp32 = tl_math.exp(tmp31) tmp36 = tmp34 + tmp35 tmp37 = tmp36 * tmp5 tmp38 = tl.where(tmp33, tmp36, tmp37) tmp39 = tl.where(tmp0, tmp38, tmp8) tmp41 = tmp39 - tmp40 tmp42 = tl_math.exp(tmp41) tl.store(out_ptr0 + x2, tmp12, xmask) tl.store(out_ptr1 + x2, tmp22, xmask) tl.store(out_ptr2 + x2, tmp32, xmask) tl.store(out_ptr3 + x2, tmp42, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype) tmp8 = tl.where(tmp4, tmp6, tmp7) tmp9 = tmp0 >= tmp3 tmp10 = tl.full([1], 8, tl.int64) tmp11 = tmp0 < tmp10 tmp12 = tmp9 & tmp11 tmp13 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.sigmoid(tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp12, tmp14, tmp15) tmp17 = tmp0 >= tmp10 tmp18 = tl.full([1], 12, tl.int64) tmp19 = tmp0 < tmp18 tmp20 = tmp17 & tmp19 tmp21 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tl.sigmoid(tmp21) tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype) tmp24 = tl.where(tmp20, tmp22, tmp23) tmp25 = tmp0 >= tmp18 tl.full([1], 16, tl.int64) tmp28 = tl.load(in_ptr3 + (4 * x1 + (-12 + x0)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tl.sigmoid(tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tl.where(tmp20, tmp24, tmp31) tmp33 = tl.where(tmp12, tmp16, tmp32) tmp34 = tl.where(tmp4, tmp8, tmp33) tl.store(out_ptr0 + x2, tmp34, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 1), (1, 1)) assert_size_stride(primals_8, (4, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, 1), (1, 1)) assert_size_stride(primals_11, (4, 1), (1, 1)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, 1), (1, 1)) assert_size_stride(primals_14, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf0, primals_3, out=buf1) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf0, primals_4, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_add_leaky_relu_0[grid(16)](buf1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_gt_1[grid(16)](primals_5, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_6, out=buf9) del primals_6 buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf9, primals_7, out=buf10) buf11 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf9, primals_8, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_leaky_relu_0[grid(16)](buf10, buf11, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_9, out=buf17) del primals_9 buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf17, primals_10, out=buf18) buf19 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf17, primals_11, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_leaky_relu_0[grid(16)](buf18, buf19, buf20, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_12, out=buf25) del primals_12 buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf25, primals_13, out=buf26) buf27 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf25, primals_14, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_leaky_relu_0[grid(16)](buf26, buf27, buf28, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused__softmax_add_leaky_relu_mul_where_2[grid(4)](buf4, buf3, buf1, buf2, buf12, buf10, buf11, buf20, buf18, buf19, buf28, buf26, buf27, buf5, buf13, buf21, buf29, 4, XBLOCK=4, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf22 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf30 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_add_leaky_relu_mul_where_3[grid(16)](buf4, buf3, buf1, buf2, buf5, buf12, buf10, buf11, buf13, buf20, buf18, buf19, buf21, buf28, buf26, buf27, buf29, buf6, buf14, buf22, buf30, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del buf10 del buf11 del buf13 del buf18 del buf19 del buf2 del buf21 del buf26 del buf27 del buf29 del buf5 buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) buf8 = buf6 del buf6 extern_kernels.mm(buf7, buf0, out=buf8) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = buf14 del buf14 extern_kernels.mm(buf15, buf9, out=buf16) buf23 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf22, buf23, 16, XBLOCK=16, num_warps=1, num_stages=1) buf24 = buf22 del buf22 extern_kernels.mm(buf23, buf17, out=buf24) buf31 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf30, buf31, 16, XBLOCK=16, num_warps=1, num_stages=1) buf32 = buf30 del buf30 extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) triton_poi_fused_cat_5[grid(64)](buf8, buf16, buf24, buf32, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) return (buf33, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor(primals_14, (1, 4), (1, 1), 0), reinterpret_tensor(primals_13, (1, 4), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor( primals_11, (1, 4), (1, 1), 0), reinterpret_tensor(primals_10, (1, 4), (1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(primals_8, (1, 4), (1, 1), 0), reinterpret_tensor(primals_7, (1, 4), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor( primals_4, (1, 4), (1, 1), 0), reinterpret_tensor(primals_3, (1, 4), (1, 1), 0)) class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( in_features, out_features).type(torch.FloatTensor if torch.cuda .is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.a1 = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( out_features, 1).type(torch.FloatTensor if torch.cuda. is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.a2 = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( out_features, 1).type(torch.FloatTensor if torch.cuda. is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] f_1 = h @ self.a1 f_2 = h @ self.a2 e = self.leakyrelu(f_1 + f_2.transpose(0, 1)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.sigmoid(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATNew(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): super(GATNew, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) def forward(self, input_0, input_1): primals_1 = self.attention_0.W primals_3 = self.attention_0.a1 primals_4 = self.attention_0.a2 primals_2 = self.attention_1.W primals_7 = self.attention_1.a1 primals_8 = self.attention_1.a2 primals_5 = self.attention_2.W primals_10 = self.attention_2.a1 primals_11 = self.attention_2.a2 primals_6 = self.attention_3.W primals_13 = self.attention_3.a1 primals_14 = self.attention_3.a2 primals_9 = input_0 primals_12 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0]
iaongstudio/PaperRobot
GAT
false
3,674
[ "MIT" ]
0
d7d2a87822e1fb473e5c72ffc6b83d1022ecd3c1
https://github.com/iaongstudio/PaperRobot/tree/d7d2a87822e1fb473e5c72ffc6b83d1022ecd3c1
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super().__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( in_features, out_features).type(torch.FloatTensor if torch.cuda .is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.a1 = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( out_features, 1).type(torch.FloatTensor if torch.cuda. is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.a2 = nn.Parameter(nn.init.xavier_uniform_(torch.FloatTensor( out_features, 1).type(torch.FloatTensor if torch.cuda. is_available() else torch.FloatTensor), gain=np.sqrt(2.0)), requires_grad=True) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) h.size()[0] f_1 = h @ self.a1 f_2 = h @ self.a2 e = self.leakyrelu(f_1 + f_2.transpose(0, 1)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.sigmoid(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class Model(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): super().__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) def forward(self, x, adj): x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=1) x = F.dropout(x, self.dropout, training=self.training) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'dropout': 0.5, 'alpha': 4, 'nheads': 4}]
GLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/gm/cgmcq4fcozuwxudu4nlvuwtnzjgiqui4p4lq6vqgh72zwior5msd.py # Topologically Sorted Source Nodes: [glu], Original ATen: [aten.glu] # Source node to ATen node mapping: # glu => glu # Graph fragment: # %glu : [num_users=1] = call_function[target=torch.ops.aten.glu.default](args = (%arg0_1, 4), kwargs = {}) triton_poi_fused_glu_0 = async_compile.triton('triton_poi_fused_glu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_glu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_glu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [glu], Original ATen: [aten.glu] stream0 = get_raw_stream(0) triton_poi_fused_glu_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class GLU(nn.Module): def __init__(self, dim): super(GLU, self).__init__() self.dim = dim def forward(self, x): return F.glu(x, self.dim) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_glu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_glu_0[grid(512)](arg0_1, buf0, 512, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class GLUNew(nn.Module): def __init__(self, dim): super(GLUNew, self).__init__() self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ishine/tfm-tts
GLU
false
3,675
[ "MIT" ]
0
a964736467851ddec8f8e8933b9550cbe7d7d7eb
https://github.com/ishine/tfm-tts/tree/a964736467851ddec8f8e8933b9550cbe7d7d7eb
import torch import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): return F.glu(x, self.dim) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [4]
DownsampleA
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/rs/crszklwi4mjsrfrzdtdvnsclt3tdjqb2b2lc3coqw5z6rswsrxqf.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%avg_pool2d, %mul], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 4) % 8 x0 = xindex % 2 x1 = (xindex // 2) % 2 x3 = (xindex // 32) x4 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2) + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 1.0 tmp7 = tmp5 * tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*((-4) + x2)) + (64*x3)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tmp13 * tmp6 tmp15 = 0.0 tmp16 = tmp14 * tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp10, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp9, tmp18) tl.store(out_ptr0 + (x4), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 2, 2), (32, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DownsampleA(nn.Module): def __init__(self, nIn, nOut, stride): super(DownsampleA, self).__init__() assert stride == 2 self.avg = nn.AvgPool2d(kernel_size=1, stride=stride) def forward(self, x): x = self.avg(x) return torch.cat((x, x.mul(0)), 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nIn': 4, 'nOut': 4, 'stride': 2}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 4 % 8 x0 = xindex % 2 x1 = xindex // 2 % 2 x3 = xindex // 32 x4 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2 + 64 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 1.0 tmp7 = tmp5 * tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp13 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * (-4 + x2) + 64 * x3), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tmp13 * tmp6 tmp15 = 0.0 tmp16 = tmp14 * tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp10, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp9, tmp18) tl.store(out_ptr0 + x4, tmp19, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 2, 2), (32, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class DownsampleANew(nn.Module): def __init__(self, nIn, nOut, stride): super(DownsampleANew, self).__init__() assert stride == 2 self.avg = nn.AvgPool2d(kernel_size=1, stride=stride) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
gianlucagiudice/PyCIL
DownsampleA
false
3,676
[ "MIT" ]
0
0db88f239b935ea6d0047918a2a55a703f707b04
https://github.com/gianlucagiudice/PyCIL/tree/0db88f239b935ea6d0047918a2a55a703f707b04
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, nIn, nOut, stride): super().__init__() assert stride == 2 self.avg = nn.AvgPool2d(kernel_size=1, stride=stride) def forward(self, x): x = self.avg(x) return torch.cat((x, x.mul(0)), 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 2]
NAE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/bx/cbxqmhrbbr4rgymczvevljgkkydrynklmhneey5qcwz5okx77evh.py # Topologically Sorted Source Nodes: [sub, diff, truediv, abs_2, loss], Original ATen: [aten.sub, aten.abs, aten.div, aten.mean] # Source node to ATen node mapping: # abs_2 => abs_2 # diff => abs_1 # loss => mean # sub => sub # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_1, %arg1_1), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%div,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {}) triton_per_fused_abs_div_mean_sub_0 = async_compile.triton('triton_per_fused_abs_div_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 / tmp1 tmp5 = tl_math.abs(tmp4) tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, diff, truediv, abs_2, loss], Original ATen: [aten.sub, aten.abs, aten.div, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_div_mean_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class NAE(nn.Module): def __init__(self): super().__init__() def forward(self, pred, gt): diff = torch.abs(pred - gt) loss = torch.mean(torch.abs(diff / gt)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tmp3 / tmp1 tmp5 = tl_math.abs(tmp4) tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_div_mean_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class NAENew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
j1a0m0e4sNTU/MachineLearning2019
NAE
false
3,677
[ "MIT" ]
0
44a7a3387837e53134bcf5eb8fcf95daf4dff48d
https://github.com/j1a0m0e4sNTU/MachineLearning2019/tree/44a7a3387837e53134bcf5eb8fcf95daf4dff48d
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, pred, gt): diff = torch.abs(pred - gt) loss = torch.mean(torch.abs(diff / gt)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FixedSubnetConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/p3/cp3qleddjiuuytozrtebx5pzf2ycpwtw4mkq2jsx7qqswymv2bm6.py # Topologically Sorted Source Nodes: [w], Original ATen: [aten.mul] # Source node to ATen node mapping: # w => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %mul, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [w], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf2, primals_1, primals_2, primals_4, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.multiprocessing import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn.functional as F class FixedSubnetConv(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.scores = nn.Parameter(torch.Tensor(self.weight.size())) nn.init.kaiming_uniform_(self.scores, a=math.sqrt(5)) def set_prune_rate(self, prune_rate): self.prune_rate = prune_rate None def set_subnet(self): output = self.clamped_scores().clone() _, idx = self.clamped_scores().flatten().abs().sort() p = int(self.prune_rate * self.clamped_scores().numel()) flat_oup = output.flatten() flat_oup[idx[:p]] = 0 flat_oup[idx[p:]] = 1 self.scores = torch.nn.Parameter(output) self.scores.requires_grad = False def clamped_scores(self): return self.scores.abs() def get_subnet(self): return self.weight * self.scores def forward(self, x): w = self.get_subnet() x = F.conv2d(x, w, self.bias, self.stride, self.padding, self. dilation, self.groups) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.multiprocessing import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf2, primals_1, primals_2, primals_4, buf0 class FixedSubnetConvNew(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.scores = nn.Parameter(torch.Tensor(self.weight.size())) nn.init.kaiming_uniform_(self.scores, a=math.sqrt(5)) def set_prune_rate(self, prune_rate): self.prune_rate = prune_rate None def set_subnet(self): output = self.clamped_scores().clone() _, idx = self.clamped_scores().flatten().abs().sort() p = int(self.prune_rate * self.clamped_scores().numel()) flat_oup = output.flatten() flat_oup[idx[:p]] = 0 flat_oup[idx[p:]] = 1 self.scores = torch.nn.Parameter(output) self.scores.requires_grad = False def clamped_scores(self): return self.scores.abs() def get_subnet(self): return self.weight * self.scores def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = self.scores primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
isamu-isozaki/hidden-networks
FixedSubnetConv
false
3,678
[ "Apache-2.0" ]
0
7dcb96a7de43b65ffde176d771f88b5ecedb84ab
https://github.com/isamu-isozaki/hidden-networks/tree/7dcb96a7de43b65ffde176d771f88b5ecedb84ab
import math import torch import torch.multiprocessing import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn.functional as F class Model(nn.Conv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.scores = nn.Parameter(torch.Tensor(self.weight.size())) nn.init.kaiming_uniform_(self.scores, a=math.sqrt(5)) def set_prune_rate(self, prune_rate): self.prune_rate = prune_rate None def set_subnet(self): output = self.clamped_scores().clone() _, idx = self.clamped_scores().flatten().abs().sort() p = int(self.prune_rate * self.clamped_scores().numel()) flat_oup = output.flatten() flat_oup[idx[:p]] = 0 flat_oup[idx[p:]] = 1 self.scores = torch.nn.Parameter(output) self.scores.requires_grad = False def clamped_scores(self): return self.scores.abs() def get_subnet(self): return self.weight * self.scores def forward(self, x): w = self.get_subnet() x = F.conv2d(x, w, self.bias, self.stride, self.padding, self. dilation, self.groups) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/zf/czfnaeipqg4a3qzttb2l6zy5ng44vshk3lfmp25jc2er665hxsmw.py # Topologically Sorted Source Nodes: [mean, sub], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # mean => mean # sub => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/nb/cnbkvpnicoofsbkxnyhwgeyfzqyspp7j6cxabnxtv6qrx6gyuqtr.py # Topologically Sorted Source Nodes: [pow_1, variance, add, rsqrt, x, mul_1, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul] # Source node to ATen node mapping: # add => add # mul_1 => mul_1 # pow_1 => pow_1 # rsqrt => rsqrt # variance => mean_1 # x => mul # x_1 => add_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %view), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %view_1), kwargs = {}) triton_poi_fused_add_mean_mul_pow_rsqrt_1 = async_compile.triton('triton_poi_fused_add_mean_mul_pow_rsqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_pow_rsqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_pow_rsqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = (xindex // 64) x5 = xindex % 16 x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-05 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp0 * tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x4), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, sub], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mean_sub_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, variance, add, rsqrt, x, mul_1, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.rsqrt, aten.mul] triton_poi_fused_add_mean_mul_pow_rsqrt_1.run(buf0, primals_2, primals_3, buf1, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-05): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): mean = torch.mean(x, 1, keepdim=True) variance = torch.mean((x - mean) ** 2, 1, keepdim=True) x = (x - mean) * torch.rsqrt(variance + self.eps) x = x * self.gamma.view(1, -1, 1) + self.beta.view(1, -1, 1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_add_mean_mul_pow_rsqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x3 = xindex // 64 x5 = xindex % 16 x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + (x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-05 tmp15 = tmp13 + tmp14 tmp16 = libdevice.rsqrt(tmp15) tmp17 = tmp0 * tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x4, tmp21, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mean_mul_pow_rsqrt_1[grid(256)](buf0, primals_2, primals_3, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 del primals_3 return buf1, primals_1 class LayerNormNew(nn.Module): def __init__(self, channels, eps=1e-05): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ishine/tfm-tts
LayerNorm
false
3,679
[ "MIT" ]
0
a964736467851ddec8f8e8933b9550cbe7d7d7eb
https://github.com/ishine/tfm-tts/tree/a964736467851ddec8f8e8933b9550cbe7d7d7eb
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, channels, eps=1e-05): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): mean = torch.mean(x, 1, keepdim=True) variance = torch.mean((x - mean) ** 2, 1, keepdim=True) x = (x - mean) * torch.rsqrt(variance + self.eps) x = x * self.gamma.view(1, -1, 1) + self.beta.view(1, -1, 1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
WMAE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/6r/c6ruwchcxe4gg5fdutkw3wswinzvm3yddm33wida35ue5ukqxgsv.py # Topologically Sorted Source Nodes: [mul, sum_1, loss, mul_1, sum_2, loss_1, mul_2, sum_3, loss_2, loss_3], Original ATen: [aten.mul, aten.sum, aten.add, aten.div] # Source node to ATen node mapping: # loss => add # loss_1 => add_1 # loss_2 => add_2 # loss_3 => div # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, 300), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, 1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %sum_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, 200), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %sum_3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 2004), kwargs = {}) triton_per_fused_add_div_mul_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp9 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp10 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp18 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp19 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 300.0 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp13 = 1.0 tmp14 = tmp12 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp20 = tmp18 - tmp19 tmp21 = tl_math.abs(tmp20) tmp22 = 200.0 tmp23 = tmp21 * tmp22 tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp26 = tl.sum(tmp24, 1)[:, None] tmp27 = 0.0 tmp28 = tmp8 + tmp27 tmp29 = tmp28 + tmp17 tmp30 = tmp29 + tmp26 tmp31 = 0.000499001996007984 tmp32 = tmp30 * tmp31 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp32, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, sum_1, loss, mul_1, sum_2, loss_1, mul_2, sum_3, loss_2, loss_3], Original ATen: [aten.mul, aten.sum, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_sum_0.run(buf3, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class WMAE(nn.Module): def __init__(self): super().__init__() self.weight = [300, 1, 200] def forward(self, pred, gt): diff = torch.abs(pred - gt) loss = 0 for i in range(3): loss += torch.sum(diff[:, i] * self.weight[i]) loss /= gt.size(0) * sum(self.weight) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp9 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp10 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp18 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp19 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 300.0 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp13 = 1.0 tmp14 = tmp12 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp20 = tmp18 - tmp19 tmp21 = tl_math.abs(tmp20) tmp22 = 200.0 tmp23 = tmp21 * tmp22 tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp26 = tl.sum(tmp24, 1)[:, None] tmp27 = 0.0 tmp28 = tmp8 + tmp27 tmp29 = tmp28 + tmp17 tmp30 = tmp29 + tmp26 tmp31 = 0.000499001996007984 tmp32 = tmp30 * tmp31 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp32, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class WMAENew(nn.Module): def __init__(self): super().__init__() self.weight = [300, 1, 200] def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
j1a0m0e4sNTU/MachineLearning2019
WMAE
false
3,680
[ "MIT" ]
0
44a7a3387837e53134bcf5eb8fcf95daf4dff48d
https://github.com/j1a0m0e4sNTU/MachineLearning2019/tree/44a7a3387837e53134bcf5eb8fcf95daf4dff48d
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.weight = [300, 1, 200] def forward(self, pred, gt): diff = torch.abs(pred - gt) loss = 0 for i in range(3): loss += torch.sum(diff[:, i] * self.weight[i]) loss /= gt.size(0) * sum(self.weight) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []