repo_name
stringclasses 6
values | pr_number
int64 99
20.3k
| pr_title
stringlengths 8
158
| pr_description
stringlengths 0
6.54k
| author
stringlengths 4
18
| date_created
unknown | date_merged
unknown | previous_commit
stringlengths 40
40
| pr_commit
stringlengths 40
40
| query
stringlengths 37
6.57k
| filepath
stringlengths 8
153
| before_content
stringlengths 0
876M
| after_content
stringlengths 0
876M
| label
int64 -1
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/electra/test_modeling_electra.py | # coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import ElectraConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
)
from transformers.models.electra.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
class ElectraModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
config = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
)
def get_config(self):
return ElectraConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
_,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_electra_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_electra_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = ElectraModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_electra_for_masked_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_electra_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = ElectraForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_electra_for_token_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_electra_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
def create_and_check_electra_for_sequence_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_electra_for_question_answering(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_electra_for_multiple_choice(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_choices = self.num_choices
model = ElectraForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
ElectraModel,
ElectraForPreTraining,
ElectraForMaskedLM,
ElectraForCausalLM,
ElectraForMultipleChoice,
ElectraForTokenClassification,
ElectraForSequenceClassification,
ElectraForQuestionAnswering,
)
if is_torch_available()
else ()
)
fx_compatible = True
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = ElectraModelTester(self)
self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_electra_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_model(*config_and_inputs)
def test_electra_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_electra_model_as_decoder(*config_and_inputs)
def test_electra_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_electra_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)
def test_for_pre_training(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ElectraModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_electra_for_causal_lm(*config_and_inputs)
@require_torch
class ElectraModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = ElectraModel.from_pretrained("google/electra-small-discriminator")
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = torch.Size((1, 11, 256))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[0.4471, 0.6821, -0.3265], [0.4627, 0.5255, -0.3668], [0.4532, 0.3313, -0.4344]]]
)
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
| # coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import ElectraConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
)
from transformers.models.electra.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
class ElectraModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
config = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
)
def get_config(self):
return ElectraConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
_,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_electra_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_electra_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = ElectraModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_electra_for_masked_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_electra_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = ElectraForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_electra_for_token_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_electra_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
def create_and_check_electra_for_sequence_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_electra_for_question_answering(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_electra_for_multiple_choice(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_choices = self.num_choices
model = ElectraForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
ElectraModel,
ElectraForPreTraining,
ElectraForMaskedLM,
ElectraForCausalLM,
ElectraForMultipleChoice,
ElectraForTokenClassification,
ElectraForSequenceClassification,
ElectraForQuestionAnswering,
)
if is_torch_available()
else ()
)
fx_compatible = True
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = ElectraModelTester(self)
self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_electra_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_model(*config_and_inputs)
def test_electra_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_electra_model_as_decoder(*config_and_inputs)
def test_electra_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_electra_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)
def test_for_pre_training(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ElectraModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_electra_for_causal_lm(*config_and_inputs)
@require_torch
class ElectraModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = ElectraModel.from_pretrained("google/electra-small-discriminator")
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = torch.Size((1, 11, 256))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[0.4471, 0.6821, -0.3265], [0.4627, 0.5255, -0.3668], [0.4532, 0.3313, -0.4344]]]
)
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/en/main_classes/data_collator.mdx | <!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Data Collator
Data collators are objects that will form a batch by using a list of dataset elements as input. These elements are of
the same type as the elements of `train_dataset` or `eval_dataset`.
To be able to build batches, data collators may apply some processing (like padding). Some of them (like
[`DataCollatorForLanguageModeling`]) also apply some random data augmentation (like random masking)
on the formed batch.
Examples of use can be found in the [example scripts](../examples) or [example notebooks](../notebooks).
## Default data collator
[[autodoc]] data.data_collator.default_data_collator
## DefaultDataCollator
[[autodoc]] data.data_collator.DefaultDataCollator
## DataCollatorWithPadding
[[autodoc]] data.data_collator.DataCollatorWithPadding
## DataCollatorForTokenClassification
[[autodoc]] data.data_collator.DataCollatorForTokenClassification
## DataCollatorForSeq2Seq
[[autodoc]] data.data_collator.DataCollatorForSeq2Seq
## DataCollatorForLanguageModeling
[[autodoc]] data.data_collator.DataCollatorForLanguageModeling
- numpy_mask_tokens
- tf_mask_tokens
- torch_mask_tokens
## DataCollatorForWholeWordMask
[[autodoc]] data.data_collator.DataCollatorForWholeWordMask
- numpy_mask_tokens
- tf_mask_tokens
- torch_mask_tokens
## DataCollatorForPermutationLanguageModeling
[[autodoc]] data.data_collator.DataCollatorForPermutationLanguageModeling
- numpy_mask_tokens
- tf_mask_tokens
- torch_mask_tokens
| <!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Data Collator
Data collators are objects that will form a batch by using a list of dataset elements as input. These elements are of
the same type as the elements of `train_dataset` or `eval_dataset`.
To be able to build batches, data collators may apply some processing (like padding). Some of them (like
[`DataCollatorForLanguageModeling`]) also apply some random data augmentation (like random masking)
on the formed batch.
Examples of use can be found in the [example scripts](../examples) or [example notebooks](../notebooks).
## Default data collator
[[autodoc]] data.data_collator.default_data_collator
## DefaultDataCollator
[[autodoc]] data.data_collator.DefaultDataCollator
## DataCollatorWithPadding
[[autodoc]] data.data_collator.DataCollatorWithPadding
## DataCollatorForTokenClassification
[[autodoc]] data.data_collator.DataCollatorForTokenClassification
## DataCollatorForSeq2Seq
[[autodoc]] data.data_collator.DataCollatorForSeq2Seq
## DataCollatorForLanguageModeling
[[autodoc]] data.data_collator.DataCollatorForLanguageModeling
- numpy_mask_tokens
- tf_mask_tokens
- torch_mask_tokens
## DataCollatorForWholeWordMask
[[autodoc]] data.data_collator.DataCollatorForWholeWordMask
- numpy_mask_tokens
- tf_mask_tokens
- torch_mask_tokens
## DataCollatorForPermutationLanguageModeling
[[autodoc]] data.data_collator.DataCollatorForPermutationLanguageModeling
- numpy_mask_tokens
- tf_mask_tokens
- torch_mask_tokens
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/mobilevit/feature_extraction_mobilevit.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for MobileViT."""
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
logger = logging.get_logger(__name__)
class MobileViTFeatureExtractor(MobileViTImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use MobileViTImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for MobileViT."""
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
logger = logging.get_logger(__name__)
class MobileViTFeatureExtractor(MobileViTImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use MobileViTImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/codegen/tokenization_codegen_fast.py | # coding=utf-8
# Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"Salesforce/codegen-350M-mono": 2048,
}
class CodeGenTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```
>>> from transformers import CodeGenTokenizerFast
>>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (CodeGen tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = CodeGenTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
if kwargs.pop("add_bos_token", False):
model_id = kwargs.pop("name_or_path", "")
raise ValueError(
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token."
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
" so that the fast tokenizer works correctly."
)
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
self.add_prefix_space = add_prefix_space
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
def decode(
self,
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = True,
truncate_before_pattern: Optional[List[str]] = None,
**kwargs
) -> str:
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to clean up the tokenization spaces.
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
A list of regular expression strings that will be used to truncate the returned string. This can be
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str`: The decoded sentence.
"""
decoded_text = super().decode(
token_ids=token_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
return decoded_text
def truncate(self, completion, truncate_before_pattern):
def find_re(string, pattern, start_pos):
m = pattern.search(string, start_pos)
return m.start() if m else -1
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
prints = list(re.finditer("^print", completion, re.MULTILINE))
if len(prints) > 1:
completion = completion[: prints[1].start()]
defs = list(re.finditer("^def", completion, re.MULTILINE))
if len(defs) > 1:
completion = completion[: defs[1].start()]
start_pos = 0
terminals_pos = [
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
]
if len(terminals_pos) > 0:
return completion[: min(terminals_pos)]
else:
return completion
| # coding=utf-8
# Copyright 2022 The Salesforce authors, The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
},
"merges_file": {
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
},
"tokenizer_file": {
"Salesforce/codegen-350M-mono": (
"https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"Salesforce/codegen-350M-mono": 2048,
}
class CodeGenTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" CodeGen tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```
>>> from transformers import CodeGenTokenizerFast
>>> tokenizer = CodeGenTokenizerFast.from_pretrained("Salesforce/codegen-350M-mono")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (CodeGen tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = CodeGenTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
if kwargs.pop("add_bos_token", False):
model_id = kwargs.pop("name_or_path", "")
raise ValueError(
"Currenty GPT2's fast tokenizer does NOT support adding a BOS token."
"Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n"
f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"
f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"
"This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005."
" so that the fast tokenizer works correctly."
)
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
self.add_prefix_space = add_prefix_space
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
def decode(
self,
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = True,
truncate_before_pattern: Optional[List[str]] = None,
**kwargs
) -> str:
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to clean up the tokenization spaces.
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
A list of regular expression strings that will be used to truncate the returned string. This can be
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str`: The decoded sentence.
"""
decoded_text = super().decode(
token_ids=token_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
return decoded_text
def truncate(self, completion, truncate_before_pattern):
def find_re(string, pattern, start_pos):
m = pattern.search(string, start_pos)
return m.start() if m else -1
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
prints = list(re.finditer("^print", completion, re.MULTILINE))
if len(prints) > 1:
completion = completion[: prints[1].start()]
defs = list(re.finditer("^def", completion, re.MULTILINE))
if len(defs) > 1:
completion = completion[: defs[1].start()]
start_pos = 0
terminals_pos = [
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
]
if len(terminals_pos) > 0:
return completion[: min(terminals_pos)]
else:
return completion
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/research_projects/rag-end2end-retriever/callbacks_rag.py | import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def count_trainable_parameters(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
logger = logging.getLogger(__name__)
def get_checkpoint_callback(output_dir, metric):
"""Saves the best model by validation EM score."""
if metric == "rouge2":
exp = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
exp = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
exp = "{val_avg_em:.4f}-{step_count}"
elif metric == "loss":
exp = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"
" function."
)
checkpoint_callback = ModelCheckpoint(
dirpath=output_dir,
filename=exp,
monitor=f"val_{metric}",
mode="max",
save_top_k=1,
every_n_epochs=1, # works only with PL > 1.3
)
return checkpoint_callback
def get_early_stopping_callback(metric, patience):
return EarlyStopping(
monitor=f"val_{metric}", # does this need avg?
mode="min" if "loss" in metric else "max",
patience=patience,
verbose=True,
)
class Seq2SeqLoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lrs = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)}
pl_module.logger.log_metrics(lrs)
@rank_zero_only
def _write_logs(
self, trainer: pl.Trainer, pl_module: pl.LightningModule, type_path: str, save_generations=True
) -> None:
logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****")
metrics = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]})
# Log results
od = Path(pl_module.hparams.output_dir)
if type_path == "test":
results_file = od / "test_results.txt"
generations_file = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
results_file = od / f"{type_path}_results/{trainer.global_step:05d}.txt"
generations_file = od / f"{type_path}_generations/{trainer.global_step:05d}.txt"
results_file.parent.mkdir(exist_ok=True)
generations_file.parent.mkdir(exist_ok=True)
with open(results_file, "a+") as writer:
for key in sorted(metrics):
if key in ["log", "progress_bar", "preds"]:
continue
val = metrics[key]
if isinstance(val, torch.Tensor):
val = val.item()
msg = f"{key}: {val:.6f}\n"
writer.write(msg)
if not save_generations:
return
if "preds" in metrics:
content = "\n".join(metrics["preds"])
generations_file.open("w+").write(content)
@rank_zero_only
def on_train_start(self, trainer, pl_module):
try:
npars = pl_module.model.model.num_parameters()
except AttributeError:
npars = pl_module.model.num_parameters()
n_trainable_pars = count_trainable_parameters(pl_module)
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6})
@rank_zero_only
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
save_json(pl_module.metrics, pl_module.metrics_save_path)
return self._write_logs(trainer, pl_module, "test")
@rank_zero_only
def on_validation_end(self, trainer: pl.Trainer, pl_module):
save_json(pl_module.metrics, pl_module.metrics_save_path)
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def count_trainable_parameters(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
logger = logging.getLogger(__name__)
def get_checkpoint_callback(output_dir, metric):
"""Saves the best model by validation EM score."""
if metric == "rouge2":
exp = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
exp = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
exp = "{val_avg_em:.4f}-{step_count}"
elif metric == "loss":
exp = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"
" function."
)
checkpoint_callback = ModelCheckpoint(
dirpath=output_dir,
filename=exp,
monitor=f"val_{metric}",
mode="max",
save_top_k=1,
every_n_epochs=1, # works only with PL > 1.3
)
return checkpoint_callback
def get_early_stopping_callback(metric, patience):
return EarlyStopping(
monitor=f"val_{metric}", # does this need avg?
mode="min" if "loss" in metric else "max",
patience=patience,
verbose=True,
)
class Seq2SeqLoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lrs = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)}
pl_module.logger.log_metrics(lrs)
@rank_zero_only
def _write_logs(
self, trainer: pl.Trainer, pl_module: pl.LightningModule, type_path: str, save_generations=True
) -> None:
logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****")
metrics = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]})
# Log results
od = Path(pl_module.hparams.output_dir)
if type_path == "test":
results_file = od / "test_results.txt"
generations_file = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
results_file = od / f"{type_path}_results/{trainer.global_step:05d}.txt"
generations_file = od / f"{type_path}_generations/{trainer.global_step:05d}.txt"
results_file.parent.mkdir(exist_ok=True)
generations_file.parent.mkdir(exist_ok=True)
with open(results_file, "a+") as writer:
for key in sorted(metrics):
if key in ["log", "progress_bar", "preds"]:
continue
val = metrics[key]
if isinstance(val, torch.Tensor):
val = val.item()
msg = f"{key}: {val:.6f}\n"
writer.write(msg)
if not save_generations:
return
if "preds" in metrics:
content = "\n".join(metrics["preds"])
generations_file.open("w+").write(content)
@rank_zero_only
def on_train_start(self, trainer, pl_module):
try:
npars = pl_module.model.model.num_parameters()
except AttributeError:
npars = pl_module.model.num_parameters()
n_trainable_pars = count_trainable_parameters(pl_module)
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6})
@rank_zero_only
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
save_json(pl_module.metrics, pl_module.metrics_save_path)
return self._write_logs(trainer, pl_module, "test")
@rank_zero_only
def on_validation_end(self, trainer: pl.Trainer, pl_module):
save_json(pl_module.metrics, pl_module.metrics_save_path)
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/en/model_doc/segformer.mdx | <!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SegFormer
## Overview
The SegFormer model was proposed in [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping
Luo. The model consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great
results on image segmentation benchmarks such as ADE20K and Cityscapes.
The abstract from the paper is the following:
*We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with
lightweight multilayer perception (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel
hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional encoding,
thereby avoiding the interpolation of positional codes which leads to decreased performance when the testing resolution
differs from training. 2) SegFormer avoids complex decoders. The proposed MLP decoder aggregates information from
different layers, and thus combining both local attention and global attention to render powerful representations. We
show that this simple and lightweight design is the key to efficient segmentation on Transformers. We scale our
approach up to obtain a series of models from SegFormer-B0 to SegFormer-B5, reaching significantly better performance
and efficiency than previous counterparts. For example, SegFormer-B4 achieves 50.3% mIoU on ADE20K with 64M parameters,
being 5x smaller and 2.2% better than the previous best method. Our best model, SegFormer-B5, achieves 84.0% mIoU on
Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C.*
The figure below illustrates the architecture of SegFormer. Taken from the [original paper](https://arxiv.org/abs/2105.15203).
<img width="600" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/segformer_architecture.png"/>
This model was contributed by [nielsr](https://huggingface.co/nielsr). The TensorFlow version
of the model was contributed by [sayakpaul](https://huggingface.co/sayakpaul). The original code can be found [here](https://github.com/NVlabs/SegFormer).
Tips:
- SegFormer consists of a hierarchical Transformer encoder, and a lightweight all-MLP decoder head.
[`SegformerModel`] is the hierarchical Transformer encoder (which in the paper is also referred to
as Mix Transformer or MiT). [`SegformerForSemanticSegmentation`] adds the all-MLP decoder head on
top to perform semantic segmentation of images. In addition, there's
[`SegformerForImageClassification`] which can be used to - you guessed it - classify images. The
authors of SegFormer first pre-trained the Transformer encoder on ImageNet-1k to classify images. Next, they throw
away the classification head, and replace it by the all-MLP decode head. Next, they fine-tune the model altogether on
ADE20K, Cityscapes and COCO-stuff, which are important benchmarks for semantic segmentation. All checkpoints can be
found on the [hub](https://huggingface.co/models?other=segformer).
- The quickest way to get started with SegFormer is by checking the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/SegFormer) (which showcase both inference and
fine-tuning on custom data). One can also check out the [blog post](https://huggingface.co/blog/fine-tune-segformer) introducing SegFormer and illustrating how it can be fine-tuned on custom data.
- TensorFlow users should refer to [this repository](https://github.com/deep-diver/segformer-tf-transformers) that shows off-the-shelf inference and fine-tuning.
- One can also check out [this interactive demo on Hugging Face Spaces](https://huggingface.co/spaces/chansung/segformer-tf-transformers)
to try out a SegFormer model on custom images.
- SegFormer works on any input size, as it pads the input to be divisible by `config.patch_sizes`.
- One can use [`SegformerImageProcessor`] to prepare images and corresponding segmentation maps
for the model. Note that this image processor is fairly basic and does not include all data augmentations used in
the original paper. The original preprocessing pipelines (for the ADE20k dataset for instance) can be found [here](https://github.com/NVlabs/SegFormer/blob/master/local_configs/_base_/datasets/ade20k_repeat.py). The most
important preprocessing step is that images and segmentation maps are randomly cropped and padded to the same size,
such as 512x512 or 640x640, after which they are normalized.
- One additional thing to keep in mind is that one can initialize [`SegformerImageProcessor`] with
`reduce_labels` set to `True` or `False`. In some datasets (like ADE20k), the 0 index is used in the annotated
segmentation maps for background. However, ADE20k doesn't include the "background" class in its 150 labels.
Therefore, `reduce_labels` is used to reduce all labels by 1, and to make sure no loss is computed for the
background class (i.e. it replaces 0 in the annotated maps by 255, which is the *ignore_index* of the loss function
used by [`SegformerForSemanticSegmentation`]). However, other datasets use the 0 index as
background class and include this class as part of all labels. In that case, `reduce_labels` should be set to
`False`, as loss should also be computed for the background class.
- As most models, SegFormer comes in different sizes, the details of which can be found in the table below
(taken from Table 7 of the [original paper](https://arxiv.org/abs/2105.15203)).
| **Model variant** | **Depths** | **Hidden sizes** | **Decoder hidden size** | **Params (M)** | **ImageNet-1k Top 1** |
| :---------------: | ------------- | ------------------- | :---------------------: | :------------: | :-------------------: |
| MiT-b0 | [2, 2, 2, 2] | [32, 64, 160, 256] | 256 | 3.7 | 70.5 |
| MiT-b1 | [2, 2, 2, 2] | [64, 128, 320, 512] | 256 | 14.0 | 78.7 |
| MiT-b2 | [3, 4, 6, 3] | [64, 128, 320, 512] | 768 | 25.4 | 81.6 |
| MiT-b3 | [3, 4, 18, 3] | [64, 128, 320, 512] | 768 | 45.2 | 83.1 |
| MiT-b4 | [3, 8, 27, 3] | [64, 128, 320, 512] | 768 | 62.6 | 83.6 |
| MiT-b5 | [3, 6, 40, 3] | [64, 128, 320, 512] | 768 | 82.0 | 83.8 |
Note that MiT in the above table refers to the Mix Transformer encoder backbone introduced in SegFormer. For
SegFormer's results on the segmentation datasets like ADE20k, refer to the [paper](https://arxiv.org/abs/2105.15203).
## SegformerConfig
[[autodoc]] SegformerConfig
## SegformerFeatureExtractor
[[autodoc]] SegformerFeatureExtractor
- __call__
- post_process_semantic_segmentation
## SegformerImageProcessor
[[autodoc]] SegformerImageProcessor
- preprocess
- post_process_semantic_segmentation
## SegformerModel
[[autodoc]] SegformerModel
- forward
## SegformerDecodeHead
[[autodoc]] SegformerDecodeHead
- forward
## SegformerForImageClassification
[[autodoc]] SegformerForImageClassification
- forward
## SegformerForSemanticSegmentation
[[autodoc]] SegformerForSemanticSegmentation
- forward
## TFSegformerDecodeHead
[[autodoc]] TFSegformerDecodeHead
- call
## TFSegformerModel
[[autodoc]] TFSegformerModel
- call
## TFSegformerForImageClassification
[[autodoc]] TFSegformerForImageClassification
- call
## TFSegformerForSemanticSegmentation
[[autodoc]] TFSegformerForSemanticSegmentation
- call
| <!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SegFormer
## Overview
The SegFormer model was proposed in [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping
Luo. The model consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great
results on image segmentation benchmarks such as ADE20K and Cityscapes.
The abstract from the paper is the following:
*We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with
lightweight multilayer perception (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel
hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional encoding,
thereby avoiding the interpolation of positional codes which leads to decreased performance when the testing resolution
differs from training. 2) SegFormer avoids complex decoders. The proposed MLP decoder aggregates information from
different layers, and thus combining both local attention and global attention to render powerful representations. We
show that this simple and lightweight design is the key to efficient segmentation on Transformers. We scale our
approach up to obtain a series of models from SegFormer-B0 to SegFormer-B5, reaching significantly better performance
and efficiency than previous counterparts. For example, SegFormer-B4 achieves 50.3% mIoU on ADE20K with 64M parameters,
being 5x smaller and 2.2% better than the previous best method. Our best model, SegFormer-B5, achieves 84.0% mIoU on
Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C.*
The figure below illustrates the architecture of SegFormer. Taken from the [original paper](https://arxiv.org/abs/2105.15203).
<img width="600" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/segformer_architecture.png"/>
This model was contributed by [nielsr](https://huggingface.co/nielsr). The TensorFlow version
of the model was contributed by [sayakpaul](https://huggingface.co/sayakpaul). The original code can be found [here](https://github.com/NVlabs/SegFormer).
Tips:
- SegFormer consists of a hierarchical Transformer encoder, and a lightweight all-MLP decoder head.
[`SegformerModel`] is the hierarchical Transformer encoder (which in the paper is also referred to
as Mix Transformer or MiT). [`SegformerForSemanticSegmentation`] adds the all-MLP decoder head on
top to perform semantic segmentation of images. In addition, there's
[`SegformerForImageClassification`] which can be used to - you guessed it - classify images. The
authors of SegFormer first pre-trained the Transformer encoder on ImageNet-1k to classify images. Next, they throw
away the classification head, and replace it by the all-MLP decode head. Next, they fine-tune the model altogether on
ADE20K, Cityscapes and COCO-stuff, which are important benchmarks for semantic segmentation. All checkpoints can be
found on the [hub](https://huggingface.co/models?other=segformer).
- The quickest way to get started with SegFormer is by checking the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/SegFormer) (which showcase both inference and
fine-tuning on custom data). One can also check out the [blog post](https://huggingface.co/blog/fine-tune-segformer) introducing SegFormer and illustrating how it can be fine-tuned on custom data.
- TensorFlow users should refer to [this repository](https://github.com/deep-diver/segformer-tf-transformers) that shows off-the-shelf inference and fine-tuning.
- One can also check out [this interactive demo on Hugging Face Spaces](https://huggingface.co/spaces/chansung/segformer-tf-transformers)
to try out a SegFormer model on custom images.
- SegFormer works on any input size, as it pads the input to be divisible by `config.patch_sizes`.
- One can use [`SegformerImageProcessor`] to prepare images and corresponding segmentation maps
for the model. Note that this image processor is fairly basic and does not include all data augmentations used in
the original paper. The original preprocessing pipelines (for the ADE20k dataset for instance) can be found [here](https://github.com/NVlabs/SegFormer/blob/master/local_configs/_base_/datasets/ade20k_repeat.py). The most
important preprocessing step is that images and segmentation maps are randomly cropped and padded to the same size,
such as 512x512 or 640x640, after which they are normalized.
- One additional thing to keep in mind is that one can initialize [`SegformerImageProcessor`] with
`reduce_labels` set to `True` or `False`. In some datasets (like ADE20k), the 0 index is used in the annotated
segmentation maps for background. However, ADE20k doesn't include the "background" class in its 150 labels.
Therefore, `reduce_labels` is used to reduce all labels by 1, and to make sure no loss is computed for the
background class (i.e. it replaces 0 in the annotated maps by 255, which is the *ignore_index* of the loss function
used by [`SegformerForSemanticSegmentation`]). However, other datasets use the 0 index as
background class and include this class as part of all labels. In that case, `reduce_labels` should be set to
`False`, as loss should also be computed for the background class.
- As most models, SegFormer comes in different sizes, the details of which can be found in the table below
(taken from Table 7 of the [original paper](https://arxiv.org/abs/2105.15203)).
| **Model variant** | **Depths** | **Hidden sizes** | **Decoder hidden size** | **Params (M)** | **ImageNet-1k Top 1** |
| :---------------: | ------------- | ------------------- | :---------------------: | :------------: | :-------------------: |
| MiT-b0 | [2, 2, 2, 2] | [32, 64, 160, 256] | 256 | 3.7 | 70.5 |
| MiT-b1 | [2, 2, 2, 2] | [64, 128, 320, 512] | 256 | 14.0 | 78.7 |
| MiT-b2 | [3, 4, 6, 3] | [64, 128, 320, 512] | 768 | 25.4 | 81.6 |
| MiT-b3 | [3, 4, 18, 3] | [64, 128, 320, 512] | 768 | 45.2 | 83.1 |
| MiT-b4 | [3, 8, 27, 3] | [64, 128, 320, 512] | 768 | 62.6 | 83.6 |
| MiT-b5 | [3, 6, 40, 3] | [64, 128, 320, 512] | 768 | 82.0 | 83.8 |
Note that MiT in the above table refers to the Mix Transformer encoder backbone introduced in SegFormer. For
SegFormer's results on the segmentation datasets like ADE20k, refer to the [paper](https://arxiv.org/abs/2105.15203).
## SegformerConfig
[[autodoc]] SegformerConfig
## SegformerFeatureExtractor
[[autodoc]] SegformerFeatureExtractor
- __call__
- post_process_semantic_segmentation
## SegformerImageProcessor
[[autodoc]] SegformerImageProcessor
- preprocess
- post_process_semantic_segmentation
## SegformerModel
[[autodoc]] SegformerModel
- forward
## SegformerDecodeHead
[[autodoc]] SegformerDecodeHead
- forward
## SegformerForImageClassification
[[autodoc]] SegformerForImageClassification
- forward
## SegformerForSemanticSegmentation
[[autodoc]] SegformerForSemanticSegmentation
- forward
## TFSegformerDecodeHead
[[autodoc]] TFSegformerDecodeHead
- call
## TFSegformerModel
[[autodoc]] TFSegformerModel
- call
## TFSegformerForImageClassification
[[autodoc]] TFSegformerForImageClassification
- call
## TFSegformerForSemanticSegmentation
[[autodoc]] TFSegformerForSemanticSegmentation
- call
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./MANIFEST.in | include LICENSE
| include LICENSE
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/research_projects/seq2seq-distillation/distil_marian_no_teacher.sh | #!/usr/bin/env bash
export PYTHONPATH="../":"${PYTHONPATH}"
export WANDB_PROJECT=dmar
export MAX_LEN=128
python finetune.py \
--learning_rate=3e-4 \
--do_train \
--do_predict \
--fp16 \
--val_check_interval 0.25 \
--data_dir $ENRO_DIR \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \
--freeze_encoder --freeze_embeds \
--train_batch_size=$BS --eval_batch_size=$BS \
--tokenizer_name $m --model_name_or_path $m \
--warmup_steps 500 --sortish_sampler --logger_name wandb \
--gpus 1 --fp16_opt_level=O1 --task translation --num_sanity_val_steps=0 \
"$@"
| #!/usr/bin/env bash
export PYTHONPATH="../":"${PYTHONPATH}"
export WANDB_PROJECT=dmar
export MAX_LEN=128
python finetune.py \
--learning_rate=3e-4 \
--do_train \
--do_predict \
--fp16 \
--val_check_interval 0.25 \
--data_dir $ENRO_DIR \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \
--freeze_encoder --freeze_embeds \
--train_batch_size=$BS --eval_batch_size=$BS \
--tokenizer_name $m --model_name_or_path $m \
--warmup_steps 500 --sortish_sampler --logger_name wandb \
--gpus 1 --fp16_opt_level=O1 --task translation --num_sanity_val_steps=0 \
"$@"
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/convbert/test_modeling_convbert.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ConvBERT model. """
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertModel,
)
from transformers.models.convbert.modeling_convbert import CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class ConvBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return ConvBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = ConvBertForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = ConvBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = ConvBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ConvBertModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
ConvBertModel,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
)
if is_torch_available()
else ()
)
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = ConvBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ConvBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Question Answering model returns start_logits and end_logits
if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
@slow
@require_torch_gpu
def test_torchscript_device_change(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# ConvBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == ConvBertForMultipleChoice:
return
config.torchscript = True
model = model_class(config=config)
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
traced_model = torch.jit.trace(
model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
)
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt"))
loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device)
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))
@require_torch
class ConvBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = ConvBertModel.from_pretrained("YituTech/conv-bert-base")
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 6, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.0864, -0.4898, -0.3677], [0.1434, -0.2952, -0.7640], [-0.0112, -0.4432, -0.5432]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
| # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch ConvBERT model. """
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertModel,
)
from transformers.models.convbert.modeling_convbert import CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class ConvBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return ConvBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = ConvBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = ConvBertForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = ConvBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = ConvBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ConvBertModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
ConvBertModel,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
)
if is_torch_available()
else ()
)
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = ConvBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = ConvBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Question Answering model returns start_logits and end_logits
if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
)
@slow
@require_torch_gpu
def test_torchscript_device_change(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# ConvBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == ConvBertForMultipleChoice:
return
config.torchscript = True
model = model_class(config=config)
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
traced_model = torch.jit.trace(
model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))
)
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt"))
loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device)
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device))
@require_torch
class ConvBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = ConvBertModel.from_pretrained("YituTech/conv-bert-base")
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 6, 768))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.0864, -0.4898, -0.3677], [0.1434, -0.2952, -0.7640], [-0.0112, -0.4432, -0.5432]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/marian/tokenization_marian.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import re
import warnings
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"source_spm": "source.spm",
"target_spm": "target.spm",
"vocab": "vocab.json",
"target_vocab_file": "target_vocab.json",
"tokenizer_config_file": "tokenizer_config.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"source_spm": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/source.spm"
},
"target_spm": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/target.spm"
},
"vocab": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json"
},
"tokenizer_config_file": {
"Helsinki-NLP/opus-mt-en-de": (
"https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/tokenizer_config.json"
)
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"Helsinki-NLP/opus-mt-en-de": 512}
PRETRAINED_INIT_CONFIGURATION = {}
# Example URL https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json
class MarianTokenizer(PreTrainedTokenizer):
r"""
Construct a Marian tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
source_spm (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary for the source language.
target_spm (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary for the target language.
source_lang (`str`, *optional*):
A string representing the source language.
target_lang (`str`, *optional*):
A string representing the target language.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
model_max_length (`int`, *optional*, defaults to 512):
The maximum sentence length the model accepts.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
Additional special tokens used by the tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Examples:
```python
>>> from transformers import MarianTokenizer
>>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."]
>>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional
>>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True)
# keys [input_ids, attention_mask, labels].
>>> outputs = model(**inputs) # should work
```"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
language_code_re = re.compile(">>.+<<") # type: re.Pattern
def __init__(
self,
source_spm,
target_spm,
vocab,
target_vocab_file=None,
source_lang=None,
target_lang=None,
unk_token="<unk>",
eos_token="</s>",
pad_token="<pad>",
model_max_length=512,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
separate_vocabs=False,
**kwargs
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
# bos_token=bos_token, unused. Start decoding with config.decoder_start_token_id
source_lang=source_lang,
target_lang=target_lang,
unk_token=unk_token,
eos_token=eos_token,
pad_token=pad_token,
model_max_length=model_max_length,
sp_model_kwargs=self.sp_model_kwargs,
target_vocab_file=target_vocab_file,
separate_vocabs=separate_vocabs,
**kwargs,
)
assert Path(source_spm).exists(), f"cannot find spm source {source_spm}"
self.separate_vocabs = separate_vocabs
self.encoder = load_json(vocab)
if self.unk_token not in self.encoder:
raise KeyError("<unk> token must be in vocab")
assert self.pad_token in self.encoder
if separate_vocabs:
self.target_encoder = load_json(target_vocab_file)
self.decoder = {v: k for k, v in self.target_encoder.items()}
self.supported_language_codes = []
else:
self.decoder = {v: k for k, v in self.encoder.items()}
self.supported_language_codes: list = [k for k in self.encoder if k.startswith(">>") and k.endswith("<<")]
self.source_lang = source_lang
self.target_lang = target_lang
self.spm_files = [source_spm, target_spm]
# load SentencePiece model for pre-processing
self.spm_source = load_spm(source_spm, self.sp_model_kwargs)
self.spm_target = load_spm(target_spm, self.sp_model_kwargs)
self.current_spm = self.spm_source
self.current_encoder = self.encoder
# Multilingual target side: default to using first supported language code.
self._setup_normalizer()
def _setup_normalizer(self):
try:
from sacremoses import MosesPunctNormalizer
self.punc_normalizer = MosesPunctNormalizer(self.source_lang).normalize
except (ImportError, FileNotFoundError):
warnings.warn("Recommended: pip install sacremoses.")
self.punc_normalizer = lambda x: x
def normalize(self, x: str) -> str:
"""Cover moses empty string edge case. They return empty list for '' input!"""
return self.punc_normalizer(x) if x else ""
def _convert_token_to_id(self, token):
return self.current_encoder.get(token, self.current_encoder[self.unk_token])
def remove_language_code(self, text: str):
"""Remove language codes like >>fr<< before sentencepiece"""
match = self.language_code_re.match(text)
code: list = [match.group(0)] if match else []
return code, self.language_code_re.sub("", text)
def _tokenize(self, text: str) -> List[str]:
code, text = self.remove_language_code(text)
pieces = self.current_spm.encode(text, out_type=str)
return code + pieces
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the decoder."""
return self.decoder.get(index, self.unk_token)
def batch_decode(self, sequences, **kwargs):
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to clean up the tokenization spaces.
use_source_tokenizer (`bool`, *optional*, defaults to `False`):
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence
problems).
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`List[str]`: The list of decoded sentences.
"""
return super().batch_decode(sequences, **kwargs)
def decode(self, token_ids, **kwargs):
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to clean up the tokenization spaces.
use_source_tokenizer (`bool`, *optional*, defaults to `False`):
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence
problems).
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str`: The decoded sentence.
"""
return super().decode(token_ids, **kwargs)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Uses source spm if _decode_use_source_tokenizer is True, and target spm otherwise"""
sp_model = self.spm_source if self._decode_use_source_tokenizer else self.spm_target
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += sp_model.decode_pieces(current_sub_tokens) + token + " "
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += sp_model.decode_pieces(current_sub_tokens)
return out_string.strip()
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def _switch_to_input_mode(self):
self.current_spm = self.spm_source
self.current_encoder = self.encoder
def _switch_to_target_mode(self):
self.current_spm = self.spm_target
if self.separate_vocabs:
self.current_encoder = self.target_encoder
@property
def vocab_size(self) -> int:
return len(self.encoder)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
saved_files = []
if self.separate_vocabs:
out_src_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"],
)
out_tgt_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["target_vocab_file"],
)
save_json(self.encoder, out_src_vocab_file)
save_json(self.target_encoder, out_tgt_vocab_file)
saved_files.append(out_src_vocab_file)
saved_files.append(out_tgt_vocab_file)
else:
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"]
)
save_json(self.encoder, out_vocab_file)
saved_files.append(out_vocab_file)
for spm_save_filename, spm_orig_path, spm_model in zip(
[VOCAB_FILES_NAMES["source_spm"], VOCAB_FILES_NAMES["target_spm"]],
self.spm_files,
[self.spm_source, self.spm_target],
):
spm_save_path = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + spm_save_filename
)
if os.path.abspath(spm_orig_path) != os.path.abspath(spm_save_path) and os.path.isfile(spm_orig_path):
copyfile(spm_orig_path, spm_save_path)
saved_files.append(spm_save_path)
elif not os.path.isfile(spm_orig_path):
with open(spm_save_path, "wb") as fi:
content_spiece_model = spm_model.serialized_model_proto()
fi.write(content_spiece_model)
saved_files.append(spm_save_path)
return tuple(saved_files)
def get_vocab(self) -> Dict:
return self.get_src_vocab()
def get_src_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self):
return dict(self.target_encoder, **self.added_tokens_decoder)
def __getstate__(self) -> Dict:
state = self.__dict__.copy()
state.update(
{k: None for k in ["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"]}
)
return state
def __setstate__(self, d: Dict) -> None:
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.spm_source, self.spm_target = (load_spm(f, self.sp_model_kwargs) for f in self.spm_files)
self.current_spm = self.spm_source
self._setup_normalizer()
def num_special_tokens_to_add(self, *args, **kwargs):
"""Just EOS"""
return 1
def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [1]
else:
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
spm.Load(path)
return spm
def save_json(data, path: str) -> None:
with open(path, "w") as f:
json.dump(data, f, indent=2)
def load_json(path: str) -> Union[Dict, List]:
with open(path, "r") as f:
return json.load(f)
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import re
import warnings
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"source_spm": "source.spm",
"target_spm": "target.spm",
"vocab": "vocab.json",
"target_vocab_file": "target_vocab.json",
"tokenizer_config_file": "tokenizer_config.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"source_spm": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/source.spm"
},
"target_spm": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/target.spm"
},
"vocab": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json"
},
"tokenizer_config_file": {
"Helsinki-NLP/opus-mt-en-de": (
"https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/tokenizer_config.json"
)
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"Helsinki-NLP/opus-mt-en-de": 512}
PRETRAINED_INIT_CONFIGURATION = {}
# Example URL https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json
class MarianTokenizer(PreTrainedTokenizer):
r"""
Construct a Marian tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
source_spm (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary for the source language.
target_spm (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary for the target language.
source_lang (`str`, *optional*):
A string representing the source language.
target_lang (`str`, *optional*):
A string representing the target language.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
model_max_length (`int`, *optional*, defaults to 512):
The maximum sentence length the model accepts.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
Additional special tokens used by the tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Examples:
```python
>>> from transformers import MarianTokenizer
>>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."]
>>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional
>>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True)
# keys [input_ids, attention_mask, labels].
>>> outputs = model(**inputs) # should work
```"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
language_code_re = re.compile(">>.+<<") # type: re.Pattern
def __init__(
self,
source_spm,
target_spm,
vocab,
target_vocab_file=None,
source_lang=None,
target_lang=None,
unk_token="<unk>",
eos_token="</s>",
pad_token="<pad>",
model_max_length=512,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
separate_vocabs=False,
**kwargs
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
# bos_token=bos_token, unused. Start decoding with config.decoder_start_token_id
source_lang=source_lang,
target_lang=target_lang,
unk_token=unk_token,
eos_token=eos_token,
pad_token=pad_token,
model_max_length=model_max_length,
sp_model_kwargs=self.sp_model_kwargs,
target_vocab_file=target_vocab_file,
separate_vocabs=separate_vocabs,
**kwargs,
)
assert Path(source_spm).exists(), f"cannot find spm source {source_spm}"
self.separate_vocabs = separate_vocabs
self.encoder = load_json(vocab)
if self.unk_token not in self.encoder:
raise KeyError("<unk> token must be in vocab")
assert self.pad_token in self.encoder
if separate_vocabs:
self.target_encoder = load_json(target_vocab_file)
self.decoder = {v: k for k, v in self.target_encoder.items()}
self.supported_language_codes = []
else:
self.decoder = {v: k for k, v in self.encoder.items()}
self.supported_language_codes: list = [k for k in self.encoder if k.startswith(">>") and k.endswith("<<")]
self.source_lang = source_lang
self.target_lang = target_lang
self.spm_files = [source_spm, target_spm]
# load SentencePiece model for pre-processing
self.spm_source = load_spm(source_spm, self.sp_model_kwargs)
self.spm_target = load_spm(target_spm, self.sp_model_kwargs)
self.current_spm = self.spm_source
self.current_encoder = self.encoder
# Multilingual target side: default to using first supported language code.
self._setup_normalizer()
def _setup_normalizer(self):
try:
from sacremoses import MosesPunctNormalizer
self.punc_normalizer = MosesPunctNormalizer(self.source_lang).normalize
except (ImportError, FileNotFoundError):
warnings.warn("Recommended: pip install sacremoses.")
self.punc_normalizer = lambda x: x
def normalize(self, x: str) -> str:
"""Cover moses empty string edge case. They return empty list for '' input!"""
return self.punc_normalizer(x) if x else ""
def _convert_token_to_id(self, token):
return self.current_encoder.get(token, self.current_encoder[self.unk_token])
def remove_language_code(self, text: str):
"""Remove language codes like >>fr<< before sentencepiece"""
match = self.language_code_re.match(text)
code: list = [match.group(0)] if match else []
return code, self.language_code_re.sub("", text)
def _tokenize(self, text: str) -> List[str]:
code, text = self.remove_language_code(text)
pieces = self.current_spm.encode(text, out_type=str)
return code + pieces
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the decoder."""
return self.decoder.get(index, self.unk_token)
def batch_decode(self, sequences, **kwargs):
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to clean up the tokenization spaces.
use_source_tokenizer (`bool`, *optional*, defaults to `False`):
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence
problems).
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`List[str]`: The list of decoded sentences.
"""
return super().batch_decode(sequences, **kwargs)
def decode(self, token_ids, **kwargs):
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
Args:
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the `__call__` method.
skip_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to clean up the tokenization spaces.
use_source_tokenizer (`bool`, *optional*, defaults to `False`):
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence
problems).
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific decode method.
Returns:
`str`: The decoded sentence.
"""
return super().decode(token_ids, **kwargs)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Uses source spm if _decode_use_source_tokenizer is True, and target spm otherwise"""
sp_model = self.spm_source if self._decode_use_source_tokenizer else self.spm_target
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += sp_model.decode_pieces(current_sub_tokens) + token + " "
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += sp_model.decode_pieces(current_sub_tokens)
return out_string.strip()
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def _switch_to_input_mode(self):
self.current_spm = self.spm_source
self.current_encoder = self.encoder
def _switch_to_target_mode(self):
self.current_spm = self.spm_target
if self.separate_vocabs:
self.current_encoder = self.target_encoder
@property
def vocab_size(self) -> int:
return len(self.encoder)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
saved_files = []
if self.separate_vocabs:
out_src_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"],
)
out_tgt_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["target_vocab_file"],
)
save_json(self.encoder, out_src_vocab_file)
save_json(self.target_encoder, out_tgt_vocab_file)
saved_files.append(out_src_vocab_file)
saved_files.append(out_tgt_vocab_file)
else:
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"]
)
save_json(self.encoder, out_vocab_file)
saved_files.append(out_vocab_file)
for spm_save_filename, spm_orig_path, spm_model in zip(
[VOCAB_FILES_NAMES["source_spm"], VOCAB_FILES_NAMES["target_spm"]],
self.spm_files,
[self.spm_source, self.spm_target],
):
spm_save_path = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + spm_save_filename
)
if os.path.abspath(spm_orig_path) != os.path.abspath(spm_save_path) and os.path.isfile(spm_orig_path):
copyfile(spm_orig_path, spm_save_path)
saved_files.append(spm_save_path)
elif not os.path.isfile(spm_orig_path):
with open(spm_save_path, "wb") as fi:
content_spiece_model = spm_model.serialized_model_proto()
fi.write(content_spiece_model)
saved_files.append(spm_save_path)
return tuple(saved_files)
def get_vocab(self) -> Dict:
return self.get_src_vocab()
def get_src_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self):
return dict(self.target_encoder, **self.added_tokens_decoder)
def __getstate__(self) -> Dict:
state = self.__dict__.copy()
state.update(
{k: None for k in ["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"]}
)
return state
def __setstate__(self, d: Dict) -> None:
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.spm_source, self.spm_target = (load_spm(f, self.sp_model_kwargs) for f in self.spm_files)
self.current_spm = self.spm_source
self._setup_normalizer()
def num_special_tokens_to_add(self, *args, **kwargs):
"""Just EOS"""
return 1
def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [1]
else:
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
spm.Load(path)
return spm
def save_json(data, path: str) -> None:
with open(path, "w") as f:
json.dump(data, f, indent=2)
def load_json(path: str) -> Union[Dict, List]:
with open(path, "r") as f:
return json.load(f)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/realm/test_tokenization_realm.py | # coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import RealmTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.realm.tokenization_realm import RealmTokenizer
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class RealmTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = RealmTokenizer
rust_tokenizer_class = RealmTokenizerFast
test_rust_tokenizer = True
space_between_special_tokens = True
from_pretrained_filter = filter_non_english
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00E9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
# With lower casing
tokenizer = self.get_tokenizer(do_lower_case=True)
rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True)
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
def test_chinese(self):
tokenizer = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"])
def test_basic_tokenizer_lower(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"])
def test_basic_tokenizer_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_default(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_no_lower(self):
tokenizer = BasicTokenizer(do_lower_case=False)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_respects_never_split_tokens(self):
tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
)
def test_wordpiece_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
vocab = {}
for i, token in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])
self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
def test_is_whitespace(self):
self.assertTrue(_is_whitespace(" "))
self.assertTrue(_is_whitespace("\t"))
self.assertTrue(_is_whitespace("\r"))
self.assertTrue(_is_whitespace("\n"))
self.assertTrue(_is_whitespace("\u00A0"))
self.assertFalse(_is_whitespace("A"))
self.assertFalse(_is_whitespace("-"))
def test_is_control(self):
self.assertTrue(_is_control("\u0005"))
self.assertFalse(_is_control("A"))
self.assertFalse(_is_control(" "))
self.assertFalse(_is_control("\t"))
self.assertFalse(_is_control("\r"))
def test_is_punctuation(self):
self.assertTrue(_is_punctuation("-"))
self.assertTrue(_is_punctuation("$"))
self.assertTrue(_is_punctuation("`"))
self.assertTrue(_is_punctuation("."))
self.assertFalse(_is_punctuation("A"))
self.assertFalse(_is_punctuation(" "))
def test_clean_text(self):
tokenizer = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]])
if self.test_rust_tokenizer:
rust_tokenizer = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_2 + [102]
def test_offsets_with_special_characters(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
tokens = tokenizer_r.encode_plus(
sentence,
return_attention_mask=False,
return_token_type_ids=False,
return_offsets_mapping=True,
add_special_tokens=True,
)
do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False
expected_results = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])
)
self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
@slow
def test_batch_encode_candidates(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
encoded_sentence_r = tokenizer_r.batch_encode_candidates(text, max_length=10, return_tensors="np")
encoded_sentence_p = tokenizer_p.batch_encode_candidates(text, max_length=10, return_tensors="np")
expected_shape = (2, 2, 10)
self.assertEqual(encoded_sentence_r["input_ids"].shape, expected_shape)
self.assertEqual(encoded_sentence_r["attention_mask"].shape, expected_shape)
self.assertEqual(encoded_sentence_r["token_type_ids"].shape, expected_shape)
self.assertEqual(encoded_sentence_p["input_ids"].shape, expected_shape)
self.assertEqual(encoded_sentence_p["attention_mask"].shape, expected_shape)
self.assertEqual(encoded_sentence_p["token_type_ids"].shape, expected_shape)
| # coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import RealmTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.realm.tokenization_realm import RealmTokenizer
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class RealmTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = RealmTokenizer
rust_tokenizer_class = RealmTokenizerFast
test_rust_tokenizer = True
space_between_special_tokens = True
from_pretrained_filter = filter_non_english
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00E9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
# With lower casing
tokenizer = self.get_tokenizer(do_lower_case=True)
rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True)
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
def test_chinese(self):
tokenizer = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"])
def test_basic_tokenizer_lower(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"])
def test_basic_tokenizer_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_default(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_no_lower(self):
tokenizer = BasicTokenizer(do_lower_case=False)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_respects_never_split_tokens(self):
tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
)
def test_wordpiece_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
vocab = {}
for i, token in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])
self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
def test_is_whitespace(self):
self.assertTrue(_is_whitespace(" "))
self.assertTrue(_is_whitespace("\t"))
self.assertTrue(_is_whitespace("\r"))
self.assertTrue(_is_whitespace("\n"))
self.assertTrue(_is_whitespace("\u00A0"))
self.assertFalse(_is_whitespace("A"))
self.assertFalse(_is_whitespace("-"))
def test_is_control(self):
self.assertTrue(_is_control("\u0005"))
self.assertFalse(_is_control("A"))
self.assertFalse(_is_control(" "))
self.assertFalse(_is_control("\t"))
self.assertFalse(_is_control("\r"))
def test_is_punctuation(self):
self.assertTrue(_is_punctuation("-"))
self.assertTrue(_is_punctuation("$"))
self.assertTrue(_is_punctuation("`"))
self.assertTrue(_is_punctuation("."))
self.assertFalse(_is_punctuation("A"))
self.assertFalse(_is_punctuation(" "))
def test_clean_text(self):
tokenizer = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]])
if self.test_rust_tokenizer:
rust_tokenizer = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_2 + [102]
def test_offsets_with_special_characters(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
tokens = tokenizer_r.encode_plus(
sentence,
return_attention_mask=False,
return_token_type_ids=False,
return_offsets_mapping=True,
add_special_tokens=True,
)
do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False
expected_results = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])
)
self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
@slow
def test_batch_encode_candidates(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
encoded_sentence_r = tokenizer_r.batch_encode_candidates(text, max_length=10, return_tensors="np")
encoded_sentence_p = tokenizer_p.batch_encode_candidates(text, max_length=10, return_tensors="np")
expected_shape = (2, 2, 10)
self.assertEqual(encoded_sentence_r["input_ids"].shape, expected_shape)
self.assertEqual(encoded_sentence_r["attention_mask"].shape, expected_shape)
self.assertEqual(encoded_sentence_r["token_type_ids"].shape, expected_shape)
self.assertEqual(encoded_sentence_p["input_ids"].shape, expected_shape)
self.assertEqual(encoded_sentence_p["attention_mask"].shape, expected_shape)
self.assertEqual(encoded_sentence_p["token_type_ids"].shape, expected_shape)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/rembert/test_modeling_tf_rembert.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import RemBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertModel,
)
class TFRemBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
input_embedding_size=18,
output_embedding_size=43,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.input_embedding_size = input_embedding_size
self.output_embedding_size = output_embedding_size
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RemBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
input_embedding_size=self.input_embedding_size,
output_embedding_size=self.output_embedding_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRemBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_causal_lm_base_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TFRemBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRemBertModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
# Also check the case where encoder outputs are not passed
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_causal_lm_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TFRemBertForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
prediction_scores = model(inputs)["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_causal_lm_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRemBertForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
prediction_scores = result["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_causal_lm_model_past(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRemBertForCausalLM(config=config)
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
output_from_past = model(
next_tokens, past_key_values=past_key_values, output_hidden_states=True
).hidden_states[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_causal_lm_model_past_with_attn_mask(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRemBertForCausalLM(config=config)
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
past_key_values = outputs.past_key_values
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat(
[attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
axis=1,
)
output_from_no_past = model(
next_input_ids,
attention_mask=attn_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
).hidden_states[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_causal_lm_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRemBertForCausalLM(config=config)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
).hidden_states[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRemBertForCausalLM(config=config)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
encoder_hidden_states = encoder_hidden_states[:1, :, :]
encoder_attention_mask = encoder_attention_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
).hidden_states[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRemBertForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRemBertForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFRemBertForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRemBertForTokenClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRemBertForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TFRemBertModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFRemBertModel,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertForMultipleChoice,
)
if is_tf_available()
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFRemBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=RemBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
"""Test the base model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_causal_lm_base_model(self):
"""Test the base model of the causal LM model
is_deocder=True, no cross_attention, no encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)
def test_model_as_decoder(self):
"""Test the base model as a decoder (of an encoder-decoder architecture)
is_deocder=True + cross_attention + pass encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_causal_lm(self):
"""Test the causal LM model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model(*config_and_inputs)
def test_causal_lm_model_as_decoder(self):
"""Test the causal LM model as a decoder"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs)
def test_causal_lm_model_past(self):
"""Test causal LM model with `past_key_values`"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs)
def test_causal_lm_model_past_with_attn_mask(self):
"""Test the causal LM model with `past_key_values` and `attention_mask`"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs)
def test_causal_lm_model_past_with_large_inputs(self):
"""Test the causal LM model with `past_key_values` and a longer decoder sequence length"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
"""Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = TFRemBertModel.from_pretrained("google/rembert")
self.assertIsNotNone(model)
@require_tf
class TFRemBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_model(self):
model = TFRemBertModel.from_pretrained("google/rembert")
input_ids = tf.constant([[312, 56498, 313, 2125, 313]])
segment_ids = tf.constant([[0, 0, 0, 1, 1]])
output = model(input_ids, token_type_ids=segment_ids, output_hidden_states=True)
hidden_size = 1152
expected_shape = [1, 5, hidden_size]
self.assertEqual(output["last_hidden_state"].shape, expected_shape)
expected_implementation = tf.constant(
[
[
[0.0754, -0.2022, 0.1904],
[-0.3354, -0.3692, -0.4791],
[-0.2314, -0.6729, -0.0749],
[-0.0396, -0.3105, -0.4234],
[-0.1571, -0.0525, 0.5353],
]
]
)
tf.debugging.assert_near(output["last_hidden_state"][:, :, :3], expected_implementation, atol=1e-4)
# Running on the original tf implementation gives slightly different results here.
# Not clear why this variations is present
# TODO: Find reason for discrepancy
# expected_original_implementation = [[
# [0.07630594074726105, -0.20146065950393677, 0.19107051193714142],
# [-0.3405614495277405, -0.36971670389175415, -0.4808273911476135],
# [-0.22587086260318756, -0.6656315922737122, -0.07844287157058716],
# [-0.04145475849509239, -0.3077218234539032, -0.42316967248916626],
# [-0.15887849032878876, -0.054529931396245956, 0.5356100797653198]
# ]]
| # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import RemBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertModel,
)
class TFRemBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
input_embedding_size=18,
output_embedding_size=43,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.input_embedding_size = input_embedding_size
self.output_embedding_size = output_embedding_size
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RemBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
input_embedding_size=self.input_embedding_size,
output_embedding_size=self.output_embedding_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRemBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_causal_lm_base_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TFRemBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRemBertModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
# Also check the case where encoder outputs are not passed
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_causal_lm_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TFRemBertForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
prediction_scores = model(inputs)["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_causal_lm_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRemBertForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
prediction_scores = result["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_causal_lm_model_past(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRemBertForCausalLM(config=config)
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0]
output_from_past = model(
next_tokens, past_key_values=past_key_values, output_hidden_states=True
).hidden_states[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_causal_lm_model_past_with_attn_mask(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRemBertForCausalLM(config=config)
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
outputs = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
past_key_values = outputs.past_key_values
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat(
[attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)],
axis=1,
)
output_from_no_past = model(
next_input_ids,
attention_mask=attn_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True
).hidden_states[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_causal_lm_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
config.is_decoder = True
model = TFRemBertForCausalLM(config=config)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=input_mask, use_cache=True)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
).hidden_states[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = TFRemBertForCausalLM(config=config)
input_ids = input_ids[:1, :]
input_mask = input_mask[:1, :]
encoder_hidden_states = encoder_hidden_states[:1, :, :]
encoder_attention_mask = encoder_attention_mask[:1, :]
self.batch_size = 1
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
).hidden_states[0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
).hidden_states[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRemBertForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRemBertForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFRemBertForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRemBertForTokenClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRemBertForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TFRemBertModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFRemBertModel,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertForMultipleChoice,
)
if is_tf_available()
else ()
)
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = TFRemBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=RemBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
"""Test the base model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_causal_lm_base_model(self):
"""Test the base model of the causal LM model
is_deocder=True, no cross_attention, no encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs)
def test_model_as_decoder(self):
"""Test the base model as a decoder (of an encoder-decoder architecture)
is_deocder=True + cross_attention + pass encoder outputs
"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_causal_lm(self):
"""Test the causal LM model"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model(*config_and_inputs)
def test_causal_lm_model_as_decoder(self):
"""Test the causal LM model as a decoder"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs)
def test_causal_lm_model_past(self):
"""Test causal LM model with `past_key_values`"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs)
def test_causal_lm_model_past_with_attn_mask(self):
"""Test the causal LM model with `past_key_values` and `attention_mask`"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs)
def test_causal_lm_model_past_with_large_inputs(self):
"""Test the causal LM model with `past_key_values` and a longer decoder sequence length"""
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
"""Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention"""
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = TFRemBertModel.from_pretrained("google/rembert")
self.assertIsNotNone(model)
@require_tf
class TFRemBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_model(self):
model = TFRemBertModel.from_pretrained("google/rembert")
input_ids = tf.constant([[312, 56498, 313, 2125, 313]])
segment_ids = tf.constant([[0, 0, 0, 1, 1]])
output = model(input_ids, token_type_ids=segment_ids, output_hidden_states=True)
hidden_size = 1152
expected_shape = [1, 5, hidden_size]
self.assertEqual(output["last_hidden_state"].shape, expected_shape)
expected_implementation = tf.constant(
[
[
[0.0754, -0.2022, 0.1904],
[-0.3354, -0.3692, -0.4791],
[-0.2314, -0.6729, -0.0749],
[-0.0396, -0.3105, -0.4234],
[-0.1571, -0.0525, 0.5353],
]
]
)
tf.debugging.assert_near(output["last_hidden_state"][:, :, :3], expected_implementation, atol=1e-4)
# Running on the original tf implementation gives slightly different results here.
# Not clear why this variations is present
# TODO: Find reason for discrepancy
# expected_original_implementation = [[
# [0.07630594074726105, -0.20146065950393677, 0.19107051193714142],
# [-0.3405614495277405, -0.36971670389175415, -0.4808273911476135],
# [-0.22587086260318756, -0.6656315922737122, -0.07844287157058716],
# [-0.04145475849509239, -0.3077218234539032, -0.42316967248916626],
# [-0.15887849032878876, -0.054529931396245956, 0.5356100797653198]
# ]]
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/squeezebert/__init__.py | -1 |
||
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/pipelines/test_pipelines_text_generation.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, pipeline
from transformers.testing_utils import (
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
@require_torch_or_tf
class TextGenerationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def test_small_model_pt(self):
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
# Using `do_sample=False` to force deterministic output
outputs = text_generator("This is a test", do_sample=False)
self.assertEqual(
outputs,
[
{
"generated_text": (
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
" oscope. FiliFili@@"
)
}
],
)
outputs = text_generator(["This is a test", "This is a second test"])
self.assertEqual(
outputs,
[
[
{
"generated_text": (
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
" oscope. FiliFili@@"
)
}
],
[
{
"generated_text": (
"This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
" oscope. oscope. FiliFili@@"
)
}
],
],
)
outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
self.assertEqual(
outputs,
[
{"generated_token_ids": ANY(list)},
{"generated_token_ids": ANY(list)},
],
)
text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
text_generator.tokenizer.pad_token = "<pad>"
outputs = text_generator(
["This is a test", "This is a second test"],
do_sample=True,
num_return_sequences=2,
batch_size=2,
return_tensors=True,
)
self.assertEqual(
outputs,
[
[
{"generated_token_ids": ANY(list)},
{"generated_token_ids": ANY(list)},
],
[
{"generated_token_ids": ANY(list)},
{"generated_token_ids": ANY(list)},
],
],
)
@require_tf
def test_small_model_tf(self):
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
# Using `do_sample=False` to force deterministic output
outputs = text_generator("This is a test", do_sample=False)
self.assertEqual(
outputs,
[
{
"generated_text": (
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
" please,"
)
}
],
)
outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
self.assertEqual(
outputs,
[
[
{
"generated_text": (
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
" please,"
)
}
],
[
{
"generated_text": (
"This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
" Cannes 閲閲Cannes Cannes Cannes 攵 please,"
)
}
],
],
)
def get_test_pipeline(self, model, tokenizer, feature_extractor):
text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
return text_generator, ["This is a test", "Another test"]
def test_stop_sequence_stopping_criteria(self):
prompt = """Hello I believe in"""
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
output = text_generator(prompt)
self.assertEqual(
output,
[{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
)
output = text_generator(prompt, stop_sequence=" fe")
self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])
def run_pipeline_test(self, text_generator, _):
model = text_generator.model
tokenizer = text_generator.tokenizer
outputs = text_generator("This is a test")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
outputs = text_generator("This is a test", return_full_text=False)
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertNotIn("This is a test", outputs[0]["generated_text"])
text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
outputs = text_generator("This is a test")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertNotIn("This is a test", outputs[0]["generated_text"])
outputs = text_generator("This is a test", return_full_text=True)
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
if text_generator.tokenizer.pad_token is not None:
outputs = text_generator(
["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
with self.assertRaises(ValueError):
outputs = text_generator("test", return_full_text=True, return_text=True)
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__:
outputs = text_generator("")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
else:
with self.assertRaises((ValueError, AssertionError)):
outputs = text_generator("")
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
if tokenizer.model_max_length < 10000 and "XGLM" not in tokenizer.__class__.__name__:
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
text_generator("This is a test" * 500, max_new_tokens=20)
outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
# Hole strategy cannot work
with self.assertRaises(ValueError):
text_generator(
"This is a test" * 500,
handle_long_generation="hole",
max_new_tokens=tokenizer.model_max_length + 10,
)
@require_torch
@require_accelerate
@require_torch_gpu
def test_small_model_pt_bloom_accelerate(self):
import torch
# Classic `model_kwargs`
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
)
self.assertEqual(pipe.model.device, torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
],
)
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
self.assertEqual(pipe.model.device, torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
],
)
# torch_dtype not necessary
pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
self.assertEqual(pipe.model.device, torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
],
)
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, pipeline
from transformers.testing_utils import (
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
@require_torch_or_tf
class TextGenerationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def test_small_model_pt(self):
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
# Using `do_sample=False` to force deterministic output
outputs = text_generator("This is a test", do_sample=False)
self.assertEqual(
outputs,
[
{
"generated_text": (
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
" oscope. FiliFili@@"
)
}
],
)
outputs = text_generator(["This is a test", "This is a second test"])
self.assertEqual(
outputs,
[
[
{
"generated_text": (
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
" oscope. FiliFili@@"
)
}
],
[
{
"generated_text": (
"This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
" oscope. oscope. FiliFili@@"
)
}
],
],
)
outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
self.assertEqual(
outputs,
[
{"generated_token_ids": ANY(list)},
{"generated_token_ids": ANY(list)},
],
)
text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
text_generator.tokenizer.pad_token = "<pad>"
outputs = text_generator(
["This is a test", "This is a second test"],
do_sample=True,
num_return_sequences=2,
batch_size=2,
return_tensors=True,
)
self.assertEqual(
outputs,
[
[
{"generated_token_ids": ANY(list)},
{"generated_token_ids": ANY(list)},
],
[
{"generated_token_ids": ANY(list)},
{"generated_token_ids": ANY(list)},
],
],
)
@require_tf
def test_small_model_tf(self):
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
# Using `do_sample=False` to force deterministic output
outputs = text_generator("This is a test", do_sample=False)
self.assertEqual(
outputs,
[
{
"generated_text": (
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
" please,"
)
}
],
)
outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
self.assertEqual(
outputs,
[
[
{
"generated_text": (
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
" please,"
)
}
],
[
{
"generated_text": (
"This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
" Cannes 閲閲Cannes Cannes Cannes 攵 please,"
)
}
],
],
)
def get_test_pipeline(self, model, tokenizer, feature_extractor):
text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
return text_generator, ["This is a test", "Another test"]
def test_stop_sequence_stopping_criteria(self):
prompt = """Hello I believe in"""
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
output = text_generator(prompt)
self.assertEqual(
output,
[{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
)
output = text_generator(prompt, stop_sequence=" fe")
self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])
def run_pipeline_test(self, text_generator, _):
model = text_generator.model
tokenizer = text_generator.tokenizer
outputs = text_generator("This is a test")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
outputs = text_generator("This is a test", return_full_text=False)
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertNotIn("This is a test", outputs[0]["generated_text"])
text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
outputs = text_generator("This is a test")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertNotIn("This is a test", outputs[0]["generated_text"])
outputs = text_generator("This is a test", return_full_text=True)
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
if text_generator.tokenizer.pad_token is not None:
outputs = text_generator(
["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
with self.assertRaises(ValueError):
outputs = text_generator("test", return_full_text=True, return_text=True)
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__:
outputs = text_generator("")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
else:
with self.assertRaises((ValueError, AssertionError)):
outputs = text_generator("")
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
if tokenizer.model_max_length < 10000 and "XGLM" not in tokenizer.__class__.__name__:
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
text_generator("This is a test" * 500, max_new_tokens=20)
outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
# Hole strategy cannot work
with self.assertRaises(ValueError):
text_generator(
"This is a test" * 500,
handle_long_generation="hole",
max_new_tokens=tokenizer.model_max_length + 10,
)
@require_torch
@require_accelerate
@require_torch_gpu
def test_small_model_pt_bloom_accelerate(self):
import torch
# Classic `model_kwargs`
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
)
self.assertEqual(pipe.model.device, torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
],
)
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
self.assertEqual(pipe.model.device, torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
],
)
# torch_dtype not necessary
pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
self.assertEqual(pipe.model.device, torch.device(0))
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
],
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/pipelines/test_pipelines_translation.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MBart50TokenizerFast,
MBartConfig,
MBartForConditionalGeneration,
TranslationPipeline,
pipeline,
)
from transformers.testing_utils import require_tf, require_torch, slow
from .test_pipelines_common import ANY, PipelineTestCaseMeta
class TranslationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def get_test_pipeline(self, model, tokenizer, feature_extractor):
if isinstance(model.config, MBartConfig):
src_lang, tgt_lang = list(tokenizer.lang_code_to_id.keys())[:2]
translator = TranslationPipeline(model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang)
else:
translator = TranslationPipeline(model=model, tokenizer=tokenizer)
return translator, ["Some string", "Some other text"]
def run_pipeline_test(self, translator, _):
outputs = translator("Some string")
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
outputs = translator(["Some string"])
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
outputs = translator(["Some string", "other string"])
self.assertEqual(outputs, [{"translation_text": ANY(str)}, {"translation_text": ANY(str)}])
@require_torch
def test_small_model_pt(self):
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="pt")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
" Beide Beide"
)
}
],
)
@require_tf
def test_small_model_tf(self):
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="tf")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
" Beide Beide"
)
}
],
)
@require_torch
def test_en_to_de_pt(self):
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="pt")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine"
" urine urine urine urine urine urine urine"
)
}
],
)
@require_tf
def test_en_to_de_tf(self):
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="tf")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine"
" urine urine urine urine urine urine urine"
)
}
],
)
class TranslationNewFormatPipelineTests(unittest.TestCase):
@require_torch
@slow
def test_default_translations(self):
# We don't provide a default for this pair
with self.assertRaises(ValueError):
pipeline(task="translation_cn_to_ar")
# but we do for this one
translator = pipeline(task="translation_en_to_de")
self.assertEqual(translator._preprocess_params["src_lang"], "en")
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
@require_torch
@slow
def test_multilingual_translation(self):
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator = pipeline(task="translation", model=model, tokenizer=tokenizer)
# Missing src_lang, tgt_lang
with self.assertRaises(ValueError):
translator("This is a test")
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN")
self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}])
# src_lang, tgt_lang can be defined at pipeline call time
translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR")
outputs = translator("This is a test")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
@require_torch
def test_translation_on_odd_language(self):
model = "patrickvonplaten/t5-tiny-random"
translator = pipeline(task="translation_cn_to_ar", model=model)
self.assertEqual(translator._preprocess_params["src_lang"], "cn")
self.assertEqual(translator._preprocess_params["tgt_lang"], "ar")
@require_torch
def test_translation_default_language_selection(self):
model = "patrickvonplaten/t5-tiny-random"
with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"):
translator = pipeline(task="translation", model=model)
self.assertEqual(translator.task, "translation_en_to_de")
self.assertEqual(translator._preprocess_params["src_lang"], "en")
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
@require_torch
def test_translation_with_no_language_no_model_fails(self):
with self.assertRaises(ValueError):
pipeline(task="translation")
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MBart50TokenizerFast,
MBartConfig,
MBartForConditionalGeneration,
TranslationPipeline,
pipeline,
)
from transformers.testing_utils import require_tf, require_torch, slow
from .test_pipelines_common import ANY, PipelineTestCaseMeta
class TranslationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def get_test_pipeline(self, model, tokenizer, feature_extractor):
if isinstance(model.config, MBartConfig):
src_lang, tgt_lang = list(tokenizer.lang_code_to_id.keys())[:2]
translator = TranslationPipeline(model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang)
else:
translator = TranslationPipeline(model=model, tokenizer=tokenizer)
return translator, ["Some string", "Some other text"]
def run_pipeline_test(self, translator, _):
outputs = translator("Some string")
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
outputs = translator(["Some string"])
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
outputs = translator(["Some string", "other string"])
self.assertEqual(outputs, [{"translation_text": ANY(str)}, {"translation_text": ANY(str)}])
@require_torch
def test_small_model_pt(self):
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="pt")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
" Beide Beide"
)
}
],
)
@require_tf
def test_small_model_tf(self):
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="tf")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
" Beide Beide"
)
}
],
)
@require_torch
def test_en_to_de_pt(self):
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="pt")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine"
" urine urine urine urine urine urine urine"
)
}
],
)
@require_tf
def test_en_to_de_tf(self):
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="tf")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine"
" urine urine urine urine urine urine urine"
)
}
],
)
class TranslationNewFormatPipelineTests(unittest.TestCase):
@require_torch
@slow
def test_default_translations(self):
# We don't provide a default for this pair
with self.assertRaises(ValueError):
pipeline(task="translation_cn_to_ar")
# but we do for this one
translator = pipeline(task="translation_en_to_de")
self.assertEqual(translator._preprocess_params["src_lang"], "en")
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
@require_torch
@slow
def test_multilingual_translation(self):
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator = pipeline(task="translation", model=model, tokenizer=tokenizer)
# Missing src_lang, tgt_lang
with self.assertRaises(ValueError):
translator("This is a test")
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN")
self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}])
# src_lang, tgt_lang can be defined at pipeline call time
translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR")
outputs = translator("This is a test")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
@require_torch
def test_translation_on_odd_language(self):
model = "patrickvonplaten/t5-tiny-random"
translator = pipeline(task="translation_cn_to_ar", model=model)
self.assertEqual(translator._preprocess_params["src_lang"], "cn")
self.assertEqual(translator._preprocess_params["tgt_lang"], "ar")
@require_torch
def test_translation_default_language_selection(self):
model = "patrickvonplaten/t5-tiny-random"
with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"):
translator = pipeline(task="translation", model=model)
self.assertEqual(translator.task, "translation_en_to_de")
self.assertEqual(translator._preprocess_params["src_lang"], "en")
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
@require_torch
def test_translation_with_no_language_no_model_fails(self):
with self.assertRaises(ValueError):
pipeline(task="translation")
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/fnet/tokenization_fnet_fast.py | # coding=utf-8
# Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for FNet model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
FNetTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
SPIECE_UNDERLINE = "▁"
class FNetTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" FNetTokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
[`AlbertTokenizerFast`]. Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `True`):
Whether or not to keep accents when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "token_type_ids"]
slow_tokenizer_class = FNetTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=False,
remove_space=True,
keep_accents=True,
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs
):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
mask_token = (
AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
if isinstance(mask_token, str)
else mask_token
)
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.can_save_slow_tokenizer = False if not self.vocab_file else True
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An FNet sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| # coding=utf-8
# Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for FNet model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
FNetTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
SPIECE_UNDERLINE = "▁"
class FNetTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" FNetTokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
[`AlbertTokenizerFast`]. Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `True`):
Whether or not to keep accents when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "token_type_ids"]
slow_tokenizer_class = FNetTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=False,
remove_space=True,
keep_accents=True,
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs
):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
mask_token = (
AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
if isinstance(mask_token, str)
else mask_token
)
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.can_save_slow_tokenizer = False if not self.vocab_file else True
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An FNet sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/levit/__init__.py | -1 |
||
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/research_projects/seq2seq-distillation/lightning_base.py | import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
MODEL_MODES = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeq2SeqLM,
"translation": AutoModelForSeq2SeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
arg_to_scheduler = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
arg_to_scheduler_choices = sorted(arg_to_scheduler.keys())
arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class BaseTransformer(pl.LightningModule):
def __init__(
self,
hparams: argparse.Namespace,
num_labels=None,
mode="base",
config=None,
tokenizer=None,
model=None,
**config_kwargs
):
"""Initialize a model, tokenizer and config."""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(hparams)
self.step_count = 0
self.output_dir = Path(self.hparams.output_dir)
cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
self.config = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path,
**({"num_labels": num_labels} if num_labels is not None else {}),
cache_dir=cache_dir,
**config_kwargs,
)
else:
self.config: PretrainedConfig = config
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(self.hparams, p, None):
assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute"
setattr(self.config, p, getattr(self.hparams, p))
if tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path,
cache_dir=cache_dir,
)
else:
self.tokenizer: PreTrainedTokenizer = tokenizer
self.model_type = MODEL_MODES[mode]
if model is None:
self.model = self.model_type.from_pretrained(
self.hparams.model_name_or_path,
from_tf=bool(".ckpt" in self.hparams.model_name_or_path),
config=self.config,
cache_dir=cache_dir,
)
else:
self.model = model
def load_hf_checkpoint(self, *args, **kwargs):
self.model = self.model_type.from_pretrained(*args, **kwargs)
def get_lr_scheduler(self):
get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler]
scheduler = get_schedule_func(
self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps()
)
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return scheduler
def configure_optimizers(self):
"""Prepare optimizer and schedule (linear warmup and decay)"""
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.hparams.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
if self.hparams.adafactor:
optimizer = Adafactor(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False
)
else:
optimizer = AdamW(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon
)
self.opt = optimizer
scheduler = self.get_lr_scheduler()
return [optimizer], [scheduler]
def test_step(self, batch, batch_nb):
return self.validation_step(batch, batch_nb)
def test_epoch_end(self, outputs):
return self.validation_end(outputs)
def total_steps(self) -> int:
"""The number of total training steps that will be run. Used for lr scheduler purposes."""
num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores
effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def setup(self, mode):
if mode == "test":
self.dataset_size = len(self.test_dataloader().dataset)
else:
self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True)
self.dataset_size = len(self.train_dataloader().dataset)
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False):
raise NotImplementedError("You must implement this for your task")
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False)
def test_dataloader(self):
return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False)
def _feature_file(self, mode):
return os.path.join(
self.hparams.data_dir,
"cached_{}_{}_{}".format(
mode,
list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(),
str(self.hparams.max_seq_length),
),
)
@pl.utilities.rank_zero_only
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
save_path = self.output_dir.joinpath("best_tfmr")
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
@staticmethod
def add_model_specific_args(parser, root_dir):
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--encoder_layerdrop",
type=float,
help="Encoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--decoder_layerdrop",
type=float,
help="Decoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--dropout",
type=float,
help="Dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--attention_dropout",
type=float,
help="Attention dropout probability (Optional). Goes into model.config",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--lr_scheduler",
default="linear",
choices=arg_to_scheduler_choices,
metavar=arg_to_scheduler_metavar,
type=str,
help="Learning rate scheduler",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader")
parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int)
parser.add_argument("--train_batch_size", default=32, type=int)
parser.add_argument("--eval_batch_size", default=32, type=int)
parser.add_argument("--adafactor", action="store_true")
class LoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lr_scheduler = trainer.lr_schedulers[0]["scheduler"]
lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())}
pl_module.logger.log_metrics(lrs)
def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Validation results *****")
metrics = trainer.callback_metrics
# Log results
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Test results *****")
metrics = trainer.callback_metrics
# Log and save results to file
output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt")
with open(output_test_results_file, "w") as writer:
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
writer.write("{} = {}\n".format(key, str(metrics[key])))
def add_generic_args(parser, root_dir) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O2",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int)
parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm")
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
parser.add_argument(
"--gradient_accumulation_steps",
dest="accumulate_grad_batches",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
)
def generic_train(
model: BaseTransformer,
args: argparse.Namespace,
early_stopping_callback=None,
logger=True, # can pass WandbLogger() here
extra_callbacks=[],
checkpoint_callback=None,
logging_callback=None,
**extra_train_kwargs
):
pl.seed_everything(args.seed)
# init model
odir = Path(model.hparams.output_dir)
odir.mkdir(exist_ok=True)
# add custom checkpoints
if checkpoint_callback is None:
checkpoint_callback = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1
)
if early_stopping_callback:
extra_callbacks.append(early_stopping_callback)
if logging_callback is None:
logging_callback = LoggingCallback()
train_params = {}
# TODO: remove with PyTorch 1.6 since pl uses native amp
if args.fp16:
train_params["precision"] = 16
train_params["amp_level"] = args.fp16_opt_level
if args.gpus > 1:
train_params["distributed_backend"] = "ddp"
train_params["accumulate_grad_batches"] = args.accumulate_grad_batches
train_params["accelerator"] = extra_train_kwargs.get("accelerator", None)
train_params["profiler"] = extra_train_kwargs.get("profiler", None)
trainer = pl.Trainer.from_argparse_args(
args,
weights_summary=None,
callbacks=[logging_callback] + extra_callbacks,
logger=logger,
checkpoint_callback=checkpoint_callback,
**train_params,
)
if args.do_train:
trainer.fit(model)
return trainer
| import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
MODEL_MODES = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeq2SeqLM,
"translation": AutoModelForSeq2SeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
arg_to_scheduler = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
arg_to_scheduler_choices = sorted(arg_to_scheduler.keys())
arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class BaseTransformer(pl.LightningModule):
def __init__(
self,
hparams: argparse.Namespace,
num_labels=None,
mode="base",
config=None,
tokenizer=None,
model=None,
**config_kwargs
):
"""Initialize a model, tokenizer and config."""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(hparams)
self.step_count = 0
self.output_dir = Path(self.hparams.output_dir)
cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
self.config = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path,
**({"num_labels": num_labels} if num_labels is not None else {}),
cache_dir=cache_dir,
**config_kwargs,
)
else:
self.config: PretrainedConfig = config
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(self.hparams, p, None):
assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute"
setattr(self.config, p, getattr(self.hparams, p))
if tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path,
cache_dir=cache_dir,
)
else:
self.tokenizer: PreTrainedTokenizer = tokenizer
self.model_type = MODEL_MODES[mode]
if model is None:
self.model = self.model_type.from_pretrained(
self.hparams.model_name_or_path,
from_tf=bool(".ckpt" in self.hparams.model_name_or_path),
config=self.config,
cache_dir=cache_dir,
)
else:
self.model = model
def load_hf_checkpoint(self, *args, **kwargs):
self.model = self.model_type.from_pretrained(*args, **kwargs)
def get_lr_scheduler(self):
get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler]
scheduler = get_schedule_func(
self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps()
)
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return scheduler
def configure_optimizers(self):
"""Prepare optimizer and schedule (linear warmup and decay)"""
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.hparams.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
if self.hparams.adafactor:
optimizer = Adafactor(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False
)
else:
optimizer = AdamW(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon
)
self.opt = optimizer
scheduler = self.get_lr_scheduler()
return [optimizer], [scheduler]
def test_step(self, batch, batch_nb):
return self.validation_step(batch, batch_nb)
def test_epoch_end(self, outputs):
return self.validation_end(outputs)
def total_steps(self) -> int:
"""The number of total training steps that will be run. Used for lr scheduler purposes."""
num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores
effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def setup(self, mode):
if mode == "test":
self.dataset_size = len(self.test_dataloader().dataset)
else:
self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True)
self.dataset_size = len(self.train_dataloader().dataset)
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False):
raise NotImplementedError("You must implement this for your task")
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False)
def test_dataloader(self):
return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False)
def _feature_file(self, mode):
return os.path.join(
self.hparams.data_dir,
"cached_{}_{}_{}".format(
mode,
list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(),
str(self.hparams.max_seq_length),
),
)
@pl.utilities.rank_zero_only
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
save_path = self.output_dir.joinpath("best_tfmr")
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
@staticmethod
def add_model_specific_args(parser, root_dir):
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--encoder_layerdrop",
type=float,
help="Encoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--decoder_layerdrop",
type=float,
help="Decoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--dropout",
type=float,
help="Dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--attention_dropout",
type=float,
help="Attention dropout probability (Optional). Goes into model.config",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--lr_scheduler",
default="linear",
choices=arg_to_scheduler_choices,
metavar=arg_to_scheduler_metavar,
type=str,
help="Learning rate scheduler",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader")
parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int)
parser.add_argument("--train_batch_size", default=32, type=int)
parser.add_argument("--eval_batch_size", default=32, type=int)
parser.add_argument("--adafactor", action="store_true")
class LoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lr_scheduler = trainer.lr_schedulers[0]["scheduler"]
lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())}
pl_module.logger.log_metrics(lrs)
def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Validation results *****")
metrics = trainer.callback_metrics
# Log results
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Test results *****")
metrics = trainer.callback_metrics
# Log and save results to file
output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt")
with open(output_test_results_file, "w") as writer:
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
writer.write("{} = {}\n".format(key, str(metrics[key])))
def add_generic_args(parser, root_dir) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O2",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int)
parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm")
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
parser.add_argument(
"--gradient_accumulation_steps",
dest="accumulate_grad_batches",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
)
def generic_train(
model: BaseTransformer,
args: argparse.Namespace,
early_stopping_callback=None,
logger=True, # can pass WandbLogger() here
extra_callbacks=[],
checkpoint_callback=None,
logging_callback=None,
**extra_train_kwargs
):
pl.seed_everything(args.seed)
# init model
odir = Path(model.hparams.output_dir)
odir.mkdir(exist_ok=True)
# add custom checkpoints
if checkpoint_callback is None:
checkpoint_callback = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1
)
if early_stopping_callback:
extra_callbacks.append(early_stopping_callback)
if logging_callback is None:
logging_callback = LoggingCallback()
train_params = {}
# TODO: remove with PyTorch 1.6 since pl uses native amp
if args.fp16:
train_params["precision"] = 16
train_params["amp_level"] = args.fp16_opt_level
if args.gpus > 1:
train_params["distributed_backend"] = "ddp"
train_params["accumulate_grad_batches"] = args.accumulate_grad_batches
train_params["accelerator"] = extra_train_kwargs.get("accelerator", None)
train_params["profiler"] = extra_train_kwargs.get("profiler", None)
trainer = pl.Trainer.from_argparse_args(
args,
weights_summary=None,
callbacks=[logging_callback] + extra_callbacks,
logger=logger,
checkpoint_callback=checkpoint_callback,
**train_params,
)
if args.do_train:
trainer.fit(model)
return trainer
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/deepspeed/ds_config_zero3.json | {
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
| {
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/pytorch/audio-classification/run_audio_classification.py | #!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import numpy as np
from datasets import DatasetDict, load_dataset
import evaluate
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.26.0.dev0")
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000):
"""Randomly sample chunks of `max_length` seconds from the input audio"""
sample_length = int(round(sample_rate * max_length))
if len(wav) <= sample_length:
return wav
random_offset = randint(0, len(wav) - sample_length - 1)
return wav[random_offset : random_offset + sample_length]
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: Optional[str] = field(default=None, metadata={"help": "Name of a dataset from the datasets package"})
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A file containing the training audio paths and labels."}
)
eval_file: Optional[str] = field(
default=None, metadata={"help": "A file containing the validation audio paths and labels."}
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="validation",
metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
)
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
label_column_name: str = field(
default="label", metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"}
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_length_seconds: float = field(
default=20,
metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="facebook/wav2vec2-base",
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "Name or path of preprocessor config."}
)
freeze_feature_encoder: bool = field(
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
)
attention_mask: bool = field(
default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
freeze_feature_extractor: Optional[bool] = field(
default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
)
def __post_init__(self):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"The argument `--freeze_feature_extractor` is deprecated and "
"will be removed in a future version. Use `--freeze_feature_encoder`"
"instead. Setting `freeze_feature_encoder==True`.",
FutureWarning,
)
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"The argument `--freeze_feature_extractor` is deprecated and "
"should not be used in combination with `--freeze_feature_encoder`."
"Only make use of `--freeze_feature_encoder`."
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_audio_classification", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to train from scratch."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Initialize our dataset and prepare it for the audio classification task.
raw_datasets = DatasetDict()
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
use_auth_token=True if model_args.use_auth_token else None,
)
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
use_auth_token=True if model_args.use_auth_token else None,
)
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--audio_column_name` to the correct audio column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--label_column_name` to the correct text column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path,
return_attention_mask=model_args.attention_mask,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
)
def train_transforms(batch):
"""Apply train_transforms across a batch."""
output_batch = {"input_values": []}
for audio in batch[data_args.audio_column_name]:
wav = random_subsample(
audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate
)
output_batch["input_values"].append(wav)
output_batch["labels"] = [label for label in batch[data_args.label_column_name]]
return output_batch
def val_transforms(batch):
"""Apply val_transforms across a batch."""
output_batch = {"input_values": []}
for audio in batch[data_args.audio_column_name]:
wav = audio["array"]
output_batch["input_values"].append(wav)
output_batch["labels"] = [label for label in batch[data_args.label_column_name]]
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
labels = raw_datasets["train"].features[data_args.label_column_name].names
label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
label2id[label] = str(i)
id2label[str(i)] = label
# Load the accuracy metric from the datasets package
metric = evaluate.load("accuracy")
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(eval_pred):
"""Computes accuracy on a batch of predictions"""
predictions = np.argmax(eval_pred.predictions, axis=1)
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
config = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path,
num_labels=len(labels),
label2id=label2id,
id2label=id2label,
finetuning_task="audio-classification",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
raw_datasets["train"] = (
raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
)
# Set the training transforms
raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)
if training_args.do_eval:
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = (
raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
)
# Set the validation transforms
raw_datasets["eval"].set_transform(val_transforms, output_all_columns=False)
# Initialize our trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=raw_datasets["train"] if training_args.do_train else None,
eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=feature_extractor,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Write model card and (optionally) push to hub
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "audio-classification",
"dataset": data_args.dataset_name,
"tags": ["audio-classification"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()
| #!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import numpy as np
from datasets import DatasetDict, load_dataset
import evaluate
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.26.0.dev0")
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000):
"""Randomly sample chunks of `max_length` seconds from the input audio"""
sample_length = int(round(sample_rate * max_length))
if len(wav) <= sample_length:
return wav
random_offset = randint(0, len(wav) - sample_length - 1)
return wav[random_offset : random_offset + sample_length]
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: Optional[str] = field(default=None, metadata={"help": "Name of a dataset from the datasets package"})
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A file containing the training audio paths and labels."}
)
eval_file: Optional[str] = field(
default=None, metadata={"help": "A file containing the validation audio paths and labels."}
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="validation",
metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
)
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
label_column_name: str = field(
default="label", metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"}
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_length_seconds: float = field(
default=20,
metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="facebook/wav2vec2-base",
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "Name or path of preprocessor config."}
)
freeze_feature_encoder: bool = field(
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
)
attention_mask: bool = field(
default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
freeze_feature_extractor: Optional[bool] = field(
default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
)
def __post_init__(self):
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"The argument `--freeze_feature_extractor` is deprecated and "
"will be removed in a future version. Use `--freeze_feature_encoder`"
"instead. Setting `freeze_feature_encoder==True`.",
FutureWarning,
)
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"The argument `--freeze_feature_extractor` is deprecated and "
"should not be used in combination with `--freeze_feature_encoder`."
"Only make use of `--freeze_feature_encoder`."
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_audio_classification", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to train from scratch."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Initialize our dataset and prepare it for the audio classification task.
raw_datasets = DatasetDict()
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
use_auth_token=True if model_args.use_auth_token else None,
)
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
use_auth_token=True if model_args.use_auth_token else None,
)
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--audio_column_name` to the correct audio column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--label_column_name` to the correct text column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path,
return_attention_mask=model_args.attention_mask,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
)
def train_transforms(batch):
"""Apply train_transforms across a batch."""
output_batch = {"input_values": []}
for audio in batch[data_args.audio_column_name]:
wav = random_subsample(
audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate
)
output_batch["input_values"].append(wav)
output_batch["labels"] = [label for label in batch[data_args.label_column_name]]
return output_batch
def val_transforms(batch):
"""Apply val_transforms across a batch."""
output_batch = {"input_values": []}
for audio in batch[data_args.audio_column_name]:
wav = audio["array"]
output_batch["input_values"].append(wav)
output_batch["labels"] = [label for label in batch[data_args.label_column_name]]
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
labels = raw_datasets["train"].features[data_args.label_column_name].names
label2id, id2label = dict(), dict()
for i, label in enumerate(labels):
label2id[label] = str(i)
id2label[str(i)] = label
# Load the accuracy metric from the datasets package
metric = evaluate.load("accuracy")
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(eval_pred):
"""Computes accuracy on a batch of predictions"""
predictions = np.argmax(eval_pred.predictions, axis=1)
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
config = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path,
num_labels=len(labels),
label2id=label2id,
id2label=id2label,
finetuning_task="audio-classification",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
raw_datasets["train"] = (
raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
)
# Set the training transforms
raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)
if training_args.do_eval:
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = (
raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
)
# Set the validation transforms
raw_datasets["eval"].set_transform(val_transforms, output_all_columns=False)
# Initialize our trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=raw_datasets["train"] if training_args.do_train else None,
eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=feature_extractor,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Write model card and (optionally) push to hub
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "audio-classification",
"dataset": data_args.dataset_name,
"tags": ["audio-classification"],
}
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/canine/configuration_canine.py | # coding=utf-8
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CANINE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class CanineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CANINE
[google/canine-s](https://huggingface.co/google/canine-s) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the deep Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoders.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoders, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with.
type_vocab_size (`int`, *optional*, defaults to 16):
The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
downsampling_rate (`int`, *optional*, defaults to 4):
The rate at which to downsample the original character sequence length before applying the deep Transformer
encoder.
upsampling_kernel_size (`int`, *optional*, defaults to 4):
The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
projecting back from `hidden_size`*2 to `hidden_size`.
num_hash_functions (`int`, *optional*, defaults to 8):
The number of hash functions to use. Each hash function has its own embedding matrix.
num_hash_buckets (`int`, *optional*, defaults to 16384):
The number of hash buckets to use.
local_transformer_stride (`int`, *optional*, defaults to 128):
The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
TPU/XLA memory alignment.
Example:
```python
>>> from transformers import CanineConfig, CanineModel
>>> # Initializing a CANINE google/canine-s style configuration
>>> configuration = CanineConfig()
>>> # Initializing a model (with random weights) from the google/canine-s style configuration
>>> model = CanineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "canine"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=16384,
type_vocab_size=16,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_cache=True,
pad_token_id=0,
bos_token_id=0xE000,
eos_token_id=0xE001,
downsampling_rate=4,
upsampling_kernel_size=4,
num_hash_functions=8,
num_hash_buckets=16384,
local_transformer_stride=128, # Good TPU/XLA memory alignment.
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
# Character config:
self.downsampling_rate = downsampling_rate
self.upsampling_kernel_size = upsampling_kernel_size
self.num_hash_functions = num_hash_functions
self.num_hash_buckets = num_hash_buckets
self.local_transformer_stride = local_transformer_stride
| # coding=utf-8
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CANINE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class CanineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CANINE
[google/canine-s](https://huggingface.co/google/canine-s) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the deep Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoders.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoders, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with.
type_vocab_size (`int`, *optional*, defaults to 16):
The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
downsampling_rate (`int`, *optional*, defaults to 4):
The rate at which to downsample the original character sequence length before applying the deep Transformer
encoder.
upsampling_kernel_size (`int`, *optional*, defaults to 4):
The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
projecting back from `hidden_size`*2 to `hidden_size`.
num_hash_functions (`int`, *optional*, defaults to 8):
The number of hash functions to use. Each hash function has its own embedding matrix.
num_hash_buckets (`int`, *optional*, defaults to 16384):
The number of hash buckets to use.
local_transformer_stride (`int`, *optional*, defaults to 128):
The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
TPU/XLA memory alignment.
Example:
```python
>>> from transformers import CanineConfig, CanineModel
>>> # Initializing a CANINE google/canine-s style configuration
>>> configuration = CanineConfig()
>>> # Initializing a model (with random weights) from the google/canine-s style configuration
>>> model = CanineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "canine"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=16384,
type_vocab_size=16,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_cache=True,
pad_token_id=0,
bos_token_id=0xE000,
eos_token_id=0xE001,
downsampling_rate=4,
upsampling_kernel_size=4,
num_hash_functions=8,
num_hash_buckets=16384,
local_transformer_stride=128, # Good TPU/XLA memory alignment.
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
# Character config:
self.downsampling_rate = downsampling_rate
self.upsampling_kernel_size = upsampling_kernel_size
self.num_hash_functions = num_hash_functions
self.num_hash_buckets = num_hash_buckets
self.local_transformer_stride = local_transformer_stride
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/en/model_doc/convbert.mdx | <!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ConvBERT
## Overview
The ConvBERT model was proposed in [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng
Yan.
The abstract from the paper is the following:
*Pre-trained language models like BERT and its variants have recently achieved impressive performance in various
natural language understanding tasks. However, BERT heavily relies on the global self-attention block and thus suffers
large memory footprint and computation cost. Although all its attention heads query on the whole input sequence for
generating the attention map from a global perspective, we observe some heads only need to learn local dependencies,
which means the existence of computation redundancy. We therefore propose a novel span-based dynamic convolution to
replace these self-attention heads to directly model local dependencies. The novel convolution heads, together with the
rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context
learning. We equip BERT with this mixed attention design and build a ConvBERT model. Experiments have shown that
ConvBERT significantly outperforms BERT and its variants in various downstream tasks, with lower training cost and
fewer model parameters. Remarkably, ConvBERTbase model achieves 86.4 GLUE score, 0.7 higher than ELECTRAbase, while
using less than 1/4 training cost. Code and pre-trained models will be released.*
ConvBERT training tips are similar to those of BERT.
This model was contributed by [abhishek](https://huggingface.co/abhishek). The original implementation can be found
here: https://github.com/yitu-opensource/ConvBert
## ConvBertConfig
[[autodoc]] ConvBertConfig
## ConvBertTokenizer
[[autodoc]] ConvBertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## ConvBertTokenizerFast
[[autodoc]] ConvBertTokenizerFast
## ConvBertModel
[[autodoc]] ConvBertModel
- forward
## ConvBertForMaskedLM
[[autodoc]] ConvBertForMaskedLM
- forward
## ConvBertForSequenceClassification
[[autodoc]] ConvBertForSequenceClassification
- forward
## ConvBertForMultipleChoice
[[autodoc]] ConvBertForMultipleChoice
- forward
## ConvBertForTokenClassification
[[autodoc]] ConvBertForTokenClassification
- forward
## ConvBertForQuestionAnswering
[[autodoc]] ConvBertForQuestionAnswering
- forward
## TFConvBertModel
[[autodoc]] TFConvBertModel
- call
## TFConvBertForMaskedLM
[[autodoc]] TFConvBertForMaskedLM
- call
## TFConvBertForSequenceClassification
[[autodoc]] TFConvBertForSequenceClassification
- call
## TFConvBertForMultipleChoice
[[autodoc]] TFConvBertForMultipleChoice
- call
## TFConvBertForTokenClassification
[[autodoc]] TFConvBertForTokenClassification
- call
## TFConvBertForQuestionAnswering
[[autodoc]] TFConvBertForQuestionAnswering
- call
| <!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ConvBERT
## Overview
The ConvBERT model was proposed in [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng
Yan.
The abstract from the paper is the following:
*Pre-trained language models like BERT and its variants have recently achieved impressive performance in various
natural language understanding tasks. However, BERT heavily relies on the global self-attention block and thus suffers
large memory footprint and computation cost. Although all its attention heads query on the whole input sequence for
generating the attention map from a global perspective, we observe some heads only need to learn local dependencies,
which means the existence of computation redundancy. We therefore propose a novel span-based dynamic convolution to
replace these self-attention heads to directly model local dependencies. The novel convolution heads, together with the
rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context
learning. We equip BERT with this mixed attention design and build a ConvBERT model. Experiments have shown that
ConvBERT significantly outperforms BERT and its variants in various downstream tasks, with lower training cost and
fewer model parameters. Remarkably, ConvBERTbase model achieves 86.4 GLUE score, 0.7 higher than ELECTRAbase, while
using less than 1/4 training cost. Code and pre-trained models will be released.*
ConvBERT training tips are similar to those of BERT.
This model was contributed by [abhishek](https://huggingface.co/abhishek). The original implementation can be found
here: https://github.com/yitu-opensource/ConvBert
## ConvBertConfig
[[autodoc]] ConvBertConfig
## ConvBertTokenizer
[[autodoc]] ConvBertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## ConvBertTokenizerFast
[[autodoc]] ConvBertTokenizerFast
## ConvBertModel
[[autodoc]] ConvBertModel
- forward
## ConvBertForMaskedLM
[[autodoc]] ConvBertForMaskedLM
- forward
## ConvBertForSequenceClassification
[[autodoc]] ConvBertForSequenceClassification
- forward
## ConvBertForMultipleChoice
[[autodoc]] ConvBertForMultipleChoice
- forward
## ConvBertForTokenClassification
[[autodoc]] ConvBertForTokenClassification
- forward
## ConvBertForQuestionAnswering
[[autodoc]] ConvBertForQuestionAnswering
- forward
## TFConvBertModel
[[autodoc]] TFConvBertModel
- call
## TFConvBertForMaskedLM
[[autodoc]] TFConvBertForMaskedLM
- call
## TFConvBertForSequenceClassification
[[autodoc]] TFConvBertForSequenceClassification
- call
## TFConvBertForMultipleChoice
[[autodoc]] TFConvBertForMultipleChoice
- call
## TFConvBertForTokenClassification
[[autodoc]] TFConvBertForTokenClassification
- call
## TFConvBertForQuestionAnswering
[[autodoc]] TFConvBertForQuestionAnswering
- call
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/xlm_roberta/configuration_xlm_roberta.py | # coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLM-RoBERTa configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"
),
}
class XLMRobertaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It
is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa
[xlm-roberta-base](https://huggingface.co/xlm-roberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or
[`TFXLMRobertaModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import XLMRobertaConfig, XLMRobertaModel
>>> # Initializing a XLM-RoBERTa xlm-roberta-base style configuration
>>> configuration = XLMRobertaConfig()
>>> # Initializing a model (with random weights) from the xlm-roberta-base style configuration
>>> model = XLMRobertaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xlm-roberta"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRoberta
class XLMRobertaOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
| # coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLM-RoBERTa configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"
),
}
class XLMRobertaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It
is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa
[xlm-roberta-base](https://huggingface.co/xlm-roberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or
[`TFXLMRobertaModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import XLMRobertaConfig, XLMRobertaModel
>>> # Initializing a XLM-RoBERTa xlm-roberta-base style configuration
>>> configuration = XLMRobertaConfig()
>>> # Initializing a model (with random weights) from the xlm-roberta-base style configuration
>>> model = XLMRobertaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xlm-roberta"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRoberta
class XLMRobertaOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/rag/configuration_rag.py | # coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" RAG model configuration"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
RAG_CONFIG_DOC = r"""
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
"""
@add_start_docstrings(RAG_CONFIG_DOC)
class RagConfig(PretrainedConfig):
model_type = "rag"
is_composition = True
def __init__(
self,
vocab_size=None,
is_encoder_decoder=True,
prefix=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
decoder_start_token_id=None,
title_sep=" / ",
doc_sep=" // ",
n_docs=5,
max_combined_length=300,
retrieval_vector_size=768,
retrieval_batch_size=8,
dataset="wiki_dpr",
dataset_split="train",
index_name="compressed",
index_path=None,
passages_path=None,
use_dummy_dataset=False,
reduce_loss=False,
label_smoothing=0.0,
do_deduplication=True,
exclude_bos_score=False,
do_marginalize=False,
output_retrieved=False,
use_cache=True,
forced_eos_token_id=None,
**kwargs
):
super().__init__(
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
is_encoder_decoder=is_encoder_decoder,
prefix=prefix,
vocab_size=vocab_size,
**kwargs,
)
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
question_encoder_config = kwargs.pop("question_encoder")
question_encoder_model_type = question_encoder_config.pop("model_type")
decoder_config = kwargs.pop("generator")
decoder_model_type = decoder_config.pop("model_type")
from ..auto.configuration_auto import AutoConfig
self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config)
self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config)
self.reduce_loss = reduce_loss
self.label_smoothing = label_smoothing
self.exclude_bos_score = exclude_bos_score
self.do_marginalize = do_marginalize
self.title_sep = title_sep
self.doc_sep = doc_sep
self.n_docs = n_docs
self.max_combined_length = max_combined_length
self.dataset = dataset
self.dataset_split = dataset_split
self.index_name = index_name
self.retrieval_vector_size = retrieval_vector_size
self.retrieval_batch_size = retrieval_batch_size
self.passages_path = passages_path
self.index_path = index_path
self.use_dummy_dataset = use_dummy_dataset
self.output_retrieved = output_retrieved
self.do_deduplication = do_deduplication
self.use_cache = use_cache
if self.forced_eos_token_id is None:
self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None)
@classmethod
def from_question_encoder_generator_configs(
cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs
) -> PretrainedConfig:
r"""
Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
decoder model configuration.
Returns:
[`EncoderDecoderConfig`]: An instance of a configuration object
"""
return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["question_encoder"] = self.question_encoder.to_dict()
output["generator"] = self.generator.to_dict()
output["model_type"] = self.__class__.model_type
return output
| # coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" RAG model configuration"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
RAG_CONFIG_DOC = r"""
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
"""
@add_start_docstrings(RAG_CONFIG_DOC)
class RagConfig(PretrainedConfig):
model_type = "rag"
is_composition = True
def __init__(
self,
vocab_size=None,
is_encoder_decoder=True,
prefix=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
decoder_start_token_id=None,
title_sep=" / ",
doc_sep=" // ",
n_docs=5,
max_combined_length=300,
retrieval_vector_size=768,
retrieval_batch_size=8,
dataset="wiki_dpr",
dataset_split="train",
index_name="compressed",
index_path=None,
passages_path=None,
use_dummy_dataset=False,
reduce_loss=False,
label_smoothing=0.0,
do_deduplication=True,
exclude_bos_score=False,
do_marginalize=False,
output_retrieved=False,
use_cache=True,
forced_eos_token_id=None,
**kwargs
):
super().__init__(
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
is_encoder_decoder=is_encoder_decoder,
prefix=prefix,
vocab_size=vocab_size,
**kwargs,
)
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
question_encoder_config = kwargs.pop("question_encoder")
question_encoder_model_type = question_encoder_config.pop("model_type")
decoder_config = kwargs.pop("generator")
decoder_model_type = decoder_config.pop("model_type")
from ..auto.configuration_auto import AutoConfig
self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config)
self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config)
self.reduce_loss = reduce_loss
self.label_smoothing = label_smoothing
self.exclude_bos_score = exclude_bos_score
self.do_marginalize = do_marginalize
self.title_sep = title_sep
self.doc_sep = doc_sep
self.n_docs = n_docs
self.max_combined_length = max_combined_length
self.dataset = dataset
self.dataset_split = dataset_split
self.index_name = index_name
self.retrieval_vector_size = retrieval_vector_size
self.retrieval_batch_size = retrieval_batch_size
self.passages_path = passages_path
self.index_path = index_path
self.use_dummy_dataset = use_dummy_dataset
self.output_retrieved = output_retrieved
self.do_deduplication = do_deduplication
self.use_cache = use_cache
if self.forced_eos_token_id is None:
self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None)
@classmethod
def from_question_encoder_generator_configs(
cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs
) -> PretrainedConfig:
r"""
Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
decoder model configuration.
Returns:
[`EncoderDecoderConfig`]: An instance of a configuration object
"""
return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["question_encoder"] = self.question_encoder.to_dict()
output["generator"] = self.generator.to_dict()
output["model_type"] = self.__class__.model_type
return output
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/legacy/token-classification/tasks.py | import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
logger = logging.getLogger(__name__)
class NER(TokenClassificationTask):
def __init__(self, label_idx=-1):
# in NER datasets, the last column is usually reserved for NER label
self.label_idx = label_idx
def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]:
if isinstance(mode, Split):
mode = mode.value
file_path = os.path.join(data_dir, f"{mode}.txt")
guid_index = 1
examples = []
with open(file_path, encoding="utf-8") as f:
words = []
labels = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
guid_index += 1
words = []
labels = []
else:
splits = line.split(" ")
words.append(splits[0])
if len(splits) > 1:
labels.append(splits[self.label_idx].replace("\n", ""))
else:
# Examples could have no label for mode = "test"
labels.append("O")
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
return examples
def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List):
example_id = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
writer.write(line)
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"
writer.write(output_line)
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])
def get_labels(self, path: str) -> List[str]:
if path:
with open(path, "r") as f:
labels = f.read().splitlines()
if "O" not in labels:
labels = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class Chunk(NER):
def __init__(self):
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2)
def get_labels(self, path: str) -> List[str]:
if path:
with open(path, "r") as f:
labels = f.read().splitlines()
if "O" not in labels:
labels = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class POS(TokenClassificationTask):
def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]:
if isinstance(mode, Split):
mode = mode.value
file_path = os.path.join(data_dir, f"{mode}.txt")
guid_index = 1
examples = []
with open(file_path, encoding="utf-8") as f:
for sentence in parse_incr(f):
words = []
labels = []
for token in sentence:
words.append(token["form"])
labels.append(token["upos"])
assert len(words) == len(labels)
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
guid_index += 1
return examples
def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List):
example_id = 0
for sentence in parse_incr(test_input_reader):
s_p = preds_list[example_id]
out = ""
for token in sentence:
out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0)}) '
out += "\n"
writer.write(out)
example_id += 1
def get_labels(self, path: str) -> List[str]:
if path:
with open(path, "r") as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
logger = logging.getLogger(__name__)
class NER(TokenClassificationTask):
def __init__(self, label_idx=-1):
# in NER datasets, the last column is usually reserved for NER label
self.label_idx = label_idx
def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]:
if isinstance(mode, Split):
mode = mode.value
file_path = os.path.join(data_dir, f"{mode}.txt")
guid_index = 1
examples = []
with open(file_path, encoding="utf-8") as f:
words = []
labels = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
guid_index += 1
words = []
labels = []
else:
splits = line.split(" ")
words.append(splits[0])
if len(splits) > 1:
labels.append(splits[self.label_idx].replace("\n", ""))
else:
# Examples could have no label for mode = "test"
labels.append("O")
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
return examples
def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List):
example_id = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
writer.write(line)
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"
writer.write(output_line)
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])
def get_labels(self, path: str) -> List[str]:
if path:
with open(path, "r") as f:
labels = f.read().splitlines()
if "O" not in labels:
labels = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class Chunk(NER):
def __init__(self):
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2)
def get_labels(self, path: str) -> List[str]:
if path:
with open(path, "r") as f:
labels = f.read().splitlines()
if "O" not in labels:
labels = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class POS(TokenClassificationTask):
def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]:
if isinstance(mode, Split):
mode = mode.value
file_path = os.path.join(data_dir, f"{mode}.txt")
guid_index = 1
examples = []
with open(file_path, encoding="utf-8") as f:
for sentence in parse_incr(f):
words = []
labels = []
for token in sentence:
words.append(token["form"])
labels.append(token["upos"])
assert len(words) == len(labels)
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels))
guid_index += 1
return examples
def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List):
example_id = 0
for sentence in parse_incr(test_input_reader):
s_p = preds_list[example_id]
out = ""
for token in sentence:
out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0)}) '
out += "\n"
writer.write(out)
example_id += 1
def get_labels(self, path: str) -> List[str]:
if path:
with open(path, "r") as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./scripts/distributed/torch-distributed-gpu-test.py | #!/usr/bin/env python
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def printflock(*msgs):
"""solves multi-process interleaved print problem"""
with open(__file__, "r") as fh:
fcntl.flock(fh, fcntl.LOCK_EX)
try:
print(*msgs)
finally:
fcntl.flock(fh, fcntl.LOCK_UN)
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
hostname = socket.gethostname()
gpu = f"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
rank = dist.get_rank()
world_size = dist.get_world_size()
printflock(f"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(f"{gpu} is broken")
raise
| #!/usr/bin/env python
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def printflock(*msgs):
"""solves multi-process interleaved print problem"""
with open(__file__, "r") as fh:
fcntl.flock(fh, fcntl.LOCK_EX)
try:
print(*msgs)
finally:
fcntl.flock(fh, fcntl.LOCK_UN)
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
hostname = socket.gethostname()
gpu = f"[{hostname}-{local_rank}]"
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
rank = dist.get_rank()
world_size = dist.get_world_size()
printflock(f"{gpu} is OK (global rank: {rank}/{world_size})")
dist.barrier()
if rank == 0:
printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
except Exception:
printflock(f"{gpu} is broken")
raise
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/funnel/test_modeling_funnel.py | # coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import FunnelConfig, FunnelTokenizer, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
)
class FunnelModelTester:
"""You can also import this e.g, from .test_modeling_funnel import FunnelModelTester"""
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
block_sizes=[1, 1, 2],
num_decoder_layers=1,
d_model=32,
n_head=4,
d_head=8,
d_inner=37,
hidden_act="gelu_new",
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
max_position_embeddings=512,
type_vocab_size=3,
initializer_std=0.02, # Set to a smaller value, so we can keep the small error threshold (1e-5) in the test
num_labels=3,
num_choices=4,
scope=None,
base=False,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.block_sizes = block_sizes
self.num_decoder_layers = num_decoder_layers
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.d_inner = d_inner
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = 2
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.initializer_std = initializer_std
# Used in the tests to check the size of the first attention layer
self.num_attention_heads = n_head
# Used in the tests to check the size of the first hidden state
self.hidden_size = self.d_model
# Used in the tests to check the number of output hidden states/attentions
self.num_hidden_layers = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
self.expected_num_hidden_layers = self.num_hidden_layers + 2
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
config = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
)
def get_config(self):
return FunnelConfig(
vocab_size=self.vocab_size,
block_sizes=self.block_sizes,
num_decoder_layers=self.num_decoder_layers,
d_model=self.d_model,
n_head=self.n_head,
d_head=self.d_head,
d_inner=self.d_inner,
hidden_act=self.hidden_act,
hidden_dropout=self.hidden_dropout,
attention_dropout=self.attention_dropout,
activation_dropout=self.activation_dropout,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_std=self.initializer_std,
)
def create_and_check_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = FunnelModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
model.config.truncate_seq = False
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
model.config.separate_cls = False
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
def create_and_check_base_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = FunnelBaseModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model))
model.config.truncate_seq = False
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 3, self.d_model))
model.config.separate_cls = False
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model))
def create_and_check_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = FunnelForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_masked_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = FunnelForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = FunnelForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_choices = self.num_choices
model = FunnelForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = FunnelForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = FunnelForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FunnelModelTest(ModelTesterMixin, unittest.TestCase):
test_head_masking = False
test_pruning = False
all_model_classes = (
(
FunnelModel,
FunnelForMaskedLM,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForTokenClassification,
)
if is_torch_available()
else ()
)
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = FunnelModelTester(self)
self.config_tester = ConfigTester(self, config_class=FunnelConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]:
if hasattr(module, param) and getattr(module, param) is not None:
weight = getattr(module, param)
weight.data.fill_(3)
@require_torch
class FunnelBaseModelTest(ModelTesterMixin, unittest.TestCase):
test_head_masking = False
test_pruning = False
all_model_classes = (
(FunnelBaseModel, FunnelForMultipleChoice, FunnelForSequenceClassification) if is_torch_available() else ()
)
def setUp(self):
self.model_tester = FunnelModelTester(self, base=True)
self.config_tester = ConfigTester(self, config_class=FunnelConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_base_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
# overwrite from test_modeling_common
def test_training(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
if model_class.__name__ == "FunnelBaseModel":
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]:
if hasattr(module, param) and getattr(module, param) is not None:
weight = getattr(module, param)
weight.data.fill_(3)
@require_torch
@require_sentencepiece
@require_tokenizers
class FunnelModelIntegrationTest(unittest.TestCase):
def test_inference_tiny_model(self):
batch_size = 13
sequence_length = 7
input_ids = torch.arange(0, batch_size * sequence_length).long().reshape(batch_size, sequence_length)
lengths = [0, 1, 2, 3, 4, 5, 6, 4, 1, 3, 5, 0, 1]
token_type_ids = torch.tensor([[2] + [0] * a + [1] * (sequence_length - a - 1) for a in lengths])
model = FunnelModel.from_pretrained("sgugger/funnel-random-tiny")
output = model(input_ids, token_type_ids=token_type_ids)[0].abs()
expected_output_sum = torch.tensor(2344.8352)
expected_output_mean = torch.tensor(0.8052)
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
attention_mask = torch.tensor([[1] * 7, [1] * 4 + [0] * 3] * 6 + [[0, 1, 1, 0, 0, 1, 1]])
output = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0].abs()
expected_output_sum = torch.tensor(2343.8425)
expected_output_mean = torch.tensor(0.8049)
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
@slow
def test_inference_model(self):
tokenizer = FunnelTokenizer.from_pretrained("huggingface/funnel-small")
model = FunnelModel.from_pretrained("huggingface/funnel-small")
inputs = tokenizer("Hello! I am the Funnel Transformer model.", return_tensors="pt")
output = model(**inputs)[0]
expected_output_sum = torch.tensor(235.7246)
expected_output_mean = torch.tensor(0.0256)
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
| # coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import FunnelConfig, FunnelTokenizer, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
)
class FunnelModelTester:
"""You can also import this e.g, from .test_modeling_funnel import FunnelModelTester"""
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
block_sizes=[1, 1, 2],
num_decoder_layers=1,
d_model=32,
n_head=4,
d_head=8,
d_inner=37,
hidden_act="gelu_new",
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
max_position_embeddings=512,
type_vocab_size=3,
initializer_std=0.02, # Set to a smaller value, so we can keep the small error threshold (1e-5) in the test
num_labels=3,
num_choices=4,
scope=None,
base=False,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.block_sizes = block_sizes
self.num_decoder_layers = num_decoder_layers
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.d_inner = d_inner
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = 2
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.initializer_std = initializer_std
# Used in the tests to check the size of the first attention layer
self.num_attention_heads = n_head
# Used in the tests to check the size of the first hidden state
self.hidden_size = self.d_model
# Used in the tests to check the number of output hidden states/attentions
self.num_hidden_layers = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
self.expected_num_hidden_layers = self.num_hidden_layers + 2
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
config = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
)
def get_config(self):
return FunnelConfig(
vocab_size=self.vocab_size,
block_sizes=self.block_sizes,
num_decoder_layers=self.num_decoder_layers,
d_model=self.d_model,
n_head=self.n_head,
d_head=self.d_head,
d_inner=self.d_inner,
hidden_act=self.hidden_act,
hidden_dropout=self.hidden_dropout,
attention_dropout=self.attention_dropout,
activation_dropout=self.activation_dropout,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_std=self.initializer_std,
)
def create_and_check_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = FunnelModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
model.config.truncate_seq = False
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
model.config.separate_cls = False
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
def create_and_check_base_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = FunnelBaseModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model))
model.config.truncate_seq = False
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 3, self.d_model))
model.config.separate_cls = False
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model))
def create_and_check_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = FunnelForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_masked_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = FunnelForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = FunnelForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_choices = self.num_choices
model = FunnelForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = FunnelForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = FunnelForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FunnelModelTest(ModelTesterMixin, unittest.TestCase):
test_head_masking = False
test_pruning = False
all_model_classes = (
(
FunnelModel,
FunnelForMaskedLM,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForTokenClassification,
)
if is_torch_available()
else ()
)
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = FunnelModelTester(self)
self.config_tester = ConfigTester(self, config_class=FunnelConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]:
if hasattr(module, param) and getattr(module, param) is not None:
weight = getattr(module, param)
weight.data.fill_(3)
@require_torch
class FunnelBaseModelTest(ModelTesterMixin, unittest.TestCase):
test_head_masking = False
test_pruning = False
all_model_classes = (
(FunnelBaseModel, FunnelForMultipleChoice, FunnelForSequenceClassification) if is_torch_available() else ()
)
def setUp(self):
self.model_tester = FunnelModelTester(self, base=True)
self.config_tester = ConfigTester(self, config_class=FunnelConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_base_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
# overwrite from test_modeling_common
def test_training(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
if model_class.__name__ == "FunnelBaseModel":
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
for param in ["r_w_bias", "r_r_bias", "r_kernel", "r_s_bias", "seg_embed"]:
if hasattr(module, param) and getattr(module, param) is not None:
weight = getattr(module, param)
weight.data.fill_(3)
@require_torch
@require_sentencepiece
@require_tokenizers
class FunnelModelIntegrationTest(unittest.TestCase):
def test_inference_tiny_model(self):
batch_size = 13
sequence_length = 7
input_ids = torch.arange(0, batch_size * sequence_length).long().reshape(batch_size, sequence_length)
lengths = [0, 1, 2, 3, 4, 5, 6, 4, 1, 3, 5, 0, 1]
token_type_ids = torch.tensor([[2] + [0] * a + [1] * (sequence_length - a - 1) for a in lengths])
model = FunnelModel.from_pretrained("sgugger/funnel-random-tiny")
output = model(input_ids, token_type_ids=token_type_ids)[0].abs()
expected_output_sum = torch.tensor(2344.8352)
expected_output_mean = torch.tensor(0.8052)
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
attention_mask = torch.tensor([[1] * 7, [1] * 4 + [0] * 3] * 6 + [[0, 1, 1, 0, 0, 1, 1]])
output = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0].abs()
expected_output_sum = torch.tensor(2343.8425)
expected_output_mean = torch.tensor(0.8049)
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
@slow
def test_inference_model(self):
tokenizer = FunnelTokenizer.from_pretrained("huggingface/funnel-small")
model = FunnelModel.from_pretrained("huggingface/funnel-small")
inputs = tokenizer("Hello! I am the Funnel Transformer model.", return_tensors="pt")
output = model(**inputs)[0]
expected_output_sum = torch.tensor(235.7246)
expected_output_mean = torch.tensor(0.0256)
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/pipelines/test_pipelines_image_segmentation.py | # Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import unittest
from typing import Dict
import datasets
import numpy as np
from datasets import load_dataset
import requests
from transformers import (
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
AutoFeatureExtractor,
AutoModelForImageSegmentation,
AutoModelForInstanceSegmentation,
DetrForSegmentation,
ImageSegmentationPipeline,
MaskFormerForInstanceSegmentation,
is_vision_available,
pipeline,
)
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
from .test_pipelines_common import ANY, PipelineTestCaseMeta
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
def hashimage(image: Image) -> str:
m = hashlib.md5(image.tobytes())
return m.hexdigest()[:10]
def mask_to_test_readable(mask: Image) -> Dict:
npimg = np.array(mask)
white_pixels = (npimg == 255).sum()
shape = npimg.shape
return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
def mask_to_test_readable_only_shape(mask: Image) -> Dict:
npimg = np.array(mask)
shape = npimg.shape
return {"shape": shape}
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = {
k: v
for k, v in (
list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
)
+ (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
+ (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
}
def get_test_pipeline(self, model, tokenizer, feature_extractor):
image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def run_pipeline_test(self, image_segmenter, examples):
outputs = image_segmenter(
"./tests/fixtures/tests_samples/COCO/000000039769.png",
threshold=0.0,
mask_threshold=0,
overlap_mask_area_threshold=0,
)
self.assertIsInstance(outputs, list)
n = len(outputs)
if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
# Instance segmentation (maskformer, and detr) have a slot for null class
# and can output nothing even with a low threshold
self.assertGreaterEqual(n, 0)
else:
self.assertGreaterEqual(n, 1)
# XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
# to make it work
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
# RGBA
outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
# LA
outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
# L
outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
if isinstance(image_segmenter.model, DetrForSegmentation):
# We need to test batch_size with images with the same size.
# Detr doesn't normalize the size of the images, meaning we can have
# 800x800 or 800x1200, meaning we cannot batch simply.
# We simply bail on this
batch_size = 1
else:
batch_size = 2
# 5 times the same image so the output shape is predictable
batch = [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
outputs = image_segmenter(
batch, threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0, batch_size=batch_size
)
self.assertEqual(len(batch), len(outputs))
self.assertEqual(len(outputs[0]), n)
self.assertEqual(
[
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
],
outputs,
f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
)
@require_tf
@unittest.skip("Image segmentation not implemented in TF")
def test_small_model_tf(self):
pass
@require_torch
def test_small_model_pt_no_panoptic(self):
model_id = "hf-internal-testing/tiny-random-mobilevit"
# The default task is `image-classification` we need to override
pipe = pipeline(task="image-segmentation", model=model_id)
# This model does NOT support neither `instance` nor `panoptic`
# We should error out
with self.assertRaises(ValueError) as e:
pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
self.assertEqual(
str(e.exception),
"Subtask panoptic is not supported for model <class"
" 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
)
with self.assertRaises(ValueError) as e:
pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
self.assertEqual(
str(e.exception),
"Subtask instance is not supported for model <class"
" 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
)
@require_torch
def test_small_model_pt(self):
model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
model = AutoModelForImageSegmentation.from_pretrained(model_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
image_segmenter = ImageSegmentationPipeline(
model=model,
feature_extractor=feature_extractor,
subtask="panoptic",
threshold=0.0,
mask_threshold=0.0,
overlap_mask_area_threshold=0.0,
)
outputs = image_segmenter(
"http://images.cocodataset.org/val2017/000000039769.jpg",
)
# Shortening by hashing
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
# This is extremely brittle, and those values are made specific for the CI.
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
},
],
)
outputs = image_segmenter(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
)
for output in outputs:
for o in output:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
},
],
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
},
],
],
)
output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
for o in output:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(output, decimals=4),
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
},
],
)
# This must be surprising to the reader.
# The `panoptic` returns only LABEL_215, and this returns 3 labels.
#
output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
output_masks = [o["mask"] for o in output]
# page links (to visualize)
expected_masks = [
"https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_0.png",
"https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_1.png",
"https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_2.png",
]
# actual links to get files
expected_masks = [x.replace("/blob/", "/resolve/") for x in expected_masks]
expected_masks = [Image.open(requests.get(image, stream=True).raw) for image in expected_masks]
# Convert masks to numpy array
output_masks = [np.array(x) for x in output_masks]
expected_masks = [np.array(x) for x in expected_masks]
self.assertEqual(output_masks[0].shape, expected_masks[0].shape)
self.assertEqual(output_masks[1].shape, expected_masks[1].shape)
self.assertEqual(output_masks[2].shape, expected_masks[2].shape)
# With un-trained tiny random models, the output `logits` tensor is very likely to contain many values
# close to each other, which cause `argmax` to give quite different results when running the test on 2
# environments. We use a lower threshold `0.9` here to avoid flakiness.
self.assertGreaterEqual(np.mean(output_masks[0] == expected_masks[0]), 0.9)
self.assertGreaterEqual(np.mean(output_masks[1] == expected_masks[1]), 0.9)
self.assertGreaterEqual(np.mean(output_masks[2] == expected_masks[2]), 0.9)
for o in output:
o["mask"] = mask_to_test_readable_only_shape(o["mask"])
self.maxDiff = None
self.assertEqual(
nested_simplify(output, decimals=4),
[
{
"label": "LABEL_88",
"mask": {"shape": (480, 640)},
"score": None,
},
{
"label": "LABEL_101",
"mask": {"shape": (480, 640)},
"score": None,
},
{
"label": "LABEL_215",
"mask": {"shape": (480, 640)},
"score": None,
},
],
)
@require_torch
def test_small_model_pt_semantic(self):
model_id = "hf-internal-testing/tiny-random-beit-pipeline"
image_segmenter = pipeline(model=model_id)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
for o in outputs:
# shortening by hashing
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": None,
"label": "LABEL_0",
"mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
},
{
"score": None,
"label": "LABEL_1",
"mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
},
],
)
@require_torch
@slow
def test_integration_torch_image_segmentation(self):
model_id = "facebook/detr-resnet-50-panoptic"
image_segmenter = pipeline(
"image-segmentation",
model=model_id,
threshold=0.0,
overlap_mask_area_threshold=0.0,
)
outputs = image_segmenter(
"http://images.cocodataset.org/val2017/000000039769.jpg",
)
# Shortening by hashing
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
)
outputs = image_segmenter(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
)
# Shortening by hashing
for output in outputs:
for o in output:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
[
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
],
)
@require_torch
@slow
def test_threshold(self):
model_id = "facebook/detr-resnet-50-panoptic"
image_segmenter = pipeline("image-segmentation", model=model_id)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
# Shortening by hashing
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
},
],
)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
)
@require_torch
@slow
def test_maskformer(self):
threshold = 0.8
model_id = "facebook/maskformer-swin-base-ade"
model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)
image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
file = image[0]["file"]
outputs = image_segmenter(file, threshold=threshold)
# Shortening by hashing
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.9974,
"label": "wall",
"mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
},
{
"score": 0.949,
"label": "house",
"mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
},
{
"score": 0.9995,
"label": "grass",
"mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
},
{
"score": 0.9976,
"label": "tree",
"mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
},
{
"score": 0.8239,
"label": "plant",
"mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
},
{
"score": 0.9942,
"label": "road, route",
"mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
},
{
"score": 1.0,
"label": "sky",
"mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
},
],
)
| # Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import unittest
from typing import Dict
import datasets
import numpy as np
from datasets import load_dataset
import requests
from transformers import (
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
AutoFeatureExtractor,
AutoModelForImageSegmentation,
AutoModelForInstanceSegmentation,
DetrForSegmentation,
ImageSegmentationPipeline,
MaskFormerForInstanceSegmentation,
is_vision_available,
pipeline,
)
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
from .test_pipelines_common import ANY, PipelineTestCaseMeta
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
def hashimage(image: Image) -> str:
m = hashlib.md5(image.tobytes())
return m.hexdigest()[:10]
def mask_to_test_readable(mask: Image) -> Dict:
npimg = np.array(mask)
white_pixels = (npimg == 255).sum()
shape = npimg.shape
return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
def mask_to_test_readable_only_shape(mask: Image) -> Dict:
npimg = np.array(mask)
shape = npimg.shape
return {"shape": shape}
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = {
k: v
for k, v in (
list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
)
+ (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
+ (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
}
def get_test_pipeline(self, model, tokenizer, feature_extractor):
image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def run_pipeline_test(self, image_segmenter, examples):
outputs = image_segmenter(
"./tests/fixtures/tests_samples/COCO/000000039769.png",
threshold=0.0,
mask_threshold=0,
overlap_mask_area_threshold=0,
)
self.assertIsInstance(outputs, list)
n = len(outputs)
if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
# Instance segmentation (maskformer, and detr) have a slot for null class
# and can output nothing even with a low threshold
self.assertGreaterEqual(n, 0)
else:
self.assertGreaterEqual(n, 1)
# XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
# to make it work
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
# RGBA
outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
# LA
outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
# L
outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
if isinstance(image_segmenter.model, DetrForSegmentation):
# We need to test batch_size with images with the same size.
# Detr doesn't normalize the size of the images, meaning we can have
# 800x800 or 800x1200, meaning we cannot batch simply.
# We simply bail on this
batch_size = 1
else:
batch_size = 2
# 5 times the same image so the output shape is predictable
batch = [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
outputs = image_segmenter(
batch, threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0, batch_size=batch_size
)
self.assertEqual(len(batch), len(outputs))
self.assertEqual(len(outputs[0]), n)
self.assertEqual(
[
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
[{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
],
outputs,
f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
)
@require_tf
@unittest.skip("Image segmentation not implemented in TF")
def test_small_model_tf(self):
pass
@require_torch
def test_small_model_pt_no_panoptic(self):
model_id = "hf-internal-testing/tiny-random-mobilevit"
# The default task is `image-classification` we need to override
pipe = pipeline(task="image-segmentation", model=model_id)
# This model does NOT support neither `instance` nor `panoptic`
# We should error out
with self.assertRaises(ValueError) as e:
pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
self.assertEqual(
str(e.exception),
"Subtask panoptic is not supported for model <class"
" 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
)
with self.assertRaises(ValueError) as e:
pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
self.assertEqual(
str(e.exception),
"Subtask instance is not supported for model <class"
" 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
)
@require_torch
def test_small_model_pt(self):
model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
model = AutoModelForImageSegmentation.from_pretrained(model_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
image_segmenter = ImageSegmentationPipeline(
model=model,
feature_extractor=feature_extractor,
subtask="panoptic",
threshold=0.0,
mask_threshold=0.0,
overlap_mask_area_threshold=0.0,
)
outputs = image_segmenter(
"http://images.cocodataset.org/val2017/000000039769.jpg",
)
# Shortening by hashing
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
# This is extremely brittle, and those values are made specific for the CI.
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
},
],
)
outputs = image_segmenter(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
)
for output in outputs:
for o in output:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
},
],
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
},
],
],
)
output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
for o in output:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(output, decimals=4),
[
{
"score": 0.004,
"label": "LABEL_215",
"mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
},
],
)
# This must be surprising to the reader.
# The `panoptic` returns only LABEL_215, and this returns 3 labels.
#
output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
output_masks = [o["mask"] for o in output]
# page links (to visualize)
expected_masks = [
"https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_0.png",
"https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_1.png",
"https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_2.png",
]
# actual links to get files
expected_masks = [x.replace("/blob/", "/resolve/") for x in expected_masks]
expected_masks = [Image.open(requests.get(image, stream=True).raw) for image in expected_masks]
# Convert masks to numpy array
output_masks = [np.array(x) for x in output_masks]
expected_masks = [np.array(x) for x in expected_masks]
self.assertEqual(output_masks[0].shape, expected_masks[0].shape)
self.assertEqual(output_masks[1].shape, expected_masks[1].shape)
self.assertEqual(output_masks[2].shape, expected_masks[2].shape)
# With un-trained tiny random models, the output `logits` tensor is very likely to contain many values
# close to each other, which cause `argmax` to give quite different results when running the test on 2
# environments. We use a lower threshold `0.9` here to avoid flakiness.
self.assertGreaterEqual(np.mean(output_masks[0] == expected_masks[0]), 0.9)
self.assertGreaterEqual(np.mean(output_masks[1] == expected_masks[1]), 0.9)
self.assertGreaterEqual(np.mean(output_masks[2] == expected_masks[2]), 0.9)
for o in output:
o["mask"] = mask_to_test_readable_only_shape(o["mask"])
self.maxDiff = None
self.assertEqual(
nested_simplify(output, decimals=4),
[
{
"label": "LABEL_88",
"mask": {"shape": (480, 640)},
"score": None,
},
{
"label": "LABEL_101",
"mask": {"shape": (480, 640)},
"score": None,
},
{
"label": "LABEL_215",
"mask": {"shape": (480, 640)},
"score": None,
},
],
)
@require_torch
def test_small_model_pt_semantic(self):
model_id = "hf-internal-testing/tiny-random-beit-pipeline"
image_segmenter = pipeline(model=model_id)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
for o in outputs:
# shortening by hashing
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": None,
"label": "LABEL_0",
"mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
},
{
"score": None,
"label": "LABEL_1",
"mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
},
],
)
@require_torch
@slow
def test_integration_torch_image_segmentation(self):
model_id = "facebook/detr-resnet-50-panoptic"
image_segmenter = pipeline(
"image-segmentation",
model=model_id,
threshold=0.0,
overlap_mask_area_threshold=0.0,
)
outputs = image_segmenter(
"http://images.cocodataset.org/val2017/000000039769.jpg",
)
# Shortening by hashing
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
)
outputs = image_segmenter(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
)
# Shortening by hashing
for output in outputs:
for o in output:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
[
{
"score": 0.9094,
"label": "blanket",
"mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
},
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
],
)
@require_torch
@slow
def test_threshold(self):
model_id = "facebook/detr-resnet-50-panoptic"
image_segmenter = pipeline("image-segmentation", model=model_id)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
# Shortening by hashing
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
},
],
)
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.9941,
"label": "cat",
"mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
},
{
"score": 0.9987,
"label": "remote",
"mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
},
{
"score": 0.9995,
"label": "remote",
"mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
},
{
"score": 0.9722,
"label": "couch",
"mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
},
{
"score": 0.9994,
"label": "cat",
"mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
},
],
)
@require_torch
@slow
def test_maskformer(self):
threshold = 0.8
model_id = "facebook/maskformer-swin-base-ade"
model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)
image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
file = image[0]["file"]
outputs = image_segmenter(file, threshold=threshold)
# Shortening by hashing
for o in outputs:
o["mask"] = mask_to_test_readable(o["mask"])
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{
"score": 0.9974,
"label": "wall",
"mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
},
{
"score": 0.949,
"label": "house",
"mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
},
{
"score": 0.9995,
"label": "grass",
"mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
},
{
"score": 0.9976,
"label": "tree",
"mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
},
{
"score": 0.8239,
"label": "plant",
"mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
},
{
"score": 0.9942,
"label": "road, route",
"mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
},
{
"score": 1.0,
"label": "sky",
"mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
},
],
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/mbart/modeling_mbart.py | # coding=utf-8
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MBART model."""
import copy
import math
import random
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mbart import MBartConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25"
_CONFIG_FOR_DOC = "MBartConfig"
_TOKENIZER_FOR_DOC = "MBartTokenizer"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "hf-internal-testing/tiny-random-mbart"
_SEQ_CLASS_EXPECTED_LOSS = 0.69
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
# QuestionAsnwering docstring
_CHECKPOINT_FOR_QA = "hf-internal-testing/tiny-random-mbart"
_QA_EXPECTED_LOSS = 3.55
_QA_EXPECTED_OUTPUT = "'? Jim Henson was a'"
MBART_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/mbart-large-cc25",
# See all MBART models at https://huggingface.co/models?filter=mbart
]
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int):
"""
Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not
have a single `decoder_start_token_id` in contrast to other Bart-like models.
"""
prev_output_tokens = input_ids.clone()
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id)
index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone()
prev_output_tokens[:, 0] = decoder_start_tokens
return prev_output_tokens
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MBart
class MBartLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MBart
class MBartAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class MBartEncoderLayer(nn.Module):
def __init__(self, config: MBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBartAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class MBartDecoderLayer(nn.Module):
def __init__(self, config: MBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBartAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MBartAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size *(decoder_attention_heads,)*.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MBart
class MBartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class MBartPreTrainedModel(PreTrainedModel):
config_class = MBartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (MBartDecoder, MBartDecoder)):
module.gradient_checkpointing = value
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
MBART_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MBartConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MBART_GENERATION_EXAMPLE = r"""
Translation example:
```python
>>> from transformers import MBartTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro")
>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
>>> # Translate
>>> generated_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'
```
Mask filling example:
```python
>>> from transformers import MBartTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
```
"""
MBART_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that
varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape
`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you
can choose to directly pass an embedded representation. This is useful if you want more control over how to
convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class MBartEncoder(MBartPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`MBartEncoderLayer`].
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _backward_compatibility_gradient_checkpointing(self):
# Override to not delete the attribute from the config
if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
self.gradient_checkpointing_enable()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class MBartDecoder(MBartPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`]
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
).to(inputs_embeds.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare MBART Model outputting raw hidden-states without any specific head on top.",
MBART_START_DOCSTRING,
)
class MBartModel(MBartPreTrainedModel):
_keys_to_ignore_on_load_missing = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MBartConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = MBartEncoder(config, self.shared)
self.decoder = MBartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# different to other models, MBart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The MBART Model with a language modeling head. Can be used for summarization.", MBART_START_DOCSTRING
)
class MBartForConditionalGeneration(MBartPreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"final_logits_bias",
r"encoder.version",
r"decoder.version",
r"lm_head.weight",
"encoder.embed_tokens.weight",
"decoder.embed_tokens.weight",
]
def __init__(self, config: MBartConfig):
super().__init__(config)
self.model = MBartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
self._resize_final_logits_bias(new_num_tokens)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(MBART_GENERATION_EXAMPLE)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
MBART_START_DOCSTRING,
)
class MBartForSequenceClassification(MBartPreTrainedModel):
_keys_to_ignore_on_load_missing = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MBartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = MBartModel(config)
self.classification_head = MBartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MBART_START_DOCSTRING,
)
class MBartForQuestionAnswering(MBartPreTrainedModel):
_keys_to_ignore_on_load_missing = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = MBartModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.model._init_weights(self.qa_outputs)
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_QA,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=_QA_EXPECTED_LOSS,
expected_output=_QA_EXPECTED_OUTPUT,
)
# Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward
def forward(
self,
input_ids: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->MBart
class MBartDecoderWrapper(MBartPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = MBartDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-base->facebook/mbart-large-cc25
class MBartForCausalLM(MBartPreTrainedModel):
_keys_to_ignore_on_load_missing = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = MBartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import MBartTokenizer, MBartForCausalLM
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past:
input_ids = input_ids[:, -1:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
| # coding=utf-8
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MBART model."""
import copy
import math
import random
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mbart import MBartConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25"
_CONFIG_FOR_DOC = "MBartConfig"
_TOKENIZER_FOR_DOC = "MBartTokenizer"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "hf-internal-testing/tiny-random-mbart"
_SEQ_CLASS_EXPECTED_LOSS = 0.69
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
# QuestionAsnwering docstring
_CHECKPOINT_FOR_QA = "hf-internal-testing/tiny-random-mbart"
_QA_EXPECTED_LOSS = 3.55
_QA_EXPECTED_OUTPUT = "'? Jim Henson was a'"
MBART_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/mbart-large-cc25",
# See all MBART models at https://huggingface.co/models?filter=mbart
]
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int):
"""
Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not
have a single `decoder_start_token_id` in contrast to other Bart-like models.
"""
prev_output_tokens = input_ids.clone()
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id)
index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone()
prev_output_tokens[:, 0] = decoder_start_tokens
return prev_output_tokens
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MBart
class MBartLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MBart
class MBartAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class MBartEncoderLayer(nn.Module):
def __init__(self, config: MBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBartAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class MBartDecoderLayer(nn.Module):
def __init__(self, config: MBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBartAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MBartAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size *(decoder_attention_heads,)*.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MBart
class MBartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class MBartPreTrainedModel(PreTrainedModel):
config_class = MBartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (MBartDecoder, MBartDecoder)):
module.gradient_checkpointing = value
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
MBART_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MBartConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MBART_GENERATION_EXAMPLE = r"""
Translation example:
```python
>>> from transformers import MBartTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro")
>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
>>> # Translate
>>> generated_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'
```
Mask filling example:
```python
>>> from transformers import MBartTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
```
"""
MBART_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that
varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape
`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you
can choose to directly pass an embedded representation. This is useful if you want more control over how to
convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class MBartEncoder(MBartPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`MBartEncoderLayer`].
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _backward_compatibility_gradient_checkpointing(self):
# Override to not delete the attribute from the config
if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
self.gradient_checkpointing_enable()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class MBartDecoder(MBartPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`]
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
).to(inputs_embeds.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare MBART Model outputting raw hidden-states without any specific head on top.",
MBART_START_DOCSTRING,
)
class MBartModel(MBartPreTrainedModel):
_keys_to_ignore_on_load_missing = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MBartConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = MBartEncoder(config, self.shared)
self.decoder = MBartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# different to other models, MBart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The MBART Model with a language modeling head. Can be used for summarization.", MBART_START_DOCSTRING
)
class MBartForConditionalGeneration(MBartPreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"final_logits_bias",
r"encoder.version",
r"decoder.version",
r"lm_head.weight",
"encoder.embed_tokens.weight",
"decoder.embed_tokens.weight",
]
def __init__(self, config: MBartConfig):
super().__init__(config)
self.model = MBartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
self._resize_final_logits_bias(new_num_tokens)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(MBART_GENERATION_EXAMPLE)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
MBART_START_DOCSTRING,
)
class MBartForSequenceClassification(MBartPreTrainedModel):
_keys_to_ignore_on_load_missing = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MBartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = MBartModel(config)
self.classification_head = MBartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MBART_START_DOCSTRING,
)
class MBartForQuestionAnswering(MBartPreTrainedModel):
_keys_to_ignore_on_load_missing = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = MBartModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.model._init_weights(self.qa_outputs)
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_QA,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=_QA_EXPECTED_LOSS,
expected_output=_QA_EXPECTED_OUTPUT,
)
# Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward
def forward(
self,
input_ids: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->MBart
class MBartDecoderWrapper(MBartPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = MBartDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-base->facebook/mbart-large-cc25
class MBartForCausalLM(MBartPreTrainedModel):
_keys_to_ignore_on_load_missing = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = MBartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import MBartTokenizer, MBartForCausalLM
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past:
input_ids = input_ids[:, -1:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/pipelines/__init__.py | -1 |
||
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./.git/hooks/applypatch-msg.sample | #!/bin/sh
#
# An example hook script to check the commit log message taken by
# applypatch from an e-mail message.
#
# The hook should exit with non-zero status after issuing an
# appropriate message if it wants to stop the commit. The hook is
# allowed to edit the commit message file.
#
# To enable this hook, rename this file to "applypatch-msg".
. git-sh-setup
commitmsg="$(git rev-parse --git-path hooks/commit-msg)"
test -x "$commitmsg" && exec "$commitmsg" ${1+"$@"}
:
| #!/bin/sh
#
# An example hook script to check the commit log message taken by
# applypatch from an e-mail message.
#
# The hook should exit with non-zero status after issuing an
# appropriate message if it wants to stop the commit. The hook is
# allowed to edit the commit message file.
#
# To enable this hook, rename this file to "applypatch-msg".
. git-sh-setup
commitmsg="$(git rev-parse --git-path hooks/commit-msg)"
test -x "$commitmsg" && exec "$commitmsg" ${1+"$@"}
:
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/en/tasks/translation.mdx | <!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Translation
<Youtube id="1JvfrvZgi6c"/>
Translation converts a sequence of text from one language to another. It is one of several tasks you can formulate as a sequence-to-sequence problem, a powerful framework for returning some output from an input, like translation or summarization. Translation systems are commonly used for translation between different language texts, but it can also be used for speech or some combination in between like text-to-speech or speech-to-text.
This guide will show you how to:
1. Finetune [T5](https://huggingface.co/t5-small) on the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset to translate English text to French.
2. Use your finetuned model for inference.
<Tip>
See the translation [task page](https://huggingface.co/tasks/translation) for more information about its associated models, datasets, and metrics.
</Tip>
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install transformers datasets evaluate
```
We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load OPUS Books dataset
Start by loading the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset from the 🤗 Datasets library:
```py
>>> from datasets import load_dataset
>>> books = load_dataset("opus_books", "en-fr")
```
Split the dataset into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
```py
>>> books = books["train"].train_test_split(test_size=0.2)
```
Then take a look at an example:
```py
>>> books["train"][0]
{'id': '90560',
'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.',
'fr': 'Mais ce plateau élevé ne mesurait que quelques toises, et bientôt nous fûmes rentrés dans notre élément.'}}
```
`translation`: an English and French translation of the text.
## Preprocess
<Youtube id="XAR8jnZZuUs"/>
The next step is to load a T5 tokenizer to process the English-French language pairs:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
```
The preprocessing function you want to create needs to:
1. Prefix the input with a prompt so T5 knows this is a translation task. Some models capable of multiple NLP tasks require prompting for specific tasks.
2. Tokenize the input (English) and target (French) separately because you can't tokenize French text with a tokenizer pretrained on an English vocabulary.
3. Truncate sequences to be no longer than the maximum length set by the `max_length` parameter.
```py
>>> source_lang = "en"
>>> target_lang = "fr"
>>> prefix = "translate English to French: "
>>> def preprocess_function(examples):
... inputs = [prefix + example[source_lang] for example in examples["translation"]]
... targets = [example[target_lang] for example in examples["translation"]]
... model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
... return model_inputs
```
To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.Dataset.map`] method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
```py
>>> tokenized_books = books.map(preprocess_function, batched=True)
```
Now create a batch of examples using [`DataCollatorForSeq2Seq`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximium length.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
```
</tf>
</frameworkcontent>
## Evaluate
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
```py
>>> import evaluate
>>> sacrebleu = evaluate.load("sacrebleu")
```
Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the SacreBLEU score:
```py
>>> import numpy as np
>>> def postprocess_text(preds, labels):
... preds = [pred.strip() for pred in preds]
... labels = [[label.strip()] for label in labels]
... return preds, labels
>>> def compute_metrics(eval_preds):
... preds, labels = eval_preds
... if isinstance(preds, tuple):
... preds = preds[0]
... decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
... labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
... decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
... decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
... result = metric.compute(predictions=decoded_preds, references=decoded_labels)
... result = {"bleu": result["score"]}
... prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
... result["gen_len"] = np.mean(prediction_lens)
... result = {k: round(v, 4) for k, v in result.items()}
... return result
```
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
## Train
<frameworkcontent>
<pt>
<Tip>
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
</Tip>
You're ready to start training your model now! Load T5 with [`AutoModelForSeq2SeqLM`]:
```py
>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
```
At this point, only three steps remain:
1. Define your training hyperparameters in [`Seq2SeqTrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the SacreBLEU metric and save the training checkpoint.
2. Pass the training arguments to [`Seq2SeqTrainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
```py
>>> training_args = Seq2SeqTrainingArguments(
... output_dir="my_awesome_opus_books_model",
... evaluation_strategy="epoch",
... learning_rate=2e-5,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
... weight_decay=0.01,
... save_total_limit=3,
... num_train_epochs=2,
... predict_with_generate=True,
... fp16=True,
... push_to_hub=True,
... )
>>> trainer = Seq2SeqTrainer(
... model=model,
... args=training_args,
... train_dataset=tokenized_books["train"],
... eval_dataset=tokenized_books["test"],
... tokenizer=tokenizer,
... data_collator=data_collator,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
````
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!
</Tip>
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:
```py
>>> from transformers import AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
Then you can load T5 with [`TFAutoModelForSeq2SeqLM`]:
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("t5-small")
```
Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_books["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... tokenized_books["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)
```
The last two things to setup before you start training is to compute the SacreBLEU metric from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](./main_classes/keras_callbacks).
Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```
Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_opus_books_model",
... tokenizer=tokenizer,
... )
```
Then bundle your callbacks together:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
```
Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
</tf>
</frameworkcontent>
<Tip>
For a more in-depth example of how to finetune a model for translation, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
</Tip>
## Inference
Great, now that you've finetuned a model, you can use it for inference!
Come up with some text you'd like to translate to another language. For T5, you need to prefix your input depending on the task you're working on. For translation from English to French, you should prefix your input as shown below:
```py
>>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria."
```
The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for translation with your model, and pass your text to it:
```py
>>> from transformers import pipeline
>>> translator = pipeline("translation", model="my_awesome_opus_books_model")
>>> translator(text)
[{'translation_text': 'Legumes partagent des ressources avec des bactéries azotantes.'}]
```
You can also manually replicate the results of the `pipeline` if you'd like:
<frameworkcontent>
<pt>
Tokenize the text and return the `input_ids` as PyTorch tensors:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
```
Use the [`~transformers.generation_utils.GenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.
```py
>>> from transformers import AutoModelForSeq2SeqLM
>>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```
Decode the generated token ids back into text:
```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lignées partagent des ressources avec des bactéries enfixant l'azote.'
```
</pt>
<tf>
Tokenize the text and return the `input_ids` as TensorFlow tensors:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```
Use the [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```
Decode the generated token ids back into text:
```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.'
```
</tf>
</frameworkcontent> | <!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Translation
<Youtube id="1JvfrvZgi6c"/>
Translation converts a sequence of text from one language to another. It is one of several tasks you can formulate as a sequence-to-sequence problem, a powerful framework for returning some output from an input, like translation or summarization. Translation systems are commonly used for translation between different language texts, but it can also be used for speech or some combination in between like text-to-speech or speech-to-text.
This guide will show you how to:
1. Finetune [T5](https://huggingface.co/t5-small) on the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset to translate English text to French.
2. Use your finetuned model for inference.
<Tip>
See the translation [task page](https://huggingface.co/tasks/translation) for more information about its associated models, datasets, and metrics.
</Tip>
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install transformers datasets evaluate
```
We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load OPUS Books dataset
Start by loading the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset from the 🤗 Datasets library:
```py
>>> from datasets import load_dataset
>>> books = load_dataset("opus_books", "en-fr")
```
Split the dataset into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
```py
>>> books = books["train"].train_test_split(test_size=0.2)
```
Then take a look at an example:
```py
>>> books["train"][0]
{'id': '90560',
'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.',
'fr': 'Mais ce plateau élevé ne mesurait que quelques toises, et bientôt nous fûmes rentrés dans notre élément.'}}
```
`translation`: an English and French translation of the text.
## Preprocess
<Youtube id="XAR8jnZZuUs"/>
The next step is to load a T5 tokenizer to process the English-French language pairs:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("t5-small")
```
The preprocessing function you want to create needs to:
1. Prefix the input with a prompt so T5 knows this is a translation task. Some models capable of multiple NLP tasks require prompting for specific tasks.
2. Tokenize the input (English) and target (French) separately because you can't tokenize French text with a tokenizer pretrained on an English vocabulary.
3. Truncate sequences to be no longer than the maximum length set by the `max_length` parameter.
```py
>>> source_lang = "en"
>>> target_lang = "fr"
>>> prefix = "translate English to French: "
>>> def preprocess_function(examples):
... inputs = [prefix + example[source_lang] for example in examples["translation"]]
... targets = [example[target_lang] for example in examples["translation"]]
... model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
... return model_inputs
```
To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.Dataset.map`] method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
```py
>>> tokenized_books = books.map(preprocess_function, batched=True)
```
Now create a batch of examples using [`DataCollatorForSeq2Seq`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximium length.
<frameworkcontent>
<pt>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
```
</pt>
<tf>
```py
>>> from transformers import DataCollatorForSeq2Seq
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
```
</tf>
</frameworkcontent>
## Evaluate
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
```py
>>> import evaluate
>>> sacrebleu = evaluate.load("sacrebleu")
```
Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the SacreBLEU score:
```py
>>> import numpy as np
>>> def postprocess_text(preds, labels):
... preds = [pred.strip() for pred in preds]
... labels = [[label.strip()] for label in labels]
... return preds, labels
>>> def compute_metrics(eval_preds):
... preds, labels = eval_preds
... if isinstance(preds, tuple):
... preds = preds[0]
... decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
... labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
... decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
... decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
... result = metric.compute(predictions=decoded_preds, references=decoded_labels)
... result = {"bleu": result["score"]}
... prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
... result["gen_len"] = np.mean(prediction_lens)
... result = {k: round(v, 4) for k, v in result.items()}
... return result
```
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
## Train
<frameworkcontent>
<pt>
<Tip>
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
</Tip>
You're ready to start training your model now! Load T5 with [`AutoModelForSeq2SeqLM`]:
```py
>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
```
At this point, only three steps remain:
1. Define your training hyperparameters in [`Seq2SeqTrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the SacreBLEU metric and save the training checkpoint.
2. Pass the training arguments to [`Seq2SeqTrainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
```py
>>> training_args = Seq2SeqTrainingArguments(
... output_dir="my_awesome_opus_books_model",
... evaluation_strategy="epoch",
... learning_rate=2e-5,
... per_device_train_batch_size=16,
... per_device_eval_batch_size=16,
... weight_decay=0.01,
... save_total_limit=3,
... num_train_epochs=2,
... predict_with_generate=True,
... fp16=True,
... push_to_hub=True,
... )
>>> trainer = Seq2SeqTrainer(
... model=model,
... args=training_args,
... train_dataset=tokenized_books["train"],
... eval_dataset=tokenized_books["test"],
... tokenizer=tokenizer,
... data_collator=data_collator,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
````
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
<Tip>
If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!
</Tip>
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:
```py
>>> from transformers import AdamWeightDecay
>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```
Then you can load T5 with [`TFAutoModelForSeq2SeqLM`]:
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("t5-small")
```
Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>> tf_train_set = model.prepare_tf_dataset(
... tokenized_books["train"],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
>>> tf_test_set = model.prepare_tf_dataset(
... tokenized_books["test"],
... shuffle=False,
... batch_size=16,
... collate_fn=data_collator,
... )
```
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
```py
>>> import tensorflow as tf
>>> model.compile(optimizer=optimizer)
```
The last two things to setup before you start training is to compute the SacreBLEU metric from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](./main_classes/keras_callbacks).
Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
```
Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
```py
>>> from transformers.keras_callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="my_awesome_opus_books_model",
... tokenizer=tokenizer,
... )
```
Then bundle your callbacks together:
```py
>>> callbacks = [metric_callback, push_to_hub_callback]
```
Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:
```py
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
```
Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
</tf>
</frameworkcontent>
<Tip>
For a more in-depth example of how to finetune a model for translation, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
</Tip>
## Inference
Great, now that you've finetuned a model, you can use it for inference!
Come up with some text you'd like to translate to another language. For T5, you need to prefix your input depending on the task you're working on. For translation from English to French, you should prefix your input as shown below:
```py
>>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria."
```
The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for translation with your model, and pass your text to it:
```py
>>> from transformers import pipeline
>>> translator = pipeline("translation", model="my_awesome_opus_books_model")
>>> translator(text)
[{'translation_text': 'Legumes partagent des ressources avec des bactéries azotantes.'}]
```
You can also manually replicate the results of the `pipeline` if you'd like:
<frameworkcontent>
<pt>
Tokenize the text and return the `input_ids` as PyTorch tensors:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
```
Use the [`~transformers.generation_utils.GenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.
```py
>>> from transformers import AutoModelForSeq2SeqLM
>>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```
Decode the generated token ids back into text:
```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lignées partagent des ressources avec des bactéries enfixant l'azote.'
```
</pt>
<tf>
Tokenize the text and return the `input_ids` as TensorFlow tensors:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```
Use the [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.
```py
>>> from transformers import TFAutoModelForSeq2SeqLM
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```
Decode the generated token ids back into text:
```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.'
```
</tf>
</frameworkcontent> | -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/onnx/test_onnx_v2.py | import os
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch
import pytest
from parameterized import parameterized
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
from transformers.onnx import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
ParameterFormat,
export,
validate_model_outputs,
)
from transformers.onnx.utils import (
compute_effective_axis_dimension,
compute_serialized_parameters_size,
get_preprocessor,
)
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
if is_torch_available() or is_tf_available():
from transformers.onnx.features import FeaturesManager
if is_torch_available():
import torch
from transformers.models.deberta import modeling_deberta
@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
"""
Cover all the utilities involved to export ONNX models
"""
@require_torch
@patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
"""
Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
"""
self.assertRaises(AssertionError, export, None, None, None, None, None)
mock_is_torch_onnx_dict_inputs_support_available.assert_called()
def test_compute_effective_axis_dimension(self):
"""
When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
(> 1 to avoid ONNX squeezing the axis).
This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
"""
# Dynamic axis (batch, no token added by the tokenizer)
self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)
# Static axis (batch, no token added by the tokenizer)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)
# Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
# Dynamic axis (sequence, token added by the tokenizer 3 (pair))
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
def test_compute_parameters_serialized_size(self):
"""
This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
parameters for the specified parameter's dtype.
"""
self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)
def test_flatten_output_collection_property(self):
"""
This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
past_keys = Tuple[Tuple]
ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
"""
self.assertEqual(
OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
{
"past_key.0": 0,
"past_key.1": 1,
"past_key.2": 2,
},
)
class OnnxConfigTestCaseV2(TestCase):
"""
Cover the test for models default.
Default means no specific features is being enabled on the model.
"""
@patch.multiple(OnnxConfig, __abstractmethods__=set())
def test_use_external_data_format(self):
"""
External data format is required only if the serialized size of the parameters if bigger than 2Gb
"""
TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT
# No parameters
self.assertFalse(OnnxConfig.use_external_data_format(0))
# Some parameters
self.assertFalse(OnnxConfig.use_external_data_format(1))
# Almost 2Gb parameters
self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))
# Exactly 2Gb parameters
self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))
# More than 2Gb parameters
self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))
class OnnxConfigWithPastTestCaseV2(TestCase):
"""
Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
"""
SUPPORTED_WITH_PAST_CONFIGS = {}
# SUPPORTED_WITH_PAST_CONFIGS = {
# ("BART", BartConfig),
# ("GPT2", GPT2Config),
# # ("T5", T5Config)
# }
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
def test_use_past(self):
"""
Ensure the use_past variable is correctly being set
"""
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
with self.subTest(name):
self.assertFalse(
OnnxConfigWithPast.from_model_config(config()).use_past,
"OnnxConfigWithPast.from_model_config() should not use_past",
)
self.assertTrue(
OnnxConfigWithPast.with_past(config()).use_past,
"OnnxConfigWithPast.from_model_config() should use_past",
)
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
def test_values_override(self):
"""
Ensure the use_past variable correctly set the `use_cache` value in model's configuration
"""
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
with self.subTest(name):
# without past
onnx_config_default = OnnxConfigWithPast.from_model_config(config())
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
self.assertFalse(
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
)
# with past
onnx_config_default = OnnxConfigWithPast.with_past(config())
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
self.assertTrue(
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
)
PYTORCH_EXPORT_MODELS = {
("albert", "hf-internal-testing/tiny-random-AlbertModel"),
("bert", "hf-internal-testing/tiny-random-BertModel"),
("beit", "microsoft/beit-base-patch16-224"),
("big-bird", "hf-internal-testing/tiny-random-BigBirdModel"),
("camembert", "camembert-base"),
("clip", "hf-internal-testing/tiny-random-CLIPModel"),
("convbert", "hf-internal-testing/tiny-random-ConvBertModel"),
("codegen", "hf-internal-testing/tiny-random-CodeGenModel"),
("data2vec-text", "hf-internal-testing/tiny-random-Data2VecTextModel"),
("data2vec-vision", "facebook/data2vec-vision-base"),
("deberta", "hf-internal-testing/tiny-random-DebertaModel"),
("deberta-v2", "hf-internal-testing/tiny-random-DebertaV2Model"),
("deit", "facebook/deit-small-patch16-224"),
("convnext", "facebook/convnext-tiny-224"),
("detr", "facebook/detr-resnet-50"),
("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
("electra", "hf-internal-testing/tiny-random-ElectraModel"),
("groupvit", "nvidia/groupvit-gcc-yfcc"),
("ibert", "kssteven/ibert-roberta-base"),
("imagegpt", "openai/imagegpt-small"),
("levit", "facebook/levit-128S"),
("layoutlm", "hf-internal-testing/tiny-random-LayoutLMModel"),
("layoutlmv3", "microsoft/layoutlmv3-base"),
("longformer", "allenai/longformer-base-4096"),
("mobilebert", "hf-internal-testing/tiny-random-MobileBertModel"),
("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
("mobilevit", "apple/mobilevit-small"),
("owlvit", "google/owlvit-base-patch32"),
("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("masked-lm", "sequence-classification")),
("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("image-classification",)),
("rembert", "google/rembert"),
("resnet", "microsoft/resnet-50"),
("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
("roformer", "hf-internal-testing/tiny-random-RoFormerModel"),
("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
("squeezebert", "hf-internal-testing/tiny-random-SqueezeBertModel"),
("swin", "microsoft/swin-tiny-patch4-window7-224"),
("vit", "google/vit-base-patch16-224"),
("yolos", "hustvl/yolos-tiny"),
("whisper", "openai/whisper-tiny.en"),
("xlm", "hf-internal-testing/tiny-random-XLMModel"),
("xlm-roberta", "hf-internal-testing/tiny-random-XLMRobertaXLModel"),
}
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
}
PYTORCH_EXPORT_WITH_PAST_MODELS = {
("bloom", "hf-internal-testing/tiny-random-BloomModel"),
("gpt2", "hf-internal-testing/tiny-random-GPT2Model"),
("gpt-neo", "hf-internal-testing/tiny-random-GPTNeoModel"),
}
PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
("bart", "hf-internal-testing/tiny-random-BartModel"),
("bigbird-pegasus", "hf-internal-testing/tiny-random-BigBirdPegasusModel"),
("blenderbot-small", "facebook/blenderbot_small-90M"),
("blenderbot", "hf-internal-testing/tiny-random-BlenderbotModel"),
("longt5", "hf-internal-testing/tiny-random-LongT5Model"),
("marian", "Helsinki-NLP/opus-mt-en-de"),
("mbart", "sshleifer/tiny-mbart"),
("mt5", "google/mt5-base"),
("m2m-100", "hf-internal-testing/tiny-random-M2M100Model"),
("t5", "hf-internal-testing/tiny-random-T5Model"),
}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
("albert", "hf-internal-testing/tiny-albert"),
("bert", "hf-internal-testing/tiny-random-BertModel"),
("camembert", "camembert-base"),
("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
def _get_models_to_test(export_models_list):
models_to_test = []
if is_torch_available() or is_tf_available():
for name, model, *features in export_models_list:
if features:
feature_config_mapping = {
feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
}
else:
feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(name)
for feature, onnx_config_class_constructor in feature_config_mapping.items():
models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
return sorted(models_to_test)
else:
# Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
# decorators.
# The reason for not returning an empty list is because parameterized.expand complains when it's empty.
return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
class OnnxExportTestCaseV2(TestCase):
"""
Integration tests ensuring supported models are correctly exported
"""
def _onnx_export(
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
):
from transformers.onnx import export
model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
config = AutoConfig.from_pretrained(model_name)
model = model_class.from_config(config)
# Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
# See: https://github.com/ultralytics/yolov5/pull/8378
if model.__class__.__name__.startswith("Yolos") and device != "cpu":
return
# ONNX inference fails with the following name, feature, framework parameterizations
# See: https://github.com/huggingface/transformers/issues/19357
if (name, feature, framework) in {
("deberta-v2", "question-answering", "pt"),
("deberta-v2", "multiple-choice", "pt"),
("roformer", "multiple-choice", "pt"),
("groupvit", "default", "pt"),
("perceiver", "masked-lm", "pt"),
("perceiver", "sequence-classification", "pt"),
("perceiver", "image-classification", "pt"),
("bert", "multiple-choice", "tf"),
("camembert", "multiple-choice", "tf"),
("roberta", "multiple-choice", "tf"),
}:
return
onnx_config = onnx_config_class_constructor(model.config)
if is_torch_available():
from transformers.utils import torch_version
if torch_version < onnx_config.torch_onnx_minimum_version:
pytest.skip(
"Skipping due to incompatible PyTorch version. Minimum required is"
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
)
preprocessor = get_preprocessor(model_name)
# Useful for causal lm models that do not use pad tokens.
if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
config.pad_token_id = preprocessor.eos_token_id
with NamedTemporaryFile("w") as output:
try:
onnx_inputs, onnx_outputs = export(
preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
)
validate_model_outputs(
onnx_config,
preprocessor,
model,
Path(output.name),
onnx_outputs,
onnx_config.atol_for_validation,
)
except (RuntimeError, ValueError) as e:
self.fail(f"{name}, {feature} -> {e}")
def _onnx_export_encoder_decoder_models(
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
):
from transformers import AutoFeatureExtractor, AutoTokenizer
from transformers.onnx import export
model_class = FeaturesManager.get_model_class_for_feature(feature)
config = AutoConfig.from_pretrained(model_name)
model = model_class.from_config(config)
onnx_config = onnx_config_class_constructor(model.config)
if is_torch_available():
from transformers.utils import torch_version
if torch_version < onnx_config.torch_onnx_minimum_version:
pytest.skip(
"Skipping due to incompatible PyTorch version. Minimum required is"
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
)
encoder_model = model.get_encoder()
decoder_model = model.get_decoder()
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)
preprocessor = AutoFeatureExtractor.from_pretrained(model_name)
onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)
with NamedTemporaryFile("w") as encoder_output:
onnx_inputs, onnx_outputs = export(
preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
)
validate_model_outputs(
encoder_onnx_config,
preprocessor,
encoder_model,
Path(encoder_output.name),
onnx_outputs,
encoder_onnx_config.atol_for_validation,
)
preprocessor = AutoTokenizer.from_pretrained(model_name)
with NamedTemporaryFile("w") as decoder_output:
_, onnx_outputs = export(
preprocessor,
decoder_model,
decoder_onnx_config,
onnx_config.default_onnx_opset,
Path(decoder_output.name),
device=device,
)
validate_model_outputs(
decoder_onnx_config,
preprocessor,
decoder_model,
Path(decoder_output.name),
onnx_outputs,
decoder_onnx_config.atol_for_validation,
)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_encoder_decoder_models(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_encoder_decoder_models_on_cuda(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export_encoder_decoder_models(
test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
@slow
@require_torch
def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
@slow
@require_torch
def test_pytorch_export_seq2seq_with_past(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
@slow
@require_tf
@require_vision
def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
@slow
@require_tf
def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
@slow
@require_tf
def test_tensorflow_export_seq2seq_with_past(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
class StableDropoutTestCase(TestCase):
"""Tests export of StableDropout module."""
@require_torch
@pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*") # torch.onnx is spammy.
def test_training(self):
"""Tests export of StableDropout in training mode."""
devnull = open(os.devnull, "wb")
# drop_prob must be > 0 for the test to be meaningful
sd = modeling_deberta.StableDropout(0.1)
# Avoid warnings in training mode
do_constant_folding = False
# Dropout is a no-op in inference mode
training = torch.onnx.TrainingMode.PRESERVE
input = (torch.randn(2, 2),)
torch.onnx.export(
sd,
input,
devnull,
opset_version=12, # Minimum supported
do_constant_folding=do_constant_folding,
training=training,
)
# Expected to fail with opset_version < 12
with self.assertRaises(Exception):
torch.onnx.export(
sd,
input,
devnull,
opset_version=11,
do_constant_folding=do_constant_folding,
training=training,
)
| import os
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch
import pytest
from parameterized import parameterized
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
from transformers.onnx import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
ParameterFormat,
export,
validate_model_outputs,
)
from transformers.onnx.utils import (
compute_effective_axis_dimension,
compute_serialized_parameters_size,
get_preprocessor,
)
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
if is_torch_available() or is_tf_available():
from transformers.onnx.features import FeaturesManager
if is_torch_available():
import torch
from transformers.models.deberta import modeling_deberta
@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
"""
Cover all the utilities involved to export ONNX models
"""
@require_torch
@patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
"""
Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
"""
self.assertRaises(AssertionError, export, None, None, None, None, None)
mock_is_torch_onnx_dict_inputs_support_available.assert_called()
def test_compute_effective_axis_dimension(self):
"""
When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
(> 1 to avoid ONNX squeezing the axis).
This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
"""
# Dynamic axis (batch, no token added by the tokenizer)
self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)
# Static axis (batch, no token added by the tokenizer)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)
# Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
# Dynamic axis (sequence, token added by the tokenizer 3 (pair))
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
def test_compute_parameters_serialized_size(self):
"""
This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
parameters for the specified parameter's dtype.
"""
self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)
def test_flatten_output_collection_property(self):
"""
This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
past_keys = Tuple[Tuple]
ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
"""
self.assertEqual(
OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
{
"past_key.0": 0,
"past_key.1": 1,
"past_key.2": 2,
},
)
class OnnxConfigTestCaseV2(TestCase):
"""
Cover the test for models default.
Default means no specific features is being enabled on the model.
"""
@patch.multiple(OnnxConfig, __abstractmethods__=set())
def test_use_external_data_format(self):
"""
External data format is required only if the serialized size of the parameters if bigger than 2Gb
"""
TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT
# No parameters
self.assertFalse(OnnxConfig.use_external_data_format(0))
# Some parameters
self.assertFalse(OnnxConfig.use_external_data_format(1))
# Almost 2Gb parameters
self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))
# Exactly 2Gb parameters
self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))
# More than 2Gb parameters
self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))
class OnnxConfigWithPastTestCaseV2(TestCase):
"""
Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
"""
SUPPORTED_WITH_PAST_CONFIGS = {}
# SUPPORTED_WITH_PAST_CONFIGS = {
# ("BART", BartConfig),
# ("GPT2", GPT2Config),
# # ("T5", T5Config)
# }
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
def test_use_past(self):
"""
Ensure the use_past variable is correctly being set
"""
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
with self.subTest(name):
self.assertFalse(
OnnxConfigWithPast.from_model_config(config()).use_past,
"OnnxConfigWithPast.from_model_config() should not use_past",
)
self.assertTrue(
OnnxConfigWithPast.with_past(config()).use_past,
"OnnxConfigWithPast.from_model_config() should use_past",
)
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
def test_values_override(self):
"""
Ensure the use_past variable correctly set the `use_cache` value in model's configuration
"""
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
with self.subTest(name):
# without past
onnx_config_default = OnnxConfigWithPast.from_model_config(config())
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
self.assertFalse(
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
)
# with past
onnx_config_default = OnnxConfigWithPast.with_past(config())
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
self.assertTrue(
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
)
PYTORCH_EXPORT_MODELS = {
("albert", "hf-internal-testing/tiny-random-AlbertModel"),
("bert", "hf-internal-testing/tiny-random-BertModel"),
("beit", "microsoft/beit-base-patch16-224"),
("big-bird", "hf-internal-testing/tiny-random-BigBirdModel"),
("camembert", "camembert-base"),
("clip", "hf-internal-testing/tiny-random-CLIPModel"),
("convbert", "hf-internal-testing/tiny-random-ConvBertModel"),
("codegen", "hf-internal-testing/tiny-random-CodeGenModel"),
("data2vec-text", "hf-internal-testing/tiny-random-Data2VecTextModel"),
("data2vec-vision", "facebook/data2vec-vision-base"),
("deberta", "hf-internal-testing/tiny-random-DebertaModel"),
("deberta-v2", "hf-internal-testing/tiny-random-DebertaV2Model"),
("deit", "facebook/deit-small-patch16-224"),
("convnext", "facebook/convnext-tiny-224"),
("detr", "facebook/detr-resnet-50"),
("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
("electra", "hf-internal-testing/tiny-random-ElectraModel"),
("groupvit", "nvidia/groupvit-gcc-yfcc"),
("ibert", "kssteven/ibert-roberta-base"),
("imagegpt", "openai/imagegpt-small"),
("levit", "facebook/levit-128S"),
("layoutlm", "hf-internal-testing/tiny-random-LayoutLMModel"),
("layoutlmv3", "microsoft/layoutlmv3-base"),
("longformer", "allenai/longformer-base-4096"),
("mobilebert", "hf-internal-testing/tiny-random-MobileBertModel"),
("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
("mobilevit", "apple/mobilevit-small"),
("owlvit", "google/owlvit-base-patch32"),
("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("masked-lm", "sequence-classification")),
("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("image-classification",)),
("rembert", "google/rembert"),
("resnet", "microsoft/resnet-50"),
("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
("roformer", "hf-internal-testing/tiny-random-RoFormerModel"),
("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
("squeezebert", "hf-internal-testing/tiny-random-SqueezeBertModel"),
("swin", "microsoft/swin-tiny-patch4-window7-224"),
("vit", "google/vit-base-patch16-224"),
("yolos", "hustvl/yolos-tiny"),
("whisper", "openai/whisper-tiny.en"),
("xlm", "hf-internal-testing/tiny-random-XLMModel"),
("xlm-roberta", "hf-internal-testing/tiny-random-XLMRobertaXLModel"),
}
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
}
PYTORCH_EXPORT_WITH_PAST_MODELS = {
("bloom", "hf-internal-testing/tiny-random-BloomModel"),
("gpt2", "hf-internal-testing/tiny-random-GPT2Model"),
("gpt-neo", "hf-internal-testing/tiny-random-GPTNeoModel"),
}
PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
("bart", "hf-internal-testing/tiny-random-BartModel"),
("bigbird-pegasus", "hf-internal-testing/tiny-random-BigBirdPegasusModel"),
("blenderbot-small", "facebook/blenderbot_small-90M"),
("blenderbot", "hf-internal-testing/tiny-random-BlenderbotModel"),
("longt5", "hf-internal-testing/tiny-random-LongT5Model"),
("marian", "Helsinki-NLP/opus-mt-en-de"),
("mbart", "sshleifer/tiny-mbart"),
("mt5", "google/mt5-base"),
("m2m-100", "hf-internal-testing/tiny-random-M2M100Model"),
("t5", "hf-internal-testing/tiny-random-T5Model"),
}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
("albert", "hf-internal-testing/tiny-albert"),
("bert", "hf-internal-testing/tiny-random-BertModel"),
("camembert", "camembert-base"),
("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
def _get_models_to_test(export_models_list):
models_to_test = []
if is_torch_available() or is_tf_available():
for name, model, *features in export_models_list:
if features:
feature_config_mapping = {
feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
}
else:
feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(name)
for feature, onnx_config_class_constructor in feature_config_mapping.items():
models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
return sorted(models_to_test)
else:
# Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
# decorators.
# The reason for not returning an empty list is because parameterized.expand complains when it's empty.
return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
class OnnxExportTestCaseV2(TestCase):
"""
Integration tests ensuring supported models are correctly exported
"""
def _onnx_export(
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
):
from transformers.onnx import export
model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
config = AutoConfig.from_pretrained(model_name)
model = model_class.from_config(config)
# Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
# See: https://github.com/ultralytics/yolov5/pull/8378
if model.__class__.__name__.startswith("Yolos") and device != "cpu":
return
# ONNX inference fails with the following name, feature, framework parameterizations
# See: https://github.com/huggingface/transformers/issues/19357
if (name, feature, framework) in {
("deberta-v2", "question-answering", "pt"),
("deberta-v2", "multiple-choice", "pt"),
("roformer", "multiple-choice", "pt"),
("groupvit", "default", "pt"),
("perceiver", "masked-lm", "pt"),
("perceiver", "sequence-classification", "pt"),
("perceiver", "image-classification", "pt"),
("bert", "multiple-choice", "tf"),
("camembert", "multiple-choice", "tf"),
("roberta", "multiple-choice", "tf"),
}:
return
onnx_config = onnx_config_class_constructor(model.config)
if is_torch_available():
from transformers.utils import torch_version
if torch_version < onnx_config.torch_onnx_minimum_version:
pytest.skip(
"Skipping due to incompatible PyTorch version. Minimum required is"
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
)
preprocessor = get_preprocessor(model_name)
# Useful for causal lm models that do not use pad tokens.
if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
config.pad_token_id = preprocessor.eos_token_id
with NamedTemporaryFile("w") as output:
try:
onnx_inputs, onnx_outputs = export(
preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
)
validate_model_outputs(
onnx_config,
preprocessor,
model,
Path(output.name),
onnx_outputs,
onnx_config.atol_for_validation,
)
except (RuntimeError, ValueError) as e:
self.fail(f"{name}, {feature} -> {e}")
def _onnx_export_encoder_decoder_models(
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
):
from transformers import AutoFeatureExtractor, AutoTokenizer
from transformers.onnx import export
model_class = FeaturesManager.get_model_class_for_feature(feature)
config = AutoConfig.from_pretrained(model_name)
model = model_class.from_config(config)
onnx_config = onnx_config_class_constructor(model.config)
if is_torch_available():
from transformers.utils import torch_version
if torch_version < onnx_config.torch_onnx_minimum_version:
pytest.skip(
"Skipping due to incompatible PyTorch version. Minimum required is"
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
)
encoder_model = model.get_encoder()
decoder_model = model.get_decoder()
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)
preprocessor = AutoFeatureExtractor.from_pretrained(model_name)
onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)
with NamedTemporaryFile("w") as encoder_output:
onnx_inputs, onnx_outputs = export(
preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
)
validate_model_outputs(
encoder_onnx_config,
preprocessor,
encoder_model,
Path(encoder_output.name),
onnx_outputs,
encoder_onnx_config.atol_for_validation,
)
preprocessor = AutoTokenizer.from_pretrained(model_name)
with NamedTemporaryFile("w") as decoder_output:
_, onnx_outputs = export(
preprocessor,
decoder_model,
decoder_onnx_config,
onnx_config.default_onnx_opset,
Path(decoder_output.name),
device=device,
)
validate_model_outputs(
decoder_onnx_config,
preprocessor,
decoder_model,
Path(decoder_output.name),
onnx_outputs,
decoder_onnx_config.atol_for_validation,
)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_encoder_decoder_models(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_encoder_decoder_models_on_cuda(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export_encoder_decoder_models(
test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
@slow
@require_torch
def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
@slow
@require_torch
def test_pytorch_export_seq2seq_with_past(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
@slow
@require_tf
@require_vision
def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
@slow
@require_tf
def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
@slow
@require_tf
def test_tensorflow_export_seq2seq_with_past(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
class StableDropoutTestCase(TestCase):
"""Tests export of StableDropout module."""
@require_torch
@pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*") # torch.onnx is spammy.
def test_training(self):
"""Tests export of StableDropout in training mode."""
devnull = open(os.devnull, "wb")
# drop_prob must be > 0 for the test to be meaningful
sd = modeling_deberta.StableDropout(0.1)
# Avoid warnings in training mode
do_constant_folding = False
# Dropout is a no-op in inference mode
training = torch.onnx.TrainingMode.PRESERVE
input = (torch.randn(2, 2),)
torch.onnx.export(
sd,
input,
devnull,
opset_version=12, # Minimum supported
do_constant_folding=do_constant_folding,
training=training,
)
# Expected to fail with opset_version < 12
with self.assertRaises(Exception):
torch.onnx.export(
sd,
input,
devnull,
opset_version=11,
do_constant_folding=do_constant_folding,
training=training,
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/research_projects/jax-projects/dataset-streaming/run_mlm_flax_stream.py | #!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=fill-mask
"""
import logging
import os
import sys
import time
from collections import defaultdict
from dataclasses import dataclass, field
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import datasets
import numpy as np
from datasets import load_dataset
from tqdm import tqdm
import flax
import jax
import jax.numpy as jnp
import optax
from flax import jax_utils, traverse_util
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForMaskedLM,
HfArgumentParser,
PreTrainedTokenizerBase,
TensorType,
TrainingArguments,
is_tensorboard_available,
set_seed,
)
if datasets.__version__ <= "1.8.0":
raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
)
validation_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
text_column_name: str = field(
default="text", metadata={"help": "The name of the column to retrieve the training text."}
)
shuffle_buffer_size: int = field(
default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
)
num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
@flax.struct.dataclass
class FlaxDataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
The probability with which to (randomly) mask tokens in the input.
.. note::
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
argument :obj:`return_special_tokens_mask=True`.
"""
tokenizer: PreTrainedTokenizerBase
mlm_probability: float = 0.15
def __post_init__(self):
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, return_tensors=TensorType.NUMPY)
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
return batch
def mask_tokens(
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.copy()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = np.full(labels.shape, self.mlm_probability)
special_tokens_mask = special_tokens_mask.astype("bool")
probability_matrix[special_tokens_mask] = 0.0
masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
indices_random &= masked_indices & ~indices_replaced
random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int) -> np.ndarray:
num_samples = len(samples_idx)
samples_to_remove = num_samples % batch_size
if samples_to_remove != 0:
samples_idx = samples_idx[:-samples_to_remove]
sections_split = num_samples // batch_size
batch_idx = np.split(samples_idx, sections_split)
return batch_idx
def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
"""
The training iterator is advanced so that after groupifying the samples,
`num_samples` of length `max_seq_length` are returned.
"""
num_total_tokens = max_seq_length * num_samples
samples = defaultdict(list)
i = 0
while i < num_total_tokens:
tokenized_samples = next(train_iterator)
i += len(tokenized_samples["input_ids"])
# concatenate tokenized samples to list (excluding "id" and "text")
samples = {
k: samples[k] + tokenized_samples[k] for k in ["input_ids", "attention_mask", "special_tokens_mask"]
}
# Concatenated tokens are split to lists of length `max_seq_length`.
# Note that remainedr of % max_seq_length are thrown away.
def group_texts(examples):
result = {
k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
for k, t in examples.items()
}
return result
grouped_samples = group_texts(samples)
return grouped_samples
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
if __name__ == "__main__":
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
level="INFO",
datefmt="[%X]",
)
# Log on each process the small summary:
logger = logging.getLogger(__name__)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
streaming=True,
split="train",
)
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
# efficient when it receives the `special_tokens_mask`.
def tokenize_function(examples):
return tokenizer(examples[data_args.text_column_name], return_special_tokens_mask=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=list(dataset.features.keys()))
shuffle_seed = training_args.seed
tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
if model_args.model_name_or_path:
model = FlaxAutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
else:
model = FlaxAutoModelForMaskedLM.from_config(
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
# define number steps per stream epoch
num_train_steps = data_args.num_train_steps
# Create learning rate schedule
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
)
decay_fn = optax.linear_schedule(
init_value=training_args.learning_rate,
end_value=0,
transition_steps=num_train_steps - training_args.warmup_steps,
)
linear_decay_lr_schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxBERT-like models.
# For other models, one should correct the layer norm parameter naming
# accordingly.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
# Define gradient update step fn
def train_step(state, batch, dropout_rng):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
def loss_fn(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# take average
loss = loss.sum() / label_mask.sum()
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = jax.lax.pmean(
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
)
return new_state, metrics, new_dropout_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# compute accuracy
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
# summarize metrics
metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
metrics = jax.lax.psum(metrics, axis_name="batch")
return metrics
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
train_time = 0
train_start = time.time()
train_metrics = []
eval_metrics = []
training_iter = iter(tokenized_datasets)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
steps = tqdm(range(num_train_steps), desc="Training...", position=0)
for step in range(num_train_steps):
# ======================== Training ================================
try:
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
except StopIteration:
# Once the end of the dataset stream is reached, the training iterator
# is reinitialized and reshuffled and a new eval dataset is randomely chosen.
shuffle_seed += 1
tokenized_datasets.set_epoch(shuffle_seed)
training_iter = iter(tokenized_datasets)
eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
# process input samples
model_inputs = data_collator(samples)
# Model forward
model_inputs = shard(model_inputs.data)
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
train_metrics.append(train_metric)
if step % training_args.logging_steps == 0 and step > 0:
steps.write(
f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
f" {train_metric['learning_rate'].mean()})"
)
train_time += time.time() - train_start
if has_tensorboard and jax.process_index() == 0:
write_train_metric(summary_writer, train_metrics, train_time, step)
train_metrics = []
# ======================== Evaluating ==============================
if step % training_args.eval_steps == 0 and step > 0:
# Avoid using jax.numpy here in case of TPU training
eval_samples_idx = np.arange(data_args.num_eval_samples)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
# process input samples
batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
model_inputs = data_collator(batch_eval_samples)
# Model forward
model_inputs = shard(model_inputs.data)
metrics = p_eval_step(state.params, model_inputs)
eval_metrics.append(metrics)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics)
eval_normalizer = eval_metrics.pop("normalizer")
eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
# Update progress bar
steps.desc = (
f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc:"
f" {eval_metrics['accuracy']})"
)
if has_tensorboard and jax.process_index() == 0:
write_eval_metric(summary_writer, eval_metrics, step)
eval_metrics = []
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of step {step+1}",
)
# update tqdm bar
steps.update(1)
| #!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=fill-mask
"""
import logging
import os
import sys
import time
from collections import defaultdict
from dataclasses import dataclass, field
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import datasets
import numpy as np
from datasets import load_dataset
from tqdm import tqdm
import flax
import jax
import jax.numpy as jnp
import optax
from flax import jax_utils, traverse_util
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForMaskedLM,
HfArgumentParser,
PreTrainedTokenizerBase,
TensorType,
TrainingArguments,
is_tensorboard_available,
set_seed,
)
if datasets.__version__ <= "1.8.0":
raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
)
validation_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
text_column_name: str = field(
default="text", metadata={"help": "The name of the column to retrieve the training text."}
)
shuffle_buffer_size: int = field(
default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
)
num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
@flax.struct.dataclass
class FlaxDataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
The probability with which to (randomly) mask tokens in the input.
.. note::
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
argument :obj:`return_special_tokens_mask=True`.
"""
tokenizer: PreTrainedTokenizerBase
mlm_probability: float = 0.15
def __post_init__(self):
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, return_tensors=TensorType.NUMPY)
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
return batch
def mask_tokens(
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.copy()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = np.full(labels.shape, self.mlm_probability)
special_tokens_mask = special_tokens_mask.astype("bool")
probability_matrix[special_tokens_mask] = 0.0
masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
indices_random &= masked_indices & ~indices_replaced
random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int) -> np.ndarray:
num_samples = len(samples_idx)
samples_to_remove = num_samples % batch_size
if samples_to_remove != 0:
samples_idx = samples_idx[:-samples_to_remove]
sections_split = num_samples // batch_size
batch_idx = np.split(samples_idx, sections_split)
return batch_idx
def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
"""
The training iterator is advanced so that after groupifying the samples,
`num_samples` of length `max_seq_length` are returned.
"""
num_total_tokens = max_seq_length * num_samples
samples = defaultdict(list)
i = 0
while i < num_total_tokens:
tokenized_samples = next(train_iterator)
i += len(tokenized_samples["input_ids"])
# concatenate tokenized samples to list (excluding "id" and "text")
samples = {
k: samples[k] + tokenized_samples[k] for k in ["input_ids", "attention_mask", "special_tokens_mask"]
}
# Concatenated tokens are split to lists of length `max_seq_length`.
# Note that remainedr of % max_seq_length are thrown away.
def group_texts(examples):
result = {
k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
for k, t in examples.items()
}
return result
grouped_samples = group_texts(samples)
return grouped_samples
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
if __name__ == "__main__":
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
level="INFO",
datefmt="[%X]",
)
# Log on each process the small summary:
logger = logging.getLogger(__name__)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
streaming=True,
split="train",
)
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
# efficient when it receives the `special_tokens_mask`.
def tokenize_function(examples):
return tokenizer(examples[data_args.text_column_name], return_special_tokens_mask=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=list(dataset.features.keys()))
shuffle_seed = training_args.seed
tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
if model_args.model_name_or_path:
model = FlaxAutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
else:
model = FlaxAutoModelForMaskedLM.from_config(
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
# define number steps per stream epoch
num_train_steps = data_args.num_train_steps
# Create learning rate schedule
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
)
decay_fn = optax.linear_schedule(
init_value=training_args.learning_rate,
end_value=0,
transition_steps=num_train_steps - training_args.warmup_steps,
)
linear_decay_lr_schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxBERT-like models.
# For other models, one should correct the layer norm parameter naming
# accordingly.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
# Define gradient update step fn
def train_step(state, batch, dropout_rng):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
def loss_fn(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# take average
loss = loss.sum() / label_mask.sum()
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = jax.lax.pmean(
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
)
return new_state, metrics, new_dropout_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# compute accuracy
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
# summarize metrics
metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
metrics = jax.lax.psum(metrics, axis_name="batch")
return metrics
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
train_time = 0
train_start = time.time()
train_metrics = []
eval_metrics = []
training_iter = iter(tokenized_datasets)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
steps = tqdm(range(num_train_steps), desc="Training...", position=0)
for step in range(num_train_steps):
# ======================== Training ================================
try:
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
except StopIteration:
# Once the end of the dataset stream is reached, the training iterator
# is reinitialized and reshuffled and a new eval dataset is randomely chosen.
shuffle_seed += 1
tokenized_datasets.set_epoch(shuffle_seed)
training_iter = iter(tokenized_datasets)
eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
# process input samples
model_inputs = data_collator(samples)
# Model forward
model_inputs = shard(model_inputs.data)
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
train_metrics.append(train_metric)
if step % training_args.logging_steps == 0 and step > 0:
steps.write(
f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
f" {train_metric['learning_rate'].mean()})"
)
train_time += time.time() - train_start
if has_tensorboard and jax.process_index() == 0:
write_train_metric(summary_writer, train_metrics, train_time, step)
train_metrics = []
# ======================== Evaluating ==============================
if step % training_args.eval_steps == 0 and step > 0:
# Avoid using jax.numpy here in case of TPU training
eval_samples_idx = np.arange(data_args.num_eval_samples)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
# process input samples
batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
model_inputs = data_collator(batch_eval_samples)
# Model forward
model_inputs = shard(model_inputs.data)
metrics = p_eval_step(state.params, model_inputs)
eval_metrics.append(metrics)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics)
eval_normalizer = eval_metrics.pop("normalizer")
eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
# Update progress bar
steps.desc = (
f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc:"
f" {eval_metrics['accuracy']})"
)
if has_tensorboard and jax.process_index() == 0:
write_eval_metric(summary_writer, eval_metrics, step)
eval_metrics = []
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of step {step+1}",
)
# update tqdm bar
steps.update(1)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/transfo_xl/tokenization_transfo_xl.py | # coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tokenization classes for Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl.
"""
import glob
import os
import pickle
import re
from collections import Counter, OrderedDict
from typing import List, Optional, Tuple
import numpy as np
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import (
cached_file,
is_sacremoses_available,
is_torch_available,
logging,
requires_backends,
torch_only_method,
)
if is_sacremoses_available():
import sacremoses as sm
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"pretrained_vocab_file": "vocab.pkl",
"pretrained_vocab_file_torch": "vocab.bin",
"vocab_file": "vocab.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"pretrained_vocab_file": {
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/vocab.pkl",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"transfo-xl-wt103": None,
}
PRETRAINED_CORPUS_ARCHIVE_MAP = {
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/corpus.bin",
}
CORPUS_NAME = "corpus.bin"
MATCH_NUMBERS = r"(?<=\d)[,.](?=\d)", r" @\g<0>@ "
DETOKENIZE_NUMBERS = [(r" @\,@ ", r","), (r" @\.@ ", r".")]
def tokenize_numbers(text_array: List[str]) -> List[str]:
"""
Splits large comma-separated numbers and floating point values. This is done by replacing commas with ' @,@ ' and
dots with ' @.@ '.
Args:
text_array: An already tokenized text as list.
Returns:
A list of strings with tokenized numbers.
Example:
```python
>>> tokenize_numbers(["$", "5,000", "1.73", "m"])
["$", "5", "@,@", "000", "1", "@.@", "73", "m"]
```"""
tokenized = []
for i in range(len(text_array)):
reg, sub = MATCH_NUMBERS
replaced = re.sub(reg, sub, text_array[i]).split()
tokenized.extend(replaced)
return tokenized
def detokenize_numbers(text: str) -> str:
"""
Inverts the operation of *tokenize_numbers*. This is replacing ' @,@ ' and ' @.@' by ',' and '.'.
Args:
text: A string where the number should be detokenized.
Returns:
A detokenized string.
Example:
```python
>>> detokenize_numbers("$ 5 @,@ 000 1 @.@ 73 m")
"$ 5,000 1.73 m"
```"""
for reg, sub in DETOKENIZE_NUMBERS:
text = re.sub(reg, sub, text)
return text
class TransfoXLTokenizer(PreTrainedTokenizer):
"""
Construct a Transformer-XL tokenizer adapted from Vocab class in [the original
code](https://github.com/kimiyoung/transformer-xl). The Transformer-XL tokenizer is a word-level tokenizer (no
sub-word tokenization).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
special (`List[str]`, *optional*):
A list of special tokens (to be treated by the original implementation of this tokenizer).
min_freq (`int`, *optional*, defaults to 0):
The minimum number of times a token has to be present in order to be kept in the vocabulary (otherwise it
will be mapped to `unk_token`).
max_size (`int`, *optional*):
The maximum size of the vocabulary. If left unset, it will default to the size of the vocabulary found
after excluding the tokens according to the `min_freq` rule.
lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
delimiter (`str`, *optional*):
The delimiter used between tokens.
vocab_file (`str`, *optional*):
File containing the vocabulary (from the original implementation).
pretrained_vocab_file (`str`, *optional*):
File containing the vocabulary as saved with the `save_pretrained()` method.
never_split (`List[str]`, *optional*):
List of tokens that should never be split. If no list is specified, will simply use the existing special
tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (`str`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<formula>"]`):
A list of additional special tokens (for the HuggingFace functionality).
language (`str`, *optional*, defaults to `"en"`):
The language of this tokenizer (used for mose preprocessing).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids"]
def __init__(
self,
special=None,
min_freq=0,
max_size=None,
lower_case=False,
delimiter=None,
vocab_file=None,
pretrained_vocab_file: str = None,
never_split=None,
unk_token="<unk>",
eos_token="<eos>",
additional_special_tokens=["<formula>"],
language="en",
**kwargs
):
super().__init__(
special=special,
min_freq=min_freq,
max_size=max_size,
lower_case=lower_case,
delimiter=delimiter,
vocab_file=vocab_file,
pretrained_vocab_file=pretrained_vocab_file,
never_split=never_split,
unk_token=unk_token,
eos_token=eos_token,
additional_special_tokens=additional_special_tokens,
language=language,
**kwargs,
)
requires_backends(self, "sacremoses")
if never_split is None:
never_split = self.all_special_tokens
if special is None:
special = []
self.counter = Counter()
self.special = special
self.min_freq = min_freq
self.max_size = max_size
self.lower_case = lower_case
self.delimiter = delimiter
self.vocab_file = vocab_file
self.never_split = never_split
self.punctuation_symbols = '!"#$%&()*+,-./\\:;<=>?@[\\]^_`{|}~'
self.punction_without_space_before_pattern = re.compile(rf"[^\s][{self.punctuation_symbols}]")
self.punctuation_with_space_around_pattern = self._compile_space_around_punctuation_pattern()
self.language = language
self.moses_punct_normalizer = sm.MosesPunctNormalizer(language)
self.moses_tokenizer = sm.MosesTokenizer(language)
self.moses_detokenizer = sm.MosesDetokenizer(language)
# This try... catch... is not beautiful but honestly this tokenizer was not made to be used
# in a library like ours, at all.
try:
vocab_dict = None
if pretrained_vocab_file is not None:
# Priority on pickle files (support PyTorch and TF)
with open(pretrained_vocab_file, "rb") as f:
vocab_dict = pickle.load(f)
# Loading a torch-saved transfo-xl vocab dict with pickle results in an integer
# Entering this if statement means that we tried to load a torch-saved file with pickle, and we failed.
# We therefore load it with torch, if it's available.
if type(vocab_dict) == int:
if not is_torch_available():
raise ImportError(
"Not trying to load dict with PyTorch as you need to install pytorch to load "
"from a PyTorch pretrained vocabulary, "
"or activate it with environment variables USE_TORCH=1 and USE_TF=0."
)
vocab_dict = torch.load(pretrained_vocab_file)
if vocab_dict is not None:
for key, value in vocab_dict.items():
if key not in self.__dict__:
self.__dict__[key] = value
elif vocab_file is not None:
self.build_vocab()
except Exception as e:
raise ValueError(
f"Unable to parse file {pretrained_vocab_file}. Unknown format. "
"If you tried to load a model saved through TransfoXLTokenizerFast, "
"please note they are not compatible."
) from e
if vocab_file is not None:
self.build_vocab()
@property
def do_lower_case(self):
return self.lower_case
def _compile_space_around_punctuation_pattern(self):
look_ahead_for_special_token = f"(?=[{self.punctuation_symbols}])"
look_ahead_to_match_all_except_space = r"(?=[^\s])"
return re.compile(r"" + look_ahead_for_special_token + look_ahead_to_match_all_except_space)
def count_file(self, path, verbose=False, add_eos=False):
if verbose:
logger.info(f"counting file {path} ...")
assert os.path.exists(path), f"Input file {path} not found"
sents = []
with open(path, "r", encoding="utf-8") as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
symbols = self.tokenize(line, add_eos=add_eos)
self.counter.update(symbols)
sents.append(symbols)
return sents
def count_sents(self, sents, verbose=False):
"""
sents : a list of sentences, each a list of tokenized symbols
"""
if verbose:
logger.info(f"counting {len(sents)} sents ...")
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
self.counter.update(symbols)
def _build_from_file(self, vocab_file):
self.idx2sym = []
self.sym2idx = OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as f:
for line in f:
symb = line.strip().split()[0]
self.add_symbol(symb)
if "<UNK>" in self.sym2idx:
self.unk_idx = self.sym2idx["<UNK>"]
elif "<unk>" in self.sym2idx:
self.unk_idx = self.sym2idx["<unk>"]
else:
raise ValueError("No <unknown> token in vocabulary")
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["pretrained_vocab_file"],
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "wb") as f:
pickle.dump(self.__dict__, f)
return (vocab_file,)
def build_vocab(self):
if self.vocab_file:
logger.info(f"building vocab from {self.vocab_file}")
self._build_from_file(self.vocab_file)
logger.info(f"final vocab size {len(self)}")
else:
logger.info(f"building vocab with min_freq={self.min_freq}, max_size={self.max_size}")
self.idx2sym = []
self.sym2idx = OrderedDict()
for sym in self.special:
self.add_special(sym)
for sym, cnt in self.counter.most_common(self.max_size):
if cnt < self.min_freq:
break
self.add_symbol(sym)
logger.info(f"final vocab size {len(self)} from {len(self.counter)} unique tokens")
@torch_only_method
def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False):
if verbose:
logger.info(f"encoding file {path} ...")
assert os.path.exists(path), f"Output file {path} not found"
encoded = []
with open(path, "r", encoding="utf-8") as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos)
encoded.append(self.convert_to_tensor(symbols))
if ordered:
encoded = torch.cat(encoded)
return encoded
@torch_only_method
def encode_sents(self, sents, ordered=False, verbose=False):
if verbose:
logger.info(f"encoding {len(sents)} sents ...")
encoded = []
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
encoded.append(self.convert_to_tensor(symbols))
if ordered:
encoded = torch.cat(encoded)
return encoded
def add_special(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
setattr(self, f"{sym.strip('<>')}_idx", self.sym2idx[sym])
def add_symbol(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
def move_added_token(self, token: str, target_idx: int):
"""
Moves an added token to a specific position in the vocab. This method should be used when resizing an embedding
layer other than the last one in the `AdaptiveEmbedding` in order to move the token in the tokenizer from the
default position (at the very end) to the desired one.
Args:
token: The token to move to a specific position in the vocab.
target_idx: The position where the token should be moved to.
"""
assert token in self.added_tokens_encoder, "Token which should be moved has to be an added token"
assert token not in self.idx2sym, "Token which should be moved is already in vocab"
# Insert sym into vocab
self.idx2sym.insert(target_idx, token)
self.sym2idx[token] = target_idx
# Shift following indices in sym2idx
for idx in range(target_idx + 1, len(self.idx2sym)):
current_sym = self.idx2sym[idx]
self.sym2idx[current_sym] = idx
# Delete token from added_tokens
old_index = self.added_tokens_encoder[token]
del self.added_tokens_decoder[old_index]
del self.added_tokens_encoder[token]
def moses_punct_norm(self, text):
return self.moses_punct_normalizer.normalize(text)
def moses_tokenize(self, text):
return self.moses_tokenizer.tokenize(
text, aggressive_dash_splits=True, return_str=False, escape=False, protected_patterns=self.never_split
)
def moses_pipeline(self, text: str) -> List[str]:
"""
Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with
*aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large
comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000
people are 1 @.@ 80m tall"
Args:
text: Text to be tokenize
Returns:
A list of tokenized string
Example:
```python
>>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl-wt103")
>>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall")
['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall']
```"""
text = self.moses_punct_norm(text)
text = self.moses_tokenize(text)
text = tokenize_numbers(text)
return text
def _convert_id_to_token(self, idx):
"""Converts an id in a token (BPE) using the vocab."""
assert 0 <= idx < len(self), f"Index {idx} out of vocabulary range"
return self.idx2sym[idx]
def _convert_token_to_id(self, sym):
"""Converts a token (str) in an id using the vocab."""
if sym in self.sym2idx:
return self.sym2idx[sym]
else:
# logger.info(f'encounter unk {sym}')
# assert '<eos>' not in sym
if hasattr(self, "unk_idx"):
return self.sym2idx.get(sym, self.unk_idx)
# Backward compatibility with pre-trained models
elif "<unk>" in self.sym2idx:
return self.sym2idx["<unk>"]
elif "<UNK>" in self.sym2idx:
return self.sym2idx["<UNK>"]
else:
raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement")
def convert_tokens_to_string(self, tokens):
"""
Converts a sequence of tokens (string) in a single string. Additionally, the split numbers are converted back
into it's original form.
"""
out_string = self.moses_detokenizer.detokenize(tokens)
return detokenize_numbers(out_string).strip()
@torch_only_method
def convert_to_tensor(self, symbols):
return torch.LongTensor(self.convert_tokens_to_ids(symbols))
@property
def vocab_size(self):
return len(self.idx2sym)
def get_vocab(self):
return dict(self.sym2idx, **self.added_tokens_encoder)
def _tokenize(self, line, add_eos=False, add_double_eos=False):
line = line.strip()
# convert to lower case
if self.lower_case:
line = line.lower()
# empty delimiter '' will evaluate False
if self.delimiter == "":
symbols = line
else:
symbols = self.moses_pipeline(line)
if add_double_eos: # lm1b
return ["<S>"] + symbols + ["<S>"]
elif add_eos:
return symbols + ["<eos>"]
else:
return symbols
class LMOrderedIterator(object):
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None):
"""
data -- LongTensor -- the LongTensor is strictly ordered
"""
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
# Work out how cleanly we can divide the dataset into bsz parts.
self.n_step = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, self.n_step * bsz)
# Evenly divide the data across the bsz batches.
self.data = data.view(bsz, -1).t().contiguous().to(device)
# Number of mini-batches
self.n_batch = (self.n_step + self.bptt - 1) // self.bptt
def get_batch(self, i, bptt=None):
if bptt is None:
bptt = self.bptt
seq_len = min(bptt, self.data.size(0) - 1 - i)
end_idx = i + seq_len
beg_idx = max(0, i - self.ext_len)
data = self.data[beg_idx:end_idx]
target = self.data[i + 1 : i + 1 + seq_len]
data_out = data.transpose(0, 1).contiguous().to(self.device)
target_out = target.transpose(0, 1).contiguous().to(self.device)
return data_out, target_out, seq_len
def get_fixlen_iter(self, start=0):
for i in range(start, self.data.size(0) - 1, self.bptt):
yield self.get_batch(i)
def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3):
max_len = self.bptt + max_deviation * std
i = start
while True:
bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0
bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std))))
data, target, seq_len = self.get_batch(i, bptt)
i += seq_len
yield data, target, seq_len
if i >= self.data.size(0) - 2:
break
def __iter__(self):
return self.get_fixlen_iter()
class LMShuffledIterator(object):
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None, shuffle=False):
"""
data -- list[LongTensor] -- there is no order among the LongTensors
"""
self.data = data
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self):
# index iterator
epoch_indices = np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data)))
# sentence iterator
for idx in epoch_indices:
yield self.data[idx]
@torch_only_method
def stream_iterator(self, sent_stream):
# streams for each data in the batch
streams = [None] * self.bsz
data = torch.LongTensor(self.bptt, self.bsz)
target = torch.LongTensor(self.bptt, self.bsz)
n_retain = 0
while True:
# data : [n_retain+bptt x bsz]
# target : [bptt x bsz]
data[n_retain:].fill_(-1)
target.fill_(-1)
valid_batch = True
for i in range(self.bsz):
n_filled = 0
try:
while n_filled < self.bptt:
if streams[i] is None or len(streams[i]) <= 1:
streams[i] = next(sent_stream)
# number of new tokens to fill in
n_new = min(len(streams[i]) - 1, self.bptt - n_filled)
# first n_retain tokens are retained from last batch
data[n_retain + n_filled : n_retain + n_filled + n_new, i] = streams[i][:n_new]
target[n_filled : n_filled + n_new, i] = streams[i][1 : n_new + 1]
streams[i] = streams[i][n_new:]
n_filled += n_new
except StopIteration:
valid_batch = False
break
if not valid_batch:
return
data_out = data.transpose(0, 1).contiguous().to(self.device)
target_out = target.transpose(0, 1).contiguous().to(self.device)
yield data_out, target_out, self.bptt
n_retain = min(data.size(0), self.ext_len)
if n_retain > 0:
data[:n_retain] = data[-n_retain:]
data.resize_(n_retain + self.bptt, data.size(1))
def __iter__(self):
# sent_stream is an iterator
sent_stream = self.get_sent_stream()
for batch in self.stream_iterator(sent_stream):
yield batch
class LMMultiFileIterator(LMShuffledIterator):
def __init__(self, paths, vocab, bsz, bptt, device="cpu", ext_len=None, shuffle=False):
self.paths = paths
self.vocab = vocab
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self, path):
sents = self.vocab.encode_file(path, add_double_eos=True)
if self.shuffle:
np.random.shuffle(sents)
sent_stream = iter(sents)
return sent_stream
def __iter__(self):
if self.shuffle:
np.random.shuffle(self.paths)
for path in self.paths:
# sent_stream is an iterator
sent_stream = self.get_sent_stream(path)
for batch in self.stream_iterator(sent_stream):
yield batch
class TransfoXLCorpus(object):
@classmethod
@torch_only_method
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a pre-processed corpus.
"""
vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
is_local = os.path.isdir(pretrained_model_name_or_path)
# redirect to the cache, if necessary
try:
resolved_corpus_file = cached_file(pretrained_model_name_or_path, CORPUS_NAME, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
f"Corpus '{pretrained_model_name_or_path}' was not found in corpus list"
f" ({', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys())}. We assumed '{pretrained_model_name_or_path}'"
f" was a path or url but couldn't find files {CORPUS_NAME} at this path or url."
)
return None
if is_local:
logger.info(f"loading corpus file {resolved_corpus_file}")
else:
logger.info(f"loading corpus file {CORPUS_NAME} from cache at {resolved_corpus_file}")
# Instantiate tokenizer.
corpus = cls(*inputs, **kwargs)
corpus_dict = torch.load(resolved_corpus_file)
for key, value in corpus_dict.items():
corpus.__dict__[key] = value
corpus.vocab = vocab
if corpus.train is not None:
corpus.train = torch.tensor(corpus.train, dtype=torch.long)
if corpus.valid is not None:
corpus.valid = torch.tensor(corpus.valid, dtype=torch.long)
if corpus.test is not None:
corpus.test = torch.tensor(corpus.test, dtype=torch.long)
return corpus
def __init__(self, *args, **kwargs):
self.vocab = TransfoXLTokenizer(*args, **kwargs)
self.dataset = None
self.train = None
self.valid = None
self.test = None
def build_corpus(self, path, dataset):
self.dataset = dataset
if self.dataset in ["ptb", "wt2", "enwik8", "text8"]:
self.vocab.count_file(os.path.join(path, "train.txt"))
self.vocab.count_file(os.path.join(path, "valid.txt"))
self.vocab.count_file(os.path.join(path, "test.txt"))
elif self.dataset == "wt103":
self.vocab.count_file(os.path.join(path, "train.txt"))
elif self.dataset == "lm1b":
train_path_pattern = os.path.join(
path,
"1-billion-word-language-modeling-benchmark-r13output",
"training-monolingual.tokenized.shuffled",
"news.en-*",
)
train_paths = glob.glob(train_path_pattern)
# the vocab will load from file when build_vocab() is called
self.vocab.build_vocab()
if self.dataset in ["ptb", "wt2", "wt103"]:
self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True)
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True)
elif self.dataset in ["enwik8", "text8"]:
self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True, add_eos=False)
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True, add_eos=False)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True, add_eos=False)
elif self.dataset == "lm1b":
self.train = train_paths
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=False, add_double_eos=True)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=False, add_double_eos=True)
def get_iterator(self, split, *args, **kwargs):
if split == "train":
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
data_iter = LMOrderedIterator(self.train, *args, **kwargs)
elif self.dataset == "lm1b":
kwargs["shuffle"] = True
data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs)
elif split in ["valid", "test"]:
data = self.valid if split == "valid" else self.test
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
data_iter = LMOrderedIterator(data, *args, **kwargs)
elif self.dataset == "lm1b":
data_iter = LMShuffledIterator(data, *args, **kwargs)
else:
data_iter = None
raise ValueError(f"Split not recognized: {split}")
return data_iter
@torch_only_method
def get_lm_corpus(datadir, dataset):
fn = os.path.join(datadir, "cache.pt")
fn_pickle = os.path.join(datadir, "cache.pkl")
if os.path.exists(fn):
logger.info("Loading cached dataset...")
corpus = torch.load(fn_pickle)
elif os.path.exists(fn):
logger.info("Loading cached dataset from pickle...")
with open(fn, "rb") as fp:
corpus = pickle.load(fp)
else:
logger.info(f"Producing dataset {dataset}...")
kwargs = {}
if dataset in ["wt103", "wt2"]:
kwargs["special"] = ["<eos>"]
kwargs["lower_case"] = False
elif dataset == "ptb":
kwargs["special"] = ["<eos>"]
kwargs["lower_case"] = True
elif dataset == "lm1b":
kwargs["special"] = []
kwargs["lower_case"] = False
kwargs["vocab_file"] = os.path.join(datadir, "1b_word_vocab.txt")
elif dataset in ["enwik8", "text8"]:
pass
corpus = TransfoXLCorpus(datadir, dataset, **kwargs)
torch.save(corpus, fn)
return corpus
| # coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tokenization classes for Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl.
"""
import glob
import os
import pickle
import re
from collections import Counter, OrderedDict
from typing import List, Optional, Tuple
import numpy as np
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import (
cached_file,
is_sacremoses_available,
is_torch_available,
logging,
requires_backends,
torch_only_method,
)
if is_sacremoses_available():
import sacremoses as sm
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"pretrained_vocab_file": "vocab.pkl",
"pretrained_vocab_file_torch": "vocab.bin",
"vocab_file": "vocab.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"pretrained_vocab_file": {
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/vocab.pkl",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"transfo-xl-wt103": None,
}
PRETRAINED_CORPUS_ARCHIVE_MAP = {
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/corpus.bin",
}
CORPUS_NAME = "corpus.bin"
MATCH_NUMBERS = r"(?<=\d)[,.](?=\d)", r" @\g<0>@ "
DETOKENIZE_NUMBERS = [(r" @\,@ ", r","), (r" @\.@ ", r".")]
def tokenize_numbers(text_array: List[str]) -> List[str]:
"""
Splits large comma-separated numbers and floating point values. This is done by replacing commas with ' @,@ ' and
dots with ' @.@ '.
Args:
text_array: An already tokenized text as list.
Returns:
A list of strings with tokenized numbers.
Example:
```python
>>> tokenize_numbers(["$", "5,000", "1.73", "m"])
["$", "5", "@,@", "000", "1", "@.@", "73", "m"]
```"""
tokenized = []
for i in range(len(text_array)):
reg, sub = MATCH_NUMBERS
replaced = re.sub(reg, sub, text_array[i]).split()
tokenized.extend(replaced)
return tokenized
def detokenize_numbers(text: str) -> str:
"""
Inverts the operation of *tokenize_numbers*. This is replacing ' @,@ ' and ' @.@' by ',' and '.'.
Args:
text: A string where the number should be detokenized.
Returns:
A detokenized string.
Example:
```python
>>> detokenize_numbers("$ 5 @,@ 000 1 @.@ 73 m")
"$ 5,000 1.73 m"
```"""
for reg, sub in DETOKENIZE_NUMBERS:
text = re.sub(reg, sub, text)
return text
class TransfoXLTokenizer(PreTrainedTokenizer):
"""
Construct a Transformer-XL tokenizer adapted from Vocab class in [the original
code](https://github.com/kimiyoung/transformer-xl). The Transformer-XL tokenizer is a word-level tokenizer (no
sub-word tokenization).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
special (`List[str]`, *optional*):
A list of special tokens (to be treated by the original implementation of this tokenizer).
min_freq (`int`, *optional*, defaults to 0):
The minimum number of times a token has to be present in order to be kept in the vocabulary (otherwise it
will be mapped to `unk_token`).
max_size (`int`, *optional*):
The maximum size of the vocabulary. If left unset, it will default to the size of the vocabulary found
after excluding the tokens according to the `min_freq` rule.
lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
delimiter (`str`, *optional*):
The delimiter used between tokens.
vocab_file (`str`, *optional*):
File containing the vocabulary (from the original implementation).
pretrained_vocab_file (`str`, *optional*):
File containing the vocabulary as saved with the `save_pretrained()` method.
never_split (`List[str]`, *optional*):
List of tokens that should never be split. If no list is specified, will simply use the existing special
tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (`str`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<formula>"]`):
A list of additional special tokens (for the HuggingFace functionality).
language (`str`, *optional*, defaults to `"en"`):
The language of this tokenizer (used for mose preprocessing).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids"]
def __init__(
self,
special=None,
min_freq=0,
max_size=None,
lower_case=False,
delimiter=None,
vocab_file=None,
pretrained_vocab_file: str = None,
never_split=None,
unk_token="<unk>",
eos_token="<eos>",
additional_special_tokens=["<formula>"],
language="en",
**kwargs
):
super().__init__(
special=special,
min_freq=min_freq,
max_size=max_size,
lower_case=lower_case,
delimiter=delimiter,
vocab_file=vocab_file,
pretrained_vocab_file=pretrained_vocab_file,
never_split=never_split,
unk_token=unk_token,
eos_token=eos_token,
additional_special_tokens=additional_special_tokens,
language=language,
**kwargs,
)
requires_backends(self, "sacremoses")
if never_split is None:
never_split = self.all_special_tokens
if special is None:
special = []
self.counter = Counter()
self.special = special
self.min_freq = min_freq
self.max_size = max_size
self.lower_case = lower_case
self.delimiter = delimiter
self.vocab_file = vocab_file
self.never_split = never_split
self.punctuation_symbols = '!"#$%&()*+,-./\\:;<=>?@[\\]^_`{|}~'
self.punction_without_space_before_pattern = re.compile(rf"[^\s][{self.punctuation_symbols}]")
self.punctuation_with_space_around_pattern = self._compile_space_around_punctuation_pattern()
self.language = language
self.moses_punct_normalizer = sm.MosesPunctNormalizer(language)
self.moses_tokenizer = sm.MosesTokenizer(language)
self.moses_detokenizer = sm.MosesDetokenizer(language)
# This try... catch... is not beautiful but honestly this tokenizer was not made to be used
# in a library like ours, at all.
try:
vocab_dict = None
if pretrained_vocab_file is not None:
# Priority on pickle files (support PyTorch and TF)
with open(pretrained_vocab_file, "rb") as f:
vocab_dict = pickle.load(f)
# Loading a torch-saved transfo-xl vocab dict with pickle results in an integer
# Entering this if statement means that we tried to load a torch-saved file with pickle, and we failed.
# We therefore load it with torch, if it's available.
if type(vocab_dict) == int:
if not is_torch_available():
raise ImportError(
"Not trying to load dict with PyTorch as you need to install pytorch to load "
"from a PyTorch pretrained vocabulary, "
"or activate it with environment variables USE_TORCH=1 and USE_TF=0."
)
vocab_dict = torch.load(pretrained_vocab_file)
if vocab_dict is not None:
for key, value in vocab_dict.items():
if key not in self.__dict__:
self.__dict__[key] = value
elif vocab_file is not None:
self.build_vocab()
except Exception as e:
raise ValueError(
f"Unable to parse file {pretrained_vocab_file}. Unknown format. "
"If you tried to load a model saved through TransfoXLTokenizerFast, "
"please note they are not compatible."
) from e
if vocab_file is not None:
self.build_vocab()
@property
def do_lower_case(self):
return self.lower_case
def _compile_space_around_punctuation_pattern(self):
look_ahead_for_special_token = f"(?=[{self.punctuation_symbols}])"
look_ahead_to_match_all_except_space = r"(?=[^\s])"
return re.compile(r"" + look_ahead_for_special_token + look_ahead_to_match_all_except_space)
def count_file(self, path, verbose=False, add_eos=False):
if verbose:
logger.info(f"counting file {path} ...")
assert os.path.exists(path), f"Input file {path} not found"
sents = []
with open(path, "r", encoding="utf-8") as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
symbols = self.tokenize(line, add_eos=add_eos)
self.counter.update(symbols)
sents.append(symbols)
return sents
def count_sents(self, sents, verbose=False):
"""
sents : a list of sentences, each a list of tokenized symbols
"""
if verbose:
logger.info(f"counting {len(sents)} sents ...")
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
self.counter.update(symbols)
def _build_from_file(self, vocab_file):
self.idx2sym = []
self.sym2idx = OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as f:
for line in f:
symb = line.strip().split()[0]
self.add_symbol(symb)
if "<UNK>" in self.sym2idx:
self.unk_idx = self.sym2idx["<UNK>"]
elif "<unk>" in self.sym2idx:
self.unk_idx = self.sym2idx["<unk>"]
else:
raise ValueError("No <unknown> token in vocabulary")
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["pretrained_vocab_file"],
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "wb") as f:
pickle.dump(self.__dict__, f)
return (vocab_file,)
def build_vocab(self):
if self.vocab_file:
logger.info(f"building vocab from {self.vocab_file}")
self._build_from_file(self.vocab_file)
logger.info(f"final vocab size {len(self)}")
else:
logger.info(f"building vocab with min_freq={self.min_freq}, max_size={self.max_size}")
self.idx2sym = []
self.sym2idx = OrderedDict()
for sym in self.special:
self.add_special(sym)
for sym, cnt in self.counter.most_common(self.max_size):
if cnt < self.min_freq:
break
self.add_symbol(sym)
logger.info(f"final vocab size {len(self)} from {len(self.counter)} unique tokens")
@torch_only_method
def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False):
if verbose:
logger.info(f"encoding file {path} ...")
assert os.path.exists(path), f"Output file {path} not found"
encoded = []
with open(path, "r", encoding="utf-8") as f:
for idx, line in enumerate(f):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos)
encoded.append(self.convert_to_tensor(symbols))
if ordered:
encoded = torch.cat(encoded)
return encoded
@torch_only_method
def encode_sents(self, sents, ordered=False, verbose=False):
if verbose:
logger.info(f"encoding {len(sents)} sents ...")
encoded = []
for idx, symbols in enumerate(sents):
if verbose and idx > 0 and idx % 500000 == 0:
logger.info(f" line {idx}")
encoded.append(self.convert_to_tensor(symbols))
if ordered:
encoded = torch.cat(encoded)
return encoded
def add_special(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
setattr(self, f"{sym.strip('<>')}_idx", self.sym2idx[sym])
def add_symbol(self, sym):
if sym not in self.sym2idx:
self.idx2sym.append(sym)
self.sym2idx[sym] = len(self.idx2sym) - 1
def move_added_token(self, token: str, target_idx: int):
"""
Moves an added token to a specific position in the vocab. This method should be used when resizing an embedding
layer other than the last one in the `AdaptiveEmbedding` in order to move the token in the tokenizer from the
default position (at the very end) to the desired one.
Args:
token: The token to move to a specific position in the vocab.
target_idx: The position where the token should be moved to.
"""
assert token in self.added_tokens_encoder, "Token which should be moved has to be an added token"
assert token not in self.idx2sym, "Token which should be moved is already in vocab"
# Insert sym into vocab
self.idx2sym.insert(target_idx, token)
self.sym2idx[token] = target_idx
# Shift following indices in sym2idx
for idx in range(target_idx + 1, len(self.idx2sym)):
current_sym = self.idx2sym[idx]
self.sym2idx[current_sym] = idx
# Delete token from added_tokens
old_index = self.added_tokens_encoder[token]
del self.added_tokens_decoder[old_index]
del self.added_tokens_encoder[token]
def moses_punct_norm(self, text):
return self.moses_punct_normalizer.normalize(text)
def moses_tokenize(self, text):
return self.moses_tokenizer.tokenize(
text, aggressive_dash_splits=True, return_str=False, escape=False, protected_patterns=self.never_split
)
def moses_pipeline(self, text: str) -> List[str]:
"""
Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with
*aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large
comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000
people are 1 @.@ 80m tall"
Args:
text: Text to be tokenize
Returns:
A list of tokenized string
Example:
```python
>>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl-wt103")
>>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall")
['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall']
```"""
text = self.moses_punct_norm(text)
text = self.moses_tokenize(text)
text = tokenize_numbers(text)
return text
def _convert_id_to_token(self, idx):
"""Converts an id in a token (BPE) using the vocab."""
assert 0 <= idx < len(self), f"Index {idx} out of vocabulary range"
return self.idx2sym[idx]
def _convert_token_to_id(self, sym):
"""Converts a token (str) in an id using the vocab."""
if sym in self.sym2idx:
return self.sym2idx[sym]
else:
# logger.info(f'encounter unk {sym}')
# assert '<eos>' not in sym
if hasattr(self, "unk_idx"):
return self.sym2idx.get(sym, self.unk_idx)
# Backward compatibility with pre-trained models
elif "<unk>" in self.sym2idx:
return self.sym2idx["<unk>"]
elif "<UNK>" in self.sym2idx:
return self.sym2idx["<UNK>"]
else:
raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement")
def convert_tokens_to_string(self, tokens):
"""
Converts a sequence of tokens (string) in a single string. Additionally, the split numbers are converted back
into it's original form.
"""
out_string = self.moses_detokenizer.detokenize(tokens)
return detokenize_numbers(out_string).strip()
@torch_only_method
def convert_to_tensor(self, symbols):
return torch.LongTensor(self.convert_tokens_to_ids(symbols))
@property
def vocab_size(self):
return len(self.idx2sym)
def get_vocab(self):
return dict(self.sym2idx, **self.added_tokens_encoder)
def _tokenize(self, line, add_eos=False, add_double_eos=False):
line = line.strip()
# convert to lower case
if self.lower_case:
line = line.lower()
# empty delimiter '' will evaluate False
if self.delimiter == "":
symbols = line
else:
symbols = self.moses_pipeline(line)
if add_double_eos: # lm1b
return ["<S>"] + symbols + ["<S>"]
elif add_eos:
return symbols + ["<eos>"]
else:
return symbols
class LMOrderedIterator(object):
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None):
"""
data -- LongTensor -- the LongTensor is strictly ordered
"""
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
# Work out how cleanly we can divide the dataset into bsz parts.
self.n_step = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, self.n_step * bsz)
# Evenly divide the data across the bsz batches.
self.data = data.view(bsz, -1).t().contiguous().to(device)
# Number of mini-batches
self.n_batch = (self.n_step + self.bptt - 1) // self.bptt
def get_batch(self, i, bptt=None):
if bptt is None:
bptt = self.bptt
seq_len = min(bptt, self.data.size(0) - 1 - i)
end_idx = i + seq_len
beg_idx = max(0, i - self.ext_len)
data = self.data[beg_idx:end_idx]
target = self.data[i + 1 : i + 1 + seq_len]
data_out = data.transpose(0, 1).contiguous().to(self.device)
target_out = target.transpose(0, 1).contiguous().to(self.device)
return data_out, target_out, seq_len
def get_fixlen_iter(self, start=0):
for i in range(start, self.data.size(0) - 1, self.bptt):
yield self.get_batch(i)
def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3):
max_len = self.bptt + max_deviation * std
i = start
while True:
bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0
bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std))))
data, target, seq_len = self.get_batch(i, bptt)
i += seq_len
yield data, target, seq_len
if i >= self.data.size(0) - 2:
break
def __iter__(self):
return self.get_fixlen_iter()
class LMShuffledIterator(object):
def __init__(self, data, bsz, bptt, device="cpu", ext_len=None, shuffle=False):
"""
data -- list[LongTensor] -- there is no order among the LongTensors
"""
self.data = data
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self):
# index iterator
epoch_indices = np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data)))
# sentence iterator
for idx in epoch_indices:
yield self.data[idx]
@torch_only_method
def stream_iterator(self, sent_stream):
# streams for each data in the batch
streams = [None] * self.bsz
data = torch.LongTensor(self.bptt, self.bsz)
target = torch.LongTensor(self.bptt, self.bsz)
n_retain = 0
while True:
# data : [n_retain+bptt x bsz]
# target : [bptt x bsz]
data[n_retain:].fill_(-1)
target.fill_(-1)
valid_batch = True
for i in range(self.bsz):
n_filled = 0
try:
while n_filled < self.bptt:
if streams[i] is None or len(streams[i]) <= 1:
streams[i] = next(sent_stream)
# number of new tokens to fill in
n_new = min(len(streams[i]) - 1, self.bptt - n_filled)
# first n_retain tokens are retained from last batch
data[n_retain + n_filled : n_retain + n_filled + n_new, i] = streams[i][:n_new]
target[n_filled : n_filled + n_new, i] = streams[i][1 : n_new + 1]
streams[i] = streams[i][n_new:]
n_filled += n_new
except StopIteration:
valid_batch = False
break
if not valid_batch:
return
data_out = data.transpose(0, 1).contiguous().to(self.device)
target_out = target.transpose(0, 1).contiguous().to(self.device)
yield data_out, target_out, self.bptt
n_retain = min(data.size(0), self.ext_len)
if n_retain > 0:
data[:n_retain] = data[-n_retain:]
data.resize_(n_retain + self.bptt, data.size(1))
def __iter__(self):
# sent_stream is an iterator
sent_stream = self.get_sent_stream()
for batch in self.stream_iterator(sent_stream):
yield batch
class LMMultiFileIterator(LMShuffledIterator):
def __init__(self, paths, vocab, bsz, bptt, device="cpu", ext_len=None, shuffle=False):
self.paths = paths
self.vocab = vocab
self.bsz = bsz
self.bptt = bptt
self.ext_len = ext_len if ext_len is not None else 0
self.device = device
self.shuffle = shuffle
def get_sent_stream(self, path):
sents = self.vocab.encode_file(path, add_double_eos=True)
if self.shuffle:
np.random.shuffle(sents)
sent_stream = iter(sents)
return sent_stream
def __iter__(self):
if self.shuffle:
np.random.shuffle(self.paths)
for path in self.paths:
# sent_stream is an iterator
sent_stream = self.get_sent_stream(path)
for batch in self.stream_iterator(sent_stream):
yield batch
class TransfoXLCorpus(object):
@classmethod
@torch_only_method
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a pre-processed corpus.
"""
vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
is_local = os.path.isdir(pretrained_model_name_or_path)
# redirect to the cache, if necessary
try:
resolved_corpus_file = cached_file(pretrained_model_name_or_path, CORPUS_NAME, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
f"Corpus '{pretrained_model_name_or_path}' was not found in corpus list"
f" ({', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys())}. We assumed '{pretrained_model_name_or_path}'"
f" was a path or url but couldn't find files {CORPUS_NAME} at this path or url."
)
return None
if is_local:
logger.info(f"loading corpus file {resolved_corpus_file}")
else:
logger.info(f"loading corpus file {CORPUS_NAME} from cache at {resolved_corpus_file}")
# Instantiate tokenizer.
corpus = cls(*inputs, **kwargs)
corpus_dict = torch.load(resolved_corpus_file)
for key, value in corpus_dict.items():
corpus.__dict__[key] = value
corpus.vocab = vocab
if corpus.train is not None:
corpus.train = torch.tensor(corpus.train, dtype=torch.long)
if corpus.valid is not None:
corpus.valid = torch.tensor(corpus.valid, dtype=torch.long)
if corpus.test is not None:
corpus.test = torch.tensor(corpus.test, dtype=torch.long)
return corpus
def __init__(self, *args, **kwargs):
self.vocab = TransfoXLTokenizer(*args, **kwargs)
self.dataset = None
self.train = None
self.valid = None
self.test = None
def build_corpus(self, path, dataset):
self.dataset = dataset
if self.dataset in ["ptb", "wt2", "enwik8", "text8"]:
self.vocab.count_file(os.path.join(path, "train.txt"))
self.vocab.count_file(os.path.join(path, "valid.txt"))
self.vocab.count_file(os.path.join(path, "test.txt"))
elif self.dataset == "wt103":
self.vocab.count_file(os.path.join(path, "train.txt"))
elif self.dataset == "lm1b":
train_path_pattern = os.path.join(
path,
"1-billion-word-language-modeling-benchmark-r13output",
"training-monolingual.tokenized.shuffled",
"news.en-*",
)
train_paths = glob.glob(train_path_pattern)
# the vocab will load from file when build_vocab() is called
self.vocab.build_vocab()
if self.dataset in ["ptb", "wt2", "wt103"]:
self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True)
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True)
elif self.dataset in ["enwik8", "text8"]:
self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True, add_eos=False)
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True, add_eos=False)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True, add_eos=False)
elif self.dataset == "lm1b":
self.train = train_paths
self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=False, add_double_eos=True)
self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=False, add_double_eos=True)
def get_iterator(self, split, *args, **kwargs):
if split == "train":
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
data_iter = LMOrderedIterator(self.train, *args, **kwargs)
elif self.dataset == "lm1b":
kwargs["shuffle"] = True
data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs)
elif split in ["valid", "test"]:
data = self.valid if split == "valid" else self.test
if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]:
data_iter = LMOrderedIterator(data, *args, **kwargs)
elif self.dataset == "lm1b":
data_iter = LMShuffledIterator(data, *args, **kwargs)
else:
data_iter = None
raise ValueError(f"Split not recognized: {split}")
return data_iter
@torch_only_method
def get_lm_corpus(datadir, dataset):
fn = os.path.join(datadir, "cache.pt")
fn_pickle = os.path.join(datadir, "cache.pkl")
if os.path.exists(fn):
logger.info("Loading cached dataset...")
corpus = torch.load(fn_pickle)
elif os.path.exists(fn):
logger.info("Loading cached dataset from pickle...")
with open(fn, "rb") as fp:
corpus = pickle.load(fp)
else:
logger.info(f"Producing dataset {dataset}...")
kwargs = {}
if dataset in ["wt103", "wt2"]:
kwargs["special"] = ["<eos>"]
kwargs["lower_case"] = False
elif dataset == "ptb":
kwargs["special"] = ["<eos>"]
kwargs["lower_case"] = True
elif dataset == "lm1b":
kwargs["special"] = []
kwargs["lower_case"] = False
kwargs["vocab_file"] = os.path.join(datadir, "1b_word_vocab.txt")
elif dataset in ["enwik8", "text8"]:
pass
corpus = TransfoXLCorpus(datadir, dataset, **kwargs)
torch.save(corpus, fn)
return corpus
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/clipseg/test_processor_clipseg.py | # Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class CLIPSegProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
# fmt: off
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
image_processor_map = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711],
}
self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
with open(self.image_processor_file, "w", encoding="utf-8") as fp:
json.dump(image_processor_map, fp)
def get_tokenizer(self, **kwargs):
return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def get_image_processor(self, **kwargs):
return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True."""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_default(self):
tokenizer_slow = self.get_tokenizer()
tokenizer_fast = self.get_rust_tokenizer()
image_processor = self.get_image_processor()
processor_slow = CLIPSegProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
processor_slow.save_pretrained(self.tmpdirname)
processor_slow = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=False)
processor_fast = CLIPSegProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
processor_fast.save_pretrained(self.tmpdirname)
processor_fast = CLIPSegProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor, ViTImageProcessor)
self.assertIsInstance(processor_fast.image_processor, ViTImageProcessor)
def test_save_load_pretrained_additional_features(self):
processor = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = CLIPSegProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, ViTImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_feat_extract = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
| # Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class CLIPSegProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
# fmt: off
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
image_processor_map = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711],
}
self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
with open(self.image_processor_file, "w", encoding="utf-8") as fp:
json.dump(image_processor_map, fp)
def get_tokenizer(self, **kwargs):
return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def get_image_processor(self, **kwargs):
return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True."""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_default(self):
tokenizer_slow = self.get_tokenizer()
tokenizer_fast = self.get_rust_tokenizer()
image_processor = self.get_image_processor()
processor_slow = CLIPSegProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
processor_slow.save_pretrained(self.tmpdirname)
processor_slow = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=False)
processor_fast = CLIPSegProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
processor_fast.save_pretrained(self.tmpdirname)
processor_fast = CLIPSegProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor, ViTImageProcessor)
self.assertIsInstance(processor_fast.image_processor, ViTImageProcessor)
def test_save_load_pretrained_additional_features(self):
processor = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = CLIPSegProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, ViTImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_feat_extract = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/vit/modeling_tf_vit.py | # coding=utf-8
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 ViT model."""
import collections.abc
import math
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_vit import ViTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ViTConfig"
_FEAT_EXTRACTOR_FOR_DOC = "ViTImageProcessor"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
class TFViTEmbeddings(tf.keras.layers.Layer):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = TFViTPatchEmbeddings(config, name="patch_embeddings")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def build(self, input_shape: tf.TensorShape):
num_patches = self.patch_embeddings.num_patches
self.cls_token = self.add_weight(
shape=(1, 1, self.config.hidden_size),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="cls_token",
)
self.position_embeddings = self.add_weight(
shape=(1, num_patches + 1, self.config.hidden_size),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="position_embeddings",
)
super().build(input_shape)
def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
batch_size, seq_len, dim = shape_list(embeddings)
num_patches = seq_len - 1
_, num_positions, _ = shape_list(self.position_embeddings)
num_positions -= 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
patch_pos_embed = tf.image.resize(
images=tf.reshape(
patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
),
size=(h0, w0),
method="bicubic",
)
shape = shape_list(patch_pos_embed)
assert h0 == shape[-3] and w0 == shape[-2]
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
embeddings = self.patch_embeddings(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, training=training
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
embeddings = tf.concat((cls_tokens, embeddings), axis=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings, training=training)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class TFViTPatchEmbeddings(tf.keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.num_channels = num_channels
self.config = config
self.projection = tf.keras.layers.Conv2D(
filters=hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding="valid",
data_format="channels_last",
use_bias=True,
kernel_initializer=get_initializer(self.config.initializer_range),
bias_initializer="zeros",
name="projection",
)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if not interpolate_pos_encoding:
if tf.executing_eagerly():
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
projection = self.projection(pixel_values)
# Change the 2D spatial dimensions to a single temporal dimension.
# shape = (batch_size, num_patches, out_channels=embed_dim)
num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1))
return embeddings
class TFViTSelfAttention(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
mixed_key_layer = self.key(inputs=hidden_states)
mixed_value_layer = self.value(inputs=hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
return outputs
class TFViTSelfOutput(tf.keras.layers.Layer):
"""
The residual connection is defined in TFViTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
return hidden_states
class TFViTAttention(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFViTSelfAttention(config, name="attention")
self.dense_output = TFViTSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class TFViTIntermediate(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class TFViTOutput(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = hidden_states + input_tensor
return hidden_states
class TFViTLayer(tf.keras.layers.Layer):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFViTAttention(config, name="attention")
self.intermediate = TFViTIntermediate(config, name="intermediate")
self.vit_output = TFViTOutput(config, name="output")
self.layernorm_before = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="layernorm_before"
)
self.layernorm_after = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="layernorm_after"
)
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
# in ViT, layernorm is applied before self-attention
input_tensor=self.layernorm_before(inputs=hidden_states),
head_mask=head_mask,
output_attentions=output_attentions,
training=training,
)
attention_output = attention_outputs[0]
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(inputs=hidden_states)
intermediate_output = self.intermediate(hidden_states=layer_output)
# second residual connection is done here
layer_output = self.vit_output(
hidden_states=intermediate_output, input_tensor=hidden_states, training=training
)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
class TFViTEncoder(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.layer = [TFViTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=hidden_states,
head_mask=head_mask[i],
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
@keras_serializable
class TFViTMainLayer(tf.keras.layers.Layer):
config_class = ViTConfig
def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFViTEmbeddings(config, name="embeddings")
self.encoder = TFViTEncoder(config, name="encoder")
self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.pooler = TFViTPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self) -> tf.keras.layers.Layer:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
pixel_values: Optional[TFModelInputType] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
training=training,
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(inputs=sequence_output)
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class TFViTPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTConfig
base_model_prefix = "vit"
main_input_name = "pixel_values"
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
VISION_DUMMY_INPUTS = tf.random.uniform(
shape=(3, self.config.num_channels, self.config.image_size, self.config.image_size), dtype=tf.float32
)
return {"pixel_values": tf.constant(VISION_DUMMY_INPUTS)}
@tf.function(
input_signature=[
{
"pixel_values": tf.TensorSpec((None, None, None, None), tf.float32, name="pixel_values"),
}
]
)
def serving(self, inputs):
"""
Method used for serving the model.
Args:
inputs (`Dict[str, tf.Tensor]`):
The input of the saved model as a dictionary of tensors.
"""
output = self.call(inputs)
return self.serving_output(output)
VIT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
VIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`ViTImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
VIT_START_DOCSTRING,
)
class TFViTModel(TFViTPreTrainedModel):
def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.vit = TFViTMainLayer(config, add_pooling_layer=add_pooling_layer, name="vit")
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: Optional[TFModelInputType] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.vit(
pixel_values=pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
training=training,
)
return outputs
def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFBaseModelOutputWithPooling(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
hidden_states=hs,
attentions=attns,
)
class TFViTPooler(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
@add_start_docstrings(
"""
ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
<Tip>
Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
VIT_START_DOCSTRING,
)
class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: ViTConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.vit = TFViTMainLayer(config, add_pooling_layer=False, name="vit")
# Classifier head
self.classifier = tf.keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: Optional[TFModelInputType] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.vit(
pixel_values=pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(inputs=sequence_output[:, 0, :])
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
| # coding=utf-8
# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 ViT model."""
import collections.abc
import math
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_vit import ViTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ViTConfig"
_FEAT_EXTRACTOR_FOR_DOC = "ViTImageProcessor"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
class TFViTEmbeddings(tf.keras.layers.Layer):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = TFViTPatchEmbeddings(config, name="patch_embeddings")
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def build(self, input_shape: tf.TensorShape):
num_patches = self.patch_embeddings.num_patches
self.cls_token = self.add_weight(
shape=(1, 1, self.config.hidden_size),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="cls_token",
)
self.position_embeddings = self.add_weight(
shape=(1, num_patches + 1, self.config.hidden_size),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="position_embeddings",
)
super().build(input_shape)
def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
batch_size, seq_len, dim = shape_list(embeddings)
num_patches = seq_len - 1
_, num_positions, _ = shape_list(self.position_embeddings)
num_positions -= 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
patch_pos_embed = tf.image.resize(
images=tf.reshape(
patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
),
size=(h0, w0),
method="bicubic",
)
shape = shape_list(patch_pos_embed)
assert h0 == shape[-3] and w0 == shape[-2]
patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
embeddings = self.patch_embeddings(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, training=training
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
embeddings = tf.concat((cls_tokens, embeddings), axis=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings, training=training)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class TFViTPatchEmbeddings(tf.keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.num_channels = num_channels
self.config = config
self.projection = tf.keras.layers.Conv2D(
filters=hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding="valid",
data_format="channels_last",
use_bias=True,
kernel_initializer=get_initializer(self.config.initializer_range),
bias_initializer="zeros",
name="projection",
)
def call(
self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
) -> tf.Tensor:
batch_size, num_channels, height, width = shape_list(pixel_values)
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if not interpolate_pos_encoding:
if tf.executing_eagerly():
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
projection = self.projection(pixel_values)
# Change the 2D spatial dimensions to a single temporal dimension.
# shape = (batch_size, num_patches, out_channels=embed_dim)
num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1))
return embeddings
class TFViTSelfAttention(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = tf.keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
mixed_key_layer = self.key(inputs=hidden_states)
mixed_value_layer = self.value(inputs=hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
return outputs
class TFViTSelfOutput(tf.keras.layers.Layer):
"""
The residual connection is defined in TFViTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
return hidden_states
class TFViTAttention(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFViTSelfAttention(config, name="attention")
self.dense_output = TFViTSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class TFViTIntermediate(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class TFViTOutput(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob)
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = hidden_states + input_tensor
return hidden_states
class TFViTLayer(tf.keras.layers.Layer):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFViTAttention(config, name="attention")
self.intermediate = TFViTIntermediate(config, name="intermediate")
self.vit_output = TFViTOutput(config, name="output")
self.layernorm_before = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="layernorm_before"
)
self.layernorm_after = tf.keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="layernorm_after"
)
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
# in ViT, layernorm is applied before self-attention
input_tensor=self.layernorm_before(inputs=hidden_states),
head_mask=head_mask,
output_attentions=output_attentions,
training=training,
)
attention_output = attention_outputs[0]
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(inputs=hidden_states)
intermediate_output = self.intermediate(hidden_states=layer_output)
# second residual connection is done here
layer_output = self.vit_output(
hidden_states=intermediate_output, input_tensor=hidden_states, training=training
)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
class TFViTEncoder(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.layer = [TFViTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=hidden_states,
head_mask=head_mask[i],
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
@keras_serializable
class TFViTMainLayer(tf.keras.layers.Layer):
config_class = ViTConfig
def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFViTEmbeddings(config, name="embeddings")
self.encoder = TFViTEncoder(config, name="encoder")
self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.pooler = TFViTPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self) -> tf.keras.layers.Layer:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
pixel_values: Optional[TFModelInputType] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
training=training,
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(inputs=sequence_output)
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class TFViTPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTConfig
base_model_prefix = "vit"
main_input_name = "pixel_values"
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
VISION_DUMMY_INPUTS = tf.random.uniform(
shape=(3, self.config.num_channels, self.config.image_size, self.config.image_size), dtype=tf.float32
)
return {"pixel_values": tf.constant(VISION_DUMMY_INPUTS)}
@tf.function(
input_signature=[
{
"pixel_values": tf.TensorSpec((None, None, None, None), tf.float32, name="pixel_values"),
}
]
)
def serving(self, inputs):
"""
Method used for serving the model.
Args:
inputs (`Dict[str, tf.Tensor]`):
The input of the saved model as a dictionary of tensors.
"""
output = self.call(inputs)
return self.serving_output(output)
VIT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
VIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`ViTImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False``):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
VIT_START_DOCSTRING,
)
class TFViTModel(TFViTPreTrainedModel):
def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.vit = TFViTMainLayer(config, add_pooling_layer=add_pooling_layer, name="vit")
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: Optional[TFModelInputType] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.vit(
pixel_values=pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
training=training,
)
return outputs
def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFBaseModelOutputWithPooling(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
hidden_states=hs,
attentions=attns,
)
class TFViTPooler(tf.keras.layers.Layer):
def __init__(self, config: ViTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
@add_start_docstrings(
"""
ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
<Tip>
Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
VIT_START_DOCSTRING,
)
class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: ViTConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.vit = TFViTMainLayer(config, add_pooling_layer=False, name="vit")
# Classifier head
self.classifier = tf.keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
@unpack_inputs
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
processor_class=_FEAT_EXTRACTOR_FOR_DOC,
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: Optional[TFModelInputType] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.vit(
pixel_values=pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(inputs=sequence_output[:, 0, :])
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/en/model_doc/deit.mdx | <!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DeiT
<Tip>
This is a recently introduced model so the API hasn't been tested extensively. There may be some bugs or slight
breaking changes to fix it in the future. If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title).
</Tip>
## Overview
The DeiT model was proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, Hervé Jégou. The [Vision Transformer (ViT)](vit) introduced in [Dosovitskiy et al., 2020](https://arxiv.org/abs/2010.11929) has shown that one can match or even outperform existing convolutional neural
networks using a Transformer encoder (BERT-like). However, the ViT models introduced in that paper required training on
expensive infrastructure for multiple weeks, using external data. DeiT (data-efficient image transformers) are more
efficiently trained transformers for image classification, requiring far less data and far less computing resources
compared to the original ViT models.
The abstract from the paper is the following:
*Recently, neural networks purely based on attention were shown to address image understanding tasks such as image
classification. However, these visual transformers are pre-trained with hundreds of millions of images using an
expensive infrastructure, thereby limiting their adoption. In this work, we produce a competitive convolution-free
transformer by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision
transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop evaluation) on ImageNet with no external
data. More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation
token ensuring that the student learns from the teacher through attention. We show the interest of this token-based
distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets
for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and
models.*
Tips:
- Compared to ViT, DeiT models use a so-called distillation token to effectively learn from a teacher (which, in the
DeiT paper, is a ResNet like-model). The distillation token is learned through backpropagation, by interacting with
the class ([CLS]) and patch tokens through the self-attention layers.
- There are 2 ways to fine-tune distilled models, either (1) in a classic way, by only placing a prediction head on top
of the final hidden state of the class token and not using the distillation signal, or (2) by placing both a
prediction head on top of the class token and on top of the distillation token. In that case, the [CLS] prediction
head is trained using regular cross-entropy between the prediction of the head and the ground-truth label, while the
distillation prediction head is trained using hard distillation (cross-entropy between the prediction of the
distillation head and the label predicted by the teacher). At inference time, one takes the average prediction
between both heads as final prediction. (2) is also called "fine-tuning with distillation", because one relies on a
teacher that has already been fine-tuned on the downstream dataset. In terms of models, (1) corresponds to
[`DeiTForImageClassification`] and (2) corresponds to
[`DeiTForImageClassificationWithTeacher`].
- Note that the authors also did try soft distillation for (2) (in which case the distillation prediction head is
trained using KL divergence to match the softmax output of the teacher), but hard distillation gave the best results.
- All released checkpoints were pre-trained and fine-tuned on ImageNet-1k only. No external data was used. This is in
contrast with the original ViT model, which used external data like the JFT-300M dataset/Imagenet-21k for
pre-training.
- The authors of DeiT also released more efficiently trained ViT models, which you can directly plug into
[`ViTModel`] or [`ViTForImageClassification`]. Techniques like data
augmentation, optimization, and regularization were used in order to simulate training on a much larger dataset
(while only using ImageNet-1k for pre-training). There are 4 variants available (in 3 different sizes):
*facebook/deit-tiny-patch16-224*, *facebook/deit-small-patch16-224*, *facebook/deit-base-patch16-224* and
*facebook/deit-base-patch16-384*. Note that one should use [`DeiTImageProcessor`] in order to
prepare images for the model.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The TensorFlow version of this model was added by [amyeroberts](https://huggingface.co/amyeroberts).
## DeiTConfig
[[autodoc]] DeiTConfig
## DeiTFeatureExtractor
[[autodoc]] DeiTFeatureExtractor
- __call__
## DeiTImageProcessor
[[autodoc]] DeiTImageProcessor
- preprocess
## DeiTModel
[[autodoc]] DeiTModel
- forward
## DeiTForMaskedImageModeling
[[autodoc]] DeiTForMaskedImageModeling
- forward
## DeiTForImageClassification
[[autodoc]] DeiTForImageClassification
- forward
## DeiTForImageClassificationWithTeacher
[[autodoc]] DeiTForImageClassificationWithTeacher
- forward
## TFDeiTModel
[[autodoc]] TFDeiTModel
- call
## TFDeiTForMaskedImageModeling
[[autodoc]] TFDeiTForMaskedImageModeling
- call
## TFDeiTForImageClassification
[[autodoc]] TFDeiTForImageClassification
- call
## TFDeiTForImageClassificationWithTeacher
[[autodoc]] TFDeiTForImageClassificationWithTeacher
- call
| <!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DeiT
<Tip>
This is a recently introduced model so the API hasn't been tested extensively. There may be some bugs or slight
breaking changes to fix it in the future. If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title).
</Tip>
## Overview
The DeiT model was proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, Hervé Jégou. The [Vision Transformer (ViT)](vit) introduced in [Dosovitskiy et al., 2020](https://arxiv.org/abs/2010.11929) has shown that one can match or even outperform existing convolutional neural
networks using a Transformer encoder (BERT-like). However, the ViT models introduced in that paper required training on
expensive infrastructure for multiple weeks, using external data. DeiT (data-efficient image transformers) are more
efficiently trained transformers for image classification, requiring far less data and far less computing resources
compared to the original ViT models.
The abstract from the paper is the following:
*Recently, neural networks purely based on attention were shown to address image understanding tasks such as image
classification. However, these visual transformers are pre-trained with hundreds of millions of images using an
expensive infrastructure, thereby limiting their adoption. In this work, we produce a competitive convolution-free
transformer by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision
transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop evaluation) on ImageNet with no external
data. More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation
token ensuring that the student learns from the teacher through attention. We show the interest of this token-based
distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets
for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and
models.*
Tips:
- Compared to ViT, DeiT models use a so-called distillation token to effectively learn from a teacher (which, in the
DeiT paper, is a ResNet like-model). The distillation token is learned through backpropagation, by interacting with
the class ([CLS]) and patch tokens through the self-attention layers.
- There are 2 ways to fine-tune distilled models, either (1) in a classic way, by only placing a prediction head on top
of the final hidden state of the class token and not using the distillation signal, or (2) by placing both a
prediction head on top of the class token and on top of the distillation token. In that case, the [CLS] prediction
head is trained using regular cross-entropy between the prediction of the head and the ground-truth label, while the
distillation prediction head is trained using hard distillation (cross-entropy between the prediction of the
distillation head and the label predicted by the teacher). At inference time, one takes the average prediction
between both heads as final prediction. (2) is also called "fine-tuning with distillation", because one relies on a
teacher that has already been fine-tuned on the downstream dataset. In terms of models, (1) corresponds to
[`DeiTForImageClassification`] and (2) corresponds to
[`DeiTForImageClassificationWithTeacher`].
- Note that the authors also did try soft distillation for (2) (in which case the distillation prediction head is
trained using KL divergence to match the softmax output of the teacher), but hard distillation gave the best results.
- All released checkpoints were pre-trained and fine-tuned on ImageNet-1k only. No external data was used. This is in
contrast with the original ViT model, which used external data like the JFT-300M dataset/Imagenet-21k for
pre-training.
- The authors of DeiT also released more efficiently trained ViT models, which you can directly plug into
[`ViTModel`] or [`ViTForImageClassification`]. Techniques like data
augmentation, optimization, and regularization were used in order to simulate training on a much larger dataset
(while only using ImageNet-1k for pre-training). There are 4 variants available (in 3 different sizes):
*facebook/deit-tiny-patch16-224*, *facebook/deit-small-patch16-224*, *facebook/deit-base-patch16-224* and
*facebook/deit-base-patch16-384*. Note that one should use [`DeiTImageProcessor`] in order to
prepare images for the model.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The TensorFlow version of this model was added by [amyeroberts](https://huggingface.co/amyeroberts).
## DeiTConfig
[[autodoc]] DeiTConfig
## DeiTFeatureExtractor
[[autodoc]] DeiTFeatureExtractor
- __call__
## DeiTImageProcessor
[[autodoc]] DeiTImageProcessor
- preprocess
## DeiTModel
[[autodoc]] DeiTModel
- forward
## DeiTForMaskedImageModeling
[[autodoc]] DeiTForMaskedImageModeling
- forward
## DeiTForImageClassification
[[autodoc]] DeiTForImageClassification
- forward
## DeiTForImageClassificationWithTeacher
[[autodoc]] DeiTForImageClassificationWithTeacher
- forward
## TFDeiTModel
[[autodoc]] TFDeiTModel
- call
## TFDeiTForMaskedImageModeling
[[autodoc]] TFDeiTForMaskedImageModeling
- call
## TFDeiTForImageClassification
[[autodoc]] TFDeiTForImageClassification
- call
## TFDeiTForImageClassificationWithTeacher
[[autodoc]] TFDeiTForImageClassificationWithTeacher
- call
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/flava/__init__.py | # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_flava": [
"FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
"FlavaConfig",
"FlavaImageCodebookConfig",
"FlavaImageConfig",
"FlavaMultimodalConfig",
"FlavaTextConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_flava"] = ["FlavaFeatureExtractor"]
_import_structure["image_processing_flava"] = ["FlavaImageProcessor"]
_import_structure["processing_flava"] = ["FlavaProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flava"] = [
"FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlavaForPreTraining",
"FlavaImageCodebook",
"FlavaImageModel",
"FlavaModel",
"FlavaMultimodalModel",
"FlavaPreTrainedModel",
"FlavaTextModel",
]
if TYPE_CHECKING:
from .configuration_flava import (
FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FlavaConfig,
FlavaImageCodebookConfig,
FlavaImageConfig,
FlavaMultimodalConfig,
FlavaTextConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_flava import FlavaFeatureExtractor
from .image_processing_flava import FlavaImageProcessor
from .processing_flava import FlavaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flava import (
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlavaForPreTraining,
FlavaImageCodebook,
FlavaImageModel,
FlavaModel,
FlavaMultimodalModel,
FlavaPreTrainedModel,
FlavaTextModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_flava": [
"FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP",
"FlavaConfig",
"FlavaImageCodebookConfig",
"FlavaImageConfig",
"FlavaMultimodalConfig",
"FlavaTextConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_flava"] = ["FlavaFeatureExtractor"]
_import_structure["image_processing_flava"] = ["FlavaImageProcessor"]
_import_structure["processing_flava"] = ["FlavaProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flava"] = [
"FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlavaForPreTraining",
"FlavaImageCodebook",
"FlavaImageModel",
"FlavaModel",
"FlavaMultimodalModel",
"FlavaPreTrainedModel",
"FlavaTextModel",
]
if TYPE_CHECKING:
from .configuration_flava import (
FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FlavaConfig,
FlavaImageCodebookConfig,
FlavaImageConfig,
FlavaMultimodalConfig,
FlavaTextConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_flava import FlavaFeatureExtractor
from .image_processing_flava import FlavaImageProcessor
from .processing_flava import FlavaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flava import (
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlavaForPreTraining,
FlavaImageCodebook,
FlavaImageModel,
FlavaModel,
FlavaMultimodalModel,
FlavaPreTrainedModel,
FlavaTextModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/wav2vec2/convert_wav2vec2_original_s3prl_checkpoint_to_pytorch.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Hubert checkpoint."""
import argparse
import torch
from transformers import (
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForAudioFrameClassification,
Wav2Vec2ForSequenceClassification,
Wav2Vec2ForXVector,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def convert_classification(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForSequenceClassification.from_pretrained(base_model_name, config=hf_config)
model.projector.weight.data = downstream_dict["projector.weight"]
model.projector.bias.data = downstream_dict["projector.bias"]
model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"]
model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"]
return model
def convert_diarization(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config)
model.classifier.weight.data = downstream_dict["model.linear.weight"]
model.classifier.bias.data = downstream_dict["model.linear.bias"]
return model
def convert_xvector(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForXVector.from_pretrained(base_model_name, config=hf_config)
model.projector.weight.data = downstream_dict["connector.weight"]
model.projector.bias.data = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel):
model.tdnn[i].kernel.weight.data = downstream_dict[
f"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
model.objective.weight.data = downstream_dict["objective.W"]
return model
@torch.no_grad()
def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path):
"""
Copy/paste/tweak model's weights to transformers design.
"""
checkpoint = torch.load(checkpoint_path, map_location="cpu")
downstream_dict = checkpoint["Downstream"]
hf_config = Wav2Vec2Config.from_pretrained(config_path)
hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
base_model_name, return_attention_mask=True, do_normalize=False
)
arch = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification"):
hf_model = convert_classification(base_model_name, hf_config, downstream_dict)
elif arch.endswith("ForAudioFrameClassification"):
hf_model = convert_diarization(base_model_name, hf_config, downstream_dict)
elif arch.endswith("ForXVector"):
hf_model = convert_xvector(base_model_name, hf_config, downstream_dict)
else:
raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}")
if hf_config.use_weighted_layer_sum:
hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(model_dump_path)
hf_model.save_pretrained(model_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
args = parser.parse_args()
convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Hubert checkpoint."""
import argparse
import torch
from transformers import (
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForAudioFrameClassification,
Wav2Vec2ForSequenceClassification,
Wav2Vec2ForXVector,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def convert_classification(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForSequenceClassification.from_pretrained(base_model_name, config=hf_config)
model.projector.weight.data = downstream_dict["projector.weight"]
model.projector.bias.data = downstream_dict["projector.bias"]
model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"]
model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"]
return model
def convert_diarization(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config)
model.classifier.weight.data = downstream_dict["model.linear.weight"]
model.classifier.bias.data = downstream_dict["model.linear.bias"]
return model
def convert_xvector(base_model_name, hf_config, downstream_dict):
model = Wav2Vec2ForXVector.from_pretrained(base_model_name, config=hf_config)
model.projector.weight.data = downstream_dict["connector.weight"]
model.projector.bias.data = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel):
model.tdnn[i].kernel.weight.data = downstream_dict[
f"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
model.objective.weight.data = downstream_dict["objective.W"]
return model
@torch.no_grad()
def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path):
"""
Copy/paste/tweak model's weights to transformers design.
"""
checkpoint = torch.load(checkpoint_path, map_location="cpu")
downstream_dict = checkpoint["Downstream"]
hf_config = Wav2Vec2Config.from_pretrained(config_path)
hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
base_model_name, return_attention_mask=True, do_normalize=False
)
arch = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification"):
hf_model = convert_classification(base_model_name, hf_config, downstream_dict)
elif arch.endswith("ForAudioFrameClassification"):
hf_model = convert_diarization(base_model_name, hf_config, downstream_dict)
elif arch.endswith("ForXVector"):
hf_model = convert_xvector(base_model_name, hf_config, downstream_dict)
else:
raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}")
if hf_config.use_weighted_layer_sum:
hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(model_dump_path)
hf_model.save_pretrained(model_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
args = parser.parse_args()
convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/squeezebert/__init__.py | # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_squeezebert": [
"SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SqueezeBertConfig",
"SqueezeBertOnnxConfig",
],
"tokenization_squeezebert": ["SqueezeBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_squeezebert_fast"] = ["SqueezeBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_squeezebert"] = [
"SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"SqueezeBertForMaskedLM",
"SqueezeBertForMultipleChoice",
"SqueezeBertForQuestionAnswering",
"SqueezeBertForSequenceClassification",
"SqueezeBertForTokenClassification",
"SqueezeBertModel",
"SqueezeBertModule",
"SqueezeBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_squeezebert": [
"SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SqueezeBertConfig",
"SqueezeBertOnnxConfig",
],
"tokenization_squeezebert": ["SqueezeBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_squeezebert_fast"] = ["SqueezeBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_squeezebert"] = [
"SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"SqueezeBertForMaskedLM",
"SqueezeBertForMultipleChoice",
"SqueezeBertForQuestionAnswering",
"SqueezeBertForSequenceClassification",
"SqueezeBertForTokenClassification",
"SqueezeBertModel",
"SqueezeBertModule",
"SqueezeBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/fixtures/tests_samples/MRPC/train.csv | label,sentence1,sentence2
equivalent,He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .,""" The foodservice pie business does not fit our long-term growth strategy ."
not_equivalent,Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .,"His wife said he was "" 100 percent behind George Bush "" and looked forward to using his years of training in the war ."
not_equivalent,"The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .","The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent ."
equivalent,The AFL-CIO is waiting until October to decide if it will endorse a candidate .,The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .
not_equivalent,No dates have been set for the civil or the criminal trial .,"No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty ."
equivalent,Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed .,It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .
| label,sentence1,sentence2
equivalent,He said the foodservice pie business doesn 't fit the company 's long-term growth strategy .,""" The foodservice pie business does not fit our long-term growth strategy ."
not_equivalent,Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war .,"His wife said he was "" 100 percent behind George Bush "" and looked forward to using his years of training in the war ."
not_equivalent,"The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat .","The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent ."
equivalent,The AFL-CIO is waiting until October to decide if it will endorse a candidate .,The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .
not_equivalent,No dates have been set for the civil or the criminal trial .,"No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty ."
equivalent,Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed .,It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/deberta/tokenization_deberta.py | # coding=utf-8
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model DeBERTa."""
import json
import os
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/vocab.json",
"microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/vocab.json",
"microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/vocab.json",
"microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/vocab.json",
"microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/vocab.json",
"microsoft/deberta-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/vocab.json"
),
},
"merges_file": {
"microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/merges.txt",
"microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/merges.txt",
"microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/merges.txt",
"microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/merges.txt",
"microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/merges.txt",
"microsoft/deberta-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/merges.txt"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"microsoft/deberta-base": 512,
"microsoft/deberta-large": 512,
"microsoft/deberta-xlarge": 512,
"microsoft/deberta-base-mnli": 512,
"microsoft/deberta-large-mnli": 512,
"microsoft/deberta-xlarge-mnli": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"microsoft/deberta-base": {"do_lower_case": False},
"microsoft/deberta-large": {"do_lower_case": False},
}
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class DebertaTokenizer(PreTrainedTokenizer):
"""
Construct a DeBERTa tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```
>>> from transformers import DebertaTokenizer
>>> tokenizer = DebertaTokenizer.from_pretrained("microsoft/deberta-base")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (Deberta tokenizer detect beginning of words by the preceding space).
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial <|endoftext|> to the input. This allows to treat the leading word just as
any other word.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
bos_token="[CLS]",
eos_token="[SEP]",
sep_token="[SEP]",
cls_token="[CLS]",
unk_token="[UNK]",
pad_token="[PAD]",
mask_token="[MASK]",
add_prefix_space=False,
add_bos_token=False,
**kwargs
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
add_bos_token=add_bos_token,
**kwargs,
)
self.add_bos_token = add_bos_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
@property
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.vocab_size
def vocab_size(self):
return len(self.encoder)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A DeBERTa sequence has the following format:
- single sequence: [CLS] X [SEP]
- pair of sequences: [CLS] A [SEP] B [SEP]
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._build_conversation_input_ids
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
input_ids = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
if len(input_ids) > self.model_max_length:
input_ids = input_ids[-self.model_max_length :]
return input_ids
| # coding=utf-8
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model DeBERTa."""
import json
import os
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/vocab.json",
"microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/vocab.json",
"microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/vocab.json",
"microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/vocab.json",
"microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/vocab.json",
"microsoft/deberta-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/vocab.json"
),
},
"merges_file": {
"microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/merges.txt",
"microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/merges.txt",
"microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/merges.txt",
"microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/merges.txt",
"microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/merges.txt",
"microsoft/deberta-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/merges.txt"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"microsoft/deberta-base": 512,
"microsoft/deberta-large": 512,
"microsoft/deberta-xlarge": 512,
"microsoft/deberta-base-mnli": 512,
"microsoft/deberta-large-mnli": 512,
"microsoft/deberta-xlarge-mnli": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"microsoft/deberta-base": {"do_lower_case": False},
"microsoft/deberta-large": {"do_lower_case": False},
}
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class DebertaTokenizer(PreTrainedTokenizer):
"""
Construct a DeBERTa tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```
>>> from transformers import DebertaTokenizer
>>> tokenizer = DebertaTokenizer.from_pretrained("microsoft/deberta-base")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (Deberta tokenizer detect beginning of words by the preceding space).
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial <|endoftext|> to the input. This allows to treat the leading word just as
any other word.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
bos_token="[CLS]",
eos_token="[SEP]",
sep_token="[SEP]",
cls_token="[CLS]",
unk_token="[UNK]",
pad_token="[PAD]",
mask_token="[MASK]",
add_prefix_space=False,
add_bos_token=False,
**kwargs
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
add_bos_token=add_bos_token,
**kwargs,
)
self.add_bos_token = add_bos_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
@property
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.vocab_size
def vocab_size(self):
return len(self.encoder)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A DeBERTa sequence has the following format:
- single sequence: [CLS] X [SEP]
- pair of sequences: [CLS] A [SEP] B [SEP]
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._build_conversation_input_ids
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
input_ids = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
if len(input_ids) > self.model_max_length:
input_ids = input_ids[-self.model_max_length :]
return input_ids
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/opt/test_modeling_opt.py | # coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch OPT model. """
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import OPTConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
GPT2Tokenizer,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
)
def prepare_opt_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
}
class OPTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return OPTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = OPTModel(config=config).to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
@require_torch
class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(OPTModel, OPTForCausalLM, OPTForSequenceClassification, OPTForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else ()
is_encoder_decoder = False
fx_compatible = True
test_pruning = False
test_missing_keys = False
def setUp(self):
self.model_tester = OPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OPTConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (OPTModel,):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = OPTForCausalLM(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_opt_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = OPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_opt_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = OPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
class OPTModelIntegrationTests(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
with torch.no_grad():
output = model(input_ids=input_ids).last_hidden_state
expected_shape = torch.Size((1, 11, 512))
self.assertEqual(output.shape, expected_shape)
# expected value works for CPU, as well as GPU (with TF32 disabled)
expected_slice = torch.tensor(
[
[-0.28726277, -1.9241608, -0.3058734],
[-1.2737825, -0.13332152, -0.18766522],
[0.41159445, 0.1191957, -1.3107123],
],
device=torch_device,
)
assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5)
@require_torch
@slow
class OPTEmbeddingsTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.path_model = "facebook/opt-350m"
def test_load_model(self):
try:
_ = OPTForCausalLM.from_pretrained(self.path_model)
except BaseException:
self.fail("Failed loading model")
def test_logits(self):
model = OPTForCausalLM.from_pretrained(self.path_model)
model = model.eval()
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
inputs = tokenizer(prompts, return_tensors="pt", padding=True, add_special_tokens=False)
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(dim=-1)
# logits_meta = torch.load(self.path_logits_meta)
logits_meta = torch.Tensor(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
]
)
assert torch.allclose(logits, logits_meta, atol=1e-4)
@slow
class OPTGenerationTest(unittest.TestCase):
@property
def prompts(self):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def test_generation_pre_attn_layer_norm(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of New York, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_batch_generation(self):
model_id = "facebook/opt-350m"
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
model.to(torch_device)
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].to(torch_device)
outputs = model.generate(
input_ids=input_ids,
attention_mask=inputs["attention_mask"].to(torch_device),
)
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
"Today, I was in the middle of a conversation with a friend about the",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
def test_generation_post_attn_layer_norm(self):
model_id = "facebook/opt-350m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of San Francisco, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
@require_torch_gpu
def test_batched_nan_fp16(self):
# a bug manifested starting at models facebook/opt-1.3 and larger when running batched generations,
# therefore not using a tiny model, but the smallest model the problem was seen with which is opt-1.3b.
# please refer to this github thread: https://github.com/huggingface/transformers/pull/17437 for more details
model_name = "facebook/opt-1.3b"
tokenizer = GPT2Tokenizer.from_pretrained(model_name, use_fast=False, padding_side="left")
model = OPTForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).cuda()
model = model.eval()
batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt")
input_ids = batch["input_ids"].cuda()
attention_mask = batch["attention_mask"].cuda()
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
self.assertFalse(
torch.isnan(outputs.logits[0]).any().item()
) # the first logits could contain NaNs if it fails
@slow
def test_contrastive_search_opt(self):
article = (
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the "
"Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived "
"there?"
)
opt_tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-1.3b")
opt_model = OPTForCausalLM.from_pretrained("facebook/opt-1.3b").to(torch_device)
input_ids = opt_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
outputs = opt_model.generate(input_ids, penalty_alpha=0.6, top_k=5, max_length=256)
generated_text = opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)
self.assertListEqual(
generated_text,
[
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I "
"am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have "
"you lived there?\nStatue: A hundred years.\nHuman: And you’re from what country?\nStatue: The United "
"States of America.\nHuman: Why did you come to America?\nStatue: I came to escape the tyranny of my "
"country.\nHuman: What tyranny?\nStatue: They didn’t let me speak my mind.\nHuman: What was your "
"country?\nStatue: It was a country of immigrants.\nHuman: Who were the immigrants?\nStatue: They "
"were from all over the world.\nHuman: What language did they speak?\nStatue: French, Spanish, "
"Italian, German, English—you name it.\nHuman: And where did they come from?\nStatue: They came from "
"every country in the world.\nHuman: And you were born in what country?\nStatue: I was born in "
"France.\nHuman: And your parents were French?\nStatue"
],
)
| # coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch OPT model. """
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import OPTConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
GPT2Tokenizer,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
)
def prepare_opt_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
}
class OPTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return OPTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = OPTModel(config=config).to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
@require_torch
class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(OPTModel, OPTForCausalLM, OPTForSequenceClassification, OPTForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else ()
is_encoder_decoder = False
fx_compatible = True
test_pruning = False
test_missing_keys = False
def setUp(self):
self.model_tester = OPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OPTConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (OPTModel,):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = OPTForCausalLM(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_opt_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = OPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_opt_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = OPTForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
class OPTModelIntegrationTests(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
with torch.no_grad():
output = model(input_ids=input_ids).last_hidden_state
expected_shape = torch.Size((1, 11, 512))
self.assertEqual(output.shape, expected_shape)
# expected value works for CPU, as well as GPU (with TF32 disabled)
expected_slice = torch.tensor(
[
[-0.28726277, -1.9241608, -0.3058734],
[-1.2737825, -0.13332152, -0.18766522],
[0.41159445, 0.1191957, -1.3107123],
],
device=torch_device,
)
assert_tensors_close(output[0, :3, :3], expected_slice, atol=5e-5)
@require_torch
@slow
class OPTEmbeddingsTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.path_model = "facebook/opt-350m"
def test_load_model(self):
try:
_ = OPTForCausalLM.from_pretrained(self.path_model)
except BaseException:
self.fail("Failed loading model")
def test_logits(self):
model = OPTForCausalLM.from_pretrained(self.path_model)
model = model.eval()
tokenizer = GPT2Tokenizer.from_pretrained(self.path_model)
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
inputs = tokenizer(prompts, return_tensors="pt", padding=True, add_special_tokens=False)
logits = model(inputs.input_ids, attention_mask=inputs.attention_mask)[0].mean(dim=-1)
# logits_meta = torch.load(self.path_logits_meta)
logits_meta = torch.Tensor(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
]
)
assert torch.allclose(logits, logits_meta, atol=1e-4)
@slow
class OPTGenerationTest(unittest.TestCase):
@property
def prompts(self):
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def test_generation_pre_attn_layer_norm(self):
model_id = "facebook/opt-125m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of New York, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
def test_batch_generation(self):
model_id = "facebook/opt-350m"
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
model.to(torch_device)
tokenizer.padding_side = "left"
# use different length sentences to test batching
sentences = [
"Hello, my dog is a little",
"Today, I",
]
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].to(torch_device)
outputs = model.generate(
input_ids=input_ids,
attention_mask=inputs["attention_mask"].to(torch_device),
)
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
output_non_padded = model.generate(input_ids=inputs_non_padded)
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
expected_output_sentence = [
"Hello, my dog is a little bit of a dork.\nI'm a little bit",
"Today, I was in the middle of a conversation with a friend about the",
]
self.assertListEqual(expected_output_sentence, batch_out_sentence)
self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence])
def test_generation_post_attn_layer_norm(self):
model_id = "facebook/opt-350m"
EXPECTED_OUTPUTS = [
"Today is a beautiful day and I want to",
"In the city of San Francisco, the city",
"Paris is the capital of France and the capital",
"Computers and mobile phones have taken over the",
]
predicted_outputs = []
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = OPTForCausalLM.from_pretrained(model_id)
for prompt in self.prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=10)
generated_string = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
predicted_outputs += generated_string
self.assertListEqual(predicted_outputs, EXPECTED_OUTPUTS)
@require_torch_gpu
def test_batched_nan_fp16(self):
# a bug manifested starting at models facebook/opt-1.3 and larger when running batched generations,
# therefore not using a tiny model, but the smallest model the problem was seen with which is opt-1.3b.
# please refer to this github thread: https://github.com/huggingface/transformers/pull/17437 for more details
model_name = "facebook/opt-1.3b"
tokenizer = GPT2Tokenizer.from_pretrained(model_name, use_fast=False, padding_side="left")
model = OPTForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).cuda()
model = model.eval()
batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt")
input_ids = batch["input_ids"].cuda()
attention_mask = batch["attention_mask"].cuda()
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
self.assertFalse(
torch.isnan(outputs.logits[0]).any().item()
) # the first logits could contain NaNs if it fails
@slow
def test_contrastive_search_opt(self):
article = (
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the "
"Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived "
"there?"
)
opt_tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-1.3b")
opt_model = OPTForCausalLM.from_pretrained("facebook/opt-1.3b").to(torch_device)
input_ids = opt_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
outputs = opt_model.generate(input_ids, penalty_alpha=0.6, top_k=5, max_length=256)
generated_text = opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)
self.assertListEqual(
generated_text,
[
"A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I "
"am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have "
"you lived there?\nStatue: A hundred years.\nHuman: And you’re from what country?\nStatue: The United "
"States of America.\nHuman: Why did you come to America?\nStatue: I came to escape the tyranny of my "
"country.\nHuman: What tyranny?\nStatue: They didn’t let me speak my mind.\nHuman: What was your "
"country?\nStatue: It was a country of immigrants.\nHuman: Who were the immigrants?\nStatue: They "
"were from all over the world.\nHuman: What language did they speak?\nStatue: French, Spanish, "
"Italian, German, English—you name it.\nHuman: And where did they come from?\nStatue: They came from "
"every country in the world.\nHuman: And you were born in what country?\nStatue: I was born in "
"France.\nHuman: And your parents were French?\nStatue"
],
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/utils/test_activations.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class TestActivations(unittest.TestCase):
def test_gelu_versions(self):
x = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100])
torch_builtin = get_activation("gelu")
self.assertTrue(torch.allclose(gelu_python(x), torch_builtin(x)))
self.assertFalse(torch.allclose(gelu_python(x), gelu_new(x)))
def test_gelu_10(self):
x = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100])
torch_builtin = get_activation("gelu")
gelu10 = get_activation("gelu_10")
y_gelu = torch_builtin(x)
y_gelu_10 = gelu10(x)
clipped_mask = torch.where(y_gelu_10 < 10.0, 1, 0)
self.assertTrue(torch.max(y_gelu_10).item() == 10.0)
self.assertTrue(torch.allclose(y_gelu * clipped_mask, y_gelu_10 * clipped_mask))
def test_get_activation(self):
get_activation("gelu")
get_activation("gelu_10")
get_activation("gelu_fast")
get_activation("gelu_new")
get_activation("gelu_python")
get_activation("linear")
get_activation("mish")
get_activation("quick_gelu")
get_activation("relu")
get_activation("sigmoid")
get_activation("silu")
get_activation("swish")
get_activation("tanh")
with self.assertRaises(KeyError):
get_activation("bogus")
with self.assertRaises(KeyError):
get_activation(None)
def test_activations_are_distinct_objects(self):
act1 = get_activation("gelu")
act1.a = 1
act2 = get_activation("gelu")
self.assertEqual(act1.a, 1)
with self.assertRaises(AttributeError):
_ = act2.a
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class TestActivations(unittest.TestCase):
def test_gelu_versions(self):
x = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100])
torch_builtin = get_activation("gelu")
self.assertTrue(torch.allclose(gelu_python(x), torch_builtin(x)))
self.assertFalse(torch.allclose(gelu_python(x), gelu_new(x)))
def test_gelu_10(self):
x = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100])
torch_builtin = get_activation("gelu")
gelu10 = get_activation("gelu_10")
y_gelu = torch_builtin(x)
y_gelu_10 = gelu10(x)
clipped_mask = torch.where(y_gelu_10 < 10.0, 1, 0)
self.assertTrue(torch.max(y_gelu_10).item() == 10.0)
self.assertTrue(torch.allclose(y_gelu * clipped_mask, y_gelu_10 * clipped_mask))
def test_get_activation(self):
get_activation("gelu")
get_activation("gelu_10")
get_activation("gelu_fast")
get_activation("gelu_new")
get_activation("gelu_python")
get_activation("linear")
get_activation("mish")
get_activation("quick_gelu")
get_activation("relu")
get_activation("sigmoid")
get_activation("silu")
get_activation("swish")
get_activation("tanh")
with self.assertRaises(KeyError):
get_activation("bogus")
with self.assertRaises(KeyError):
get_activation(None)
def test_activations_are_distinct_objects(self):
act1 = get_activation("gelu")
act1.a = 1
act2 = get_activation("gelu")
self.assertEqual(act1.a, 1)
with self.assertRaises(AttributeError):
_ = act2.a
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/flava/test_feature_extraction_flava.py | # coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
import PIL
from transformers import FlavaFeatureExtractor
from transformers.image_utils import PILImageResampling
from transformers.models.flava.image_processing_flava import (
FLAVA_CODEBOOK_MEAN,
FLAVA_CODEBOOK_STD,
FLAVA_IMAGE_MEAN,
FLAVA_IMAGE_STD,
)
else:
FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None
class FlavaFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
resample=None,
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
image_mean=FLAVA_IMAGE_MEAN,
image_std=FLAVA_IMAGE_STD,
input_size_patches=14,
total_mask_patches=75,
mask_group_max_patches=None,
mask_group_min_patches=16,
mask_group_min_aspect_ratio=0.3,
mask_group_max_aspect_ratio=None,
codebook_do_resize=True,
codebook_size=None,
codebook_resample=None,
codebook_do_center_crop=True,
codebook_crop_size=None,
codebook_do_map_pixels=True,
codebook_do_normalize=True,
codebook_image_mean=FLAVA_CODEBOOK_MEAN,
codebook_image_std=FLAVA_CODEBOOK_STD,
):
size = size if size is not None else {"height": 224, "width": 224}
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.do_resize = do_resize
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.size = size
self.resample = resample if resample is not None else PILImageResampling.BICUBIC
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_std = codebook_image_std
def prepare_feat_extract_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"resample": self.resample,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"input_size_patches": self.input_size_patches,
"total_mask_patches": self.total_mask_patches,
"mask_group_max_patches": self.mask_group_max_patches,
"mask_group_min_patches": self.mask_group_min_patches,
"mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
"mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
"codebook_do_resize": self.codebook_do_resize,
"codebook_size": self.codebook_size,
"codebook_resample": self.codebook_resample,
"codebook_do_center_crop": self.codebook_do_center_crop,
"codebook_crop_size": self.codebook_crop_size,
"codebook_do_map_pixels": self.codebook_do_map_pixels,
"codebook_do_normalize": self.codebook_do_normalize,
"codebook_image_mean": self.codebook_image_mean,
"codebook_image_std": self.codebook_image_std,
}
def get_expected_image_size(self):
return (self.size["height"], self.size["width"])
def get_expected_mask_size(self):
return (
(self.input_size_patches, self.input_size_patches)
if not isinstance(self.input_size_patches, tuple)
else self.input_size_patches
)
def get_expected_codebook_image_size(self):
return (self.codebook_size["height"], self.codebook_size["width"])
@require_torch
@require_vision
class FlavaFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = FlavaFeatureExtractor if is_vision_available() else None
maxDiff = None
def setUp(self):
self.feature_extract_tester = FlavaFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_properties(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feature_extractor, "image_mean"))
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "resample"))
self.assertTrue(hasattr(feature_extractor, "crop_size"))
self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
self.assertTrue(hasattr(feature_extractor, "do_rescale"))
self.assertTrue(hasattr(feature_extractor, "rescale_factor"))
self.assertTrue(hasattr(feature_extractor, "masking_generator"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_resize"))
self.assertTrue(hasattr(feature_extractor, "codebook_size"))
self.assertTrue(hasattr(feature_extractor, "codebook_resample"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_center_crop"))
self.assertTrue(hasattr(feature_extractor, "codebook_crop_size"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_map_pixels"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_normalize"))
self.assertTrue(hasattr(feature_extractor, "codebook_image_mean"))
self.assertTrue(hasattr(feature_extractor, "codebook_image_std"))
def test_batch_feature(self):
pass
def test_call_pil(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, PIL.Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt")
# Test no bool masked pos
self.assertFalse("bool_masked_pos" in encoded_images)
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
# Test no bool masked pos
self.assertFalse("bool_masked_pos" in encoded_images)
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def _test_call_framework(self, instance_class, prepare_kwargs):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, **prepare_kwargs)
for image in image_inputs:
self.assertIsInstance(image, instance_class)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
encoded_images = feature_extractor(image_inputs, return_image_mask=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
expected_height, expected_width = self.feature_extract_tester.get_expected_mask_size()
self.assertEqual(
encoded_images.bool_masked_pos.shape,
(
self.feature_extract_tester.batch_size,
expected_height,
expected_width,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
# Test masking
encoded_images = feature_extractor(image_inputs, return_image_mask=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
expected_height, expected_width = self.feature_extract_tester.get_expected_mask_size()
self.assertEqual(
encoded_images.bool_masked_pos.shape,
(
self.feature_extract_tester.batch_size,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
def test_call_pytorch(self):
self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})
def test_masking(self):
# Initialize feature_extractor
random.seed(1234)
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_image_mask=True, return_tensors="pt")
self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)
def test_codebook_pixels(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, PIL.Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_codebook_image_size()
self.assertEqual(
encoded_images.codebook_pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_codebook_pixels=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_codebook_image_size()
self.assertEqual(
encoded_images.codebook_pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
| # coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
import PIL
from transformers import FlavaFeatureExtractor
from transformers.image_utils import PILImageResampling
from transformers.models.flava.image_processing_flava import (
FLAVA_CODEBOOK_MEAN,
FLAVA_CODEBOOK_STD,
FLAVA_IMAGE_MEAN,
FLAVA_IMAGE_STD,
)
else:
FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None
class FlavaFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
resample=None,
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
image_mean=FLAVA_IMAGE_MEAN,
image_std=FLAVA_IMAGE_STD,
input_size_patches=14,
total_mask_patches=75,
mask_group_max_patches=None,
mask_group_min_patches=16,
mask_group_min_aspect_ratio=0.3,
mask_group_max_aspect_ratio=None,
codebook_do_resize=True,
codebook_size=None,
codebook_resample=None,
codebook_do_center_crop=True,
codebook_crop_size=None,
codebook_do_map_pixels=True,
codebook_do_normalize=True,
codebook_image_mean=FLAVA_CODEBOOK_MEAN,
codebook_image_std=FLAVA_CODEBOOK_STD,
):
size = size if size is not None else {"height": 224, "width": 224}
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.do_resize = do_resize
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.size = size
self.resample = resample if resample is not None else PILImageResampling.BICUBIC
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_std = codebook_image_std
def prepare_feat_extract_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"resample": self.resample,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"input_size_patches": self.input_size_patches,
"total_mask_patches": self.total_mask_patches,
"mask_group_max_patches": self.mask_group_max_patches,
"mask_group_min_patches": self.mask_group_min_patches,
"mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
"mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
"codebook_do_resize": self.codebook_do_resize,
"codebook_size": self.codebook_size,
"codebook_resample": self.codebook_resample,
"codebook_do_center_crop": self.codebook_do_center_crop,
"codebook_crop_size": self.codebook_crop_size,
"codebook_do_map_pixels": self.codebook_do_map_pixels,
"codebook_do_normalize": self.codebook_do_normalize,
"codebook_image_mean": self.codebook_image_mean,
"codebook_image_std": self.codebook_image_std,
}
def get_expected_image_size(self):
return (self.size["height"], self.size["width"])
def get_expected_mask_size(self):
return (
(self.input_size_patches, self.input_size_patches)
if not isinstance(self.input_size_patches, tuple)
else self.input_size_patches
)
def get_expected_codebook_image_size(self):
return (self.codebook_size["height"], self.codebook_size["width"])
@require_torch
@require_vision
class FlavaFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = FlavaFeatureExtractor if is_vision_available() else None
maxDiff = None
def setUp(self):
self.feature_extract_tester = FlavaFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_properties(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feature_extractor, "image_mean"))
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "resample"))
self.assertTrue(hasattr(feature_extractor, "crop_size"))
self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
self.assertTrue(hasattr(feature_extractor, "do_rescale"))
self.assertTrue(hasattr(feature_extractor, "rescale_factor"))
self.assertTrue(hasattr(feature_extractor, "masking_generator"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_resize"))
self.assertTrue(hasattr(feature_extractor, "codebook_size"))
self.assertTrue(hasattr(feature_extractor, "codebook_resample"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_center_crop"))
self.assertTrue(hasattr(feature_extractor, "codebook_crop_size"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_map_pixels"))
self.assertTrue(hasattr(feature_extractor, "codebook_do_normalize"))
self.assertTrue(hasattr(feature_extractor, "codebook_image_mean"))
self.assertTrue(hasattr(feature_extractor, "codebook_image_std"))
def test_batch_feature(self):
pass
def test_call_pil(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, PIL.Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt")
# Test no bool masked pos
self.assertFalse("bool_masked_pos" in encoded_images)
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
# Test no bool masked pos
self.assertFalse("bool_masked_pos" in encoded_images)
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def _test_call_framework(self, instance_class, prepare_kwargs):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, **prepare_kwargs)
for image in image_inputs:
self.assertIsInstance(image, instance_class)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
encoded_images = feature_extractor(image_inputs, return_image_mask=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
expected_height, expected_width = self.feature_extract_tester.get_expected_mask_size()
self.assertEqual(
encoded_images.bool_masked_pos.shape,
(
self.feature_extract_tester.batch_size,
expected_height,
expected_width,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
# Test masking
encoded_images = feature_extractor(image_inputs, return_image_mask=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
self.assertEqual(
encoded_images.pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
expected_height, expected_width = self.feature_extract_tester.get_expected_mask_size()
self.assertEqual(
encoded_images.bool_masked_pos.shape,
(
self.feature_extract_tester.batch_size,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})
def test_call_pytorch(self):
self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})
def test_masking(self):
# Initialize feature_extractor
random.seed(1234)
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_image_mask=True, return_tensors="pt")
self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)
def test_codebook_pixels(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, PIL.Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_codebook_image_size()
self.assertEqual(
encoded_images.codebook_pixel_values.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_codebook_pixels=True, return_tensors="pt")
expected_height, expected_width = self.feature_extract_tester.get_expected_codebook_image_size()
self.assertEqual(
encoded_images.codebook_pixel_values.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/research_projects/bert-loses-patience/pabee/modeling_pabee_bert.py | # coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model with Patience-based Early Exit. """
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
logger = logging.getLogger(__name__)
class BertEncoderWithPabee(BertEncoder):
def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None):
layer_outputs = self.layer[current_layer](hidden_states, attention_mask, head_mask[current_layer])
hidden_states = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING,
)
class BertModelWithPabee(BertModel):
"""
The model can behave as an encoder (with only self-attention) as well
as a decoder, in which case a layer of cross-attention is added between
the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as a decoder the model needs to be initialized with the
:obj:`is_decoder` argument of the configuration set to :obj:`True`; an
:obj:`encoder_hidden_states` is expected as an input to the forward pass.
.. _`Attention is all you need`:
https://arxiv.org/abs/1706.03762
"""
def __init__(self, config):
super().__init__(config)
self.encoder = BertEncoderWithPabee(config)
self.init_weights()
self.patience = 0
self.inference_instances_num = 0
self.inference_layers_num = 0
self.regression_threshold = 0
def set_regression_threshold(self, threshold):
self.regression_threshold = threshold
def set_patience(self, patience):
self.patience = patience
def reset_stats(self):
self.inference_instances_num = 0
self.inference_layers_num = 0
def log_stats(self):
avg_inf_layers = self.inference_layers_num / self.inference_instances_num
message = (
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(message)
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_dropout=None,
output_layers=None,
regression=False,
):
r"""
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during pre-training.
This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = embedding_output
if self.training:
res = []
for i in range(self.config.num_hidden_layers):
encoder_outputs = self.encoder.adaptive_forward(
encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask
)
pooled_output = self.pooler(encoder_outputs)
logits = output_layers[i](output_dropout(pooled_output))
res.append(logits)
elif self.patience == 0: # Use all layers for inference
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
)
pooled_output = self.pooler(encoder_outputs[0])
res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)]
else:
patient_counter = 0
patient_result = None
calculated_layer_num = 0
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
encoder_outputs = self.encoder.adaptive_forward(
encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask
)
pooled_output = self.pooler(encoder_outputs)
logits = output_layers[i](pooled_output)
if regression:
labels = logits.detach()
if patient_result is not None:
patient_labels = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
patient_counter += 1
else:
patient_counter = 0
else:
labels = logits.detach().argmax(dim=1)
if patient_result is not None:
patient_labels = patient_result.detach().argmax(dim=1)
if (patient_result is not None) and torch.all(labels.eq(patient_labels)):
patient_counter += 1
else:
patient_counter = 0
patient_result = logits
if patient_counter == self.patience:
break
res = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"""Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
BERT_START_DOCSTRING,
)
class BertForSequenceClassificationWithPabee(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModelWithPabee(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifiers = nn.ModuleList(
[nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)]
)
self.init_weights()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss.
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
from transformers import BertTokenizer, BertForSequenceClassification
from pabee import BertForSequenceClassificationWithPabee
from torch import nn
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassificationWithPabee.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
logits = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_dropout=self.dropout,
output_layers=self.classifiers,
regression=self.num_labels == 1,
)
outputs = (logits[-1],)
if labels is not None:
total_loss = None
total_weights = 0
for ix, logits_item in enumerate(logits):
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits_item.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1))
if total_loss is None:
total_loss = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
outputs = (total_loss / total_weights,) + outputs
return outputs
| # coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model with Patience-based Early Exit. """
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
logger = logging.getLogger(__name__)
class BertEncoderWithPabee(BertEncoder):
def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None):
layer_outputs = self.layer[current_layer](hidden_states, attention_mask, head_mask[current_layer])
hidden_states = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING,
)
class BertModelWithPabee(BertModel):
"""
The model can behave as an encoder (with only self-attention) as well
as a decoder, in which case a layer of cross-attention is added between
the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as a decoder the model needs to be initialized with the
:obj:`is_decoder` argument of the configuration set to :obj:`True`; an
:obj:`encoder_hidden_states` is expected as an input to the forward pass.
.. _`Attention is all you need`:
https://arxiv.org/abs/1706.03762
"""
def __init__(self, config):
super().__init__(config)
self.encoder = BertEncoderWithPabee(config)
self.init_weights()
self.patience = 0
self.inference_instances_num = 0
self.inference_layers_num = 0
self.regression_threshold = 0
def set_regression_threshold(self, threshold):
self.regression_threshold = threshold
def set_patience(self, patience):
self.patience = patience
def reset_stats(self):
self.inference_instances_num = 0
self.inference_layers_num = 0
def log_stats(self):
avg_inf_layers = self.inference_layers_num / self.inference_instances_num
message = (
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(message)
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_dropout=None,
output_layers=None,
regression=False,
):
r"""
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during pre-training.
This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = embedding_output
if self.training:
res = []
for i in range(self.config.num_hidden_layers):
encoder_outputs = self.encoder.adaptive_forward(
encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask
)
pooled_output = self.pooler(encoder_outputs)
logits = output_layers[i](output_dropout(pooled_output))
res.append(logits)
elif self.patience == 0: # Use all layers for inference
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
)
pooled_output = self.pooler(encoder_outputs[0])
res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)]
else:
patient_counter = 0
patient_result = None
calculated_layer_num = 0
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
encoder_outputs = self.encoder.adaptive_forward(
encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask
)
pooled_output = self.pooler(encoder_outputs)
logits = output_layers[i](pooled_output)
if regression:
labels = logits.detach()
if patient_result is not None:
patient_labels = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
patient_counter += 1
else:
patient_counter = 0
else:
labels = logits.detach().argmax(dim=1)
if patient_result is not None:
patient_labels = patient_result.detach().argmax(dim=1)
if (patient_result is not None) and torch.all(labels.eq(patient_labels)):
patient_counter += 1
else:
patient_counter = 0
patient_result = logits
if patient_counter == self.patience:
break
res = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"""Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
BERT_START_DOCSTRING,
)
class BertForSequenceClassificationWithPabee(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModelWithPabee(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifiers = nn.ModuleList(
[nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)]
)
self.init_weights()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss.
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
from transformers import BertTokenizer, BertForSequenceClassification
from pabee import BertForSequenceClassificationWithPabee
from torch import nn
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassificationWithPabee.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
logits = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_dropout=self.dropout,
output_layers=self.classifiers,
regression=self.num_labels == 1,
)
outputs = (logits[-1],)
if labels is not None:
total_loss = None
total_weights = 0
for ix, logits_item in enumerate(logits):
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits_item.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1))
if total_loss is None:
total_loss = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
outputs = (total_loss / total_weights,) + outputs
return outputs
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/opt/modeling_flax_opt.py | # coding=utf-8
# Copyright 2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax OPT model."""
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxMaskedLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, logging
from .configuration_opt import OPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
OPT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`OPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->OPT
class FlaxOPTAttention(nn.Module):
config: OPTConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class FlaxOPTDecoderLayer(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.hidden_size
self.self_attn = FlaxOPTAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.num_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.do_layer_norm_before = self.config.do_layer_norm_before
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
init_cache=init_cache,
deterministic=deterministic,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
hidden_states_shape = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-1])
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = (residual + hidden_states).reshape(hidden_states_shape)
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class FlaxOPTDecoderLayerCollection(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxOPTDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
self.layerdrop = self.config.layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
outputs = [hidden_states, all_hidden_states, all_self_attns]
return outputs
class FlaxOPTLearnedPositionalEmbedding(nn.Embed):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def setup(self):
self.offset = 2
self.embedding = self.param(
"embedding", self.embedding_init, (self.num_embeddings + self.offset, self.features), self.param_dtype
)
def __call__(self, positions):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
return super().__call__(positions + self.offset)
class FlaxOPTDecoder(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
offset: int = 2
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.hidden_size
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_tokens = nn.Embed(
self.config.vocab_size,
self.config.word_embed_proj_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.embed_positions = FlaxOPTLearnedPositionalEmbedding(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
if self.config.word_embed_proj_dim != self.config.hidden_size:
self.project_in = nn.Dense(self.config.hidden_size, use_bias=False)
self.project_out = nn.Dense(self.config.word_embed_proj_dim, use_bias=False)
else:
self.project_in = None
self.project_out = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if self.config.do_layer_norm_before and not self.config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
else:
self.final_layer_norm = None
self.layers = FlaxOPTDecoderLayerCollection(self.config, self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
positions = self.embed_positions(position_ids)
hidden_states = inputs_embeds + positions
hidden_state, all_hidden_states, attentions = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if self.final_layer_norm is not None:
hidden_state = self.final_layer_norm(hidden_state)
if self.project_out is not None:
hidden_state = self.project_out(hidden_state)
if output_hidden_states:
all_hidden_states += (hidden_state,)
outputs = [hidden_state, all_hidden_states, attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_state,
hidden_states=all_hidden_states,
attentions=attentions,
)
class FlaxOPTPreTrainedModel(FlaxPreTrainedModel):
config_class = OPTConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: OPTConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
return_dict=False,
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
params: dict = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
dropout_rng: PRNGKey = None,
deterministic: bool = True,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
position_ids = (attention_mask.cumsum(axis=1) * attention_mask) - 1
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxOPTAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxOPTModule(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.decoder = FlaxOPTDecoder(self.config, dtype=self.dtype)
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
init_cache=False,
):
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
init_cache=init_cache,
)
if not return_dict:
return decoder_outputs
return FlaxBaseModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModel with Bart->OPT
class FlaxOPTModel(FlaxOPTPreTrainedModel):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxOPTModule
append_call_sample_docstring(
FlaxOPTModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC
)
@add_start_docstrings(
"The bare OPT Model transformer outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class FlaxOPTForCausalLMModule(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.model = FlaxOPTModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids,
attention_mask,
position_ids,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=lm_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
OPT Model with a language modeling head on top (linear layer with weights tied to the input embeddings) e.g for
autoregressive tasks.
""",
OPT_START_DOCSTRING,
)
class FlaxOPTForCausalLM(FlaxOPTPreTrainedModel):
module_class = FlaxOPTForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxOPTForCausalLM,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutput,
_CONFIG_FOR_DOC,
)
| # coding=utf-8
# Copyright 2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax OPT model."""
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxMaskedLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, logging
from .configuration_opt import OPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
OPT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`OPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->OPT
class FlaxOPTAttention(nn.Module):
config: OPTConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class FlaxOPTDecoderLayer(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.hidden_size
self.self_attn = FlaxOPTAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.num_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.do_layer_norm_before = self.config.do_layer_norm_before
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
init_cache=init_cache,
deterministic=deterministic,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
hidden_states_shape = hidden_states.shape
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-1])
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = (residual + hidden_states).reshape(hidden_states_shape)
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class FlaxOPTDecoderLayerCollection(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxOPTDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
self.layerdrop = self.config.layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
outputs = [hidden_states, all_hidden_states, all_self_attns]
return outputs
class FlaxOPTLearnedPositionalEmbedding(nn.Embed):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def setup(self):
self.offset = 2
self.embedding = self.param(
"embedding", self.embedding_init, (self.num_embeddings + self.offset, self.features), self.param_dtype
)
def __call__(self, positions):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
return super().__call__(positions + self.offset)
class FlaxOPTDecoder(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
offset: int = 2
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.hidden_size
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_tokens = nn.Embed(
self.config.vocab_size,
self.config.word_embed_proj_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.embed_positions = FlaxOPTLearnedPositionalEmbedding(
self.config.max_position_embeddings,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
if self.config.word_embed_proj_dim != self.config.hidden_size:
self.project_in = nn.Dense(self.config.hidden_size, use_bias=False)
self.project_out = nn.Dense(self.config.word_embed_proj_dim, use_bias=False)
else:
self.project_in = None
self.project_out = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if self.config.do_layer_norm_before and not self.config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
else:
self.final_layer_norm = None
self.layers = FlaxOPTDecoderLayerCollection(self.config, self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
positions = self.embed_positions(position_ids)
hidden_states = inputs_embeds + positions
hidden_state, all_hidden_states, attentions = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if self.final_layer_norm is not None:
hidden_state = self.final_layer_norm(hidden_state)
if self.project_out is not None:
hidden_state = self.project_out(hidden_state)
if output_hidden_states:
all_hidden_states += (hidden_state,)
outputs = [hidden_state, all_hidden_states, attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_state,
hidden_states=all_hidden_states,
attentions=attentions,
)
class FlaxOPTPreTrainedModel(FlaxPreTrainedModel):
config_class = OPTConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: OPTConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
return_dict=False,
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
params: dict = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
dropout_rng: PRNGKey = None,
deterministic: bool = True,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
position_ids = (attention_mask.cumsum(axis=1) * attention_mask) - 1
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxOPTAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxOPTModule(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.decoder = FlaxOPTDecoder(self.config, dtype=self.dtype)
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
init_cache=False,
):
decoder_outputs = self.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
init_cache=init_cache,
)
if not return_dict:
return decoder_outputs
return FlaxBaseModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModel with Bart->OPT
class FlaxOPTModel(FlaxOPTPreTrainedModel):
config: OPTConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxOPTModule
append_call_sample_docstring(
FlaxOPTModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC
)
@add_start_docstrings(
"The bare OPT Model transformer outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class FlaxOPTForCausalLMModule(nn.Module):
config: OPTConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.model = FlaxOPTModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids,
attention_mask,
position_ids,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=lm_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
OPT Model with a language modeling head on top (linear layer with weights tied to the input embeddings) e.g for
autoregressive tasks.
""",
OPT_START_DOCSTRING,
)
class FlaxOPTForCausalLM(FlaxOPTPreTrainedModel):
module_class = FlaxOPTForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxOPTForCausalLM,
_TOKENIZER_FOR_DOC,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutput,
_CONFIG_FOR_DOC,
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/trocr/configuration_trocr.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TrOCR model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class TrOCRConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TrOCRForCausalLM`]. It is used to instantiate an
TrOCR model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the TrOCR
[microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the TrOCR model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`TrOCRForCausalLM`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the pooler. If string, `"gelu"`, `"relu"`,
`"silu"` and `"gelu_new"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
scale_embedding (`bool`, *optional*, defaults to `False`):
Whether or not to scale the word embeddings by sqrt(d_model).
use_learned_position_embeddings (`bool`, *optional*, defaults to `True`):
Whether or not to use learned position embeddings. If not, sinusoidal position embeddings will be used.
layernorm_embedding (`bool`, *optional*, defaults to `True`):
Whether or not to use a layernorm after the word + position embeddings.
Example:
```python
>>> from transformers import TrOCRConfig, TrOCRForCausalLM
>>> # Initializing a TrOCR-base style configuration
>>> configuration = TrOCRConfig()
>>> # Initializing a model (with random weights) from the TrOCR-base style configuration
>>> model = TrOCRForCausalLM(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "trocr"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__(
self,
vocab_size=50265,
d_model=1024,
decoder_layers=12,
decoder_attention_heads=16,
decoder_ffn_dim=4096,
activation_function="gelu",
max_position_embeddings=512,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
decoder_start_token_id=2,
classifier_dropout=0.0,
init_std=0.02,
decoder_layerdrop=0.0,
use_cache=True,
scale_embedding=False,
use_learned_position_embeddings=True,
layernorm_embedding=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs
):
self.vocab_size = vocab_size
self.d_model = d_model
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.activation_function = activation_function
self.max_position_embeddings = max_position_embeddings
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.classifier_dropout = classifier_dropout
self.init_std = init_std
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.scale_embedding = scale_embedding
self.use_learned_position_embeddings = use_learned_position_embeddings
self.layernorm_embedding = layernorm_embedding
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
| # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TrOCR model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class TrOCRConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TrOCRForCausalLM`]. It is used to instantiate an
TrOCR model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the TrOCR
[microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the TrOCR model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`TrOCRForCausalLM`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the pooler. If string, `"gelu"`, `"relu"`,
`"silu"` and `"gelu_new"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
scale_embedding (`bool`, *optional*, defaults to `False`):
Whether or not to scale the word embeddings by sqrt(d_model).
use_learned_position_embeddings (`bool`, *optional*, defaults to `True`):
Whether or not to use learned position embeddings. If not, sinusoidal position embeddings will be used.
layernorm_embedding (`bool`, *optional*, defaults to `True`):
Whether or not to use a layernorm after the word + position embeddings.
Example:
```python
>>> from transformers import TrOCRConfig, TrOCRForCausalLM
>>> # Initializing a TrOCR-base style configuration
>>> configuration = TrOCRConfig()
>>> # Initializing a model (with random weights) from the TrOCR-base style configuration
>>> model = TrOCRForCausalLM(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "trocr"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__(
self,
vocab_size=50265,
d_model=1024,
decoder_layers=12,
decoder_attention_heads=16,
decoder_ffn_dim=4096,
activation_function="gelu",
max_position_embeddings=512,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
decoder_start_token_id=2,
classifier_dropout=0.0,
init_std=0.02,
decoder_layerdrop=0.0,
use_cache=True,
scale_embedding=False,
use_learned_position_embeddings=True,
layernorm_embedding=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs
):
self.vocab_size = vocab_size
self.d_model = d_model
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.activation_function = activation_function
self.max_position_embeddings = max_position_embeddings
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.classifier_dropout = classifier_dropout
self.init_std = init_std
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.scale_embedding = scale_embedding
self.use_learned_position_embeddings = use_learned_position_embeddings
self.layernorm_embedding = layernorm_embedding
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/en/model_doc/layoutlmv2.mdx | <!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# LayoutLMV2
## Overview
The LayoutLMV2 model was proposed in [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu,
Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. LayoutLMV2 improves [LayoutLM](layoutlm) to obtain
state-of-the-art results across several document image understanding benchmarks:
- information extraction from scanned documents: the [FUNSD](https://guillaumejaume.github.io/FUNSD/) dataset (a
collection of 199 annotated forms comprising more than 30,000 words), the [CORD](https://github.com/clovaai/cord)
dataset (a collection of 800 receipts for training, 100 for validation and 100 for testing), the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset (a collection of 626 receipts for training and 347 receipts for testing)
and the [Kleister-NDA](https://github.com/applicaai/kleister-nda) dataset (a collection of non-disclosure
agreements from the EDGAR database, including 254 documents for training, 83 documents for validation, and 203
documents for testing).
- document image classification: the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset (a collection of
400,000 images belonging to one of 16 classes).
- document visual question answering: the [DocVQA](https://arxiv.org/abs/2007.00398) dataset (a collection of 50,000
questions defined on 12,000+ document images).
The abstract from the paper is the following:
*Pre-training of text and layout has proved effective in a variety of visually-rich document understanding tasks due to
its effective model architecture and the advantage of large-scale unlabeled scanned/digital-born documents. In this
paper, we present LayoutLMv2 by pre-training text, layout and image in a multi-modal framework, where new model
architectures and pre-training tasks are leveraged. Specifically, LayoutLMv2 not only uses the existing masked
visual-language modeling task but also the new text-image alignment and text-image matching tasks in the pre-training
stage, where cross-modality interaction is better learned. Meanwhile, it also integrates a spatial-aware self-attention
mechanism into the Transformer architecture, so that the model can fully understand the relative positional
relationship among different text blocks. Experiment results show that LayoutLMv2 outperforms strong baselines and
achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks,
including FUNSD (0.7895 -> 0.8420), CORD (0.9493 -> 0.9601), SROIE (0.9524 -> 0.9781), Kleister-NDA (0.834 -> 0.852),
RVL-CDIP (0.9443 -> 0.9564), and DocVQA (0.7295 -> 0.8672). The pre-trained LayoutLMv2 model is publicly available at
this https URL.*
LayoutLMv2 depends on `detectron2`, `torchvision` and `tesseract`. Run the
following to install them:
```
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
python -m pip install torchvision tesseract
```
(If you are developing for LayoutLMv2, note that passing the doctests also requires the installation of these packages.)
Tips:
- The main difference between LayoutLMv1 and LayoutLMv2 is that the latter incorporates visual embeddings during
pre-training (while LayoutLMv1 only adds visual embeddings during fine-tuning).
- LayoutLMv2 adds both a relative 1D attention bias as well as a spatial 2D attention bias to the attention scores in
the self-attention layers. Details can be found on page 5 of the [paper](https://arxiv.org/abs/2012.14740).
- Demo notebooks on how to use the LayoutLMv2 model on RVL-CDIP, FUNSD, DocVQA, CORD can be found [here](https://github.com/NielsRogge/Transformers-Tutorials).
- LayoutLMv2 uses Facebook AI's [Detectron2](https://github.com/facebookresearch/detectron2/) package for its visual
backbone. See [this link](https://detectron2.readthedocs.io/en/latest/tutorials/install.html) for installation
instructions.
- In addition to `input_ids`, [`~LayoutLMv2Model.forward`] expects 2 additional inputs, namely
`image` and `bbox`. The `image` input corresponds to the original document image in which the text
tokens occur. The model expects each document image to be of size 224x224. This means that if you have a batch of
document images, `image` should be a tensor of shape (batch_size, 3, 224, 224). This can be either a
`torch.Tensor` or a `Detectron2.structures.ImageList`. You don't need to normalize the channels, as this is
done by the model. Important to note is that the visual backbone expects BGR channels instead of RGB, as all models
in Detectron2 are pre-trained using the BGR format. The `bbox` input are the bounding boxes (i.e. 2D-positions)
of the input text tokens. This is identical to [`LayoutLMModel`]. These can be obtained using an
external OCR engine such as Google's [Tesseract](https://github.com/tesseract-ocr/tesseract) (there's a [Python
wrapper](https://pypi.org/project/pytesseract/) available). Each bounding box should be in (x0, y0, x1, y1)
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1)
represents the position of the lower right corner. Note that one first needs to normalize the bounding boxes to be on
a 0-1000 scale. To normalize, you can use the following function:
```python
def normalize_bbox(bbox, width, height):
return [
int(1000 * (bbox[0] / width)),
int(1000 * (bbox[1] / height)),
int(1000 * (bbox[2] / width)),
int(1000 * (bbox[3] / height)),
]
```
Here, `width` and `height` correspond to the width and height of the original document in which the token
occurs (before resizing the image). Those can be obtained using the Python Image Library (PIL) library for example, as
follows:
```python
from PIL import Image
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
)
width, height = image.size
```
However, this model includes a brand new [`~transformers.LayoutLMv2Processor`] which can be used to directly
prepare data for the model (including applying OCR under the hood). More information can be found in the "Usage"
section below.
- Internally, [`~transformers.LayoutLMv2Model`] will send the `image` input through its visual backbone to
obtain a lower-resolution feature map, whose shape is equal to the `image_feature_pool_shape` attribute of
[`~transformers.LayoutLMv2Config`]. This feature map is then flattened to obtain a sequence of image tokens. As
the size of the feature map is 7x7 by default, one obtains 49 image tokens. These are then concatenated with the text
tokens, and send through the Transformer encoder. This means that the last hidden states of the model will have a
length of 512 + 49 = 561, if you pad the text tokens up to the max length. More generally, the last hidden states
will have a shape of `seq_length` + `image_feature_pool_shape[0]` *
`config.image_feature_pool_shape[1]`.
- When calling [`~transformers.LayoutLMv2Model.from_pretrained`], a warning will be printed with a long list of
parameter names that are not initialized. This is not a problem, as these parameters are batch normalization
statistics, which are going to have values when fine-tuning on a custom dataset.
- If you want to train the model in a distributed environment, make sure to call [`synchronize_batch_norm`] on the
model in order to properly synchronize the batch normalization layers of the visual backbone.
In addition, there's LayoutXLM, which is a multilingual version of LayoutLMv2. More information can be found on
[LayoutXLM's documentation page](layoutxlm).
## Usage: LayoutLMv2Processor
The easiest way to prepare data for the model is to use [`LayoutLMv2Processor`], which internally
combines a feature extractor ([`LayoutLMv2FeatureExtractor`]) and a tokenizer
([`LayoutLMv2Tokenizer`] or [`LayoutLMv2TokenizerFast`]). The feature extractor
handles the image modality, while the tokenizer handles the text modality. A processor combines both, which is ideal
for a multi-modal model like LayoutLMv2. Note that you can still use both separately, if you only want to handle one
modality.
```python
from transformers import LayoutLMv2FeatureExtractor, LayoutLMv2TokenizerFast, LayoutLMv2Processor
feature_extractor = LayoutLMv2FeatureExtractor() # apply_ocr is set to True by default
tokenizer = LayoutLMv2TokenizerFast.from_pretrained("microsoft/layoutlmv2-base-uncased")
processor = LayoutLMv2Processor(feature_extractor, tokenizer)
```
In short, one can provide a document image (and possibly additional data) to [`LayoutLMv2Processor`],
and it will create the inputs expected by the model. Internally, the processor first uses
[`LayoutLMv2FeatureExtractor`] to apply OCR on the image to get a list of words and normalized
bounding boxes, as well to resize the image to a given size in order to get the `image` input. The words and
normalized bounding boxes are then provided to [`LayoutLMv2Tokenizer`] or
[`LayoutLMv2TokenizerFast`], which converts them to token-level `input_ids`,
`attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide word labels to the processor,
which are turned into token-level `labels`.
[`LayoutLMv2Processor`] uses [PyTesseract](https://pypi.org/project/pytesseract/), a Python
wrapper around Google's Tesseract OCR engine, under the hood. Note that you can still use your own OCR engine of
choice, and provide the words and normalized boxes yourself. This requires initializing
[`LayoutLMv2FeatureExtractor`] with `apply_ocr` set to `False`.
In total, there are 5 use cases that are supported by the processor. Below, we list them all. Note that each of these
use cases work for both batched and non-batched inputs (we illustrate them for non-batched inputs).
**Use case 1: document image classification (training, inference) + token classification (inference), apply_ocr =
True**
This is the simplest case, in which the processor (actually the feature extractor) will perform OCR on the image to get
the words and normalized bounding boxes.
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
encoding = processor(
image, return_tensors="pt"
) # you can also add all tokenizer parameters here such as padding, truncation
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
```
**Use case 2: document image classification (training, inference) + token classification (inference), apply_ocr=False**
In case one wants to do OCR themselves, one can initialize the feature extractor with `apply_ocr` set to
`False`. In that case, one should provide the words and corresponding (normalized) bounding boxes themselves to
the processor.
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
words = ["hello", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes
encoding = processor(image, words, boxes=boxes, return_tensors="pt")
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
```
**Use case 3: token classification (training), apply_ocr=False**
For token classification tasks (such as FUNSD, CORD, SROIE, Kleister-NDA), one can also provide the corresponding word
labels in order to train a model. The processor will then convert these into token-level `labels`. By default, it
will only label the first wordpiece of a word, and label the remaining wordpieces with -100, which is the
`ignore_index` of PyTorch's CrossEntropyLoss. In case you want all wordpieces of a word to be labeled, you can
initialize the tokenizer with `only_label_first_subword` set to `False`.
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
words = ["hello", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes
word_labels = [1, 2]
encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="pt")
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'labels', 'image'])
```
**Use case 4: visual question answering (inference), apply_ocr=True**
For visual question answering tasks (such as DocVQA), you can provide a question to the processor. By default, the
processor will apply OCR on the image, and create [CLS] question tokens [SEP] word tokens [SEP].
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
question = "What's his name?"
encoding = processor(image, question, return_tensors="pt")
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
```
**Use case 5: visual question answering (inference), apply_ocr=False**
For visual question answering tasks (such as DocVQA), you can provide a question to the processor. If you want to
perform OCR yourself, you can provide your own words and (normalized) bounding boxes to the processor.
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
question = "What's his name?"
words = ["hello", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes
encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
```
## LayoutLMv2Config
[[autodoc]] LayoutLMv2Config
## LayoutLMv2FeatureExtractor
[[autodoc]] LayoutLMv2FeatureExtractor
- __call__
## LayoutLMv2ImageProcessor
[[autodoc]] LayoutLMv2ImageProcessor
- preprocess
## LayoutLMv2Tokenizer
[[autodoc]] LayoutLMv2Tokenizer
- __call__
- save_vocabulary
## LayoutLMv2TokenizerFast
[[autodoc]] LayoutLMv2TokenizerFast
- __call__
## LayoutLMv2Processor
[[autodoc]] LayoutLMv2Processor
- __call__
## LayoutLMv2Model
[[autodoc]] LayoutLMv2Model
- forward
## LayoutLMv2ForSequenceClassification
[[autodoc]] LayoutLMv2ForSequenceClassification
## LayoutLMv2ForTokenClassification
[[autodoc]] LayoutLMv2ForTokenClassification
## LayoutLMv2ForQuestionAnswering
[[autodoc]] LayoutLMv2ForQuestionAnswering
| <!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# LayoutLMV2
## Overview
The LayoutLMV2 model was proposed in [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu,
Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. LayoutLMV2 improves [LayoutLM](layoutlm) to obtain
state-of-the-art results across several document image understanding benchmarks:
- information extraction from scanned documents: the [FUNSD](https://guillaumejaume.github.io/FUNSD/) dataset (a
collection of 199 annotated forms comprising more than 30,000 words), the [CORD](https://github.com/clovaai/cord)
dataset (a collection of 800 receipts for training, 100 for validation and 100 for testing), the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset (a collection of 626 receipts for training and 347 receipts for testing)
and the [Kleister-NDA](https://github.com/applicaai/kleister-nda) dataset (a collection of non-disclosure
agreements from the EDGAR database, including 254 documents for training, 83 documents for validation, and 203
documents for testing).
- document image classification: the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset (a collection of
400,000 images belonging to one of 16 classes).
- document visual question answering: the [DocVQA](https://arxiv.org/abs/2007.00398) dataset (a collection of 50,000
questions defined on 12,000+ document images).
The abstract from the paper is the following:
*Pre-training of text and layout has proved effective in a variety of visually-rich document understanding tasks due to
its effective model architecture and the advantage of large-scale unlabeled scanned/digital-born documents. In this
paper, we present LayoutLMv2 by pre-training text, layout and image in a multi-modal framework, where new model
architectures and pre-training tasks are leveraged. Specifically, LayoutLMv2 not only uses the existing masked
visual-language modeling task but also the new text-image alignment and text-image matching tasks in the pre-training
stage, where cross-modality interaction is better learned. Meanwhile, it also integrates a spatial-aware self-attention
mechanism into the Transformer architecture, so that the model can fully understand the relative positional
relationship among different text blocks. Experiment results show that LayoutLMv2 outperforms strong baselines and
achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks,
including FUNSD (0.7895 -> 0.8420), CORD (0.9493 -> 0.9601), SROIE (0.9524 -> 0.9781), Kleister-NDA (0.834 -> 0.852),
RVL-CDIP (0.9443 -> 0.9564), and DocVQA (0.7295 -> 0.8672). The pre-trained LayoutLMv2 model is publicly available at
this https URL.*
LayoutLMv2 depends on `detectron2`, `torchvision` and `tesseract`. Run the
following to install them:
```
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
python -m pip install torchvision tesseract
```
(If you are developing for LayoutLMv2, note that passing the doctests also requires the installation of these packages.)
Tips:
- The main difference between LayoutLMv1 and LayoutLMv2 is that the latter incorporates visual embeddings during
pre-training (while LayoutLMv1 only adds visual embeddings during fine-tuning).
- LayoutLMv2 adds both a relative 1D attention bias as well as a spatial 2D attention bias to the attention scores in
the self-attention layers. Details can be found on page 5 of the [paper](https://arxiv.org/abs/2012.14740).
- Demo notebooks on how to use the LayoutLMv2 model on RVL-CDIP, FUNSD, DocVQA, CORD can be found [here](https://github.com/NielsRogge/Transformers-Tutorials).
- LayoutLMv2 uses Facebook AI's [Detectron2](https://github.com/facebookresearch/detectron2/) package for its visual
backbone. See [this link](https://detectron2.readthedocs.io/en/latest/tutorials/install.html) for installation
instructions.
- In addition to `input_ids`, [`~LayoutLMv2Model.forward`] expects 2 additional inputs, namely
`image` and `bbox`. The `image` input corresponds to the original document image in which the text
tokens occur. The model expects each document image to be of size 224x224. This means that if you have a batch of
document images, `image` should be a tensor of shape (batch_size, 3, 224, 224). This can be either a
`torch.Tensor` or a `Detectron2.structures.ImageList`. You don't need to normalize the channels, as this is
done by the model. Important to note is that the visual backbone expects BGR channels instead of RGB, as all models
in Detectron2 are pre-trained using the BGR format. The `bbox` input are the bounding boxes (i.e. 2D-positions)
of the input text tokens. This is identical to [`LayoutLMModel`]. These can be obtained using an
external OCR engine such as Google's [Tesseract](https://github.com/tesseract-ocr/tesseract) (there's a [Python
wrapper](https://pypi.org/project/pytesseract/) available). Each bounding box should be in (x0, y0, x1, y1)
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1)
represents the position of the lower right corner. Note that one first needs to normalize the bounding boxes to be on
a 0-1000 scale. To normalize, you can use the following function:
```python
def normalize_bbox(bbox, width, height):
return [
int(1000 * (bbox[0] / width)),
int(1000 * (bbox[1] / height)),
int(1000 * (bbox[2] / width)),
int(1000 * (bbox[3] / height)),
]
```
Here, `width` and `height` correspond to the width and height of the original document in which the token
occurs (before resizing the image). Those can be obtained using the Python Image Library (PIL) library for example, as
follows:
```python
from PIL import Image
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
)
width, height = image.size
```
However, this model includes a brand new [`~transformers.LayoutLMv2Processor`] which can be used to directly
prepare data for the model (including applying OCR under the hood). More information can be found in the "Usage"
section below.
- Internally, [`~transformers.LayoutLMv2Model`] will send the `image` input through its visual backbone to
obtain a lower-resolution feature map, whose shape is equal to the `image_feature_pool_shape` attribute of
[`~transformers.LayoutLMv2Config`]. This feature map is then flattened to obtain a sequence of image tokens. As
the size of the feature map is 7x7 by default, one obtains 49 image tokens. These are then concatenated with the text
tokens, and send through the Transformer encoder. This means that the last hidden states of the model will have a
length of 512 + 49 = 561, if you pad the text tokens up to the max length. More generally, the last hidden states
will have a shape of `seq_length` + `image_feature_pool_shape[0]` *
`config.image_feature_pool_shape[1]`.
- When calling [`~transformers.LayoutLMv2Model.from_pretrained`], a warning will be printed with a long list of
parameter names that are not initialized. This is not a problem, as these parameters are batch normalization
statistics, which are going to have values when fine-tuning on a custom dataset.
- If you want to train the model in a distributed environment, make sure to call [`synchronize_batch_norm`] on the
model in order to properly synchronize the batch normalization layers of the visual backbone.
In addition, there's LayoutXLM, which is a multilingual version of LayoutLMv2. More information can be found on
[LayoutXLM's documentation page](layoutxlm).
## Usage: LayoutLMv2Processor
The easiest way to prepare data for the model is to use [`LayoutLMv2Processor`], which internally
combines a feature extractor ([`LayoutLMv2FeatureExtractor`]) and a tokenizer
([`LayoutLMv2Tokenizer`] or [`LayoutLMv2TokenizerFast`]). The feature extractor
handles the image modality, while the tokenizer handles the text modality. A processor combines both, which is ideal
for a multi-modal model like LayoutLMv2. Note that you can still use both separately, if you only want to handle one
modality.
```python
from transformers import LayoutLMv2FeatureExtractor, LayoutLMv2TokenizerFast, LayoutLMv2Processor
feature_extractor = LayoutLMv2FeatureExtractor() # apply_ocr is set to True by default
tokenizer = LayoutLMv2TokenizerFast.from_pretrained("microsoft/layoutlmv2-base-uncased")
processor = LayoutLMv2Processor(feature_extractor, tokenizer)
```
In short, one can provide a document image (and possibly additional data) to [`LayoutLMv2Processor`],
and it will create the inputs expected by the model. Internally, the processor first uses
[`LayoutLMv2FeatureExtractor`] to apply OCR on the image to get a list of words and normalized
bounding boxes, as well to resize the image to a given size in order to get the `image` input. The words and
normalized bounding boxes are then provided to [`LayoutLMv2Tokenizer`] or
[`LayoutLMv2TokenizerFast`], which converts them to token-level `input_ids`,
`attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide word labels to the processor,
which are turned into token-level `labels`.
[`LayoutLMv2Processor`] uses [PyTesseract](https://pypi.org/project/pytesseract/), a Python
wrapper around Google's Tesseract OCR engine, under the hood. Note that you can still use your own OCR engine of
choice, and provide the words and normalized boxes yourself. This requires initializing
[`LayoutLMv2FeatureExtractor`] with `apply_ocr` set to `False`.
In total, there are 5 use cases that are supported by the processor. Below, we list them all. Note that each of these
use cases work for both batched and non-batched inputs (we illustrate them for non-batched inputs).
**Use case 1: document image classification (training, inference) + token classification (inference), apply_ocr =
True**
This is the simplest case, in which the processor (actually the feature extractor) will perform OCR on the image to get
the words and normalized bounding boxes.
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
encoding = processor(
image, return_tensors="pt"
) # you can also add all tokenizer parameters here such as padding, truncation
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
```
**Use case 2: document image classification (training, inference) + token classification (inference), apply_ocr=False**
In case one wants to do OCR themselves, one can initialize the feature extractor with `apply_ocr` set to
`False`. In that case, one should provide the words and corresponding (normalized) bounding boxes themselves to
the processor.
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
words = ["hello", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes
encoding = processor(image, words, boxes=boxes, return_tensors="pt")
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
```
**Use case 3: token classification (training), apply_ocr=False**
For token classification tasks (such as FUNSD, CORD, SROIE, Kleister-NDA), one can also provide the corresponding word
labels in order to train a model. The processor will then convert these into token-level `labels`. By default, it
will only label the first wordpiece of a word, and label the remaining wordpieces with -100, which is the
`ignore_index` of PyTorch's CrossEntropyLoss. In case you want all wordpieces of a word to be labeled, you can
initialize the tokenizer with `only_label_first_subword` set to `False`.
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
words = ["hello", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes
word_labels = [1, 2]
encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="pt")
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'labels', 'image'])
```
**Use case 4: visual question answering (inference), apply_ocr=True**
For visual question answering tasks (such as DocVQA), you can provide a question to the processor. By default, the
processor will apply OCR on the image, and create [CLS] question tokens [SEP] word tokens [SEP].
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
question = "What's his name?"
encoding = processor(image, question, return_tensors="pt")
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
```
**Use case 5: visual question answering (inference), apply_ocr=False**
For visual question answering tasks (such as DocVQA), you can provide a question to the processor. If you want to
perform OCR yourself, you can provide your own words and (normalized) bounding boxes to the processor.
```python
from transformers import LayoutLMv2Processor
from PIL import Image
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
image = Image.open(
"name_of_your_document - can be a png, jpg, etc. of your documents (PDFs must be converted to images)."
).convert("RGB")
question = "What's his name?"
words = ["hello", "world"]
boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] # make sure to normalize your bounding boxes
encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
print(encoding.keys())
# dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
```
## LayoutLMv2Config
[[autodoc]] LayoutLMv2Config
## LayoutLMv2FeatureExtractor
[[autodoc]] LayoutLMv2FeatureExtractor
- __call__
## LayoutLMv2ImageProcessor
[[autodoc]] LayoutLMv2ImageProcessor
- preprocess
## LayoutLMv2Tokenizer
[[autodoc]] LayoutLMv2Tokenizer
- __call__
- save_vocabulary
## LayoutLMv2TokenizerFast
[[autodoc]] LayoutLMv2TokenizerFast
- __call__
## LayoutLMv2Processor
[[autodoc]] LayoutLMv2Processor
- __call__
## LayoutLMv2Model
[[autodoc]] LayoutLMv2Model
- forward
## LayoutLMv2ForSequenceClassification
[[autodoc]] LayoutLMv2ForSequenceClassification
## LayoutLMv2ForTokenClassification
[[autodoc]] LayoutLMv2ForTokenClassification
## LayoutLMv2ForQuestionAnswering
[[autodoc]] LayoutLMv2ForQuestionAnswering
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/en/model_doc/swin.mdx | <!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Swin Transformer
## Overview
The Swin Transformer was proposed in [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
The abstract from the paper is the following:
*This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone
for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains,
such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text.
To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted
\bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping
local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at
various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it
compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense
prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation
(53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and
+2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones.
The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.*
Tips:
- One can use the [`AutoImageProcessor`] API to prepare images for the model.
- Swin pads the inputs supporting any input height and width (if divisible by `32`).
- Swin can be used as a *backbone*. When `output_hidden_states = True`, it will output both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png"
alt="drawing" width="600"/>
<small> Swin Transformer architecture. Taken from the <a href="https://arxiv.org/abs/2102.03334">original paper</a>.</small>
This model was contributed by [novice03](https://huggingface.co/novice03). The Tensorflow version of this model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
## SwinConfig
[[autodoc]] SwinConfig
## SwinModel
[[autodoc]] SwinModel
- forward
## SwinForMaskedImageModeling
[[autodoc]] SwinForMaskedImageModeling
- forward
## SwinForImageClassification
[[autodoc]] transformers.SwinForImageClassification
- forward
## TFSwinModel
[[autodoc]] TFSwinModel
- call
## TFSwinForMaskedImageModeling
[[autodoc]] TFSwinForMaskedImageModeling
- call
## TFSwinForImageClassification
[[autodoc]] transformers.TFSwinForImageClassification
- call
| <!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Swin Transformer
## Overview
The Swin Transformer was proposed in [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
The abstract from the paper is the following:
*This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone
for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains,
such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text.
To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted
\bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping
local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at
various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it
compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense
prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation
(53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and
+2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones.
The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.*
Tips:
- One can use the [`AutoImageProcessor`] API to prepare images for the model.
- Swin pads the inputs supporting any input height and width (if divisible by `32`).
- Swin can be used as a *backbone*. When `output_hidden_states = True`, it will output both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png"
alt="drawing" width="600"/>
<small> Swin Transformer architecture. Taken from the <a href="https://arxiv.org/abs/2102.03334">original paper</a>.</small>
This model was contributed by [novice03](https://huggingface.co/novice03). The Tensorflow version of this model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
## SwinConfig
[[autodoc]] SwinConfig
## SwinModel
[[autodoc]] SwinModel
- forward
## SwinForMaskedImageModeling
[[autodoc]] SwinForMaskedImageModeling
- forward
## SwinForImageClassification
[[autodoc]] transformers.SwinForImageClassification
- forward
## TFSwinModel
[[autodoc]] TFSwinModel
- call
## TFSwinForMaskedImageModeling
[[autodoc]] TFSwinForMaskedImageModeling
- call
## TFSwinForImageClassification
[[autodoc]] transformers.TFSwinForImageClassification
- call
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json | {
"modelname": "TemplatePT",
"uppercase_modelname": "TEMPLATE_PT",
"lowercase_modelname": "template_pt",
"camelcase_modelname": "TemplatePt",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT",
"generate_tensorflow_pytorch_and_flax": "PyTorch",
"is_encoder_decoder_model": "False"
}
| {
"modelname": "TemplatePT",
"uppercase_modelname": "TEMPLATE_PT",
"lowercase_modelname": "template_pt",
"camelcase_modelname": "TemplatePt",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT",
"generate_tensorflow_pytorch_and_flax": "PyTorch",
"is_encoder_decoder_model": "False"
}
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/legacy/seq2seq/test_data/wmt_en_ro/val.target | Fostul șef al cabinetului prezidențial brazilian este adus în fața instanței Marți, un judecător federal a acceptat acuzațiile aduse împotriva fostului șef al cabinetului prezidențial brazilian pentru presupusa implicare a acestuia într-o schemă masivă de corupție privind compania petrolieră de stat Petrobras. Biroul procurorului federal a declarat că Jose Dirceu va fi trimis în judecată pentru acuzațiile de corupție, înșelătorie și spălare de bani aduse în această lună. Alte paisprezece persoane vor fi judecate, printre acestea numărându-se Joao Vaccari Neto, fostul trezorier al Partidului Muncitorilor, aflat la putere în Brazilia, și Renato de Souza Duque, fostul președinte al serviciilor pentru întreprinderi ale Petrobras.
Dirceu este cel mai vechi membru al Partidului Muncitorilor aflat la guvernare luat în custodie pentru legăturile cu această schemă. Dirceu a servit ca șef de cabinet al fostului președinte Luiz Inacio Lula da Silva între 2003 și 2005. A fost arestat la începutul lui august de acasă, unde deja se afla sub arest la domiciliu, cu o pedeapsă de 11 ani pentru implicarea într-o schemă de cumpărare a voturilor în Congres cu peste 10 ani în urmă. Procurorii au declarat că Dirceu a dezvoltat schema de luare de mită de la Petrobras, a acceptat mită în timp ce se afla în funcție și a continuat să primească plăți de la antreprenori după ce a fost închis la sfârșitul lui 2013 pentru scandalul voturilor cumpărate.
Conform procurorilor, schema de la Petrobras a implicat aproximativ 2 miliarde de dolari sub formă de mită și alte fonduri ilegale. O parte din acei bani s-ar fi întors în fondul de campanie al partidului aflat la guvernare și al aliaților acestora. De asemenea, ar fi inclus mită către directorii Petrobras în schimbul unor contracte umflate. Recuperarea „miraculoasă” a unui elev supraviețuitor al masacrului de la Peshawar Un adolescent paralizat după ce fusese împușcat de patru ori în cel mai cumplit atac terorist din Pakistan a reușit o recuperare „miraculoasă” după ce a urmat un tratament în Regatul Unit. Lui Mohamed Ibrahim Khan, în vârstă de 13 ani, doctorii din Pakistan îi spuseseră că nu va mai putea să meargă niciodată.
Cel puțin 140 de persoane, majoritatea copii, au fost ucise când bărbați înarmați au atacat școala publică a armatei din Peshawar în luna decembrie a anului trecut. Mohamed, care a sosit la Londra luna trecută pentru operație, va fi externat mai târziu din spital. Exact cu nouă luni în urmă, într-o dimineață obișnuită de marți, Mohamed stătea la ora de primul ajutor și își asculta atent profesorii. Chiar atunci, șapte bărbați înarmați deghizați în uniformele agenților de pază intrau în școala publică a armatei. Purtau centuri cu explozivi și aveau de îndeplinit o misiune simplă: să îi ucidă pe toți bărbații, femeile și copiii care le ieșeau în cale. „Nu pot uita ce s-a întâmplat în acea zi”, spune Mohamed cu o privire aspră.
Stăteam în amfiteatru, puneam întrebări... apoi am auzit focuri de armă afară. Teroriștii au intrat înăuntru și au început să ucidă. Profesorul nostru a fost ars de viu. Mohamed descrie cum a scos patru elevi din amfiteatru în timp ce se desfășura carnagiul. Apoi spune că și-a auzit prietenul, pe Hamza, strigându-l. Spunea „oh, frate, salvează-mă”. L-am ținut de mână. Atunci eu am fost împușcat în spate, iar el în cap. Cei mai mulți dintre cei uciși în atac erau elevi Hamza a murit în brațele lui Mohamed. Mohamed își amintește că imediat după asta a leșinat și că următorul lucru pe care l-a știut a fost că se afla pe un pat de spital, paralizat de la brâu în jos.
Doctorii din Peshawar din nordul Pakistanului, apoi cei din Rawalpindi, aproape de capitală, i-au spus familiei sale că nu exista tratament și că nu va mai putea merge niciodată. „Când l-am văzut, am simțit cum îmi iese sufletul”, spune Sher Khan, tatăl lui Mohamed. Acele nouă luni au fost cele mai grele din viața mea. Însă Khan și soția lui, Sherbano, au refuzat să creadă că fiul lor atât de pasionat de crichet nu-și va mai putea folosi vreodată picioarele. Au făcut o campanie și au cerut ajutor de la televiziunea pakistaneză, atrăgând sprijinul unor oameni faimoși precum Imran Khan, jucător de crichet devenit politician.
Într-un final, au reușit să strângă fonduri pentru a-l duce pe Mohamed în Regatul Unit și a-i oferi tratament la clinica privată Harley Street din Londra. Neurochirurgul consultant Irfan Malik l-a descris pe Mohamed drept „înspăimântat” când acesta a ajuns la spital. „Își petrecuse ultimele [câteva] luni zăcând în pat, fără să se poată mișca de pe o parte pe alta, spune Malik. Era slăbit, se pusese multă presiune pe spatele lui. Nu era într-o formă prea bună. O vertebră de la baza coloanei vertebrale a lui Mohamed fusese distrusă Mohamed fusese împușcat în umăr, în șold și în spate în timpul atacului, iar coloana vertebrală inferioară îi fusese distrusă, ducând la paralizie.
Însă, în timpul unei operații care a durat șase ore, Malik și echipa lui au reușit să lege din nou terminațiile nervoase și să reconstruiască partea distrusă a coloanei. Chiar și Malik a fost surprins de ceea ce s-a întâmplat în continuare. Exact la o săptămână după operație, Mohamed s-a ridicat și a început să facă pași și să meargă. Nu ne așteptam la un rezultat atât de bun. A fost un miracol”, spune acesta. În mai puțin de două săptămâni de la operație, Mohamed este gata să părăsească spitalul și să înceapă procesul lung de recuperare. Mohamed a sfidat soarta și a început să meargă din nou Vrea să devină puternic și să își continue studiile în Regatul Unit. Însă este hotărât să revină în Pakistan, să se înroleze în armată și să lupte împotriva terorismului.
„Simt că am încă o șansă la viață” spune el, arătând imaginile cu arme desenate de el lângă manuale școlare și stilouri Fizic, Mohamed devine tot mai puternic în fiecare zi, însă trauma psihologică prin care trece și acum este de neimaginat. „Furia mea nu a scăzut”, mărturisește el. În școala mea au fost uciși copii mici. Ce crimă au comis ei? Mama lui își șterge o lacrimă, îl mângâie pe creștet și spune: „Îmi văd fiul mergând din nou”. Va putea să-și continue firesc viața. Serviciul 4G „Super Voice” de la Three oferă semnal mai bun Three folosește un spectru 4G cu o frecvență mai joasă, care poate acoperi o zonă mai extinsă
Furnizorul de telefonie mobilă Three a lansat în Regatul Unit un serviciu despre care spune că va îmbunătăți recepția în interiorul clădirilor și în zonele rurale fără semnal. Serviciul 4G Super Voice le permite clienților să efectueze apeluri și să trimită mesaje text folosind un spectru cu o frecvență mai joasă. Și alte rețele intenționează să introducă aceeași tehnologie, cunoscută ca „Voice Over Long-Term Evolution (VoLTE)”. Aceasta funcționează momentan doar cu Samsung Galaxy S5, însă telefoanele iPhone recente vor beneficia de ea în lunile următoare. Three menționează că până la 5,5 milioane de clienți vor avea acces la serviciu până în 2017.
Responsabilul șef pentru tehnologie, Bryn Jones a declarat: „Până la sfârșitul anului, un milion dintre clienții noștri vor avea acces la o acoperire mai bună în interior și își vor putea folosi telefoanele în mai multe locuri ca până acum”. Vedetele se pregătesc pentru stagiunea de pantomimă Stagiunea de pantomimă este foarte importantă pentru teatrele din tot Regatul Unit, multe dintre ele pregătindu-se acum pentru stagiunea din acest an. Acum, la teatrul de Crăciun participă unele dintre numele cele mai mari din showbusiness. Matthew Kelly și Hayley Mills vor apărea în Cenușăreasa - primul în rolul uneia dintre surorile rele, iar a doua în rolul zânei. Aceștia dezvăluie secretele pantomimei lor la BBC Breakfast. Steven Wilson: „Dacă nu fac nimic, mă simt vinovat”
Steven Wilson a fost desemnat recent drept marele câștigător al Progressive Music Awards Steven Wilson a fost numit de multe ori drept cel mai muncitor muzician din lumea rockului progresiv. Talentatul muzician a câștigat trei premii la Progressive Music Awards, care a avut loc luna aceasta la Londra, printre care și premiul pentru cel mai bun album al anului pentru Hand. În recenzia sa de cinci stele, The Guardian a numit albumul „o operă de artă inteligentă, expresivă și captivantă”. Încă din anii 1980, Wilson este motorul mai multor proiecte muzicale, cel mai cunoscut dintre acestea fiind trupa de rock Porcupine Tree. Acum, înainte de două spectacole cu casa închisă la Royal Albert Hall, Wilson lansează un dublu LP doar în format vinil, Transience, pentru a arăta latura „mai accesibilă” a activității sale solo.
A povestit pentru BBC despre dragostea lui pentru viniluri și despre programul său încărcat și a explicat cum a ajuns actorul de comedie Matt Berry să îi deschidă spectacolele. Ce înseamnă vinil pentru tine? Am crescut chiar în perioada de sfârșit a erei vinilurilor și îmi amintesc că atunci abia așteptam apariția CD-ului, căci vinilul era atât de enervant. Cumpărai un disc, mergeai cu el acasă, avea o zgârietură și trebuia să îl aduci înapoi. Iubesc CD-urile, iar pentru anumite tipuri de muzică, de exemplu cea clasică, sunt mai bune decât vinilurile. Însă problema cu CD-urile și cu descărcările digitale este aceea că nu mai există nimic pe care să îl prețuiești cu adevărat. Să ai un vinil e ca și cum ai avea un tablou frumos agățat în sufragerie.
E ceva ce poți ține în mână, în timp ce te lași absorbit de versuri și copleșit de actul artistic. Am crezut că e doar o chestie nostalgică, însă nu are cum să fie așa dacă unor puști prea tineri să-și amintească de viniluri le place acest gen de experiență. Ai vreun vinil la care ții în mod special? Recunosc că am scăpat de toate vinilurile în anii '90. Toate vinilurile pe care le am sunt cumpărate din nou. Am pornit de la ideea de a reface colecția pe care o aveam la 15 ani, însă am trecut de limita aceea. Primul disc pe care mi-am convins părinții să mi-l cumpere a fost Out of the Blue de la Electric Light Orchestra.
Dacă aș mai fi avut încă exemplarul inițial, acesta ar fi avut valoare sentimentală, însă, din păcate, se află pe undeva printr-un magazin de caritate. Steven Wilson speră că albumul va fi o poartă către posibili fani noi De ce ți-ai lansat noua compilație Transience pe vinil? Aceasta a fost concepută inițial ca idee pentru Ziua magazinelor de discuri, însă am ratat ocazia. Casa mea de discuri sugerase să adun câteva dintre melodiile mele mai scurte și mai accesibile. Am ajuns să fiu ușor obsedat de ideea de a face ceva gen „introducere în muzica lui Steven Wilson” și am ținut neapărat ca proiectul să fie lansat doar pe vinil. Cine cumpără vinilul primește, de asemenea, și o variantă descărcată la rezoluție înaltă.
Ești îngrijorat că albumul nu va arăta muzica ta în adevărata ei lumină? | Fostul șef al cabinetului prezidențial brazilian este adus în fața instanței Marți, un judecător federal a acceptat acuzațiile aduse împotriva fostului șef al cabinetului prezidențial brazilian pentru presupusa implicare a acestuia într-o schemă masivă de corupție privind compania petrolieră de stat Petrobras. Biroul procurorului federal a declarat că Jose Dirceu va fi trimis în judecată pentru acuzațiile de corupție, înșelătorie și spălare de bani aduse în această lună. Alte paisprezece persoane vor fi judecate, printre acestea numărându-se Joao Vaccari Neto, fostul trezorier al Partidului Muncitorilor, aflat la putere în Brazilia, și Renato de Souza Duque, fostul președinte al serviciilor pentru întreprinderi ale Petrobras.
Dirceu este cel mai vechi membru al Partidului Muncitorilor aflat la guvernare luat în custodie pentru legăturile cu această schemă. Dirceu a servit ca șef de cabinet al fostului președinte Luiz Inacio Lula da Silva între 2003 și 2005. A fost arestat la începutul lui august de acasă, unde deja se afla sub arest la domiciliu, cu o pedeapsă de 11 ani pentru implicarea într-o schemă de cumpărare a voturilor în Congres cu peste 10 ani în urmă. Procurorii au declarat că Dirceu a dezvoltat schema de luare de mită de la Petrobras, a acceptat mită în timp ce se afla în funcție și a continuat să primească plăți de la antreprenori după ce a fost închis la sfârșitul lui 2013 pentru scandalul voturilor cumpărate.
Conform procurorilor, schema de la Petrobras a implicat aproximativ 2 miliarde de dolari sub formă de mită și alte fonduri ilegale. O parte din acei bani s-ar fi întors în fondul de campanie al partidului aflat la guvernare și al aliaților acestora. De asemenea, ar fi inclus mită către directorii Petrobras în schimbul unor contracte umflate. Recuperarea „miraculoasă” a unui elev supraviețuitor al masacrului de la Peshawar Un adolescent paralizat după ce fusese împușcat de patru ori în cel mai cumplit atac terorist din Pakistan a reușit o recuperare „miraculoasă” după ce a urmat un tratament în Regatul Unit. Lui Mohamed Ibrahim Khan, în vârstă de 13 ani, doctorii din Pakistan îi spuseseră că nu va mai putea să meargă niciodată.
Cel puțin 140 de persoane, majoritatea copii, au fost ucise când bărbați înarmați au atacat școala publică a armatei din Peshawar în luna decembrie a anului trecut. Mohamed, care a sosit la Londra luna trecută pentru operație, va fi externat mai târziu din spital. Exact cu nouă luni în urmă, într-o dimineață obișnuită de marți, Mohamed stătea la ora de primul ajutor și își asculta atent profesorii. Chiar atunci, șapte bărbați înarmați deghizați în uniformele agenților de pază intrau în școala publică a armatei. Purtau centuri cu explozivi și aveau de îndeplinit o misiune simplă: să îi ucidă pe toți bărbații, femeile și copiii care le ieșeau în cale. „Nu pot uita ce s-a întâmplat în acea zi”, spune Mohamed cu o privire aspră.
Stăteam în amfiteatru, puneam întrebări... apoi am auzit focuri de armă afară. Teroriștii au intrat înăuntru și au început să ucidă. Profesorul nostru a fost ars de viu. Mohamed descrie cum a scos patru elevi din amfiteatru în timp ce se desfășura carnagiul. Apoi spune că și-a auzit prietenul, pe Hamza, strigându-l. Spunea „oh, frate, salvează-mă”. L-am ținut de mână. Atunci eu am fost împușcat în spate, iar el în cap. Cei mai mulți dintre cei uciși în atac erau elevi Hamza a murit în brațele lui Mohamed. Mohamed își amintește că imediat după asta a leșinat și că următorul lucru pe care l-a știut a fost că se afla pe un pat de spital, paralizat de la brâu în jos.
Doctorii din Peshawar din nordul Pakistanului, apoi cei din Rawalpindi, aproape de capitală, i-au spus familiei sale că nu exista tratament și că nu va mai putea merge niciodată. „Când l-am văzut, am simțit cum îmi iese sufletul”, spune Sher Khan, tatăl lui Mohamed. Acele nouă luni au fost cele mai grele din viața mea. Însă Khan și soția lui, Sherbano, au refuzat să creadă că fiul lor atât de pasionat de crichet nu-și va mai putea folosi vreodată picioarele. Au făcut o campanie și au cerut ajutor de la televiziunea pakistaneză, atrăgând sprijinul unor oameni faimoși precum Imran Khan, jucător de crichet devenit politician.
Într-un final, au reușit să strângă fonduri pentru a-l duce pe Mohamed în Regatul Unit și a-i oferi tratament la clinica privată Harley Street din Londra. Neurochirurgul consultant Irfan Malik l-a descris pe Mohamed drept „înspăimântat” când acesta a ajuns la spital. „Își petrecuse ultimele [câteva] luni zăcând în pat, fără să se poată mișca de pe o parte pe alta, spune Malik. Era slăbit, se pusese multă presiune pe spatele lui. Nu era într-o formă prea bună. O vertebră de la baza coloanei vertebrale a lui Mohamed fusese distrusă Mohamed fusese împușcat în umăr, în șold și în spate în timpul atacului, iar coloana vertebrală inferioară îi fusese distrusă, ducând la paralizie.
Însă, în timpul unei operații care a durat șase ore, Malik și echipa lui au reușit să lege din nou terminațiile nervoase și să reconstruiască partea distrusă a coloanei. Chiar și Malik a fost surprins de ceea ce s-a întâmplat în continuare. Exact la o săptămână după operație, Mohamed s-a ridicat și a început să facă pași și să meargă. Nu ne așteptam la un rezultat atât de bun. A fost un miracol”, spune acesta. În mai puțin de două săptămâni de la operație, Mohamed este gata să părăsească spitalul și să înceapă procesul lung de recuperare. Mohamed a sfidat soarta și a început să meargă din nou Vrea să devină puternic și să își continue studiile în Regatul Unit. Însă este hotărât să revină în Pakistan, să se înroleze în armată și să lupte împotriva terorismului.
„Simt că am încă o șansă la viață” spune el, arătând imaginile cu arme desenate de el lângă manuale școlare și stilouri Fizic, Mohamed devine tot mai puternic în fiecare zi, însă trauma psihologică prin care trece și acum este de neimaginat. „Furia mea nu a scăzut”, mărturisește el. În școala mea au fost uciși copii mici. Ce crimă au comis ei? Mama lui își șterge o lacrimă, îl mângâie pe creștet și spune: „Îmi văd fiul mergând din nou”. Va putea să-și continue firesc viața. Serviciul 4G „Super Voice” de la Three oferă semnal mai bun Three folosește un spectru 4G cu o frecvență mai joasă, care poate acoperi o zonă mai extinsă
Furnizorul de telefonie mobilă Three a lansat în Regatul Unit un serviciu despre care spune că va îmbunătăți recepția în interiorul clădirilor și în zonele rurale fără semnal. Serviciul 4G Super Voice le permite clienților să efectueze apeluri și să trimită mesaje text folosind un spectru cu o frecvență mai joasă. Și alte rețele intenționează să introducă aceeași tehnologie, cunoscută ca „Voice Over Long-Term Evolution (VoLTE)”. Aceasta funcționează momentan doar cu Samsung Galaxy S5, însă telefoanele iPhone recente vor beneficia de ea în lunile următoare. Three menționează că până la 5,5 milioane de clienți vor avea acces la serviciu până în 2017.
Responsabilul șef pentru tehnologie, Bryn Jones a declarat: „Până la sfârșitul anului, un milion dintre clienții noștri vor avea acces la o acoperire mai bună în interior și își vor putea folosi telefoanele în mai multe locuri ca până acum”. Vedetele se pregătesc pentru stagiunea de pantomimă Stagiunea de pantomimă este foarte importantă pentru teatrele din tot Regatul Unit, multe dintre ele pregătindu-se acum pentru stagiunea din acest an. Acum, la teatrul de Crăciun participă unele dintre numele cele mai mari din showbusiness. Matthew Kelly și Hayley Mills vor apărea în Cenușăreasa - primul în rolul uneia dintre surorile rele, iar a doua în rolul zânei. Aceștia dezvăluie secretele pantomimei lor la BBC Breakfast. Steven Wilson: „Dacă nu fac nimic, mă simt vinovat”
Steven Wilson a fost desemnat recent drept marele câștigător al Progressive Music Awards Steven Wilson a fost numit de multe ori drept cel mai muncitor muzician din lumea rockului progresiv. Talentatul muzician a câștigat trei premii la Progressive Music Awards, care a avut loc luna aceasta la Londra, printre care și premiul pentru cel mai bun album al anului pentru Hand. În recenzia sa de cinci stele, The Guardian a numit albumul „o operă de artă inteligentă, expresivă și captivantă”. Încă din anii 1980, Wilson este motorul mai multor proiecte muzicale, cel mai cunoscut dintre acestea fiind trupa de rock Porcupine Tree. Acum, înainte de două spectacole cu casa închisă la Royal Albert Hall, Wilson lansează un dublu LP doar în format vinil, Transience, pentru a arăta latura „mai accesibilă” a activității sale solo.
A povestit pentru BBC despre dragostea lui pentru viniluri și despre programul său încărcat și a explicat cum a ajuns actorul de comedie Matt Berry să îi deschidă spectacolele. Ce înseamnă vinil pentru tine? Am crescut chiar în perioada de sfârșit a erei vinilurilor și îmi amintesc că atunci abia așteptam apariția CD-ului, căci vinilul era atât de enervant. Cumpărai un disc, mergeai cu el acasă, avea o zgârietură și trebuia să îl aduci înapoi. Iubesc CD-urile, iar pentru anumite tipuri de muzică, de exemplu cea clasică, sunt mai bune decât vinilurile. Însă problema cu CD-urile și cu descărcările digitale este aceea că nu mai există nimic pe care să îl prețuiești cu adevărat. Să ai un vinil e ca și cum ai avea un tablou frumos agățat în sufragerie.
E ceva ce poți ține în mână, în timp ce te lași absorbit de versuri și copleșit de actul artistic. Am crezut că e doar o chestie nostalgică, însă nu are cum să fie așa dacă unor puști prea tineri să-și amintească de viniluri le place acest gen de experiență. Ai vreun vinil la care ții în mod special? Recunosc că am scăpat de toate vinilurile în anii '90. Toate vinilurile pe care le am sunt cumpărate din nou. Am pornit de la ideea de a reface colecția pe care o aveam la 15 ani, însă am trecut de limita aceea. Primul disc pe care mi-am convins părinții să mi-l cumpere a fost Out of the Blue de la Electric Light Orchestra.
Dacă aș mai fi avut încă exemplarul inițial, acesta ar fi avut valoare sentimentală, însă, din păcate, se află pe undeva printr-un magazin de caritate. Steven Wilson speră că albumul va fi o poartă către posibili fani noi De ce ți-ai lansat noua compilație Transience pe vinil? Aceasta a fost concepută inițial ca idee pentru Ziua magazinelor de discuri, însă am ratat ocazia. Casa mea de discuri sugerase să adun câteva dintre melodiile mele mai scurte și mai accesibile. Am ajuns să fiu ușor obsedat de ideea de a face ceva gen „introducere în muzica lui Steven Wilson” și am ținut neapărat ca proiectul să fie lansat doar pe vinil. Cine cumpără vinilul primește, de asemenea, și o variantă descărcată la rezoluție înaltă.
Ești îngrijorat că albumul nu va arăta muzica ta în adevărata ei lumină? | -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/data/datasets/language_modeling.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import pickle
import random
import time
import warnings
from typing import Dict, List, Optional
import torch
from torch.utils.data import Dataset
from filelock import FileLock
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
DEPRECATION_WARNING = (
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
"library. You can have a look at this example script for pointers: {0}"
)
class TextDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(
self,
tokenizer: PreTrainedTokenizer,
file_path: str,
block_size: int,
overwrite_cache=False,
cache_dir: Optional[str] = None,
):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if os.path.isfile(file_path) is False:
raise ValueError(f"Input file path {file_path} not found")
block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(
cache_dir if cache_dir is not None else directory,
f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}",
)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not overwrite_cache:
start = time.time()
with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle)
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
else:
logger.info(f"Creating features from dataset file at {directory}")
self.examples = []
with open(file_path, encoding="utf-8") as f:
text = f.read()
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size
self.examples.append(
tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size])
)
# Note that we are losing the last truncated example here for the sake of simplicity (no padding)
# If your dataset is small, first you should look for a bigger one :-) and second you
# can change this behavior by adding (model specific) padding.
start = time.time()
with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> torch.Tensor:
return torch.tensor(self.examples[i], dtype=torch.long)
class LineByLineTextDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if os.path.isfile(file_path) is False:
raise ValueError(f"Input file path {file_path} not found")
# Here, we do not cache the features, operating under the assumption
# that we will soon use fast multithreaded tokenizers from the
# `tokenizers` repo everywhere =)
logger.info(f"Creating features from dataset file at {file_path}")
with open(file_path, encoding="utf-8") as f:
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
class LineByLineWithRefDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py"
),
FutureWarning,
)
if os.path.isfile(file_path) is False:
raise ValueError(f"Input file path {file_path} not found")
if os.path.isfile(ref_path) is False:
raise ValueError(f"Ref file path {file_path} not found")
# Here, we do not cache the features, operating under the assumption
# that we will soon use fast multithreaded tokenizers from the
# `tokenizers` repo everywhere =)
logger.info(f"Creating features from dataset file at {file_path}")
logger.info(f"Use ref segment results at {ref_path}")
with open(file_path, encoding="utf-8") as f:
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
# Get ref inf from file
with open(ref_path, encoding="utf-8") as f:
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
if len(data) != len(ref):
raise ValueError(
f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} "
f"while length of {ref_path} is {len(ref)}"
)
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
n = len(self.examples)
for i in range(n):
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
class LineByLineWithSOPTextDataset(Dataset):
"""
Dataset for sentence order prediction task, prepare sentence pairs for SOP task
"""
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if os.path.isdir(file_dir) is False:
raise ValueError(f"{file_dir} is not a directory")
logger.info(f"Creating features from dataset file folder at {file_dir}")
self.examples = []
# TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed)
# file path looks like ./dataset/wiki_1, ./dataset/wiki_2
for file_name in os.listdir(file_dir):
file_path = os.path.join(file_dir, file_name)
if os.path.isfile(file_path) is False:
raise ValueError(f"{file_path} is not a file")
article_open = False
with open(file_path, encoding="utf-8") as f:
original_lines = f.readlines()
article_lines = []
for line in original_lines:
if "<doc id=" in line:
article_open = True
elif "</doc>" in line:
article_open = False
document = [
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))
for line in article_lines[1:]
if (len(line) > 0 and not line.isspace())
]
examples = self.create_examples_from_document(document, block_size, tokenizer)
self.examples.extend(examples)
article_lines = []
else:
if article_open:
article_lines.append(line)
logger.info("Dataset parse finished.")
def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1):
"""Creates examples for a single document."""
# Account for special tokens
max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)
# We *usually* want to fill up the entire sequence since we are padding
# to `block_size` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pretraining and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `block_size` is a hard limit.
target_seq_length = max_num_tokens
if random.random() < short_seq_prob:
target_seq_length = random.randint(2, max_num_tokens)
# We DON'T just concatenate all of the tokens from a document into a long
# sequence and choose an arbitrary split point because this would make the
# next sentence prediction task too easy. Instead, we split the input into
# segments "A" and "B" based on the actual "sentences" provided by the user
# input.
examples = []
current_chunk = [] # a buffer stored current working segments
current_length = 0
i = 0
while i < len(document):
segment = document[i] # get a segment
if not segment:
i += 1
continue
current_chunk.append(segment) # add a segment to current chunk
current_length += len(segment) # overall token length
# if current length goes to the target length or reaches the end of file, start building token a and b
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence.
a_end = 1
# if current chunk has more than 2 sentences, pick part of it `A` (first) sentence
if len(current_chunk) >= 2:
a_end = random.randint(1, len(current_chunk) - 1)
# token a
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
# token b
tokens_b = []
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
if len(tokens_a) == 0 or len(tokens_b) == 0:
continue
# switch tokens_a and tokens_b randomly
if random.random() < 0.5:
is_next = False
tokens_a, tokens_b = tokens_b, tokens_a
else:
is_next = True
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
"""Truncates a pair of sequences to a maximum sequence length."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_num_tokens:
break
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
if not (len(trunc_tokens) >= 1):
raise ValueError("Sequence length to be truncated must be no less than one")
# We want to sometimes truncate from the front and sometimes from the
# back to add more randomness and avoid biases.
if random.random() < 0.5:
del trunc_tokens[0]
else:
trunc_tokens.pop()
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
if not (len(tokens_a) >= 1):
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
if not (len(tokens_b) >= 1):
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
# add special tokens
input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
# add token type ids, 0 for sentence a, 1 for sentence b
token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
example = {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
"sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long),
}
examples.append(example)
current_chunk = [] # clear current chunk
current_length = 0 # reset current text length
i += 1 # go to next line
return examples
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
class TextDatasetForNextSentencePrediction(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(
self,
tokenizer: PreTrainedTokenizer,
file_path: str,
block_size: int,
overwrite_cache=False,
short_seq_probability=0.1,
nsp_probability=0.5,
):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if not os.path.isfile(file_path):
raise ValueError(f"Input file path {file_path} not found")
self.short_seq_probability = short_seq_probability
self.nsp_probability = nsp_probability
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(
directory,
f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}",
)
self.tokenizer = tokenizer
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
#
# Example:
# I am very happy.
# Here is the second sentence.
#
# A new document.
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not overwrite_cache:
start = time.time()
with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle)
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
else:
logger.info(f"Creating features from dataset file at {directory}")
self.documents = [[]]
with open(file_path, encoding="utf-8") as f:
while True:
line = f.readline()
if not line:
break
line = line.strip()
# Empty lines are used as document delimiters
if not line and len(self.documents[-1]) != 0:
self.documents.append([])
tokens = tokenizer.tokenize(line)
tokens = tokenizer.convert_tokens_to_ids(tokens)
if tokens:
self.documents[-1].append(tokens)
logger.info(f"Creating examples from {len(self.documents)} documents.")
self.examples = []
for doc_index, document in enumerate(self.documents):
self.create_examples_from_document(document, doc_index, block_size)
start = time.time()
with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int):
"""Creates examples for a single document."""
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)
# We *usually* want to fill up the entire sequence since we are padding
# to `block_size` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pretraining and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `block_size` is a hard limit.
target_seq_length = max_num_tokens
if random.random() < self.short_seq_probability:
target_seq_length = random.randint(2, max_num_tokens)
current_chunk = [] # a buffer stored current working segments
current_length = 0
i = 0
while i < len(document):
segment = document[i]
current_chunk.append(segment)
current_length += len(segment)
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2:
a_end = random.randint(1, len(current_chunk) - 1)
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
tokens_b = []
if len(current_chunk) == 1 or random.random() < self.nsp_probability:
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)
# This should rarely go for more than one iteration for large
# corpora. However, just to be careful, we try to make sure that
# the random document is not the same as the document
# we're processing.
for _ in range(10):
random_document_index = random.randint(0, len(self.documents) - 1)
if random_document_index != doc_index:
break
random_document = self.documents[random_document_index]
random_start = random.randint(0, len(random_document) - 1)
for j in range(random_start, len(random_document)):
tokens_b.extend(random_document[j])
if len(tokens_b) >= target_b_length:
break
# We didn't actually use these segments so we "put them back" so
# they don't go to waste.
num_unused_segments = len(current_chunk) - a_end
i -= num_unused_segments
# Actual next
else:
is_random_next = False
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
if not (len(tokens_a) >= 1):
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
if not (len(tokens_b) >= 1):
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
# add special tokens
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
# add token type ids, 0 for sentence a, 1 for sentence b
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
example = {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
"next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long),
}
self.examples.append(example)
current_chunk = []
current_length = 0
i += 1
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
return self.examples[i]
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import pickle
import random
import time
import warnings
from typing import Dict, List, Optional
import torch
from torch.utils.data import Dataset
from filelock import FileLock
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
DEPRECATION_WARNING = (
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
"library. You can have a look at this example script for pointers: {0}"
)
class TextDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(
self,
tokenizer: PreTrainedTokenizer,
file_path: str,
block_size: int,
overwrite_cache=False,
cache_dir: Optional[str] = None,
):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if os.path.isfile(file_path) is False:
raise ValueError(f"Input file path {file_path} not found")
block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(
cache_dir if cache_dir is not None else directory,
f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}",
)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not overwrite_cache:
start = time.time()
with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle)
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
else:
logger.info(f"Creating features from dataset file at {directory}")
self.examples = []
with open(file_path, encoding="utf-8") as f:
text = f.read()
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size
self.examples.append(
tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size])
)
# Note that we are losing the last truncated example here for the sake of simplicity (no padding)
# If your dataset is small, first you should look for a bigger one :-) and second you
# can change this behavior by adding (model specific) padding.
start = time.time()
with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> torch.Tensor:
return torch.tensor(self.examples[i], dtype=torch.long)
class LineByLineTextDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if os.path.isfile(file_path) is False:
raise ValueError(f"Input file path {file_path} not found")
# Here, we do not cache the features, operating under the assumption
# that we will soon use fast multithreaded tokenizers from the
# `tokenizers` repo everywhere =)
logger.info(f"Creating features from dataset file at {file_path}")
with open(file_path, encoding="utf-8") as f:
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
class LineByLineWithRefDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py"
),
FutureWarning,
)
if os.path.isfile(file_path) is False:
raise ValueError(f"Input file path {file_path} not found")
if os.path.isfile(ref_path) is False:
raise ValueError(f"Ref file path {file_path} not found")
# Here, we do not cache the features, operating under the assumption
# that we will soon use fast multithreaded tokenizers from the
# `tokenizers` repo everywhere =)
logger.info(f"Creating features from dataset file at {file_path}")
logger.info(f"Use ref segment results at {ref_path}")
with open(file_path, encoding="utf-8") as f:
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
# Get ref inf from file
with open(ref_path, encoding="utf-8") as f:
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
if len(data) != len(ref):
raise ValueError(
f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} "
f"while length of {ref_path} is {len(ref)}"
)
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
self.examples = batch_encoding["input_ids"]
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
n = len(self.examples)
for i in range(n):
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
class LineByLineWithSOPTextDataset(Dataset):
"""
Dataset for sentence order prediction task, prepare sentence pairs for SOP task
"""
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if os.path.isdir(file_dir) is False:
raise ValueError(f"{file_dir} is not a directory")
logger.info(f"Creating features from dataset file folder at {file_dir}")
self.examples = []
# TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed)
# file path looks like ./dataset/wiki_1, ./dataset/wiki_2
for file_name in os.listdir(file_dir):
file_path = os.path.join(file_dir, file_name)
if os.path.isfile(file_path) is False:
raise ValueError(f"{file_path} is not a file")
article_open = False
with open(file_path, encoding="utf-8") as f:
original_lines = f.readlines()
article_lines = []
for line in original_lines:
if "<doc id=" in line:
article_open = True
elif "</doc>" in line:
article_open = False
document = [
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))
for line in article_lines[1:]
if (len(line) > 0 and not line.isspace())
]
examples = self.create_examples_from_document(document, block_size, tokenizer)
self.examples.extend(examples)
article_lines = []
else:
if article_open:
article_lines.append(line)
logger.info("Dataset parse finished.")
def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1):
"""Creates examples for a single document."""
# Account for special tokens
max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)
# We *usually* want to fill up the entire sequence since we are padding
# to `block_size` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pretraining and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `block_size` is a hard limit.
target_seq_length = max_num_tokens
if random.random() < short_seq_prob:
target_seq_length = random.randint(2, max_num_tokens)
# We DON'T just concatenate all of the tokens from a document into a long
# sequence and choose an arbitrary split point because this would make the
# next sentence prediction task too easy. Instead, we split the input into
# segments "A" and "B" based on the actual "sentences" provided by the user
# input.
examples = []
current_chunk = [] # a buffer stored current working segments
current_length = 0
i = 0
while i < len(document):
segment = document[i] # get a segment
if not segment:
i += 1
continue
current_chunk.append(segment) # add a segment to current chunk
current_length += len(segment) # overall token length
# if current length goes to the target length or reaches the end of file, start building token a and b
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence.
a_end = 1
# if current chunk has more than 2 sentences, pick part of it `A` (first) sentence
if len(current_chunk) >= 2:
a_end = random.randint(1, len(current_chunk) - 1)
# token a
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
# token b
tokens_b = []
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
if len(tokens_a) == 0 or len(tokens_b) == 0:
continue
# switch tokens_a and tokens_b randomly
if random.random() < 0.5:
is_next = False
tokens_a, tokens_b = tokens_b, tokens_a
else:
is_next = True
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
"""Truncates a pair of sequences to a maximum sequence length."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_num_tokens:
break
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
if not (len(trunc_tokens) >= 1):
raise ValueError("Sequence length to be truncated must be no less than one")
# We want to sometimes truncate from the front and sometimes from the
# back to add more randomness and avoid biases.
if random.random() < 0.5:
del trunc_tokens[0]
else:
trunc_tokens.pop()
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
if not (len(tokens_a) >= 1):
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
if not (len(tokens_b) >= 1):
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
# add special tokens
input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
# add token type ids, 0 for sentence a, 1 for sentence b
token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
example = {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
"sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long),
}
examples.append(example)
current_chunk = [] # clear current chunk
current_length = 0 # reset current text length
i += 1 # go to next line
return examples
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
return self.examples[i]
class TextDatasetForNextSentencePrediction(Dataset):
"""
This will be superseded by a framework-agnostic approach soon.
"""
def __init__(
self,
tokenizer: PreTrainedTokenizer,
file_path: str,
block_size: int,
overwrite_cache=False,
short_seq_probability=0.1,
nsp_probability=0.5,
):
warnings.warn(
DEPRECATION_WARNING.format(
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
),
FutureWarning,
)
if not os.path.isfile(file_path):
raise ValueError(f"Input file path {file_path} not found")
self.short_seq_probability = short_seq_probability
self.nsp_probability = nsp_probability
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(
directory,
f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}",
)
self.tokenizer = tokenizer
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
#
# Example:
# I am very happy.
# Here is the second sentence.
#
# A new document.
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not overwrite_cache:
start = time.time()
with open(cached_features_file, "rb") as handle:
self.examples = pickle.load(handle)
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
else:
logger.info(f"Creating features from dataset file at {directory}")
self.documents = [[]]
with open(file_path, encoding="utf-8") as f:
while True:
line = f.readline()
if not line:
break
line = line.strip()
# Empty lines are used as document delimiters
if not line and len(self.documents[-1]) != 0:
self.documents.append([])
tokens = tokenizer.tokenize(line)
tokens = tokenizer.convert_tokens_to_ids(tokens)
if tokens:
self.documents[-1].append(tokens)
logger.info(f"Creating examples from {len(self.documents)} documents.")
self.examples = []
for doc_index, document in enumerate(self.documents):
self.create_examples_from_document(document, doc_index, block_size)
start = time.time()
with open(cached_features_file, "wb") as handle:
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int):
"""Creates examples for a single document."""
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)
# We *usually* want to fill up the entire sequence since we are padding
# to `block_size` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pretraining and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `block_size` is a hard limit.
target_seq_length = max_num_tokens
if random.random() < self.short_seq_probability:
target_seq_length = random.randint(2, max_num_tokens)
current_chunk = [] # a buffer stored current working segments
current_length = 0
i = 0
while i < len(document):
segment = document[i]
current_chunk.append(segment)
current_length += len(segment)
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2:
a_end = random.randint(1, len(current_chunk) - 1)
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
tokens_b = []
if len(current_chunk) == 1 or random.random() < self.nsp_probability:
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)
# This should rarely go for more than one iteration for large
# corpora. However, just to be careful, we try to make sure that
# the random document is not the same as the document
# we're processing.
for _ in range(10):
random_document_index = random.randint(0, len(self.documents) - 1)
if random_document_index != doc_index:
break
random_document = self.documents[random_document_index]
random_start = random.randint(0, len(random_document) - 1)
for j in range(random_start, len(random_document)):
tokens_b.extend(random_document[j])
if len(tokens_b) >= target_b_length:
break
# We didn't actually use these segments so we "put them back" so
# they don't go to waste.
num_unused_segments = len(current_chunk) - a_end
i -= num_unused_segments
# Actual next
else:
is_random_next = False
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
if not (len(tokens_a) >= 1):
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
if not (len(tokens_b) >= 1):
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
# add special tokens
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
# add token type ids, 0 for sentence a, 1 for sentence b
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
example = {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
"next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long),
}
self.examples.append(example)
current_chunk = []
current_length = 0
i += 1
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
return self.examples[i]
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/legacy/seq2seq/train_distil_marian_enro_tpu.sh | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export WANDB_PROJECT=distil-marian
export BS=64
export m=sshleifer/student_marian_en_ro_6_3
export MAX_LEN=128
export TPU_NUM_CORES=8
python xla_spawn.py --num_cores $TPU_NUM_CORES \
finetune_trainer.py \
--tokenizer_name $m --model_name_or_path $m \
--data_dir $ENRO_DIR \
--output_dir marian_en_ro_6_3 --overwrite_output_dir \
--learning_rate=3e-4 \
--warmup_steps 500 \
--per_device_train_batch_size=$BS --per_device_eval_batch_size=$BS \
--freeze_encoder --freeze_embeds \
--num_train_epochs=6 \
--save_steps 500 --eval_steps 500 \
--logging_first_step --logging_steps 200 \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN \
--val_max_target_length $MAX_TGT_LEN --test_max_target_length $MAX_TGT_LEN \
--do_train --do_eval \
--evaluation_strategy steps \
--prediction_loss_only \
--task translation --label_smoothing_factor 0.1 \
"$@"
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
export WANDB_PROJECT=distil-marian
export BS=64
export m=sshleifer/student_marian_en_ro_6_3
export MAX_LEN=128
export TPU_NUM_CORES=8
python xla_spawn.py --num_cores $TPU_NUM_CORES \
finetune_trainer.py \
--tokenizer_name $m --model_name_or_path $m \
--data_dir $ENRO_DIR \
--output_dir marian_en_ro_6_3 --overwrite_output_dir \
--learning_rate=3e-4 \
--warmup_steps 500 \
--per_device_train_batch_size=$BS --per_device_eval_batch_size=$BS \
--freeze_encoder --freeze_embeds \
--num_train_epochs=6 \
--save_steps 500 --eval_steps 500 \
--logging_first_step --logging_steps 200 \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN \
--val_max_target_length $MAX_TGT_LEN --test_max_target_length $MAX_TGT_LEN \
--do_train --do_eval \
--evaluation_strategy steps \
--prediction_loss_only \
--task translation --label_smoothing_factor 0.1 \
"$@"
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/research_projects/seq2seq-distillation/distillation.py | #!/usr/bin/env python
import argparse
import gc
import os
import sys
from pathlib import Path
from typing import List # noqa: F401
import pytorch_lightning as pl
import torch
from torch import nn
from finetune import SummarizationModule, TranslationModule
from finetune import main as ft_main
from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import calculate_bleu, check_output_dir, freeze_params, label_smoothed_nll_loss, use_task_specific_params
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import generic_train # noqa
class SummarizationDistiller(SummarizationModule):
"""Supports T5, Bart, Pegasus and other models that inherit from Bart."""
loss_names = ["loss", "ce_loss", "mlm_loss", "hid_loss_enc", "hid_loss_dec"]
def __init__(self, hparams):
assert Path(hparams.data_dir).exists()
self.output_dir = Path(hparams.output_dir)
self.output_dir.mkdir(exist_ok=True)
save_dir = self.output_dir.joinpath("student")
hparams.model_name_or_path = str(save_dir) # Tell lightning we are training the student
teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval()
use_task_specific_params(teacher, hparams.task) # We copy good generation parameters to student by default
if hparams.student is not None:
student = AutoModelForSeq2SeqLM.from_pretrained(hparams.student)
use_task_specific_params(student, hparams.task)
e_layer_ids, d_layer_ids = None, None
else:
student, e_layer_ids, d_layer_ids = create_student_by_copying_alternating_layers(
teacher, e=hparams.student_encoder_layers, d=hparams.student_decoder_layers, save_path=save_dir
)
if hparams.length_penalty != -1:
student.config.length_penalty = hparams.length_penalty
hparams.tokenizer_name = hparams.teacher # Use teacher's tokenizer
super().__init__(hparams, model=student, config=student.config)
assert student.config.model_type == teacher.config.model_type, (
f"teacher, student model types should be the same, got {student.config.model_type} !="
f" {teacher.config.model_type}"
)
if student.config.model_type == "t5":
student_encoder_layers = len(student.get_encoder().block)
student_decoder_layers = len(student.get_decoder().block)
teacher_encoder_layers = len(teacher.get_encoder().block)
teacher_decoder_layers = len(teacher.get_decoder().block)
else:
student_encoder_layers = student.config.encoder_layers
student_decoder_layers = student.config.decoder_layers
teacher_encoder_layers = teacher.config.encoder_layers
teacher_decoder_layers = teacher.config.decoder_layers
self.different_base_models = not (hparams.student is None or hparams.teacher == hparams.student)
self.do_calc_hidden_loss = (not self.different_base_models) and hparams.alpha_hid > 0
self.different_encoder = self.different_base_models or (student_encoder_layers != teacher_encoder_layers)
# self.different_encoder determines whether we need to run the teacher encoder
self.teacher = teacher
freeze_params(self.teacher)
if not self.different_encoder: # To save RAM, delete teacher encoder and freeze student encoder.
try:
del self.teacher.model.encoder
except AttributeError: # T5
del self.teacher.encoder
if e_layer_ids is None:
e_layer_ids = list(range(student_encoder_layers))
if d_layer_ids is None:
d_layer_ids = list(range(student_decoder_layers))
self.e_layer_ids, self.d_layer_ids = e_layer_ids, d_layer_ids # type: List[int], List[int]
if self.do_calc_hidden_loss: # Intermediate supervision: Decide which layers to supervise
if hparams.supervise_forward:
self.e_matches = get_layers_to_supervise(
n_student=len(self.e_layer_ids), n_teacher=teacher_encoder_layers
)
self.d_matches = get_layers_to_supervise(
n_student=len(self.d_layer_ids), n_teacher=teacher_decoder_layers
)
else: # student layer should emulate hidden states of the teacher layer it was copied from
self.e_matches = self.e_layer_ids
self.d_matches = self.d_layer_ids
else:
self.e_matches = None
self.d_matches = None
self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
self.temperature = 2.0
self.alpha_mlm = hparams.alpha_mlm
self.alpha_ce = hparams.alpha_ce
self.alpha_hid = hparams.alpha_hid
gc.collect()
torch.cuda.empty_cache()
def calc_ce_loss(self, mask, s_logits, t_logits):
"""Copy pasted from distillbert (transformers/examples/distillation/)"""
# mask has False at padding_idx
sel_mask = mask[:, :, None].expand_as(s_logits)
vocab_size = s_logits.size(-1)
s_logits_slct = torch.masked_select(s_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask
t_logits_slct = torch.masked_select(t_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask
s_logits_slct = s_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask
t_logits_slct = t_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask
assert t_logits_slct.size() == s_logits_slct.size()
loss_ce = (
self.ce_loss_fct(
nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1),
nn.functional.softmax(t_logits_slct / self.temperature, dim=-1),
)
* (self.temperature) ** 2
)
return loss_ce
@staticmethod
def add_model_specific_args(parser, root_dir):
SummarizationModule.add_model_specific_args(parser, root_dir)
add_distill_args(parser)
return parser
def _step(self, batch: dict) -> tuple:
"""Compute the loss for a batch"""
pad_token_id = self.tokenizer.pad_token_id
input_ids, src_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(labels)
else:
decoder_input_ids = shift_tokens_right(labels, pad_token_id)
# noinspection PyCallingNonCallable
student_outputs = self(
input_ids,
attention_mask=src_mask,
decoder_input_ids=decoder_input_ids,
output_hidden_states=self.do_calc_hidden_loss,
output_attentions=False,
use_cache=False,
)
lm_logits = student_outputs["logits"]
# Same cross entropy vs. label smoothing logic as finetune.py
assert lm_logits.shape[-1] == self.model.config.vocab_size
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
loss_fct = nn.CrossEntropyLoss(ignore_index=pad_token_id)
student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1))
else:
lprobs = nn.functional.log_softmax(lm_logits, dim=-1)
student_lm_loss, _ = label_smoothed_nll_loss(
lprobs, labels, self.hparams.label_smoothing, ignore_index=pad_token_id
)
def zero_tensor():
return torch.tensor(0.0).type_as(student_lm_loss)
teacher_enc_outputs = student_outputs[
"encoder_last_hidden_state"
] # use this unless self.different_base_models
hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor()
if self.different_encoder: # compute encoder hidden state loss
all_teacher_encoder_outputs = self.teacher.get_encoder()(
input_ids,
attention_mask=src_mask,
output_hidden_states=self.do_calc_hidden_loss,
)
if self.different_base_models:
teacher_enc_outputs = all_teacher_encoder_outputs["last_hidden_state"]
elif self.do_calc_hidden_loss:
hid_loss_enc = self.calc_hidden_loss(
src_mask,
student_outputs["encoder_hidden_states"],
all_teacher_encoder_outputs["hidden_states"],
self.e_matches,
normalize_hidden=self.hparams.normalize_hidden,
)
teacher_outputs = self.teacher(
input_ids,
attention_mask=src_mask,
encoder_outputs=(teacher_enc_outputs,),
decoder_input_ids=decoder_input_ids,
output_hidden_states=self.do_calc_hidden_loss,
use_cache=False, # since we are not passing labels, never let this default to True
)
dec_mask = decoder_input_ids.ne(pad_token_id)
loss_ce = self.calc_ce_loss(dec_mask, lm_logits, teacher_outputs["logits"])
if self.do_calc_hidden_loss: # Intermediate supervision of decoder hidden states
hid_loss_dec = self.calc_hidden_loss(
dec_mask,
student_outputs["decoder_hidden_states"],
teacher_outputs["decoder_hidden_states"],
self.d_matches,
normalize_hidden=self.hparams.normalize_hidden,
)
blended_loss = (
self.alpha_ce * loss_ce
+ self.alpha_mlm * student_lm_loss
+ self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
)
return blended_loss, loss_ce, student_lm_loss, hid_loss_enc, hid_loss_dec
@staticmethod
def calc_hidden_loss(attention_mask, hidden_states, hidden_states_T, matches, normalize_hidden):
"""MSE(student_hid, teacher_hid[matches]). Called "Intermediate supervision" in paper. Inspired by TinyBERT."""
msg = "expected list or tuple for hidden_states, got tensor of shape: "
assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}"
assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}"
mask = attention_mask.to(hidden_states[0])
valid_count = mask.sum() * hidden_states[0].size(-1)
student_states = torch.stack([hidden_states[i] for i in range(len(matches))])
teacher_states = torch.stack([hidden_states_T[j] for j in matches])
assert student_states.shape == teacher_states.shape, f"{student_states.shape} != {teacher_states.shape}"
if normalize_hidden:
student_states = nn.functional.layer_norm(student_states, student_states.shape[1:])
teacher_states = nn.functional.layer_norm(teacher_states, teacher_states.shape[1:])
mse = nn.functional.mse_loss(student_states, teacher_states, reduction="none")
masked_mse = (mse * mask.unsqueeze(0).unsqueeze(-1)).sum() / valid_count
return masked_mse
def add_distill_args(parser):
# NOTE: if --student argument was specified and the teacher and student base models
# are different, the models still have to have the same tokenizer, specified by
# --tokenizer_name. So, for example, you can distill from t5_large to t5_small but not
# from bart to t5. This s because if the tokenizers are different, the output space
# for the two models is also different and their logits are not comparable.
parser.add_argument("--teacher", type=str)
parser.add_argument("--alpha_ce", default=0.8, type=float)
parser.add_argument("--alpha_mlm", default=0.2, type=float)
parser.add_argument("--alpha_hid", default=0.0, type=float, required=False)
parser.add_argument("--student", type=str, required=False)
parser.add_argument("--student_decoder_layers", default=12, type=int, required=False)
parser.add_argument("--student_encoder_layers", default=12, type=int, required=False)
parser.add_argument("--no_teacher", action="store_true", default=False)
parser.add_argument("--length_penalty", type=float, default=-1)
parser.add_argument("--supervise_forward", action="store_true", default=False)
parser.add_argument("--normalize_hidden", action="store_true", default=False)
class TranslationDistiller(SummarizationDistiller):
"""Supports T5, mBART, Marian, other models that inherit from Bart."""
mode = "translation"
metric_names = ["bleu"]
default_val_metric = "bleu"
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
assert hparams.src_lang is not None
assert hparams.tgt_lang is not None
self.dataset_kwargs["src_lang"] = hparams.src_lang
self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
def calc_generative_metrics(self, preds, target) -> dict:
return calculate_bleu(preds, target)
@staticmethod
def add_model_specific_args(parser, root_dir):
TranslationModule.add_model_specific_args(parser, root_dir)
add_distill_args(parser)
return parser
def create_module(args):
if args.no_teacher:
module_cls = TranslationModule if "translation" in args.task else SummarizationModule
else: # DISTILL WITH TEACHER
module_cls = TranslationDistiller if "translation" in args.task else SummarizationDistiller
args.setup_cls: str = module_cls.__name__
print(f"using module {args.setup_cls}")
model = module_cls(args)
return model
def distill_main(args):
Path(args.output_dir).mkdir(exist_ok=True)
check_output_dir(args, expected_items=3)
model = create_module(args)
return ft_main(args, model=model)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationDistiller.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
distill_main(args)
| #!/usr/bin/env python
import argparse
import gc
import os
import sys
from pathlib import Path
from typing import List # noqa: F401
import pytorch_lightning as pl
import torch
from torch import nn
from finetune import SummarizationModule, TranslationModule
from finetune import main as ft_main
from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import calculate_bleu, check_output_dir, freeze_params, label_smoothed_nll_loss, use_task_specific_params
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import generic_train # noqa
class SummarizationDistiller(SummarizationModule):
"""Supports T5, Bart, Pegasus and other models that inherit from Bart."""
loss_names = ["loss", "ce_loss", "mlm_loss", "hid_loss_enc", "hid_loss_dec"]
def __init__(self, hparams):
assert Path(hparams.data_dir).exists()
self.output_dir = Path(hparams.output_dir)
self.output_dir.mkdir(exist_ok=True)
save_dir = self.output_dir.joinpath("student")
hparams.model_name_or_path = str(save_dir) # Tell lightning we are training the student
teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval()
use_task_specific_params(teacher, hparams.task) # We copy good generation parameters to student by default
if hparams.student is not None:
student = AutoModelForSeq2SeqLM.from_pretrained(hparams.student)
use_task_specific_params(student, hparams.task)
e_layer_ids, d_layer_ids = None, None
else:
student, e_layer_ids, d_layer_ids = create_student_by_copying_alternating_layers(
teacher, e=hparams.student_encoder_layers, d=hparams.student_decoder_layers, save_path=save_dir
)
if hparams.length_penalty != -1:
student.config.length_penalty = hparams.length_penalty
hparams.tokenizer_name = hparams.teacher # Use teacher's tokenizer
super().__init__(hparams, model=student, config=student.config)
assert student.config.model_type == teacher.config.model_type, (
f"teacher, student model types should be the same, got {student.config.model_type} !="
f" {teacher.config.model_type}"
)
if student.config.model_type == "t5":
student_encoder_layers = len(student.get_encoder().block)
student_decoder_layers = len(student.get_decoder().block)
teacher_encoder_layers = len(teacher.get_encoder().block)
teacher_decoder_layers = len(teacher.get_decoder().block)
else:
student_encoder_layers = student.config.encoder_layers
student_decoder_layers = student.config.decoder_layers
teacher_encoder_layers = teacher.config.encoder_layers
teacher_decoder_layers = teacher.config.decoder_layers
self.different_base_models = not (hparams.student is None or hparams.teacher == hparams.student)
self.do_calc_hidden_loss = (not self.different_base_models) and hparams.alpha_hid > 0
self.different_encoder = self.different_base_models or (student_encoder_layers != teacher_encoder_layers)
# self.different_encoder determines whether we need to run the teacher encoder
self.teacher = teacher
freeze_params(self.teacher)
if not self.different_encoder: # To save RAM, delete teacher encoder and freeze student encoder.
try:
del self.teacher.model.encoder
except AttributeError: # T5
del self.teacher.encoder
if e_layer_ids is None:
e_layer_ids = list(range(student_encoder_layers))
if d_layer_ids is None:
d_layer_ids = list(range(student_decoder_layers))
self.e_layer_ids, self.d_layer_ids = e_layer_ids, d_layer_ids # type: List[int], List[int]
if self.do_calc_hidden_loss: # Intermediate supervision: Decide which layers to supervise
if hparams.supervise_forward:
self.e_matches = get_layers_to_supervise(
n_student=len(self.e_layer_ids), n_teacher=teacher_encoder_layers
)
self.d_matches = get_layers_to_supervise(
n_student=len(self.d_layer_ids), n_teacher=teacher_decoder_layers
)
else: # student layer should emulate hidden states of the teacher layer it was copied from
self.e_matches = self.e_layer_ids
self.d_matches = self.d_layer_ids
else:
self.e_matches = None
self.d_matches = None
self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
self.temperature = 2.0
self.alpha_mlm = hparams.alpha_mlm
self.alpha_ce = hparams.alpha_ce
self.alpha_hid = hparams.alpha_hid
gc.collect()
torch.cuda.empty_cache()
def calc_ce_loss(self, mask, s_logits, t_logits):
"""Copy pasted from distillbert (transformers/examples/distillation/)"""
# mask has False at padding_idx
sel_mask = mask[:, :, None].expand_as(s_logits)
vocab_size = s_logits.size(-1)
s_logits_slct = torch.masked_select(s_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask
t_logits_slct = torch.masked_select(t_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask
s_logits_slct = s_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask
t_logits_slct = t_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask
assert t_logits_slct.size() == s_logits_slct.size()
loss_ce = (
self.ce_loss_fct(
nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1),
nn.functional.softmax(t_logits_slct / self.temperature, dim=-1),
)
* (self.temperature) ** 2
)
return loss_ce
@staticmethod
def add_model_specific_args(parser, root_dir):
SummarizationModule.add_model_specific_args(parser, root_dir)
add_distill_args(parser)
return parser
def _step(self, batch: dict) -> tuple:
"""Compute the loss for a batch"""
pad_token_id = self.tokenizer.pad_token_id
input_ids, src_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(labels)
else:
decoder_input_ids = shift_tokens_right(labels, pad_token_id)
# noinspection PyCallingNonCallable
student_outputs = self(
input_ids,
attention_mask=src_mask,
decoder_input_ids=decoder_input_ids,
output_hidden_states=self.do_calc_hidden_loss,
output_attentions=False,
use_cache=False,
)
lm_logits = student_outputs["logits"]
# Same cross entropy vs. label smoothing logic as finetune.py
assert lm_logits.shape[-1] == self.model.config.vocab_size
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
loss_fct = nn.CrossEntropyLoss(ignore_index=pad_token_id)
student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1))
else:
lprobs = nn.functional.log_softmax(lm_logits, dim=-1)
student_lm_loss, _ = label_smoothed_nll_loss(
lprobs, labels, self.hparams.label_smoothing, ignore_index=pad_token_id
)
def zero_tensor():
return torch.tensor(0.0).type_as(student_lm_loss)
teacher_enc_outputs = student_outputs[
"encoder_last_hidden_state"
] # use this unless self.different_base_models
hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor()
if self.different_encoder: # compute encoder hidden state loss
all_teacher_encoder_outputs = self.teacher.get_encoder()(
input_ids,
attention_mask=src_mask,
output_hidden_states=self.do_calc_hidden_loss,
)
if self.different_base_models:
teacher_enc_outputs = all_teacher_encoder_outputs["last_hidden_state"]
elif self.do_calc_hidden_loss:
hid_loss_enc = self.calc_hidden_loss(
src_mask,
student_outputs["encoder_hidden_states"],
all_teacher_encoder_outputs["hidden_states"],
self.e_matches,
normalize_hidden=self.hparams.normalize_hidden,
)
teacher_outputs = self.teacher(
input_ids,
attention_mask=src_mask,
encoder_outputs=(teacher_enc_outputs,),
decoder_input_ids=decoder_input_ids,
output_hidden_states=self.do_calc_hidden_loss,
use_cache=False, # since we are not passing labels, never let this default to True
)
dec_mask = decoder_input_ids.ne(pad_token_id)
loss_ce = self.calc_ce_loss(dec_mask, lm_logits, teacher_outputs["logits"])
if self.do_calc_hidden_loss: # Intermediate supervision of decoder hidden states
hid_loss_dec = self.calc_hidden_loss(
dec_mask,
student_outputs["decoder_hidden_states"],
teacher_outputs["decoder_hidden_states"],
self.d_matches,
normalize_hidden=self.hparams.normalize_hidden,
)
blended_loss = (
self.alpha_ce * loss_ce
+ self.alpha_mlm * student_lm_loss
+ self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
)
return blended_loss, loss_ce, student_lm_loss, hid_loss_enc, hid_loss_dec
@staticmethod
def calc_hidden_loss(attention_mask, hidden_states, hidden_states_T, matches, normalize_hidden):
"""MSE(student_hid, teacher_hid[matches]). Called "Intermediate supervision" in paper. Inspired by TinyBERT."""
msg = "expected list or tuple for hidden_states, got tensor of shape: "
assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}"
assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}"
mask = attention_mask.to(hidden_states[0])
valid_count = mask.sum() * hidden_states[0].size(-1)
student_states = torch.stack([hidden_states[i] for i in range(len(matches))])
teacher_states = torch.stack([hidden_states_T[j] for j in matches])
assert student_states.shape == teacher_states.shape, f"{student_states.shape} != {teacher_states.shape}"
if normalize_hidden:
student_states = nn.functional.layer_norm(student_states, student_states.shape[1:])
teacher_states = nn.functional.layer_norm(teacher_states, teacher_states.shape[1:])
mse = nn.functional.mse_loss(student_states, teacher_states, reduction="none")
masked_mse = (mse * mask.unsqueeze(0).unsqueeze(-1)).sum() / valid_count
return masked_mse
def add_distill_args(parser):
# NOTE: if --student argument was specified and the teacher and student base models
# are different, the models still have to have the same tokenizer, specified by
# --tokenizer_name. So, for example, you can distill from t5_large to t5_small but not
# from bart to t5. This s because if the tokenizers are different, the output space
# for the two models is also different and their logits are not comparable.
parser.add_argument("--teacher", type=str)
parser.add_argument("--alpha_ce", default=0.8, type=float)
parser.add_argument("--alpha_mlm", default=0.2, type=float)
parser.add_argument("--alpha_hid", default=0.0, type=float, required=False)
parser.add_argument("--student", type=str, required=False)
parser.add_argument("--student_decoder_layers", default=12, type=int, required=False)
parser.add_argument("--student_encoder_layers", default=12, type=int, required=False)
parser.add_argument("--no_teacher", action="store_true", default=False)
parser.add_argument("--length_penalty", type=float, default=-1)
parser.add_argument("--supervise_forward", action="store_true", default=False)
parser.add_argument("--normalize_hidden", action="store_true", default=False)
class TranslationDistiller(SummarizationDistiller):
"""Supports T5, mBART, Marian, other models that inherit from Bart."""
mode = "translation"
metric_names = ["bleu"]
default_val_metric = "bleu"
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
assert hparams.src_lang is not None
assert hparams.tgt_lang is not None
self.dataset_kwargs["src_lang"] = hparams.src_lang
self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
def calc_generative_metrics(self, preds, target) -> dict:
return calculate_bleu(preds, target)
@staticmethod
def add_model_specific_args(parser, root_dir):
TranslationModule.add_model_specific_args(parser, root_dir)
add_distill_args(parser)
return parser
def create_module(args):
if args.no_teacher:
module_cls = TranslationModule if "translation" in args.task else SummarizationModule
else: # DISTILL WITH TEACHER
module_cls = TranslationDistiller if "translation" in args.task else SummarizationDistiller
args.setup_cls: str = module_cls.__name__
print(f"using module {args.setup_cls}")
model = module_cls(args)
return model
def distill_main(args):
Path(args.output_dir).mkdir(exist_ok=True)
check_output_dir(args, expected_items=3)
model = create_module(args)
return ft_main(args, model=model)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationDistiller.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
distill_main(args)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/__init__.py | # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import _LazyModule, OptionalDependencyNotAvailable, is_tokenizers_available
{%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
from ...utils import is_tf_available
{% endif %}
{%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
from ...utils import is_torch_available
{% endif %}
{%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
from ...utils import is_flax_available
{% endif %}
_import_structure = {
"configuration_{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP", "{{cookiecutter.camelcase_modelname}}Config"],
"tokenization_{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.camelcase_modelname}}Tokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_{{cookiecutter.lowercase_modelname}}_fast"] = ["{{cookiecutter.camelcase_modelname}}TokenizerFast"]
{%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_{{cookiecutter.lowercase_modelname}}"] = [
"{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"{{cookiecutter.camelcase_modelname}}ForMaskedLM",
"{{cookiecutter.camelcase_modelname}}ForCausalLM",
"{{cookiecutter.camelcase_modelname}}ForMultipleChoice",
"{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"{{cookiecutter.camelcase_modelname}}ForTokenClassification",
"{{cookiecutter.camelcase_modelname}}Layer",
"{{cookiecutter.camelcase_modelname}}Model",
"{{cookiecutter.camelcase_modelname}}PreTrainedModel",
"load_tf_weights_in_{{cookiecutter.lowercase_modelname}}",
]
{% else %}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_{{cookiecutter.lowercase_modelname}}"] = [
"{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"{{cookiecutter.camelcase_modelname}}ForConditionalGeneration",
"{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"{{cookiecutter.camelcase_modelname}}ForCausalLM",
"{{cookiecutter.camelcase_modelname}}Model",
"{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% endif %}
{% endif %}
{%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_{{cookiecutter.lowercase_modelname}}"] = [
"TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"TF{{cookiecutter.camelcase_modelname}}ForMaskedLM",
"TF{{cookiecutter.camelcase_modelname}}ForCausalLM",
"TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice",
"TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"TF{{cookiecutter.camelcase_modelname}}ForTokenClassification",
"TF{{cookiecutter.camelcase_modelname}}Layer",
"TF{{cookiecutter.camelcase_modelname}}Model",
"TF{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% else %}
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_{{cookiecutter.lowercase_modelname}}"] = [
"TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration",
"TF{{cookiecutter.camelcase_modelname}}Model",
"TF{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% endif %}
{% endif %}
{%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_{{cookiecutter.lowercase_modelname}}"] = [
"Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM",
"Flax{{cookiecutter.camelcase_modelname}}ForCausalLM",
"Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice",
"Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification",
"Flax{{cookiecutter.camelcase_modelname}}Layer",
"Flax{{cookiecutter.camelcase_modelname}}Model",
"Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% else %}
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_{{cookiecutter.lowercase_modelname}}"] = [
"Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration",
"Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"Flax{{cookiecutter.camelcase_modelname}}Model",
"Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% endif %}
{% endif %}
if TYPE_CHECKING:
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config
from .tokenization_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Tokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_{{cookiecutter.lowercase_modelname}}_fast import {{cookiecutter.camelcase_modelname}}TokenizerFast
{%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
{{cookiecutter.camelcase_modelname}}ForMaskedLM,
{{cookiecutter.camelcase_modelname}}ForCausalLM,
{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}ForTokenClassification,
{{cookiecutter.camelcase_modelname}}Layer,
{{cookiecutter.camelcase_modelname}}Model,
{{cookiecutter.camelcase_modelname}}PreTrainedModel,
load_tf_weights_in_{{cookiecutter.lowercase_modelname}},
)
{% else %}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
{{cookiecutter.camelcase_modelname}}ForCausalLM,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}Model,
{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif %}
{% endif %}
{%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForCausalLM,
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}Layer,
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% else %}
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif %}
{% endif %}
{%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM,
Flax{{cookiecutter.camelcase_modelname}}ForCausalLM,
Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification,
Flax{{cookiecutter.camelcase_modelname}}Layer,
Flax{{cookiecutter.camelcase_modelname}}Model,
Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% else %}
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
Flax{{cookiecutter.camelcase_modelname}}Model,
Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif %}
{% endif %}
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import _LazyModule, OptionalDependencyNotAvailable, is_tokenizers_available
{%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
from ...utils import is_tf_available
{% endif %}
{%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
from ...utils import is_torch_available
{% endif %}
{%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
from ...utils import is_flax_available
{% endif %}
_import_structure = {
"configuration_{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP", "{{cookiecutter.camelcase_modelname}}Config"],
"tokenization_{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.camelcase_modelname}}Tokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_{{cookiecutter.lowercase_modelname}}_fast"] = ["{{cookiecutter.camelcase_modelname}}TokenizerFast"]
{%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_{{cookiecutter.lowercase_modelname}}"] = [
"{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"{{cookiecutter.camelcase_modelname}}ForMaskedLM",
"{{cookiecutter.camelcase_modelname}}ForCausalLM",
"{{cookiecutter.camelcase_modelname}}ForMultipleChoice",
"{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"{{cookiecutter.camelcase_modelname}}ForTokenClassification",
"{{cookiecutter.camelcase_modelname}}Layer",
"{{cookiecutter.camelcase_modelname}}Model",
"{{cookiecutter.camelcase_modelname}}PreTrainedModel",
"load_tf_weights_in_{{cookiecutter.lowercase_modelname}}",
]
{% else %}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_{{cookiecutter.lowercase_modelname}}"] = [
"{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"{{cookiecutter.camelcase_modelname}}ForConditionalGeneration",
"{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"{{cookiecutter.camelcase_modelname}}ForCausalLM",
"{{cookiecutter.camelcase_modelname}}Model",
"{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% endif %}
{% endif %}
{%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_{{cookiecutter.lowercase_modelname}}"] = [
"TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST",
"TF{{cookiecutter.camelcase_modelname}}ForMaskedLM",
"TF{{cookiecutter.camelcase_modelname}}ForCausalLM",
"TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice",
"TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"TF{{cookiecutter.camelcase_modelname}}ForTokenClassification",
"TF{{cookiecutter.camelcase_modelname}}Layer",
"TF{{cookiecutter.camelcase_modelname}}Model",
"TF{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% else %}
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_{{cookiecutter.lowercase_modelname}}"] = [
"TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration",
"TF{{cookiecutter.camelcase_modelname}}Model",
"TF{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% endif %}
{% endif %}
{%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_{{cookiecutter.lowercase_modelname}}"] = [
"Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM",
"Flax{{cookiecutter.camelcase_modelname}}ForCausalLM",
"Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice",
"Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification",
"Flax{{cookiecutter.camelcase_modelname}}Layer",
"Flax{{cookiecutter.camelcase_modelname}}Model",
"Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% else %}
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_{{cookiecutter.lowercase_modelname}}"] = [
"Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration",
"Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering",
"Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification",
"Flax{{cookiecutter.camelcase_modelname}}Model",
"Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel",
]
{% endif %}
{% endif %}
if TYPE_CHECKING:
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config
from .tokenization_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Tokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_{{cookiecutter.lowercase_modelname}}_fast import {{cookiecutter.camelcase_modelname}}TokenizerFast
{%- if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
{{cookiecutter.camelcase_modelname}}ForMaskedLM,
{{cookiecutter.camelcase_modelname}}ForCausalLM,
{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}ForTokenClassification,
{{cookiecutter.camelcase_modelname}}Layer,
{{cookiecutter.camelcase_modelname}}Model,
{{cookiecutter.camelcase_modelname}}PreTrainedModel,
load_tf_weights_in_{{cookiecutter.lowercase_modelname}},
)
{% else %}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
{{cookiecutter.camelcase_modelname}}ForCausalLM,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}Model,
{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif %}
{% endif %}
{%- if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForCausalLM,
TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}Layer,
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% else %}
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif %}
{% endif %}
{%- if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM,
Flax{{cookiecutter.camelcase_modelname}}ForCausalLM,
Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice,
Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification,
Flax{{cookiecutter.camelcase_modelname}}Layer,
Flax{{cookiecutter.camelcase_modelname}}Model,
Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% else %}
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_{{cookiecutter.lowercase_modelname}} import (
Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
Flax{{cookiecutter.camelcase_modelname}}Model,
Flax{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif %}
{% endif %}
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/es/_toctree.yml | - sections:
- local: index
title: 🤗 Transformers
- local: quicktour
title: Tour rápido
- local: installation
title: Instalación
title: Empezar
- sections:
- local: pipeline_tutorial
title: Pipelines para inferencia
- local: autoclass_tutorial
title: Carga instancias preentrenadas con un AutoClass
- local: preprocessing
title: Preprocesamiento
- local: training
title: Fine-tuning a un modelo pre-entrenado
- local: accelerate
title: Entrenamiento distribuido con 🤗 Accelerate
- local: model_sharing
title: Compartir un modelo
title: Tutoriales
- sections:
- sections:
- local: create_a_model
title: Crea una arquitectura personalizada
- local: custom_models
title: Compartir modelos personalizados
- local: run_scripts
title: Entrenamiento con scripts
- local: sagemaker
title: Ejecutar el entrenamiento en Amazon SageMaker
- local: converting_tensorflow_models
title: Convertir checkpoints de TensorFlow
- local: serialization
title: Exportar a ONNX
title: Uso general
- sections:
- local: fast_tokenizers
title: Usa tokenizadores de 🤗 Tokenizers
- local: multilingual
title: Modelos multilingües para inferencia
- sections:
- local: tasks/question_answering
title: Respuesta a preguntas
- local: tasks/language_modeling
title: Modelado de lenguaje
- local: tasks/summarization
title: Generación de resúmenes
- local: tasks/multiple_choice
title: Selección múltiple
title: Guías de tareas
title: Procesamiento del Lenguaje Natural
- sections:
- local: tasks/asr
title: Reconocimiento automático del habla
title: Audio
- sections:
- local: tasks/image_classification
title: Clasificación de imágenes
title: Visión Artificial
- sections:
- local: debugging
title: Debugging
title: Rendimiento y escalabilidad
- sections:
- local: add_new_pipeline
title: ¿Cómo puedo añadir un pipeline a 🤗 Transformers?
- local: pr_checks
title: Verificaciones en un Pull Request
title: Contribuir
title: Guías prácticas
- sections:
- local: philosophy
title: Filosofía
- local: bertology
title: BERTología
title: Guías conceptuales
| - sections:
- local: index
title: 🤗 Transformers
- local: quicktour
title: Tour rápido
- local: installation
title: Instalación
title: Empezar
- sections:
- local: pipeline_tutorial
title: Pipelines para inferencia
- local: autoclass_tutorial
title: Carga instancias preentrenadas con un AutoClass
- local: preprocessing
title: Preprocesamiento
- local: training
title: Fine-tuning a un modelo pre-entrenado
- local: accelerate
title: Entrenamiento distribuido con 🤗 Accelerate
- local: model_sharing
title: Compartir un modelo
title: Tutoriales
- sections:
- sections:
- local: create_a_model
title: Crea una arquitectura personalizada
- local: custom_models
title: Compartir modelos personalizados
- local: run_scripts
title: Entrenamiento con scripts
- local: sagemaker
title: Ejecutar el entrenamiento en Amazon SageMaker
- local: converting_tensorflow_models
title: Convertir checkpoints de TensorFlow
- local: serialization
title: Exportar a ONNX
title: Uso general
- sections:
- local: fast_tokenizers
title: Usa tokenizadores de 🤗 Tokenizers
- local: multilingual
title: Modelos multilingües para inferencia
- sections:
- local: tasks/question_answering
title: Respuesta a preguntas
- local: tasks/language_modeling
title: Modelado de lenguaje
- local: tasks/summarization
title: Generación de resúmenes
- local: tasks/multiple_choice
title: Selección múltiple
title: Guías de tareas
title: Procesamiento del Lenguaje Natural
- sections:
- local: tasks/asr
title: Reconocimiento automático del habla
title: Audio
- sections:
- local: tasks/image_classification
title: Clasificación de imágenes
title: Visión Artificial
- sections:
- local: debugging
title: Debugging
title: Rendimiento y escalabilidad
- sections:
- local: add_new_pipeline
title: ¿Cómo puedo añadir un pipeline a 🤗 Transformers?
- local: pr_checks
title: Verificaciones en un Pull Request
title: Contribuir
title: Guías prácticas
- sections:
- local: philosophy
title: Filosofía
- local: bertology
title: BERTología
title: Guías conceptuales
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/deformable_detr/__init__.py | -1 |
||
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./tests/models/openai/__init__.py | -1 |
||
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/whisper/modeling_whisper.py | # coding=utf-8
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Whisper model."""
import math
import random
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_whisper import WhisperConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "WhisperConfig"
_CHECKPOINT_FOR_DOC = "openai/whisper-tiny"
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openai/whisper-base",
# See all Whisper models at https://huggingface.co/models?filter=whisper
]
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
class WhisperPositionalEmbedding(nn.Embedding):
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__(num_positions, embedding_dim)
def forward(self, input_ids, past_key_values_length=0):
return self.weight[past_key_values_length : past_key_values_length + input_ids.shape[-1]]
class WhisperAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
# Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
# Copied from transformers.models.bart.modeling_bart.BartAttention.forward with BART->whisper
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextEncoderLayer with Speech2Text->Whisper
class WhisperEncoderLayer(nn.Module):
def __init__(self, config: WhisperConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = WhisperAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextDecoderLayer with Speech2Text->Whisper
class WhisperDecoderLayer(nn.Module):
def __init__(self, config: WhisperConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = WhisperAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = WhisperAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size *(decoder_attention_heads,)*.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class WhisperPreTrainedModel(PreTrainedModel):
config_class = WhisperConfig
base_model_prefix = "model"
main_input_name = "input_features"
supports_gradient_checkpointing = True
_no_split_modules = ["WhisperEncoderLayer"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (WhisperDecoder, WhisperEncoder)):
module.gradient_checkpointing = value
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
WHISPER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`WhisperConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
WHISPER_INPUTS_DOCSTRING = r"""
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
[`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class WhisperEncoder(WhisperPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`WhisperEncoderLayer`].
Args:
config: WhisperConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.num_mel_bins = config.num_mel_bins
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the mel features,
padding and conversion into a tensor of type `torch.FloatTensor`. See
[`~WhisperFeatureExtractor.__call__`]
attention_mask (`torch.Tensor`)`, *optional*):
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility,
but it is not used. By default the silence in the input log mel spectrogram are ignored.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
None,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
None,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class WhisperDecoder(WhisperPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`]
Args:
config: WhisperConfig
"""
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_target_positions
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model)
self.layers = nn.ModuleList([WhisperDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
).to(inputs_embeds.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# embed positions
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (len(self.layers)), (
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache ="
" False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
encoder_hidden_states,
None, # encoder attention mask
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None, # past_key_value
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Whisper Model outputting raw hidden-states without any specific head on top.",
WHISPER_START_DOCSTRING,
)
class WhisperModel(WhisperPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"proj_out.weight"]
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.encoder = WhisperEncoder(config)
self.decoder = WhisperDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_encoder(self):
"""
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
not be updated during training.
"""
self.encoder._freeze_parameters()
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import WhisperFeatureExtractor, WhisperModel
>>> from datasets import load_dataset
>>> model = WhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_features,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The Whisper Model with a language modeling head. Can be used for automatic speech recognition.",
WHISPER_START_DOCSTRING,
)
class WhisperForConditionalGeneration(WhisperPreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"encoder.version",
r"decoder.version",
r"proj_out.weight",
]
_keys_to_ignore_on_save = [
r"proj_out.weight",
]
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.model = WhisperModel(config)
self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
return new_embeddings
def get_output_embeddings(self):
return self.proj_out
def set_output_embeddings(self, new_embeddings):
self.proj_out = new_embeddings
def freeze_encoder(self):
"""
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
not be updated during training.
"""
self.model.encoder._freeze_parameters()
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> generated_ids = model.generate(inputs=input_features)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_features,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.proj_out(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self, decoder_input_ids, past=None, use_cache=None, encoder_outputs=None, attention_mask=None, **kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"use_cache": use_cache,
"decoder_attention_mask": None,
}
#
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
| # coding=utf-8
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Whisper model."""
import math
import random
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_whisper import WhisperConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "WhisperConfig"
_CHECKPOINT_FOR_DOC = "openai/whisper-tiny"
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openai/whisper-base",
# See all Whisper models at https://huggingface.co/models?filter=whisper
]
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
class WhisperPositionalEmbedding(nn.Embedding):
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__(num_positions, embedding_dim)
def forward(self, input_ids, past_key_values_length=0):
return self.weight[past_key_values_length : past_key_values_length + input_ids.shape[-1]]
class WhisperAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
# Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
# Copied from transformers.models.bart.modeling_bart.BartAttention.forward with BART->whisper
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextEncoderLayer with Speech2Text->Whisper
class WhisperEncoderLayer(nn.Module):
def __init__(self, config: WhisperConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = WhisperAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextDecoderLayer with Speech2Text->Whisper
class WhisperDecoderLayer(nn.Module):
def __init__(self, config: WhisperConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = WhisperAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = WhisperAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size *(decoder_attention_heads,)*.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class WhisperPreTrainedModel(PreTrainedModel):
config_class = WhisperConfig
base_model_prefix = "model"
main_input_name = "input_features"
supports_gradient_checkpointing = True
_no_split_modules = ["WhisperEncoderLayer"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (WhisperDecoder, WhisperEncoder)):
module.gradient_checkpointing = value
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
WHISPER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`WhisperConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
WHISPER_INPUTS_DOCSTRING = r"""
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
[`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class WhisperEncoder(WhisperPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`WhisperEncoderLayer`].
Args:
config: WhisperConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.num_mel_bins = config.num_mel_bins
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the mel features,
padding and conversion into a tensor of type `torch.FloatTensor`. See
[`~WhisperFeatureExtractor.__call__`]
attention_mask (`torch.Tensor`)`, *optional*):
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility,
but it is not used. By default the silence in the input log mel spectrogram are ignored.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
None,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
None,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class WhisperDecoder(WhisperPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`]
Args:
config: WhisperConfig
"""
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_target_positions
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model)
self.layers = nn.ModuleList([WhisperDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
).to(inputs_embeds.device)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# embed positions
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (len(self.layers)), (
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache ="
" False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, use_cache)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
encoder_hidden_states,
None, # encoder attention mask
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None, # past_key_value
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Whisper Model outputting raw hidden-states without any specific head on top.",
WHISPER_START_DOCSTRING,
)
class WhisperModel(WhisperPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"proj_out.weight"]
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.encoder = WhisperEncoder(config)
self.decoder = WhisperDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_encoder(self):
"""
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
not be updated during training.
"""
self.encoder._freeze_parameters()
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import WhisperFeatureExtractor, WhisperModel
>>> from datasets import load_dataset
>>> model = WhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_features,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The Whisper Model with a language modeling head. Can be used for automatic speech recognition.",
WHISPER_START_DOCSTRING,
)
class WhisperForConditionalGeneration(WhisperPreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"encoder.version",
r"decoder.version",
r"proj_out.weight",
]
_keys_to_ignore_on_save = [
r"proj_out.weight",
]
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.model = WhisperModel(config)
self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
return new_embeddings
def get_output_embeddings(self):
return self.proj_out
def set_output_embeddings(self, new_embeddings):
self.proj_out = new_embeddings
def freeze_encoder(self):
"""
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
not be updated during training.
"""
self.model.encoder._freeze_parameters()
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_features: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import torch
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> generated_ids = model.generate(inputs=input_features)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_features,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.proj_out(outputs[0])
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self, decoder_input_ids, past=None, use_cache=None, encoder_outputs=None, attention_mask=None, **kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"use_cache": use_cache,
"decoder_attention_mask": None,
}
#
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./docs/source/es/autoclass_tutorial.mdx | <!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Carga instancias preentrenadas con un AutoClass
Con tantas arquitecturas diferentes de Transformer puede ser retador crear una para tu checkpoint. Como parte de la filosofía central de 🤗 Transformers para hacer que la biblioteca sea fácil, simple y flexible de usar; una `AutoClass` automáticamente infiere y carga la arquitectura correcta desde un checkpoint dado. El método `from_pretrained` te permite cargar rápidamente un modelo preentrenado para cualquier arquitectura, por lo que no tendrás que dedicar tiempo y recursos para entrenar uno desde cero. Producir este tipo de código con checkpoint implica que si funciona con uno, funcionará también con otro (siempre que haya sido entrenado para una tarea similar) incluso si la arquitectura es distinta.
<Tip>
Recuerda, la arquitectura se refiere al esqueleto del modelo y los checkpoints son los pesos para una arquitectura dada. Por ejemplo, [BERT](https://huggingface.co/bert-base-uncased) es una arquitectura, mientras que `bert-base-uncased` es un checkpoint. Modelo es un término general que puede significar una arquitectura o un checkpoint.
</Tip>
En este tutorial, aprenderás a:
* Cargar un tokenizador pre-entrenado.
* Cargar un extractor de características (feature extractor en inglés) pre-entrenado.
* Cargar un procesador pre-entrenado.
* Cargar un modelo pre-entrenado.
## AutoTokenizer
Casi cualquier tarea de Procesamiento de Lenguaje Natural comienza con un tokenizador. Un tokenizador convierte tu input a un formato que puede ser procesado por el modelo.
Carga un tokenizador con [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
Luego tokeniza tu input como lo mostrado a continuación:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoFeatureExtractor
Para tareas de audio y visión, un extractor de características procesa la señal de audio o imagen al formato de input correcto.
Carga un extractor de características con [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## AutoProcessor
Las tareas multimodales requieren un procesador que combine dos tipos de herramientas de preprocesamiento. Por ejemplo, el modelo [LayoutLMV2](model_doc/layoutlmv2) requiere que un extractor de características maneje las imágenes y que un tokenizador maneje el texto; un procesador combina ambas.
Carga un procesador con [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## AutoModel
<frameworkcontent>
<pt>
Finalmente, las clases `AutoModelFor` te permiten cargar un modelo preentrenado para una tarea dada (revisa [aquí](model_doc/auto) para conocer la lista completa de tareas disponibles). Por ejemplo, cargue un modelo para clasificación de secuencias con [`AutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Reutiliza fácilmente el mismo checkpoint para cargar una aquitectura para alguna tarea diferente:
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generalmente recomendamos utilizar las clases `AutoTokenizer` y `AutoModelFor` para cargar instancias pre-entrenadas de modelos. Ésto asegurará que cargues la arquitectura correcta en cada ocasión. En el siguiente [tutorial](preprocessing), aprende a usar tu tokenizador recién cargado, el extractor de características y el procesador para preprocesar un dataset para fine-tuning.
</pt>
<tf>
Finalmente, la clase `TFAutoModelFor` te permite cargar tu modelo pre-entrenado para una tarea dada (revisa [aquí](model_doc/auto) para conocer la lista completa de tareas disponibles). Por ejemplo, carga un modelo para clasificación de secuencias con [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Reutiliza fácilmente el mismo checkpoint para cargar una aquitectura para alguna tarea diferente:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generalmente recomendamos utilizar las clases `AutoTokenizer` y `TFAutoModelFor` para cargar instancias de modelos pre-entrenados. Ésto asegurará que cargues la arquitectura correcta cada vez. En el siguiente [tutorial](preprocessing), aprende a usar tu tokenizador recién cargado, el extractor de características y el procesador para preprocesar un dataset para fine-tuning.
</tf>
</frameworkcontent>
| <!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Carga instancias preentrenadas con un AutoClass
Con tantas arquitecturas diferentes de Transformer puede ser retador crear una para tu checkpoint. Como parte de la filosofía central de 🤗 Transformers para hacer que la biblioteca sea fácil, simple y flexible de usar; una `AutoClass` automáticamente infiere y carga la arquitectura correcta desde un checkpoint dado. El método `from_pretrained` te permite cargar rápidamente un modelo preentrenado para cualquier arquitectura, por lo que no tendrás que dedicar tiempo y recursos para entrenar uno desde cero. Producir este tipo de código con checkpoint implica que si funciona con uno, funcionará también con otro (siempre que haya sido entrenado para una tarea similar) incluso si la arquitectura es distinta.
<Tip>
Recuerda, la arquitectura se refiere al esqueleto del modelo y los checkpoints son los pesos para una arquitectura dada. Por ejemplo, [BERT](https://huggingface.co/bert-base-uncased) es una arquitectura, mientras que `bert-base-uncased` es un checkpoint. Modelo es un término general que puede significar una arquitectura o un checkpoint.
</Tip>
En este tutorial, aprenderás a:
* Cargar un tokenizador pre-entrenado.
* Cargar un extractor de características (feature extractor en inglés) pre-entrenado.
* Cargar un procesador pre-entrenado.
* Cargar un modelo pre-entrenado.
## AutoTokenizer
Casi cualquier tarea de Procesamiento de Lenguaje Natural comienza con un tokenizador. Un tokenizador convierte tu input a un formato que puede ser procesado por el modelo.
Carga un tokenizador con [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
Luego tokeniza tu input como lo mostrado a continuación:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoFeatureExtractor
Para tareas de audio y visión, un extractor de características procesa la señal de audio o imagen al formato de input correcto.
Carga un extractor de características con [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## AutoProcessor
Las tareas multimodales requieren un procesador que combine dos tipos de herramientas de preprocesamiento. Por ejemplo, el modelo [LayoutLMV2](model_doc/layoutlmv2) requiere que un extractor de características maneje las imágenes y que un tokenizador maneje el texto; un procesador combina ambas.
Carga un procesador con [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## AutoModel
<frameworkcontent>
<pt>
Finalmente, las clases `AutoModelFor` te permiten cargar un modelo preentrenado para una tarea dada (revisa [aquí](model_doc/auto) para conocer la lista completa de tareas disponibles). Por ejemplo, cargue un modelo para clasificación de secuencias con [`AutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Reutiliza fácilmente el mismo checkpoint para cargar una aquitectura para alguna tarea diferente:
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generalmente recomendamos utilizar las clases `AutoTokenizer` y `AutoModelFor` para cargar instancias pre-entrenadas de modelos. Ésto asegurará que cargues la arquitectura correcta en cada ocasión. En el siguiente [tutorial](preprocessing), aprende a usar tu tokenizador recién cargado, el extractor de características y el procesador para preprocesar un dataset para fine-tuning.
</pt>
<tf>
Finalmente, la clase `TFAutoModelFor` te permite cargar tu modelo pre-entrenado para una tarea dada (revisa [aquí](model_doc/auto) para conocer la lista completa de tareas disponibles). Por ejemplo, carga un modelo para clasificación de secuencias con [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Reutiliza fácilmente el mismo checkpoint para cargar una aquitectura para alguna tarea diferente:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generalmente recomendamos utilizar las clases `AutoTokenizer` y `TFAutoModelFor` para cargar instancias de modelos pre-entrenados. Ésto asegurará que cargues la arquitectura correcta cada vez. En el siguiente [tutorial](preprocessing), aprende a usar tu tokenizador recién cargado, el extractor de características y el procesador para preprocesar un dataset para fine-tuning.
</tf>
</frameworkcontent>
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/trajectory_transformer/configuration_trajectory_transformer.py | # coding=utf-8
# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TrajectoryTransformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2": (
"https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class TrajectoryTransformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TrajectoryTransformerModel`]. It is used to
instantiate an TrajectoryTransformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
TrajectoryTransformer
[CarlCochet/trajectory-transformer-halfcheetah-medium-v2](https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 100):
Vocabulary size of the TrajectoryTransformer model. Defines the number of different tokens that can be
represented by the `trajectories` passed when calling [`TrajectoryTransformerModel`]
batch_size (`int`, *optional*, defaults to 256):
Size of the batch of trajectories passed to the model.
action_weight (`int`, *optional*, defaults to 5):
Weight of the action in the loss function
reward_weight (`int`, *optional*, defaults to 1):
Weight of the reward in the loss function
value_weight (`int`, *optional*, defaults to 1):
Weight of the value in the loss function
block_size (`int`, *optional*, defaults to 249):
Size of the blocks in the trajectory transformer.
action_dim (`int`, *optional*, defaults to 6):
Dimension of the action space.
observation_dim (`int`, *optional*, defaults to 17):
Dimension of the observation space.
transition_dim (`int`, *optional*, defaults to 25):
Dimension of the transition space.
n_layer (`int`, *optional*, defaults to 4):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
n_embd (`int`, *optional*, defaults to 128):
Dimensionality of the embeddings and hidden states.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`TrajectoryTransformerModel`]
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
kaiming_initializer_range (`float, *optional*, defaults to 1):
A coefficient scaling the negative slope of the kaiming initializer rectifier for EinLinear layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Example:
```python
>>> from transformers import TrajectoryTransformerConfig, TrajectoryTransformerModel
>>> # Initializing a TrajectoryTransformer CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
>>> configuration = TrajectoryTransformerConfig()
>>> # Initializing a model (with random weights) from the CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
>>> model = TrajectoryTransformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "trajectory_transformer"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=100,
batch_size=256,
action_weight=5,
reward_weight=1,
value_weight=1,
block_size=249,
action_dim=6,
observation_dim=17,
transition_dim=25,
n_layer=4,
n_head=4,
n_embd=128,
embd_pdrop=0.1,
attn_pdrop=0.1,
resid_pdrop=0.1,
learning_rate=0.0006,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
kaiming_initializer_range=1,
use_cache=True,
pad_token_id=1,
bos_token_id=50256,
eos_token_id=50256,
**kwargs
):
self.vocab_size = vocab_size
self.batch_size = batch_size
self.action_weight = action_weight
self.reward_weight = reward_weight
self.value_weight = value_weight
self.max_position_embeddings = max_position_embeddings
self.block_size = block_size
self.action_dim = action_dim
self.observation_dim = observation_dim
self.transition_dim = transition_dim
self.learning_rate = learning_rate
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.resid_pdrop = resid_pdrop
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.kaiming_initializer_range = kaiming_initializer_range
self.use_cache = use_cache
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
| # coding=utf-8
# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TrajectoryTransformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2": (
"https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class TrajectoryTransformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TrajectoryTransformerModel`]. It is used to
instantiate an TrajectoryTransformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
TrajectoryTransformer
[CarlCochet/trajectory-transformer-halfcheetah-medium-v2](https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 100):
Vocabulary size of the TrajectoryTransformer model. Defines the number of different tokens that can be
represented by the `trajectories` passed when calling [`TrajectoryTransformerModel`]
batch_size (`int`, *optional*, defaults to 256):
Size of the batch of trajectories passed to the model.
action_weight (`int`, *optional*, defaults to 5):
Weight of the action in the loss function
reward_weight (`int`, *optional*, defaults to 1):
Weight of the reward in the loss function
value_weight (`int`, *optional*, defaults to 1):
Weight of the value in the loss function
block_size (`int`, *optional*, defaults to 249):
Size of the blocks in the trajectory transformer.
action_dim (`int`, *optional*, defaults to 6):
Dimension of the action space.
observation_dim (`int`, *optional*, defaults to 17):
Dimension of the observation space.
transition_dim (`int`, *optional*, defaults to 25):
Dimension of the transition space.
n_layer (`int`, *optional*, defaults to 4):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
n_embd (`int`, *optional*, defaults to 128):
Dimensionality of the embeddings and hidden states.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`TrajectoryTransformerModel`]
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
kaiming_initializer_range (`float, *optional*, defaults to 1):
A coefficient scaling the negative slope of the kaiming initializer rectifier for EinLinear layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Example:
```python
>>> from transformers import TrajectoryTransformerConfig, TrajectoryTransformerModel
>>> # Initializing a TrajectoryTransformer CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
>>> configuration = TrajectoryTransformerConfig()
>>> # Initializing a model (with random weights) from the CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
>>> model = TrajectoryTransformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "trajectory_transformer"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=100,
batch_size=256,
action_weight=5,
reward_weight=1,
value_weight=1,
block_size=249,
action_dim=6,
observation_dim=17,
transition_dim=25,
n_layer=4,
n_head=4,
n_embd=128,
embd_pdrop=0.1,
attn_pdrop=0.1,
resid_pdrop=0.1,
learning_rate=0.0006,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
kaiming_initializer_range=1,
use_cache=True,
pad_token_id=1,
bos_token_id=50256,
eos_token_id=50256,
**kwargs
):
self.vocab_size = vocab_size
self.batch_size = batch_size
self.action_weight = action_weight
self.reward_weight = reward_weight
self.value_weight = value_weight
self.max_position_embeddings = max_position_embeddings
self.block_size = block_size
self.action_dim = action_dim
self.observation_dim = observation_dim
self.transition_dim = transition_dim
self.learning_rate = learning_rate
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.resid_pdrop = resid_pdrop
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.kaiming_initializer_range = kaiming_initializer_range
self.use_cache = use_cache
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./utils/test_module/custom_tokenization.py | from transformers import BertTokenizer
class CustomTokenizer(BertTokenizer):
pass
| from transformers import BertTokenizer
class CustomTokenizer(BertTokenizer):
pass
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/mobilevit/convert_mlcvnets_to_pytorch.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MobileViT checkpoints from the ml-cvnets library."""
import argparse
import json
from pathlib import Path
import torch
from PIL import Image
import requests
from huggingface_hub import hf_hub_download
from transformers import (
MobileViTConfig,
MobileViTFeatureExtractor,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_mobilevit_config(mobilevit_name):
config = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
config.hidden_sizes = [144, 192, 240]
config.neck_hidden_sizes = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
config.hidden_sizes = [96, 120, 144]
config.neck_hidden_sizes = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
config.hidden_sizes = [64, 80, 96]
config.neck_hidden_sizes = [16, 16, 24, 48, 64, 80, 320]
config.hidden_dropout_prob = 0.05
config.expand_ratio = 2.0
if mobilevit_name.startswith("deeplabv3_"):
config.image_size = 512
config.output_stride = 16
config.num_labels = 21
filename = "pascal-voc-id2label.json"
else:
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
repo_id = "huggingface/label-files"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
def rename_key(name, base_model=False):
for i in range(1, 6):
if f"layer_{i}." in name:
name = name.replace(f"layer_{i}.", f"encoder.layer.{i - 1}.")
if "conv_1." in name:
name = name.replace("conv_1.", "conv_stem.")
if ".block." in name:
name = name.replace(".block.", ".")
if "exp_1x1" in name:
name = name.replace("exp_1x1", "expand_1x1")
if "red_1x1" in name:
name = name.replace("red_1x1", "reduce_1x1")
if ".local_rep.conv_3x3." in name:
name = name.replace(".local_rep.conv_3x3.", ".conv_kxk.")
if ".local_rep.conv_1x1." in name:
name = name.replace(".local_rep.conv_1x1.", ".conv_1x1.")
if ".norm." in name:
name = name.replace(".norm.", ".normalization.")
if ".conv." in name:
name = name.replace(".conv.", ".convolution.")
if ".conv_proj." in name:
name = name.replace(".conv_proj.", ".conv_projection.")
for i in range(0, 2):
for j in range(0, 4):
if f".{i}.{j}." in name:
name = name.replace(f".{i}.{j}.", f".{i}.layer.{j}.")
for i in range(2, 6):
for j in range(0, 4):
if f".{i}.{j}." in name:
name = name.replace(f".{i}.{j}.", f".{i}.")
if "expand_1x1" in name:
name = name.replace("expand_1x1", "downsampling_layer.expand_1x1")
if "conv_3x3" in name:
name = name.replace("conv_3x3", "downsampling_layer.conv_3x3")
if "reduce_1x1" in name:
name = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1")
for i in range(2, 5):
if f".global_rep.{i}.weight" in name:
name = name.replace(f".global_rep.{i}.weight", ".layernorm.weight")
if f".global_rep.{i}.bias" in name:
name = name.replace(f".global_rep.{i}.bias", ".layernorm.bias")
if ".global_rep." in name:
name = name.replace(".global_rep.", ".transformer.")
if ".pre_norm_mha.0." in name:
name = name.replace(".pre_norm_mha.0.", ".layernorm_before.")
if ".pre_norm_mha.1.out_proj." in name:
name = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense.")
if ".pre_norm_ffn.0." in name:
name = name.replace(".pre_norm_ffn.0.", ".layernorm_after.")
if ".pre_norm_ffn.1." in name:
name = name.replace(".pre_norm_ffn.1.", ".intermediate.dense.")
if ".pre_norm_ffn.4." in name:
name = name.replace(".pre_norm_ffn.4.", ".output.dense.")
if ".transformer." in name:
name = name.replace(".transformer.", ".transformer.layer.")
if ".aspp_layer." in name:
name = name.replace(".aspp_layer.", ".")
if ".aspp_pool." in name:
name = name.replace(".aspp_pool.", ".")
if "seg_head." in name:
name = name.replace("seg_head.", "segmentation_head.")
if "segmentation_head.classifier.classifier." in name:
name = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier.")
if "classifier.fc." in name:
name = name.replace("classifier.fc.", "classifier.")
elif (not base_model) and ("segmentation_head." not in name):
name = "mobilevit." + name
return name
def convert_state_dict(orig_state_dict, model, base_model=False):
if base_model:
model_prefix = ""
else:
model_prefix = "mobilevit."
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if key[:8] == "encoder.":
key = key[8:]
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[0][6:]) - 1
transformer_num = int(key_split[3])
layer = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}")
dim = layer.transformer.layer[transformer_num].attention.attention.all_head_size
prefix = (
f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."
)
if "weight" in key:
orig_state_dict[prefix + "query.weight"] = val[:dim, :]
orig_state_dict[prefix + "key.weight"] = val[dim : dim * 2, :]
orig_state_dict[prefix + "value.weight"] = val[-dim:, :]
else:
orig_state_dict[prefix + "query.bias"] = val[:dim]
orig_state_dict[prefix + "key.bias"] = val[dim : dim * 2]
orig_state_dict[prefix + "value.bias"] = val[-dim:]
else:
orig_state_dict[rename_key(key, base_model)] = val
return orig_state_dict
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_movilevit_checkpoint(mobilevit_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our MobileViT structure.
"""
config = get_mobilevit_config(mobilevit_name)
# load original state_dict
state_dict = torch.load(checkpoint_path, map_location="cpu")
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_"):
model = MobileViTForSemanticSegmentation(config).eval()
else:
model = MobileViTForImageClassification(config).eval()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
# Check outputs on an image, prepared by MobileViTFeatureExtractor
feature_extractor = MobileViTFeatureExtractor(crop_size=config.image_size, size=config.image_size + 32)
encoding = feature_extractor(images=prepare_img(), return_tensors="pt")
outputs = model(**encoding)
logits = outputs.logits
if mobilevit_name.startswith("deeplabv3_"):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
expected_logits = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
]
)
elif mobilevit_name == "deeplabv3_mobilevit_xs":
expected_logits = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
]
)
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
expected_logits = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
]
)
else:
raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4)
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
expected_logits = torch.tensor([-0.9866, 0.2392, -1.1241])
elif mobilevit_name == "mobilevit_xs":
expected_logits = torch.tensor([-2.4761, -0.9399, -1.9587])
elif mobilevit_name == "mobilevit_xxs":
expected_logits = torch.tensor([-1.9364, -1.2327, -0.4653])
else:
raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving feature extractor to {pytorch_dump_folder_path}")
feature_extractor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model_mapping = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub...")
model_name = model_mapping[mobilevit_name]
feature_extractor.push_to_hub(model_name, organization="apple")
model.push_to_hub(model_name, organization="apple")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--mobilevit_name",
default="mobilevit_s",
type=str,
help=(
"Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
),
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MobileViT checkpoints from the ml-cvnets library."""
import argparse
import json
from pathlib import Path
import torch
from PIL import Image
import requests
from huggingface_hub import hf_hub_download
from transformers import (
MobileViTConfig,
MobileViTFeatureExtractor,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_mobilevit_config(mobilevit_name):
config = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
config.hidden_sizes = [144, 192, 240]
config.neck_hidden_sizes = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
config.hidden_sizes = [96, 120, 144]
config.neck_hidden_sizes = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
config.hidden_sizes = [64, 80, 96]
config.neck_hidden_sizes = [16, 16, 24, 48, 64, 80, 320]
config.hidden_dropout_prob = 0.05
config.expand_ratio = 2.0
if mobilevit_name.startswith("deeplabv3_"):
config.image_size = 512
config.output_stride = 16
config.num_labels = 21
filename = "pascal-voc-id2label.json"
else:
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
repo_id = "huggingface/label-files"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
def rename_key(name, base_model=False):
for i in range(1, 6):
if f"layer_{i}." in name:
name = name.replace(f"layer_{i}.", f"encoder.layer.{i - 1}.")
if "conv_1." in name:
name = name.replace("conv_1.", "conv_stem.")
if ".block." in name:
name = name.replace(".block.", ".")
if "exp_1x1" in name:
name = name.replace("exp_1x1", "expand_1x1")
if "red_1x1" in name:
name = name.replace("red_1x1", "reduce_1x1")
if ".local_rep.conv_3x3." in name:
name = name.replace(".local_rep.conv_3x3.", ".conv_kxk.")
if ".local_rep.conv_1x1." in name:
name = name.replace(".local_rep.conv_1x1.", ".conv_1x1.")
if ".norm." in name:
name = name.replace(".norm.", ".normalization.")
if ".conv." in name:
name = name.replace(".conv.", ".convolution.")
if ".conv_proj." in name:
name = name.replace(".conv_proj.", ".conv_projection.")
for i in range(0, 2):
for j in range(0, 4):
if f".{i}.{j}." in name:
name = name.replace(f".{i}.{j}.", f".{i}.layer.{j}.")
for i in range(2, 6):
for j in range(0, 4):
if f".{i}.{j}." in name:
name = name.replace(f".{i}.{j}.", f".{i}.")
if "expand_1x1" in name:
name = name.replace("expand_1x1", "downsampling_layer.expand_1x1")
if "conv_3x3" in name:
name = name.replace("conv_3x3", "downsampling_layer.conv_3x3")
if "reduce_1x1" in name:
name = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1")
for i in range(2, 5):
if f".global_rep.{i}.weight" in name:
name = name.replace(f".global_rep.{i}.weight", ".layernorm.weight")
if f".global_rep.{i}.bias" in name:
name = name.replace(f".global_rep.{i}.bias", ".layernorm.bias")
if ".global_rep." in name:
name = name.replace(".global_rep.", ".transformer.")
if ".pre_norm_mha.0." in name:
name = name.replace(".pre_norm_mha.0.", ".layernorm_before.")
if ".pre_norm_mha.1.out_proj." in name:
name = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense.")
if ".pre_norm_ffn.0." in name:
name = name.replace(".pre_norm_ffn.0.", ".layernorm_after.")
if ".pre_norm_ffn.1." in name:
name = name.replace(".pre_norm_ffn.1.", ".intermediate.dense.")
if ".pre_norm_ffn.4." in name:
name = name.replace(".pre_norm_ffn.4.", ".output.dense.")
if ".transformer." in name:
name = name.replace(".transformer.", ".transformer.layer.")
if ".aspp_layer." in name:
name = name.replace(".aspp_layer.", ".")
if ".aspp_pool." in name:
name = name.replace(".aspp_pool.", ".")
if "seg_head." in name:
name = name.replace("seg_head.", "segmentation_head.")
if "segmentation_head.classifier.classifier." in name:
name = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier.")
if "classifier.fc." in name:
name = name.replace("classifier.fc.", "classifier.")
elif (not base_model) and ("segmentation_head." not in name):
name = "mobilevit." + name
return name
def convert_state_dict(orig_state_dict, model, base_model=False):
if base_model:
model_prefix = ""
else:
model_prefix = "mobilevit."
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if key[:8] == "encoder.":
key = key[8:]
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[0][6:]) - 1
transformer_num = int(key_split[3])
layer = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}")
dim = layer.transformer.layer[transformer_num].attention.attention.all_head_size
prefix = (
f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."
)
if "weight" in key:
orig_state_dict[prefix + "query.weight"] = val[:dim, :]
orig_state_dict[prefix + "key.weight"] = val[dim : dim * 2, :]
orig_state_dict[prefix + "value.weight"] = val[-dim:, :]
else:
orig_state_dict[prefix + "query.bias"] = val[:dim]
orig_state_dict[prefix + "key.bias"] = val[dim : dim * 2]
orig_state_dict[prefix + "value.bias"] = val[-dim:]
else:
orig_state_dict[rename_key(key, base_model)] = val
return orig_state_dict
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_movilevit_checkpoint(mobilevit_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our MobileViT structure.
"""
config = get_mobilevit_config(mobilevit_name)
# load original state_dict
state_dict = torch.load(checkpoint_path, map_location="cpu")
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_"):
model = MobileViTForSemanticSegmentation(config).eval()
else:
model = MobileViTForImageClassification(config).eval()
new_state_dict = convert_state_dict(state_dict, model)
model.load_state_dict(new_state_dict)
# Check outputs on an image, prepared by MobileViTFeatureExtractor
feature_extractor = MobileViTFeatureExtractor(crop_size=config.image_size, size=config.image_size + 32)
encoding = feature_extractor(images=prepare_img(), return_tensors="pt")
outputs = model(**encoding)
logits = outputs.logits
if mobilevit_name.startswith("deeplabv3_"):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
expected_logits = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
]
)
elif mobilevit_name == "deeplabv3_mobilevit_xs":
expected_logits = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
]
)
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
expected_logits = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
]
)
else:
raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4)
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
expected_logits = torch.tensor([-0.9866, 0.2392, -1.1241])
elif mobilevit_name == "mobilevit_xs":
expected_logits = torch.tensor([-2.4761, -0.9399, -1.9587])
elif mobilevit_name == "mobilevit_xxs":
expected_logits = torch.tensor([-1.9364, -1.2327, -0.4653])
else:
raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}")
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving feature extractor to {pytorch_dump_folder_path}")
feature_extractor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
model_mapping = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub...")
model_name = model_mapping[mobilevit_name]
feature_extractor.push_to_hub(model_name, organization="apple")
model.push_to_hub(model_name, organization="apple")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--mobilevit_name",
default="mobilevit_s",
type=str,
help=(
"Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
),
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/rag/modeling_tf_rag.py | # coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFRAG model implementation."""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...configuration_utils import PretrainedConfig
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
shape_list,
unpack_inputs,
)
from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "RagConfig"
@dataclass
class TFRetrievAugLMMarginOutput(ModelOutput):
"""
Base class for retriever augmented marginalized models outputs.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
each vocabulary token.
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
(see `past_key_values` input) to speed up sequential decoding.
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
the `doc_scores`.
retrieved_doc_ids (`tf.Tensor` (int32) of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
The indexes of the embedded documents retrieved by the retriever.
context_input_ids (`tf.Tensor`(int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
context_attention_mask (`tf.Tensor` (int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
model.
question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
"""
loss: Optional[tf.Tensor] = None
logits: tf.Tensor = None
past_key_values: Optional[List[tf.Tensor]] = None
doc_scores: Optional[tf.Tensor] = None
retrieved_doc_embeds: Optional[tf.Tensor] = None
retrieved_doc_ids: Optional[tf.Tensor] = None
context_input_ids: Optional[tf.Tensor] = None
context_attention_mask: Optional[tf.Tensor] = None
question_encoder_last_hidden_state: Optional[tf.Tensor] = None
question_enc_hidden_states: Optional[Tuple[tf.Tensor]] = None
question_enc_attentions: Optional[Tuple[tf.Tensor]] = None
generator_enc_last_hidden_state: Optional[tf.Tensor] = None
generator_enc_hidden_states: Optional[Tuple[tf.Tensor]] = None
generator_enc_attentions: Optional[Tuple[tf.Tensor]] = None
generator_dec_hidden_states: Optional[Tuple[tf.Tensor]] = None
generator_dec_attentions: Optional[Tuple[tf.Tensor]] = None
@dataclass
class TFRetrievAugLMOutput(ModelOutput):
"""
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
each vocabulary token.
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
(see `past_key_values` input) to speed up sequential decoding.
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
the `doc_scores`.
retrieved_doc_ids (`tf.Tensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
The indexes of the embedded documents retrieved by the retriever.
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
model.
question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
"""
logits: tf.Tensor = None
past_key_values: Optional[List[tf.Tensor]] = None
doc_scores: Optional[tf.Tensor] = None
retrieved_doc_embeds: Optional[tf.Tensor] = None
retrieved_doc_ids: Optional[tf.Tensor] = None
context_input_ids: Optional[tf.Tensor] = None
context_attention_mask: Optional[tf.Tensor] = None
question_encoder_last_hidden_state: Optional[tf.Tensor] = None
question_enc_hidden_states: Optional[Tuple[tf.Tensor]] = None
question_enc_attentions: Optional[Tuple[tf.Tensor]] = None
generator_enc_last_hidden_state: Optional[tf.Tensor] = None
generator_enc_hidden_states: Optional[Tuple[tf.Tensor]] = None
generator_enc_attentions: Optional[Tuple[tf.Tensor]] = None
generator_dec_hidden_states: Optional[Tuple[tf.Tensor]] = None
generator_dec_attentions: Optional[Tuple[tf.Tensor]] = None
class TFRagPreTrainedModel(TFPreTrainedModel):
r"""
RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al.
RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a
generator, the encoder and generator are trainable while the retriever is just an indexed dataset.
"""
config_class = RagConfig
base_model_prefix = "rag"
_keys_to_ignore_on_load_missing = [r"position_ids"]
@classmethod
def from_pretrained_question_encoder_generator(
cls,
question_encoder_pretrained_model_name_or_path: str = None,
generator_pretrained_model_name_or_path: str = None,
retriever: RagRetriever = None,
*model_args,
**kwargs
) -> TFPreTrainedModel:
r"""
Instantiates an question encoder and a generator from one or two base classes of the library from pretrained
model checkpoints.
Params:
question_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the question encoder. Can be either:
- A string with the *shortcut name* of a pretrained model to load from cache or download, e.g.,
`bert-base-uncased`.
- A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g.,
`dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case,
`question_encoder_from_pt` should be set to `True`.
generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the generator. Can be either:
- A string with the *shortcut name* of a pretrained model to load from cache or download, e.g.,
`t5-small`.
- A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g.,
`facebook/bart-base`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case,
`generator_from_pt` should be set to `True`.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
retriever ([`RagRetriever`], *optional*):
The retriever to use.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the question_encoder configuration, use the prefix *question_encoder_* for each
configuration parameter.
- To update the generator configuration, use the prefix *generator_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import RagRetriever, TFRagModel
>>> # initialize a RAG from two pretrained models.
>>> model = TFRagModel.from_pretrained_question_encoder_generator(
... "facebook/dpr-question_encoder-single-nq-base", "t5-small"
... )
>>> # alternatively, initialize from pytorch pretrained models can also be done
>>> model = TFRagModel.from_pretrained_question_encoder_generator(
... "facebook/dpr-question_encoder-single-nq-base",
... "facebook/bart-base",
... generator_from_pt=True,
... question_encoder_from_pt=True,
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./rag")
>>> # load retriever
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
... )
>>> # load fine-tuned model with retriever
>>> model = TFRagModel.from_pretrained("./rag", retriever=retriever)
```"""
kwargs_question_encoder = {
argument[len("question_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("question_encoder_")
}
kwargs_generator = {
argument[len("generator_") :]: value
for argument, value in kwargs.items()
if argument.startswith("generator_")
}
# remove question_encoder, generator kwargs from kwargs
for key in kwargs_question_encoder.keys():
del kwargs["question_encoder_" + key]
for key in kwargs_generator.keys():
del kwargs["generator_" + key]
# Load and initialize the question_encoder and generator
# The distinction between question_encoder and generator at the model level is made
# by the value of the flag `is_generator` that we need to set correctly.
question_encoder = kwargs_question_encoder.pop("model", None)
if question_encoder is None:
assert question_encoder_pretrained_model_name_or_path is not None, (
"If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to"
" be defined"
)
from ..auto.modeling_tf_auto import TFAutoModel
if "config" not in kwargs_question_encoder:
from ..auto.configuration_auto import AutoConfig
question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path)
kwargs_question_encoder["config"] = question_encoder_config
question_encoder = TFAutoModel.from_pretrained(
question_encoder_pretrained_model_name_or_path,
name="question_encoder",
load_weight_prefix=cls.load_weight_prefix,
*model_args,
**kwargs_question_encoder,
)
generator = kwargs_generator.pop("generator", None)
if generator is None:
assert generator_pretrained_model_name_or_path is not None, (
"If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has"
" to be defined"
)
from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM
if "config" not in kwargs_generator:
from ..auto.configuration_auto import AutoConfig
generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path)
kwargs_generator["config"] = generator_config
generator = TFAutoModelForSeq2SeqLM.from_pretrained(
generator_pretrained_model_name_or_path,
name="generator",
load_weight_prefix=cls.load_weight_prefix,
**kwargs_generator,
)
# instantiate config with corresponding kwargs
config = kwargs.get("config", None)
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever)
RAG_START_DOCSTRING = r"""
RAG is a sequence-to-sequence model which encapsulates two core components: a question encoder and a generator.
During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract
relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to
the generator.
The question encoder can be any *autoencoding* model, preferably [`TFDPRQuestionEncoder`], and the generator can be
any *seq2seq* model, preferably [`TFBartForConditionalGeneration`].
The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the
outputs of a retriever in multiple steps---see examples for more details. The model is compatible any
*autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`.
It has been tested with [`TFDPRQuestionEncoder`] as the `question_encoder` and [`TFBartForConditionalGeneration`]
as the `generator`.
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Tensorflow [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to
general usage and behavior.
The model is in a developing state as it is now fully supports in eager-mode only, and may not be exported in
SavedModel format.
Args:
config ([`RagConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
question_encoder ([`TFPreTrainedModel`]):
An encoder model compatible with the faiss index encapsulated by the `retriever`.
generator ([`TFPreTrainedModel`]):
A seq2seq model used as the generator in the RAG architecture.
retriever ([`RagRetriever`]):
A retriever class encapsulating a faiss index queried to obtain context documents for current inputs.
"""
RAG_FORWARD_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies
which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to
obtain the indices.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*)
Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`,
*optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs *
sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the
generator's encoder.
Used by the ([`TFRagModel`]) model during decoding.
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Provide for generation tasks. `None` by default, construct as per instructions for the generator model
you're using with your RAG instance.
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
past_key_values (`tuple(tuple(tf.Tensor))`):
Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and
`past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used
in the ([`RagTokenForGeneration`]) model during decoding.
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores`
has to be provided to the forward pass. `doc_scores` can be computed via
`question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information.
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask
(`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when
*output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question
encoder `input_ids` by the retriever.
If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the
forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`].
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_retrieved(`bool`, *optional*):
Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask`. See returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`TFRetrievAugLMOutput`] instead of a plain tuple.
n_docs (`int`, *optional*, defaults to `config.n_docs``)
Number of documents to retrieve and/or number of documents for which to generate an answer.
"""
@add_start_docstrings_to_model_forward(RAG_START_DOCSTRING)
class TFRagModel(TFRagPreTrainedModel):
load_weight_prefix = "tf_rag_model_1"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
load_weight_prefix: Optional[str] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an question_encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
else:
assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}"
super().__init__(config, **kwargs)
if question_encoder is None:
from ..auto.modeling_tf_auto import TFAutoModel
question_encoder = TFAutoModel.from_config(config.question_encoder, name="question_encoder")
if generator is None:
from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM
load_weight_prefix = load_weight_prefix if load_weight_prefix is not None else self.load_weight_prefix
generator = TFAutoModelForSeq2SeqLM.from_config(
config.generator, name="generator", load_weight_prefix=load_weight_prefix + "/generator"
)
self.retriever = retriever
if self.retriever is not None:
assert isinstance(
retriever, RagRetriever
), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
self.retriever = retriever
self.question_encoder = question_encoder
self.generator = generator
def set_retriever(self, retriever: RagRetriever):
self.retriever = retriever
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
doc_scores: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs
):
r"""
Returns:
Example:
```python
>>> from transformers import RagTokenizer, RagRetriever, TFRagModel
>>> import torch
>>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagModel.from_pretrained("facebook/rag-token-base", retriever=retriever, from_pt=True)
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> input_ids = input_dict["input_ids"]
>>> outputs = model(input_ids)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
# aliasing to minimize code changing
n_docs = n_docs if n_docs is not None else self.config.n_docs
# whether retriever has to be used
has_to_retrieve = (
self.retriever is not None
and (context_input_ids is None or context_attention_mask is None or doc_scores is None)
and encoder_outputs is None
)
# encoder_outputs are pre-computed during RAG-token generation
if encoder_outputs is None:
if has_to_retrieve:
question_enc_outputs = self.question_encoder(
input_ids, attention_mask=attention_mask, return_dict=True, training=training
)
# see https://github.com/huggingface/transformers/blob/main/src/transformers/models/dpr/modeling_tf_dpr.py#L91
question_encoder_last_hidden_state = question_enc_outputs[
0
] # hidden states of question encoder => pooler_output
retriever_outputs = self.retriever(
input_ids,
question_encoder_last_hidden_state.numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)
context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = (
retriever_outputs["context_input_ids"],
retriever_outputs["context_attention_mask"],
retriever_outputs["retrieved_doc_embeds"],
retriever_outputs["doc_ids"],
)
context_input_ids = tf.cast(context_input_ids, tf.int32)
context_attention_mask = tf.cast(context_attention_mask, tf.int32)
retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32)
retrieved_doc_ids = tf.cast(retrieved_doc_ids, tf.int32)
# compute doc_scores
doc_scores = tf.squeeze(
tf.matmul(
tf.expand_dims(question_encoder_last_hidden_state, axis=1),
retrieved_doc_embeds,
transpose_b=True,
),
axis=1,
)
else:
assert context_input_ids is not None, (
"Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can"
" set a retriever using the `set_retriever(...)` function."
)
assert context_attention_mask is not None, (
"Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you"
" can set a retriever using the `set_retriever(...)` function."
)
assert doc_scores is not None, (
"Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a"
" retriever using the `set_retriever(...)` function."
)
assert (
doc_scores is not None
), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
assert (doc_scores.shape[1] % n_docs) == 0, (
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
f" {context_input_ids.shape[0]}."
)
# Decoder input without context documents
if decoder_input_ids is not None:
decoder_input_ids = tf.repeat(decoder_input_ids, n_docs, axis=0)
if decoder_attention_mask is not None:
decoder_attention_mask = tf.repeat(decoder_attention_mask, n_docs, axis=0)
gen_outputs = self.generator(
context_input_ids,
attention_mask=context_attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
return_dict=True,
training=training,
)
if not has_to_retrieve:
question_encoder_last_hidden_state = None
question_enc_hidden_states = None
question_enc_attentions = None
retrieved_doc_embeds = None
retrieved_doc_ids = None
else:
question_enc_hidden_states = question_enc_outputs.hidden_states
question_enc_attentions = question_enc_outputs.attentions
if not has_to_retrieve or not output_retrieved:
# don't output retrieved docs
context_input_ids = (None,)
context_attention_mask = None
retrieved_doc_embeds = None
retrieved_doc_ids = None
return TFRetrievAugLMOutput(
logits=gen_outputs.logits,
doc_scores=doc_scores,
past_key_values=gen_outputs.past_key_values,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
retrieved_doc_embeds=retrieved_doc_embeds,
retrieved_doc_ids=retrieved_doc_ids,
question_encoder_last_hidden_state=question_encoder_last_hidden_state,
question_enc_hidden_states=question_enc_hidden_states,
question_enc_attentions=question_enc_attentions,
generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state,
generator_enc_hidden_states=gen_outputs.encoder_hidden_states,
generator_enc_attentions=gen_outputs.encoder_attentions,
generator_dec_hidden_states=gen_outputs.decoder_hidden_states,
generator_dec_attentions=gen_outputs.decoder_attentions,
)
@add_start_docstrings_to_model_forward(
"""
A TF RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass.
""",
RAG_START_DOCSTRING,
)
class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss):
load_weight_prefix = "tf_rag_token_for_generation_1/rag"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
super().__init__(config)
# instantiate model
self.rag = TFRagModel(
config=config,
question_encoder=question_encoder,
generator=generator,
retriever=retriever,
load_weight_prefix=self.load_weight_prefix,
name="rag",
)
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_bart.py
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
doc_scores=None,
n_docs=None,
**kwargs
):
if past is not None:
# if past is defined use only last decoder_input_ids
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None,
"encoder_outputs": encoder_outputs,
"doc_scores": doc_scores,
"context_attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"past_key_values": past,
"use_cache": use_cache,
"do_marginalize": True,
"n_docs": n_docs,
}
@property
def retriever(self):
return self.rag.retriever
@property
def generator(self):
return self.rag.generator
@property
def question_encoder(self):
return self.rag.question_encoder
@staticmethod
def _reorder_cache(past, beam_idx):
"""Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs"""
def _reorder_stacked(hidden_states, new_order):
n_docs = hidden_states.shape[0] // new_order.shape[0]
hidden_states = tf.reshape(hidden_states, (-1, n_docs, *hidden_states.shape[1:]))
hidden_states = tf.gather(hidden_states, new_order, axis=0)
result = tf.reshape(hidden_states, (-1, *hidden_states.shape[2:]))
return result
reordered_past = ()
for layer_past in past:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
reordered_past += (tuple(_reorder_stacked(past_state, beam_idx) for past_state in layer_past),)
return reordered_past
def marginalize(self, seq_logits, doc_scores, n_docs=None):
n_docs = n_docs if n_docs is not None else self.config.n_docs
# RAG-token marginalization
seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1)
seq_logprobs = tf.reshape(seq_logprobs, [seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]])
doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # twice
log_prob_sum = seq_logprobs + doc_logprobs
return tf.reduce_logsumexp(log_prob_sum, axis=1)
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
doc_scores: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
do_marginalize: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
reduce_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs # needs kwargs for generation
):
r"""
do_marginalize (`bool`, *optional*):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss according to Rag-Token model formulation See
https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Token formulation. Indices should be
in `[0, ..., config.vocab_size - 1]`.
reduce_loss (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum`
operation.
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Legacy dictionary, which is required so that model can use *generate()* function.
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import RagTokenizer, RagRetriever, TFRagTokenForGeneration
>>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever, from_pt=True)
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> outputs = model(input_dict, output_retrieved=True)
>>> # or use retriever separately
>>> # 1. Encode
>>> input_ids = input_dict["input_ids"]
>>> question_hidden_states = model.question_encoder(input_ids)[0]
>>> # 2. Retrieve
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf")
>>> doc_scores = tf.squeeze(
... tf.matmul(
... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True
... ),
... axis=1,
... )
>>> # 3. Forward to generator
>>> outputs = model(
... inputs=None,
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... decoder_input_ids=input_dict["labels"],
... )
>>> # or directly generate
>>> generated = model.generate(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... )
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize
reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = labels
use_cache = False
outputs = self.rag(
input_ids,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
doc_scores=doc_scores,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_retrieved=output_retrieved,
n_docs=n_docs,
training=training,
)
loss = None
logits = outputs.logits
if labels is not None:
assert decoder_input_ids is not None
loss = self.get_nll(
outputs.logits,
outputs.doc_scores,
labels,
reduce_loss=reduce_loss,
epsilon=self.config.label_smoothing,
n_docs=n_docs,
)
if do_marginalize:
logits = self.marginalize(logits, outputs.doc_scores, n_docs)
return TFRetrievAugLMMarginOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
doc_scores=outputs.doc_scores,
context_input_ids=outputs.context_input_ids,
context_attention_mask=outputs.context_attention_mask,
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
retrieved_doc_ids=outputs.retrieved_doc_ids,
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
question_enc_hidden_states=outputs.question_enc_hidden_states,
question_enc_attentions=outputs.question_enc_attentions,
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
generator_enc_attentions=outputs.generator_enc_attentions,
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
generator_dec_attentions=outputs.generator_dec_attentions,
)
def generate(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[tf.Tensor] = None,
context_input_ids=None,
context_attention_mask=None,
doc_scores=None,
max_length=None,
min_length=None,
early_stopping=None,
use_cache=None,
num_beams=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
length_penalty=None,
no_repeat_ngram_size=None,
bad_words_ids=None,
num_return_sequences=None,
decoder_start_token_id=None,
n_docs=None,
output_scores=None,
output_attentions=None,
output_hidden_states=None,
return_dict_in_generate=None,
**model_kwargs
):
"""
Implements TFRAG token decoding.
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
`context_input_ids` has to be provided.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
max_length (`int`, *optional*, defaults to 20):
The maximum length of the sequence to be generated.
min_length (`int`, *optional*, defaults to 10):
The minimum length of the sequence to be generated.
early_stopping (`bool`, *optional*, defaults to `False`):
Whether or not to stop the beam search when at least `num_beams` sentences are finished per batch or
not.
use_cache: (`bool`, *optional*, defaults to `True`):
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
speed up decoding.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
bos_token_id (`int`, *optional*):
The id of the *beginning-of-sequence* token.
eos_token_id (`int`, *optional*):
The id of the *end-of-sequence* token.
length_penalty (`float`, *optional*, defaults to 1.0):
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent
to the sequence length, which in turn is used to divide the score of the sequence. Since the score is
the log likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences,
while `length_penalty` < 0.0 encourages shorter sequences.
no_repeat_ngram_size (`int`, *optional*, defaults to 0):
If set to int > 0, all ngrams of that size can only occur once.
bad_words_ids(`List[int]`, *optional*):
List of token ids that are not allowed to be generated. In order to get the tokens of the words that
should not appear in the generated text, use `tokenizer.encode(bad_word, add_prefix_space=True)`.
num_beams (`int`, *optional*, defaults to 1):
Number of beams for beam search. 1 means no beam search.
num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch. Note that this
is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`] function, where
we set `num_return_sequences` to `num_beams`. decoder_start_token_id (`int`, *optional*): If an
encoder-decoder model starts decoding with a different token than *bos*, the id of that token.
n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
model_specific_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model.
Return:
`tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The
second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early
due to the `eos_token_id`.
"""
# set default parameters
n_docs = n_docs if n_docs is not None else self.config.n_docs
max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length
early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
use_cache = use_cache if use_cache is not None else self.config.use_cache
num_beams = num_beams if num_beams is not None else self.config.num_beams
bos_token_id = bos_token_id if bos_token_id is not None else self.config.generator.bos_token_id
pad_token_id = pad_token_id if pad_token_id is not None else self.config.generator.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.generator.eos_token_id
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.config.generator.decoder_start_token_id
)
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
model_kwargs["output_scores"] = output_scores
model_kwargs["output_attentions"] = output_attentions
model_kwargs["output_hidden_states"] = output_hidden_states
model_kwargs["encoder_attentions"] = None
model_kwargs["encoder_hidden_states"] = None
# retrieve docs
if self.retriever is not None and context_input_ids is None:
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
out = self.retriever(
input_ids,
question_hidden_states.numpy().astype(np.float32),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
context_input_ids = tf.cast(context_input_ids, tf.int32)
context_attention_mask = tf.cast(context_attention_mask, tf.int32)
retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32)
# compute doc_scores
doc_scores = tf.matmul(
tf.expand_dims(question_hidden_states, axis=1), retrieved_doc_embeds, transpose_b=True
)
doc_scores = tf.squeeze(doc_scores, axis=1)
assert (context_input_ids.shape[0] % n_docs) == 0, (
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
f" {context_input_ids.shape[0]}."
)
batch_size = context_input_ids.shape[0] // n_docs
encoder = self.rag.generator.get_encoder()
encoder_outputs = encoder(
input_ids=context_input_ids,
attention_mask=context_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
decoder_input_ids = tf.fill(
(batch_size * num_beams, 1),
tf.cast(decoder_start_token_id, tf.int32),
)
last_hidden_state = encoder_outputs["last_hidden_state"]
def extend_enc_output(tensor, num_beams=None):
"""
Broadcast tensor with `num_beams` replica, with correct order Input: tensor of shape (batch_size*n_docs ,
d) Output: tensor of shape (batch_size*num_beams*n_docs , d)
"""
# expand batch_size & num_beam dimensions
d_shape_list = tensor.shape[1:]
# split n_docs dimensions
new_shape = (batch_size, 1, n_docs) + d_shape_list
tensor = tf.reshape(tensor, new_shape)
# repeat same last hidden states over `num_beams` dimension
new_shape = (batch_size, num_beams, n_docs) + d_shape_list
tensor = tf.broadcast_to(tensor, new_shape)
# merge `batch_size`, `num_beams`, `num_docs` dims again
new_shape = (batch_size * num_beams * n_docs,) + d_shape_list
return tf.reshape(tensor, new_shape)
# correctly extend last_hidden_state and attention mask
context_attention_mask = extend_enc_output(context_attention_mask, num_beams=num_beams)
encoder_outputs["last_hidden_state"] = extend_enc_output(last_hidden_state, num_beams=num_beams)
doc_scores = tf.repeat(doc_scores, num_beams, axis=0)
# define start_len & additional parameters
cur_len = 1
vocab_size = self.config.generator.vocab_size
model_kwargs["doc_scores"] = doc_scores
model_kwargs["encoder_outputs"] = encoder_outputs
model_kwargs["n_docs"] = n_docs
# not needed. TODO(PVP): change after generate refactor
do_sample = False
temperature = self.config.temperature
top_k = self.config.top_k
top_p = self.config.top_p
repetition_penalty = self.config.repetition_penalty
if num_beams > 1:
return self._generate_beam_search(
decoder_input_ids,
cur_len=cur_len,
max_length=max_length,
min_length=min_length,
do_sample=do_sample,
early_stopping=early_stopping,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
batch_size=batch_size,
num_return_sequences=num_return_sequences,
length_penalty=length_penalty,
num_beams=num_beams,
vocab_size=vocab_size,
attention_mask=context_attention_mask,
use_cache=use_cache,
forced_bos_token_id=None,
forced_eos_token_id=None,
return_dict_in_generate=return_dict_in_generate,
**model_kwargs, # encoder_outputs is here as in Pytorch's version
)
else:
pre_processor = self._get_logits_processor(
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
min_length=min_length,
max_length=max_length,
eos_token_id=eos_token_id,
forced_bos_token_id=None,
forced_eos_token_id=None,
input_ids_seq_length=tf.shape(decoder_input_ids)[-1],
)
model_kwargs["attention_mask"] = context_attention_mask
if model_kwargs.get("encoder_attentions", None) is None:
model_kwargs.pop("encoder_attentions", None)
if model_kwargs.get("encoder_hidden_states", None) is None:
model_kwargs.pop("encoder_hidden_states", None)
model_kwargs.pop("output_hidden_states", None)
model_kwargs.pop("output_attentions", None)
model_kwargs.pop("output_scores", None)
return self.greedy_search(
input_ids=decoder_input_ids,
max_length=max_length,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
logits_processor=pre_processor,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
**model_kwargs,
)
def get_input_embeddings(self):
return self.rag.generator.get_input_embeddings()
def get_output_embeddings(self):
return self.rag.generator.get_output_embeddings()
# Adapted from tf_t5's & tf_bart's _shift_right
def shift_tokens_right(self, input_ids, start_token_id=None):
"""Shift input ids one token to the right, and pad with start_token_id"""
if start_token_id is None:
start_token_id = self.generator.config.decoder_start_token_id
assert start_token_id is not None, (
"self.generator.config.decoder_start_token_id has to be defined. In Rag we commonly use Bart as"
" generator, see Bart docs for more information"
)
pad_token_id = self.generator.config.pad_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.cast(start_token_id, input_ids.dtype))
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.cast(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, shifted_input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# nll stands for 'negative log likelihood'
def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None):
n_docs = n_docs if n_docs is not None else self.config.n_docs
# shift tokens left (from original Pytorch's version)
target = tf.concat(
[target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))],
axis=1,
)
rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs)
loss = self.hf_compute_loss(target, rag_logprobs, from_logits=True, reduce_loss=reduce_loss)
return loss
# Adopted modeling_tf_bart + add smooth_loss to match with pytorch version
def hf_compute_loss(self, labels, y_pred, smooth_epsilon=0.0, from_logits=True, reduce_loss=False):
"""CrossEntropyLoss that ignores pad tokens"""
# Matt: As written, this loss is not XLA-compatible, but it's doing some very weird things
# and I don't feel comfortable converting it.
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.SUM,
)
if from_logits is False: # convert to logits
eps = 1e-9
y_pred = tf.clip_by_value(y_pred, clip_value_min=eps, clip_value_max=1 - eps)
y_pred = tf.math.log(y_pred)
logits = y_pred
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.generator.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, logits.shape[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
nll_loss = loss_fn(labels, reduced_logits)
smooth_loss = -tf.reduce_sum(reduced_logits, axis=-1)
smooth_loss = tf.reduce_sum(smooth_loss) # sum and squeeze like torch
eps_i = smooth_epsilon / reduced_logits.shape[-1]
loss = (1.0 - smooth_epsilon) * nll_loss + eps_i * smooth_loss
return loss
@add_start_docstrings_to_model_forward(
"""
A TF RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass.
""",
RAG_START_DOCSTRING,
)
class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss):
load_weight_prefix = "tf_rag_sequence_for_generation_1/rag"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
super().__init__(config)
# instantiate model
self.rag = TFRagModel(
config=config,
question_encoder=question_encoder,
generator=generator,
retriever=retriever,
load_weight_prefix=self.load_weight_prefix,
name="rag",
)
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
@property
def retriever(self):
return self.rag.retriever
@property
def generator(self):
return self.rag.generator
@property
def question_encoder(self):
return self.rag.question_encoder
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
doc_scores: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
exclude_bos_score: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
reduce_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs # needs kwargs for generation
) -> Union[Tuple[tf.Tensor], TFRetrievAugLMMarginOutput]:
r"""
exclude_bos_score (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing
the loss.
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss according to Rag-Sequence model formulation See
https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Sequence formulation. Indices should
be in `[0, ..., config.vocab_size - 1]`.
reduce_loss (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum`
operation.
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Legacy dictionary, which is required so that model can use *generate()* function.
Returns:
Example:
```python
>>> from transformers import RagTokenizer, RagRetriever, TFRagSequenceForGeneration
>>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagSequenceForGeneration.from_pretrained(
... "facebook/rag-sequence-nq", retriever=retriever, from_pt=True
... )
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> outputs = model(input_dict, output_retrieved=True)
>>> # or use retriever separately
>>> # 1. Encode
>>> input_ids = input_dict["input_ids"]
>>> question_hidden_states = model.question_encoder(input_ids)[0]
>>> # 2. Retrieve
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf")
>>> doc_scores = tf.squeeze(
... tf.matmul(
... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True
... ),
... axis=1,
... )
>>> # 3. Forward to generator
>>> outputs = model(
... inputs=None,
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... decoder_input_ids=input_dict["labels"],
... )
>>> # or directly generate
>>> generated = model.generate(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... )
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score
reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = labels
use_cache = False
outputs = self.rag(
input_ids,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
doc_scores=doc_scores,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_retrieved=output_retrieved,
n_docs=n_docs,
training=training,
)
loss = None
if labels is not None:
loss = self.get_nll(
outputs.logits,
outputs.doc_scores,
labels,
reduce_loss=reduce_loss,
epsilon=self.config.label_smoothing,
n_docs=n_docs,
)
return TFRetrievAugLMMarginOutput(
loss=loss,
logits=outputs.logits,
doc_scores=outputs.doc_scores,
past_key_values=outputs.past_key_values,
context_input_ids=outputs.context_input_ids,
context_attention_mask=outputs.context_attention_mask,
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
retrieved_doc_ids=outputs.retrieved_doc_ids,
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
question_enc_hidden_states=outputs.question_enc_hidden_states,
question_enc_attentions=outputs.question_enc_attentions,
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
generator_enc_attentions=outputs.generator_enc_attentions,
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
generator_dec_attentions=outputs.generator_dec_attentions,
)
def get_nll(
self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None
):
# shift tokens left
target = tf.concat(
[target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))],
axis=1,
)
# bos_token_id is None for T5
bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id
n_docs = n_docs if n_docs is not None else self.config.n_docs
equal_bos_token_id_all = tf.reduce_all(tf.equal(target[:, 0], bos_token_id))
use_bos = bos_token_id is not None and equal_bos_token_id_all
def _mask_pads(ll, smooth_obj):
pad_mask = tf.equal(target, tf.cast(self.config.generator.pad_token_id, target.dtype))
if tf.reduce_any(pad_mask):
ll = tf.where(pad_mask, 0.0, ll)
smooth_obj = tf.where(pad_mask, 0.0, smooth_obj)
return tf.squeeze(ll, axis=-1), tf.squeeze(smooth_obj, axis=-1)
# seq_logits.shape = (batch*n_docs, tgt_len , vocabs)
seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1)
seq_logprobs = tf.reshape(
seq_logprobs, (seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1])
) # (batch_size, n_docs, tgt_len, vocabs)
doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # done twice to get 4-D
# RAG-sequence marginalization
first_token_scores = seq_logprobs[:, :, :1, :]
second_token_scores = seq_logprobs[:, :, 1:2, :]
remainder = seq_logprobs[:, :, 2:, :]
rag_logprobs = tf.concat([first_token_scores, second_token_scores + doc_logprobs, remainder], axis=2)
# calculate loss
target = tf.expand_dims(target, axis=1) # n_docs dimension
target = tf.expand_dims(target, axis=-1) # logits dimension
target = tf.repeat(target, n_docs, axis=1)
assert len(target.shape) == len(rag_logprobs.shape)
# last-axis gathering only - use 2D-reshape-trick for Torch's style nD gathering
def torch_gather(param, id_tensor):
# 2d-gather torch equivalent: https://stackoverflow.com/questions/52129909/tensorflow-equivalent-of-torch-gather
def gather2d(target, id_tensor):
idx = tf.stack([tf.range(tf.shape(id_tensor)[0], dtype=id_tensor.dtype), id_tensor[:, 0]], axis=-1)
result = tf.gather_nd(target, idx)
return tf.expand_dims(result, axis=-1)
target = tf.reshape(param, (-1, param.shape[-1])) # reshape 2D
target_shape = id_tensor.shape
id_tensor = tf.reshape(id_tensor, (-1, 1)) # also 2D-index
result = gather2d(target, id_tensor)
return tf.reshape(result, target_shape)
ll = torch_gather(rag_logprobs, id_tensor=target)
smooth_obj = tf.reduce_sum(rag_logprobs, axis=-1, keepdims=True) # total sum of all (normalised) logits
ll, smooth_obj = _mask_pads(ll, smooth_obj)
# sum over tokens, exclude bos while scoring
if exclude_bos_score and use_bos:
ll = tf.reduce_sum(ll[:, :, 1:], axis=2)
else:
ll = tf.reduce_sum(ll, axis=2)
smooth_obj = tf.reduce_sum(smooth_obj, axis=2)
ll = tf.math.reduce_logsumexp(ll, axis=1) # logsumexp over docs
smooth_obj = tf.math.reduce_logsumexp(smooth_obj, axis=1)
nll_loss = -ll
smooth_loss = -smooth_obj
if reduce_loss:
nll_loss = tf.reduce_sum(nll_loss)
smooth_loss = tf.reduce_sum(smooth_loss)
eps_i = epsilon / rag_logprobs.shape[-1]
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss
def generate(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[tf.Tensor] = None,
context_input_ids=None,
context_attention_mask=None,
doc_scores=None,
do_deduplication=None, # defaults to True
num_return_sequences=None, # defaults to 1
num_beams=None, # defaults to 1
n_docs=None,
**model_kwargs
):
"""
Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation
for more information on how to set other generate input parameters
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
`context_input_ids` has to be provided.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for
tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention
masks?](../glossary#attention-mask)
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder input_ids by the
retriever.
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever. If the model has is not initialized with a `retriever` or `input_ids` is not given,
`context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are
returned by [`~RagRetriever.__call__`].
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` or
`input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are
returned by [`~RagRetriever.__call__`].
do_deduplication (`bool`, *optional*):
Whether or not to deduplicate the generations from different context documents for a given input. Has
to be set to `False` if used while training with distributed backend.
num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch. Note that this
is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function,
where we set `num_return_sequences` to `num_beams`.
num_beams (`int`, *optional*, defaults to 1):
Number of beams for beam search. 1 means no beam search.
n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer.
kwargs:
Additional kwargs will be passed to [`~generation.GenerationMixin.generate`]
Return:
`tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The
second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early
due to the `eos_token_id`.
"""
n_docs = n_docs if n_docs is not None else self.config.n_docs
do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication
num_doc_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
num_beams = num_beams if num_beams is not None else self.config.num_beams
assert (
input_ids is not None or context_input_ids is not None
), " At least one of input_ids or context_input_ids must be given"
if self.retriever is not None and context_input_ids is None:
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
context_input_ids = self.retriever(
input_ids,
question_hidden_states.numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)["context_input_ids"]
hypos = []
model_kwargs["num_beams"] = num_beams
model_kwargs["num_return_sequences"] = num_beams # put here so that not confused with num_doc_return_sequences
model_kwargs["attention_mask"] = None
batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs
for index in range(batch_size):
# first, generate beams from documents:
generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len)
output_sequences = self.generator.generate(
generator_input_ids,
**model_kwargs,
) # n_docs * n_beam, tgt_len
if do_deduplication:
# do_deduplication -- for TF, work on Eager mode only!
output_sequences = tf.stack(list({str(k.numpy().tolist()): k for k in output_sequences}.values()))
num_candidates = output_sequences.shape[
0
] # after deduplication, this number can be less than n_docs*n_beam
# then, run model forwards to get nll scores:
if input_ids is not None:
new_input_ids = tf.tile(input_ids[index : index + 1], (num_candidates, 1))
outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True)
else: # input_ids is None, need context_input_ids/mask and doc_scores
assert context_attention_mask is not None, (
"Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you"
" can set a retriever using the `set_retriever(...)` function."
)
assert doc_scores is not None, (
"Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a"
" retriever using the `set_retriever(...)` function."
)
individual_input_ids = tf.tile(
generator_input_ids, (num_candidates, 1)
) # (num_candidates*n_docs, max_len)
individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs]
individual_attention_mask = tf.tile(individual_attention_mask, (num_candidates, 1))
individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs]
individual_doc_scores = tf.tile(individual_doc_scores, (num_candidates, 1)) # [num_candidates, n_docs]
outputs = self(
input_ids=None,
context_input_ids=individual_input_ids,
context_attention_mask=individual_attention_mask,
doc_scores=individual_doc_scores,
labels=output_sequences,
exclude_bos_score=True,
)
top_cand_inds = tf.math.top_k((-outputs["loss"]), k=num_doc_return_sequences)[1]
# add hypothesis
hypos.append(tf.gather(output_sequences, top_cand_inds))
return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id)
@staticmethod
def _cat_and_pad(tensors, pad_token_id):
# used by generate(): tensors is a (batched) list of (candidates, len); len is varied across batch
# Initialize padded tensor with shape ( all_candidates , max_candidate_length ),
# where all_candidates counted from all inputs
new_shape = sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])
output = tf.fill(new_shape, pad_token_id)
# Normal tensor doesn't support slice assignment, so we need tf.Variable
output = tf.Variable(output)
# Assign, and then convert back to tensor
ind = 0
for t in tensors:
output[ind : ind + t.shape[0], : t.shape[1]].assign(t)
ind += t.shape[0]
output = tf.convert_to_tensor(output)
return tf.cast(output, tensors[0][0][0].dtype)
| # coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFRAG model implementation."""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...configuration_utils import PretrainedConfig
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
shape_list,
unpack_inputs,
)
from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "RagConfig"
@dataclass
class TFRetrievAugLMMarginOutput(ModelOutput):
"""
Base class for retriever augmented marginalized models outputs.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
each vocabulary token.
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
(see `past_key_values` input) to speed up sequential decoding.
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
the `doc_scores`.
retrieved_doc_ids (`tf.Tensor` (int32) of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
The indexes of the embedded documents retrieved by the retriever.
context_input_ids (`tf.Tensor`(int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
context_attention_mask (`tf.Tensor` (int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
model.
question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
"""
loss: Optional[tf.Tensor] = None
logits: tf.Tensor = None
past_key_values: Optional[List[tf.Tensor]] = None
doc_scores: Optional[tf.Tensor] = None
retrieved_doc_embeds: Optional[tf.Tensor] = None
retrieved_doc_ids: Optional[tf.Tensor] = None
context_input_ids: Optional[tf.Tensor] = None
context_attention_mask: Optional[tf.Tensor] = None
question_encoder_last_hidden_state: Optional[tf.Tensor] = None
question_enc_hidden_states: Optional[Tuple[tf.Tensor]] = None
question_enc_attentions: Optional[Tuple[tf.Tensor]] = None
generator_enc_last_hidden_state: Optional[tf.Tensor] = None
generator_enc_hidden_states: Optional[Tuple[tf.Tensor]] = None
generator_enc_attentions: Optional[Tuple[tf.Tensor]] = None
generator_dec_hidden_states: Optional[Tuple[tf.Tensor]] = None
generator_dec_attentions: Optional[Tuple[tf.Tensor]] = None
@dataclass
class TFRetrievAugLMOutput(ModelOutput):
"""
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
each vocabulary token.
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
(see `past_key_values` input) to speed up sequential decoding.
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
the `doc_scores`.
retrieved_doc_ids (`tf.Tensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
The indexes of the embedded documents retrieved by the retriever.
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
model.
question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
"""
logits: tf.Tensor = None
past_key_values: Optional[List[tf.Tensor]] = None
doc_scores: Optional[tf.Tensor] = None
retrieved_doc_embeds: Optional[tf.Tensor] = None
retrieved_doc_ids: Optional[tf.Tensor] = None
context_input_ids: Optional[tf.Tensor] = None
context_attention_mask: Optional[tf.Tensor] = None
question_encoder_last_hidden_state: Optional[tf.Tensor] = None
question_enc_hidden_states: Optional[Tuple[tf.Tensor]] = None
question_enc_attentions: Optional[Tuple[tf.Tensor]] = None
generator_enc_last_hidden_state: Optional[tf.Tensor] = None
generator_enc_hidden_states: Optional[Tuple[tf.Tensor]] = None
generator_enc_attentions: Optional[Tuple[tf.Tensor]] = None
generator_dec_hidden_states: Optional[Tuple[tf.Tensor]] = None
generator_dec_attentions: Optional[Tuple[tf.Tensor]] = None
class TFRagPreTrainedModel(TFPreTrainedModel):
r"""
RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al.
RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a
generator, the encoder and generator are trainable while the retriever is just an indexed dataset.
"""
config_class = RagConfig
base_model_prefix = "rag"
_keys_to_ignore_on_load_missing = [r"position_ids"]
@classmethod
def from_pretrained_question_encoder_generator(
cls,
question_encoder_pretrained_model_name_or_path: str = None,
generator_pretrained_model_name_or_path: str = None,
retriever: RagRetriever = None,
*model_args,
**kwargs
) -> TFPreTrainedModel:
r"""
Instantiates an question encoder and a generator from one or two base classes of the library from pretrained
model checkpoints.
Params:
question_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the question encoder. Can be either:
- A string with the *shortcut name* of a pretrained model to load from cache or download, e.g.,
`bert-base-uncased`.
- A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g.,
`dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case,
`question_encoder_from_pt` should be set to `True`.
generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the generator. Can be either:
- A string with the *shortcut name* of a pretrained model to load from cache or download, e.g.,
`t5-small`.
- A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g.,
`facebook/bart-base`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case,
`generator_from_pt` should be set to `True`.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
retriever ([`RagRetriever`], *optional*):
The retriever to use.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the question_encoder configuration, use the prefix *question_encoder_* for each
configuration parameter.
- To update the generator configuration, use the prefix *generator_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import RagRetriever, TFRagModel
>>> # initialize a RAG from two pretrained models.
>>> model = TFRagModel.from_pretrained_question_encoder_generator(
... "facebook/dpr-question_encoder-single-nq-base", "t5-small"
... )
>>> # alternatively, initialize from pytorch pretrained models can also be done
>>> model = TFRagModel.from_pretrained_question_encoder_generator(
... "facebook/dpr-question_encoder-single-nq-base",
... "facebook/bart-base",
... generator_from_pt=True,
... question_encoder_from_pt=True,
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./rag")
>>> # load retriever
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
... )
>>> # load fine-tuned model with retriever
>>> model = TFRagModel.from_pretrained("./rag", retriever=retriever)
```"""
kwargs_question_encoder = {
argument[len("question_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("question_encoder_")
}
kwargs_generator = {
argument[len("generator_") :]: value
for argument, value in kwargs.items()
if argument.startswith("generator_")
}
# remove question_encoder, generator kwargs from kwargs
for key in kwargs_question_encoder.keys():
del kwargs["question_encoder_" + key]
for key in kwargs_generator.keys():
del kwargs["generator_" + key]
# Load and initialize the question_encoder and generator
# The distinction between question_encoder and generator at the model level is made
# by the value of the flag `is_generator` that we need to set correctly.
question_encoder = kwargs_question_encoder.pop("model", None)
if question_encoder is None:
assert question_encoder_pretrained_model_name_or_path is not None, (
"If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to"
" be defined"
)
from ..auto.modeling_tf_auto import TFAutoModel
if "config" not in kwargs_question_encoder:
from ..auto.configuration_auto import AutoConfig
question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path)
kwargs_question_encoder["config"] = question_encoder_config
question_encoder = TFAutoModel.from_pretrained(
question_encoder_pretrained_model_name_or_path,
name="question_encoder",
load_weight_prefix=cls.load_weight_prefix,
*model_args,
**kwargs_question_encoder,
)
generator = kwargs_generator.pop("generator", None)
if generator is None:
assert generator_pretrained_model_name_or_path is not None, (
"If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has"
" to be defined"
)
from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM
if "config" not in kwargs_generator:
from ..auto.configuration_auto import AutoConfig
generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path)
kwargs_generator["config"] = generator_config
generator = TFAutoModelForSeq2SeqLM.from_pretrained(
generator_pretrained_model_name_or_path,
name="generator",
load_weight_prefix=cls.load_weight_prefix,
**kwargs_generator,
)
# instantiate config with corresponding kwargs
config = kwargs.get("config", None)
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever)
RAG_START_DOCSTRING = r"""
RAG is a sequence-to-sequence model which encapsulates two core components: a question encoder and a generator.
During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract
relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to
the generator.
The question encoder can be any *autoencoding* model, preferably [`TFDPRQuestionEncoder`], and the generator can be
any *seq2seq* model, preferably [`TFBartForConditionalGeneration`].
The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the
outputs of a retriever in multiple steps---see examples for more details. The model is compatible any
*autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`.
It has been tested with [`TFDPRQuestionEncoder`] as the `question_encoder` and [`TFBartForConditionalGeneration`]
as the `generator`.
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Tensorflow [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to
general usage and behavior.
The model is in a developing state as it is now fully supports in eager-mode only, and may not be exported in
SavedModel format.
Args:
config ([`RagConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
question_encoder ([`TFPreTrainedModel`]):
An encoder model compatible with the faiss index encapsulated by the `retriever`.
generator ([`TFPreTrainedModel`]):
A seq2seq model used as the generator in the RAG architecture.
retriever ([`RagRetriever`]):
A retriever class encapsulating a faiss index queried to obtain context documents for current inputs.
"""
RAG_FORWARD_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies
which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to
obtain the indices.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*)
Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`,
*optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs *
sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the
generator's encoder.
Used by the ([`TFRagModel`]) model during decoding.
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Provide for generation tasks. `None` by default, construct as per instructions for the generator model
you're using with your RAG instance.
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
past_key_values (`tuple(tuple(tf.Tensor))`):
Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and
`past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used
in the ([`RagTokenForGeneration`]) model during decoding.
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores`
has to be provided to the forward pass. `doc_scores` can be computed via
`question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information.
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask
(`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when
*output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question
encoder `input_ids` by the retriever.
If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the
forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`].
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_retrieved(`bool`, *optional*):
Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask`. See returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`TFRetrievAugLMOutput`] instead of a plain tuple.
n_docs (`int`, *optional*, defaults to `config.n_docs``)
Number of documents to retrieve and/or number of documents for which to generate an answer.
"""
@add_start_docstrings_to_model_forward(RAG_START_DOCSTRING)
class TFRagModel(TFRagPreTrainedModel):
load_weight_prefix = "tf_rag_model_1"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
load_weight_prefix: Optional[str] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an question_encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
else:
assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}"
super().__init__(config, **kwargs)
if question_encoder is None:
from ..auto.modeling_tf_auto import TFAutoModel
question_encoder = TFAutoModel.from_config(config.question_encoder, name="question_encoder")
if generator is None:
from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM
load_weight_prefix = load_weight_prefix if load_weight_prefix is not None else self.load_weight_prefix
generator = TFAutoModelForSeq2SeqLM.from_config(
config.generator, name="generator", load_weight_prefix=load_weight_prefix + "/generator"
)
self.retriever = retriever
if self.retriever is not None:
assert isinstance(
retriever, RagRetriever
), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
self.retriever = retriever
self.question_encoder = question_encoder
self.generator = generator
def set_retriever(self, retriever: RagRetriever):
self.retriever = retriever
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
doc_scores: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs
):
r"""
Returns:
Example:
```python
>>> from transformers import RagTokenizer, RagRetriever, TFRagModel
>>> import torch
>>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagModel.from_pretrained("facebook/rag-token-base", retriever=retriever, from_pt=True)
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> input_ids = input_dict["input_ids"]
>>> outputs = model(input_ids)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
# aliasing to minimize code changing
n_docs = n_docs if n_docs is not None else self.config.n_docs
# whether retriever has to be used
has_to_retrieve = (
self.retriever is not None
and (context_input_ids is None or context_attention_mask is None or doc_scores is None)
and encoder_outputs is None
)
# encoder_outputs are pre-computed during RAG-token generation
if encoder_outputs is None:
if has_to_retrieve:
question_enc_outputs = self.question_encoder(
input_ids, attention_mask=attention_mask, return_dict=True, training=training
)
# see https://github.com/huggingface/transformers/blob/main/src/transformers/models/dpr/modeling_tf_dpr.py#L91
question_encoder_last_hidden_state = question_enc_outputs[
0
] # hidden states of question encoder => pooler_output
retriever_outputs = self.retriever(
input_ids,
question_encoder_last_hidden_state.numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)
context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = (
retriever_outputs["context_input_ids"],
retriever_outputs["context_attention_mask"],
retriever_outputs["retrieved_doc_embeds"],
retriever_outputs["doc_ids"],
)
context_input_ids = tf.cast(context_input_ids, tf.int32)
context_attention_mask = tf.cast(context_attention_mask, tf.int32)
retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32)
retrieved_doc_ids = tf.cast(retrieved_doc_ids, tf.int32)
# compute doc_scores
doc_scores = tf.squeeze(
tf.matmul(
tf.expand_dims(question_encoder_last_hidden_state, axis=1),
retrieved_doc_embeds,
transpose_b=True,
),
axis=1,
)
else:
assert context_input_ids is not None, (
"Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can"
" set a retriever using the `set_retriever(...)` function."
)
assert context_attention_mask is not None, (
"Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you"
" can set a retriever using the `set_retriever(...)` function."
)
assert doc_scores is not None, (
"Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a"
" retriever using the `set_retriever(...)` function."
)
assert (
doc_scores is not None
), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
assert (doc_scores.shape[1] % n_docs) == 0, (
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
f" {context_input_ids.shape[0]}."
)
# Decoder input without context documents
if decoder_input_ids is not None:
decoder_input_ids = tf.repeat(decoder_input_ids, n_docs, axis=0)
if decoder_attention_mask is not None:
decoder_attention_mask = tf.repeat(decoder_attention_mask, n_docs, axis=0)
gen_outputs = self.generator(
context_input_ids,
attention_mask=context_attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
return_dict=True,
training=training,
)
if not has_to_retrieve:
question_encoder_last_hidden_state = None
question_enc_hidden_states = None
question_enc_attentions = None
retrieved_doc_embeds = None
retrieved_doc_ids = None
else:
question_enc_hidden_states = question_enc_outputs.hidden_states
question_enc_attentions = question_enc_outputs.attentions
if not has_to_retrieve or not output_retrieved:
# don't output retrieved docs
context_input_ids = (None,)
context_attention_mask = None
retrieved_doc_embeds = None
retrieved_doc_ids = None
return TFRetrievAugLMOutput(
logits=gen_outputs.logits,
doc_scores=doc_scores,
past_key_values=gen_outputs.past_key_values,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
retrieved_doc_embeds=retrieved_doc_embeds,
retrieved_doc_ids=retrieved_doc_ids,
question_encoder_last_hidden_state=question_encoder_last_hidden_state,
question_enc_hidden_states=question_enc_hidden_states,
question_enc_attentions=question_enc_attentions,
generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state,
generator_enc_hidden_states=gen_outputs.encoder_hidden_states,
generator_enc_attentions=gen_outputs.encoder_attentions,
generator_dec_hidden_states=gen_outputs.decoder_hidden_states,
generator_dec_attentions=gen_outputs.decoder_attentions,
)
@add_start_docstrings_to_model_forward(
"""
A TF RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass.
""",
RAG_START_DOCSTRING,
)
class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss):
load_weight_prefix = "tf_rag_token_for_generation_1/rag"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
super().__init__(config)
# instantiate model
self.rag = TFRagModel(
config=config,
question_encoder=question_encoder,
generator=generator,
retriever=retriever,
load_weight_prefix=self.load_weight_prefix,
name="rag",
)
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_bart.py
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
doc_scores=None,
n_docs=None,
**kwargs
):
if past is not None:
# if past is defined use only last decoder_input_ids
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None,
"encoder_outputs": encoder_outputs,
"doc_scores": doc_scores,
"context_attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"past_key_values": past,
"use_cache": use_cache,
"do_marginalize": True,
"n_docs": n_docs,
}
@property
def retriever(self):
return self.rag.retriever
@property
def generator(self):
return self.rag.generator
@property
def question_encoder(self):
return self.rag.question_encoder
@staticmethod
def _reorder_cache(past, beam_idx):
"""Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs"""
def _reorder_stacked(hidden_states, new_order):
n_docs = hidden_states.shape[0] // new_order.shape[0]
hidden_states = tf.reshape(hidden_states, (-1, n_docs, *hidden_states.shape[1:]))
hidden_states = tf.gather(hidden_states, new_order, axis=0)
result = tf.reshape(hidden_states, (-1, *hidden_states.shape[2:]))
return result
reordered_past = ()
for layer_past in past:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
reordered_past += (tuple(_reorder_stacked(past_state, beam_idx) for past_state in layer_past),)
return reordered_past
def marginalize(self, seq_logits, doc_scores, n_docs=None):
n_docs = n_docs if n_docs is not None else self.config.n_docs
# RAG-token marginalization
seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1)
seq_logprobs = tf.reshape(seq_logprobs, [seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]])
doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # twice
log_prob_sum = seq_logprobs + doc_logprobs
return tf.reduce_logsumexp(log_prob_sum, axis=1)
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
doc_scores: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
do_marginalize: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
reduce_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs # needs kwargs for generation
):
r"""
do_marginalize (`bool`, *optional*):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss according to Rag-Token model formulation See
https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Token formulation. Indices should be
in `[0, ..., config.vocab_size - 1]`.
reduce_loss (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum`
operation.
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Legacy dictionary, which is required so that model can use *generate()* function.
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import RagTokenizer, RagRetriever, TFRagTokenForGeneration
>>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever, from_pt=True)
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> outputs = model(input_dict, output_retrieved=True)
>>> # or use retriever separately
>>> # 1. Encode
>>> input_ids = input_dict["input_ids"]
>>> question_hidden_states = model.question_encoder(input_ids)[0]
>>> # 2. Retrieve
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf")
>>> doc_scores = tf.squeeze(
... tf.matmul(
... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True
... ),
... axis=1,
... )
>>> # 3. Forward to generator
>>> outputs = model(
... inputs=None,
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... decoder_input_ids=input_dict["labels"],
... )
>>> # or directly generate
>>> generated = model.generate(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... )
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize
reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = labels
use_cache = False
outputs = self.rag(
input_ids,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
doc_scores=doc_scores,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_retrieved=output_retrieved,
n_docs=n_docs,
training=training,
)
loss = None
logits = outputs.logits
if labels is not None:
assert decoder_input_ids is not None
loss = self.get_nll(
outputs.logits,
outputs.doc_scores,
labels,
reduce_loss=reduce_loss,
epsilon=self.config.label_smoothing,
n_docs=n_docs,
)
if do_marginalize:
logits = self.marginalize(logits, outputs.doc_scores, n_docs)
return TFRetrievAugLMMarginOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
doc_scores=outputs.doc_scores,
context_input_ids=outputs.context_input_ids,
context_attention_mask=outputs.context_attention_mask,
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
retrieved_doc_ids=outputs.retrieved_doc_ids,
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
question_enc_hidden_states=outputs.question_enc_hidden_states,
question_enc_attentions=outputs.question_enc_attentions,
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
generator_enc_attentions=outputs.generator_enc_attentions,
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
generator_dec_attentions=outputs.generator_dec_attentions,
)
def generate(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[tf.Tensor] = None,
context_input_ids=None,
context_attention_mask=None,
doc_scores=None,
max_length=None,
min_length=None,
early_stopping=None,
use_cache=None,
num_beams=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
length_penalty=None,
no_repeat_ngram_size=None,
bad_words_ids=None,
num_return_sequences=None,
decoder_start_token_id=None,
n_docs=None,
output_scores=None,
output_attentions=None,
output_hidden_states=None,
return_dict_in_generate=None,
**model_kwargs
):
"""
Implements TFRAG token decoding.
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
`context_input_ids` has to be provided.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
max_length (`int`, *optional*, defaults to 20):
The maximum length of the sequence to be generated.
min_length (`int`, *optional*, defaults to 10):
The minimum length of the sequence to be generated.
early_stopping (`bool`, *optional*, defaults to `False`):
Whether or not to stop the beam search when at least `num_beams` sentences are finished per batch or
not.
use_cache: (`bool`, *optional*, defaults to `True`):
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
speed up decoding.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
bos_token_id (`int`, *optional*):
The id of the *beginning-of-sequence* token.
eos_token_id (`int`, *optional*):
The id of the *end-of-sequence* token.
length_penalty (`float`, *optional*, defaults to 1.0):
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent
to the sequence length, which in turn is used to divide the score of the sequence. Since the score is
the log likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences,
while `length_penalty` < 0.0 encourages shorter sequences.
no_repeat_ngram_size (`int`, *optional*, defaults to 0):
If set to int > 0, all ngrams of that size can only occur once.
bad_words_ids(`List[int]`, *optional*):
List of token ids that are not allowed to be generated. In order to get the tokens of the words that
should not appear in the generated text, use `tokenizer.encode(bad_word, add_prefix_space=True)`.
num_beams (`int`, *optional*, defaults to 1):
Number of beams for beam search. 1 means no beam search.
num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch. Note that this
is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`] function, where
we set `num_return_sequences` to `num_beams`. decoder_start_token_id (`int`, *optional*): If an
encoder-decoder model starts decoding with a different token than *bos*, the id of that token.
n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
model_specific_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model.
Return:
`tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The
second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early
due to the `eos_token_id`.
"""
# set default parameters
n_docs = n_docs if n_docs is not None else self.config.n_docs
max_length = max_length if max_length is not None else self.config.max_length
min_length = min_length if min_length is not None else self.config.min_length
early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
use_cache = use_cache if use_cache is not None else self.config.use_cache
num_beams = num_beams if num_beams is not None else self.config.num_beams
bos_token_id = bos_token_id if bos_token_id is not None else self.config.generator.bos_token_id
pad_token_id = pad_token_id if pad_token_id is not None else self.config.generator.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.generator.eos_token_id
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
decoder_start_token_id = (
decoder_start_token_id
if decoder_start_token_id is not None
else self.config.generator.decoder_start_token_id
)
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
model_kwargs["output_scores"] = output_scores
model_kwargs["output_attentions"] = output_attentions
model_kwargs["output_hidden_states"] = output_hidden_states
model_kwargs["encoder_attentions"] = None
model_kwargs["encoder_hidden_states"] = None
# retrieve docs
if self.retriever is not None and context_input_ids is None:
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
out = self.retriever(
input_ids,
question_hidden_states.numpy().astype(np.float32),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
context_input_ids = tf.cast(context_input_ids, tf.int32)
context_attention_mask = tf.cast(context_attention_mask, tf.int32)
retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32)
# compute doc_scores
doc_scores = tf.matmul(
tf.expand_dims(question_hidden_states, axis=1), retrieved_doc_embeds, transpose_b=True
)
doc_scores = tf.squeeze(doc_scores, axis=1)
assert (context_input_ids.shape[0] % n_docs) == 0, (
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
f" {context_input_ids.shape[0]}."
)
batch_size = context_input_ids.shape[0] // n_docs
encoder = self.rag.generator.get_encoder()
encoder_outputs = encoder(
input_ids=context_input_ids,
attention_mask=context_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
decoder_input_ids = tf.fill(
(batch_size * num_beams, 1),
tf.cast(decoder_start_token_id, tf.int32),
)
last_hidden_state = encoder_outputs["last_hidden_state"]
def extend_enc_output(tensor, num_beams=None):
"""
Broadcast tensor with `num_beams` replica, with correct order Input: tensor of shape (batch_size*n_docs ,
d) Output: tensor of shape (batch_size*num_beams*n_docs , d)
"""
# expand batch_size & num_beam dimensions
d_shape_list = tensor.shape[1:]
# split n_docs dimensions
new_shape = (batch_size, 1, n_docs) + d_shape_list
tensor = tf.reshape(tensor, new_shape)
# repeat same last hidden states over `num_beams` dimension
new_shape = (batch_size, num_beams, n_docs) + d_shape_list
tensor = tf.broadcast_to(tensor, new_shape)
# merge `batch_size`, `num_beams`, `num_docs` dims again
new_shape = (batch_size * num_beams * n_docs,) + d_shape_list
return tf.reshape(tensor, new_shape)
# correctly extend last_hidden_state and attention mask
context_attention_mask = extend_enc_output(context_attention_mask, num_beams=num_beams)
encoder_outputs["last_hidden_state"] = extend_enc_output(last_hidden_state, num_beams=num_beams)
doc_scores = tf.repeat(doc_scores, num_beams, axis=0)
# define start_len & additional parameters
cur_len = 1
vocab_size = self.config.generator.vocab_size
model_kwargs["doc_scores"] = doc_scores
model_kwargs["encoder_outputs"] = encoder_outputs
model_kwargs["n_docs"] = n_docs
# not needed. TODO(PVP): change after generate refactor
do_sample = False
temperature = self.config.temperature
top_k = self.config.top_k
top_p = self.config.top_p
repetition_penalty = self.config.repetition_penalty
if num_beams > 1:
return self._generate_beam_search(
decoder_input_ids,
cur_len=cur_len,
max_length=max_length,
min_length=min_length,
do_sample=do_sample,
early_stopping=early_stopping,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
batch_size=batch_size,
num_return_sequences=num_return_sequences,
length_penalty=length_penalty,
num_beams=num_beams,
vocab_size=vocab_size,
attention_mask=context_attention_mask,
use_cache=use_cache,
forced_bos_token_id=None,
forced_eos_token_id=None,
return_dict_in_generate=return_dict_in_generate,
**model_kwargs, # encoder_outputs is here as in Pytorch's version
)
else:
pre_processor = self._get_logits_processor(
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
bad_words_ids=bad_words_ids,
min_length=min_length,
max_length=max_length,
eos_token_id=eos_token_id,
forced_bos_token_id=None,
forced_eos_token_id=None,
input_ids_seq_length=tf.shape(decoder_input_ids)[-1],
)
model_kwargs["attention_mask"] = context_attention_mask
if model_kwargs.get("encoder_attentions", None) is None:
model_kwargs.pop("encoder_attentions", None)
if model_kwargs.get("encoder_hidden_states", None) is None:
model_kwargs.pop("encoder_hidden_states", None)
model_kwargs.pop("output_hidden_states", None)
model_kwargs.pop("output_attentions", None)
model_kwargs.pop("output_scores", None)
return self.greedy_search(
input_ids=decoder_input_ids,
max_length=max_length,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
logits_processor=pre_processor,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
**model_kwargs,
)
def get_input_embeddings(self):
return self.rag.generator.get_input_embeddings()
def get_output_embeddings(self):
return self.rag.generator.get_output_embeddings()
# Adapted from tf_t5's & tf_bart's _shift_right
def shift_tokens_right(self, input_ids, start_token_id=None):
"""Shift input ids one token to the right, and pad with start_token_id"""
if start_token_id is None:
start_token_id = self.generator.config.decoder_start_token_id
assert start_token_id is not None, (
"self.generator.config.decoder_start_token_id has to be defined. In Rag we commonly use Bart as"
" generator, see Bart docs for more information"
)
pad_token_id = self.generator.config.pad_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.cast(start_token_id, input_ids.dtype))
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.cast(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, shifted_input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# nll stands for 'negative log likelihood'
def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None):
n_docs = n_docs if n_docs is not None else self.config.n_docs
# shift tokens left (from original Pytorch's version)
target = tf.concat(
[target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))],
axis=1,
)
rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs)
loss = self.hf_compute_loss(target, rag_logprobs, from_logits=True, reduce_loss=reduce_loss)
return loss
# Adopted modeling_tf_bart + add smooth_loss to match with pytorch version
def hf_compute_loss(self, labels, y_pred, smooth_epsilon=0.0, from_logits=True, reduce_loss=False):
"""CrossEntropyLoss that ignores pad tokens"""
# Matt: As written, this loss is not XLA-compatible, but it's doing some very weird things
# and I don't feel comfortable converting it.
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.SUM,
)
if from_logits is False: # convert to logits
eps = 1e-9
y_pred = tf.clip_by_value(y_pred, clip_value_min=eps, clip_value_max=1 - eps)
y_pred = tf.math.log(y_pred)
logits = y_pred
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.generator.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, logits.shape[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
nll_loss = loss_fn(labels, reduced_logits)
smooth_loss = -tf.reduce_sum(reduced_logits, axis=-1)
smooth_loss = tf.reduce_sum(smooth_loss) # sum and squeeze like torch
eps_i = smooth_epsilon / reduced_logits.shape[-1]
loss = (1.0 - smooth_epsilon) * nll_loss + eps_i * smooth_loss
return loss
@add_start_docstrings_to_model_forward(
"""
A TF RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass.
""",
RAG_START_DOCSTRING,
)
class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss):
load_weight_prefix = "tf_rag_sequence_for_generation_1/rag"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
super().__init__(config)
# instantiate model
self.rag = TFRagModel(
config=config,
question_encoder=question_encoder,
generator=generator,
retriever=retriever,
load_weight_prefix=self.load_weight_prefix,
name="rag",
)
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
@property
def retriever(self):
return self.rag.retriever
@property
def generator(self):
return self.rag.generator
@property
def question_encoder(self):
return self.rag.question_encoder
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Union[np.ndarray, tf.Tensor]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
doc_scores: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
context_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
exclude_bos_score: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
reduce_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs # needs kwargs for generation
) -> Union[Tuple[tf.Tensor], TFRetrievAugLMMarginOutput]:
r"""
exclude_bos_score (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing
the loss.
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss according to Rag-Sequence model formulation See
https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Sequence formulation. Indices should
be in `[0, ..., config.vocab_size - 1]`.
reduce_loss (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum`
operation.
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Legacy dictionary, which is required so that model can use *generate()* function.
Returns:
Example:
```python
>>> from transformers import RagTokenizer, RagRetriever, TFRagSequenceForGeneration
>>> tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagSequenceForGeneration.from_pretrained(
... "facebook/rag-sequence-nq", retriever=retriever, from_pt=True
... )
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> outputs = model(input_dict, output_retrieved=True)
>>> # or use retriever separately
>>> # 1. Encode
>>> input_ids = input_dict["input_ids"]
>>> question_hidden_states = model.question_encoder(input_ids)[0]
>>> # 2. Retrieve
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf")
>>> doc_scores = tf.squeeze(
... tf.matmul(
... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True
... ),
... axis=1,
... )
>>> # 3. Forward to generator
>>> outputs = model(
... inputs=None,
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... decoder_input_ids=input_dict["labels"],
... )
>>> # or directly generate
>>> generated = model.generate(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... )
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score
reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = labels
use_cache = False
outputs = self.rag(
input_ids,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
doc_scores=doc_scores,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_retrieved=output_retrieved,
n_docs=n_docs,
training=training,
)
loss = None
if labels is not None:
loss = self.get_nll(
outputs.logits,
outputs.doc_scores,
labels,
reduce_loss=reduce_loss,
epsilon=self.config.label_smoothing,
n_docs=n_docs,
)
return TFRetrievAugLMMarginOutput(
loss=loss,
logits=outputs.logits,
doc_scores=outputs.doc_scores,
past_key_values=outputs.past_key_values,
context_input_ids=outputs.context_input_ids,
context_attention_mask=outputs.context_attention_mask,
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
retrieved_doc_ids=outputs.retrieved_doc_ids,
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
question_enc_hidden_states=outputs.question_enc_hidden_states,
question_enc_attentions=outputs.question_enc_attentions,
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
generator_enc_attentions=outputs.generator_enc_attentions,
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
generator_dec_attentions=outputs.generator_dec_attentions,
)
def get_nll(
self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None
):
# shift tokens left
target = tf.concat(
[target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))],
axis=1,
)
# bos_token_id is None for T5
bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id
n_docs = n_docs if n_docs is not None else self.config.n_docs
equal_bos_token_id_all = tf.reduce_all(tf.equal(target[:, 0], bos_token_id))
use_bos = bos_token_id is not None and equal_bos_token_id_all
def _mask_pads(ll, smooth_obj):
pad_mask = tf.equal(target, tf.cast(self.config.generator.pad_token_id, target.dtype))
if tf.reduce_any(pad_mask):
ll = tf.where(pad_mask, 0.0, ll)
smooth_obj = tf.where(pad_mask, 0.0, smooth_obj)
return tf.squeeze(ll, axis=-1), tf.squeeze(smooth_obj, axis=-1)
# seq_logits.shape = (batch*n_docs, tgt_len , vocabs)
seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1)
seq_logprobs = tf.reshape(
seq_logprobs, (seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1])
) # (batch_size, n_docs, tgt_len, vocabs)
doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # done twice to get 4-D
# RAG-sequence marginalization
first_token_scores = seq_logprobs[:, :, :1, :]
second_token_scores = seq_logprobs[:, :, 1:2, :]
remainder = seq_logprobs[:, :, 2:, :]
rag_logprobs = tf.concat([first_token_scores, second_token_scores + doc_logprobs, remainder], axis=2)
# calculate loss
target = tf.expand_dims(target, axis=1) # n_docs dimension
target = tf.expand_dims(target, axis=-1) # logits dimension
target = tf.repeat(target, n_docs, axis=1)
assert len(target.shape) == len(rag_logprobs.shape)
# last-axis gathering only - use 2D-reshape-trick for Torch's style nD gathering
def torch_gather(param, id_tensor):
# 2d-gather torch equivalent: https://stackoverflow.com/questions/52129909/tensorflow-equivalent-of-torch-gather
def gather2d(target, id_tensor):
idx = tf.stack([tf.range(tf.shape(id_tensor)[0], dtype=id_tensor.dtype), id_tensor[:, 0]], axis=-1)
result = tf.gather_nd(target, idx)
return tf.expand_dims(result, axis=-1)
target = tf.reshape(param, (-1, param.shape[-1])) # reshape 2D
target_shape = id_tensor.shape
id_tensor = tf.reshape(id_tensor, (-1, 1)) # also 2D-index
result = gather2d(target, id_tensor)
return tf.reshape(result, target_shape)
ll = torch_gather(rag_logprobs, id_tensor=target)
smooth_obj = tf.reduce_sum(rag_logprobs, axis=-1, keepdims=True) # total sum of all (normalised) logits
ll, smooth_obj = _mask_pads(ll, smooth_obj)
# sum over tokens, exclude bos while scoring
if exclude_bos_score and use_bos:
ll = tf.reduce_sum(ll[:, :, 1:], axis=2)
else:
ll = tf.reduce_sum(ll, axis=2)
smooth_obj = tf.reduce_sum(smooth_obj, axis=2)
ll = tf.math.reduce_logsumexp(ll, axis=1) # logsumexp over docs
smooth_obj = tf.math.reduce_logsumexp(smooth_obj, axis=1)
nll_loss = -ll
smooth_loss = -smooth_obj
if reduce_loss:
nll_loss = tf.reduce_sum(nll_loss)
smooth_loss = tf.reduce_sum(smooth_loss)
eps_i = epsilon / rag_logprobs.shape[-1]
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss
def generate(
self,
input_ids: Optional[TFModelInputType] = None,
attention_mask: Optional[tf.Tensor] = None,
context_input_ids=None,
context_attention_mask=None,
doc_scores=None,
do_deduplication=None, # defaults to True
num_return_sequences=None, # defaults to 1
num_beams=None, # defaults to 1
n_docs=None,
**model_kwargs
):
"""
Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation
for more information on how to set other generate input parameters
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
`context_input_ids` has to be provided.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for
tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention
masks?](../glossary#attention-mask)
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder input_ids by the
retriever.
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever. If the model has is not initialized with a `retriever` or `input_ids` is not given,
`context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are
returned by [`~RagRetriever.__call__`].
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` or
`input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are
returned by [`~RagRetriever.__call__`].
do_deduplication (`bool`, *optional*):
Whether or not to deduplicate the generations from different context documents for a given input. Has
to be set to `False` if used while training with distributed backend.
num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch. Note that this
is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function,
where we set `num_return_sequences` to `num_beams`.
num_beams (`int`, *optional*, defaults to 1):
Number of beams for beam search. 1 means no beam search.
n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer.
kwargs:
Additional kwargs will be passed to [`~generation.GenerationMixin.generate`]
Return:
`tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The
second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early
due to the `eos_token_id`.
"""
n_docs = n_docs if n_docs is not None else self.config.n_docs
do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication
num_doc_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
num_beams = num_beams if num_beams is not None else self.config.num_beams
assert (
input_ids is not None or context_input_ids is not None
), " At least one of input_ids or context_input_ids must be given"
if self.retriever is not None and context_input_ids is None:
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
context_input_ids = self.retriever(
input_ids,
question_hidden_states.numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)["context_input_ids"]
hypos = []
model_kwargs["num_beams"] = num_beams
model_kwargs["num_return_sequences"] = num_beams # put here so that not confused with num_doc_return_sequences
model_kwargs["attention_mask"] = None
batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs
for index in range(batch_size):
# first, generate beams from documents:
generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len)
output_sequences = self.generator.generate(
generator_input_ids,
**model_kwargs,
) # n_docs * n_beam, tgt_len
if do_deduplication:
# do_deduplication -- for TF, work on Eager mode only!
output_sequences = tf.stack(list({str(k.numpy().tolist()): k for k in output_sequences}.values()))
num_candidates = output_sequences.shape[
0
] # after deduplication, this number can be less than n_docs*n_beam
# then, run model forwards to get nll scores:
if input_ids is not None:
new_input_ids = tf.tile(input_ids[index : index + 1], (num_candidates, 1))
outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True)
else: # input_ids is None, need context_input_ids/mask and doc_scores
assert context_attention_mask is not None, (
"Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you"
" can set a retriever using the `set_retriever(...)` function."
)
assert doc_scores is not None, (
"Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a"
" retriever using the `set_retriever(...)` function."
)
individual_input_ids = tf.tile(
generator_input_ids, (num_candidates, 1)
) # (num_candidates*n_docs, max_len)
individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs]
individual_attention_mask = tf.tile(individual_attention_mask, (num_candidates, 1))
individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs]
individual_doc_scores = tf.tile(individual_doc_scores, (num_candidates, 1)) # [num_candidates, n_docs]
outputs = self(
input_ids=None,
context_input_ids=individual_input_ids,
context_attention_mask=individual_attention_mask,
doc_scores=individual_doc_scores,
labels=output_sequences,
exclude_bos_score=True,
)
top_cand_inds = tf.math.top_k((-outputs["loss"]), k=num_doc_return_sequences)[1]
# add hypothesis
hypos.append(tf.gather(output_sequences, top_cand_inds))
return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id)
@staticmethod
def _cat_and_pad(tensors, pad_token_id):
# used by generate(): tensors is a (batched) list of (candidates, len); len is varied across batch
# Initialize padded tensor with shape ( all_candidates , max_candidate_length ),
# where all_candidates counted from all inputs
new_shape = sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])
output = tf.fill(new_shape, pad_token_id)
# Normal tensor doesn't support slice assignment, so we need tf.Variable
output = tf.Variable(output)
# Assign, and then convert back to tensor
ind = 0
for t in tensors:
output[ind : ind + t.shape[0], : t.shape[1]].assign(t)
ind += t.shape[0]
output = tf.convert_to_tensor(output)
return tf.cast(output, tensors[0][0][0].dtype)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/segformer/convert_segformer_original_to_pytorch.py | # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SegFormer checkpoints."""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import torch
from PIL import Image
import requests
from huggingface_hub import hf_hub_download
from transformers import (
SegformerConfig,
SegformerFeatureExtractor,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def rename_keys(state_dict, encoder_only=False):
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head"):
key = "segformer.encoder." + key
if key.startswith("backbone"):
key = key.replace("backbone", "segformer.encoder")
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
idx = key[key.find("patch_embed") + len("patch_embed")]
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}")
if "norm" in key:
key = key.replace("norm", "layer_norm")
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
idx = key[key.find("segformer.encoder.layer_norm") + len("segformer.encoder.layer_norm")]
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}")
if "layer_norm1" in key:
key = key.replace("layer_norm1", "layer_norm_1")
if "layer_norm2" in key:
key = key.replace("layer_norm2", "layer_norm_2")
if "block" in key:
# replace for example block1 by block.0
idx = key[key.find("block") + len("block")]
key = key.replace(f"block{idx}", f"block.{int(idx)-1}")
if "attn.q" in key:
key = key.replace("attn.q", "attention.self.query")
if "attn.proj" in key:
key = key.replace("attn.proj", "attention.output.dense")
if "attn" in key:
key = key.replace("attn", "attention.self")
if "fc1" in key:
key = key.replace("fc1", "dense1")
if "fc2" in key:
key = key.replace("fc2", "dense2")
if "linear_pred" in key:
key = key.replace("linear_pred", "classifier")
if "linear_fuse" in key:
key = key.replace("linear_fuse.conv", "linear_fuse")
key = key.replace("linear_fuse.bn", "batch_norm")
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
idx = key[key.find("linear_c") + len("linear_c")]
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}")
if key.startswith("head"):
key = key.replace("head", "classifier")
new_state_dict[key] = value
return new_state_dict
def read_in_k_v(state_dict, config):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks):
for j in range(config.depths[i]):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
kv_weight = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight")
kv_bias = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias")
# next, add keys and values (in that order) to the state dict
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[
: config.hidden_sizes[i], :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[
config.hidden_sizes[i] :, :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[
config.hidden_sizes[i] :
]
# We will verify our results on a COCO image
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@torch.no_grad()
def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our SegFormer structure.
"""
# load default SegFormer configuration
config = SegformerConfig()
encoder_only = False
# set attributes based on model_name
repo_id = "huggingface/label-files"
if "segformer" in model_name:
size = model_name[len("segformer.") : len("segformer.") + 2]
if "ade" in model_name:
config.num_labels = 150
filename = "ade20k-id2label.json"
expected_shape = (1, 150, 128, 128)
elif "city" in model_name:
config.num_labels = 19
filename = "cityscapes-id2label.json"
expected_shape = (1, 19, 128, 128)
else:
raise ValueError(f"Model {model_name} not supported")
elif "mit" in model_name:
encoder_only = True
size = model_name[4:6]
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
expected_shape = (1, 1000)
else:
raise ValueError(f"Model {model_name} not supported")
# set config attributes
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
if size == "b0":
pass
elif size == "b1":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 256
elif size == "b2":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 6, 3]
elif size == "b3":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 18, 3]
elif size == "b4":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 8, 27, 3]
elif size == "b5":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 6, 40, 3]
else:
raise ValueError(f"Size {size} not supported")
# load feature extractor (only resize + normalize)
feature_extractor = SegformerFeatureExtractor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
# prepare image
image = prepare_img()
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
logger.info(f"Converting model {model_name}...")
# load original state dict
if encoder_only:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
else:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
# rename keys
state_dict = rename_keys(state_dict, encoder_only=encoder_only)
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(state_dict, config)
# create HuggingFace model and load state dict
if encoder_only:
config.reshape_last_stage = False
model = SegformerForImageClassification(config)
else:
model = SegformerForSemanticSegmentation(config)
model.load_state_dict(state_dict)
model.eval()
# forward pass
outputs = model(pixel_values)
logits = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
]
)
elif model_name == "segformer.b1.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
]
)
elif model_name == "segformer.b2.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
]
)
elif model_name == "segformer.b3.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
]
)
elif model_name == "segformer.b4.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
]
)
elif model_name == "segformer.b5.640x640.ade.160k":
expected_slice = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
]
)
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
]
)
elif model_name == "segformer.b0.512x1024.city.160k":
expected_slice = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
]
)
elif model_name == "segformer.b0.640x1280.city.160k":
expected_slice = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
]
)
elif model_name == "segformer.b0.768x768.city.160k":
expected_slice = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
]
)
elif model_name == "segformer.b1.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
]
)
elif model_name == "segformer.b2.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
]
)
elif model_name == "segformer.b3.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
]
)
elif model_name == "segformer.b4.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
]
)
elif model_name == "segformer.b5.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
]
)
else:
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-2)
# finally, save model and feature extractor
logger.info(f"Saving PyTorch model and feature extractor to {pytorch_dump_folder_path}...")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
feature_extractor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
args = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| # coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SegFormer checkpoints."""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import torch
from PIL import Image
import requests
from huggingface_hub import hf_hub_download
from transformers import (
SegformerConfig,
SegformerFeatureExtractor,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def rename_keys(state_dict, encoder_only=False):
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head"):
key = "segformer.encoder." + key
if key.startswith("backbone"):
key = key.replace("backbone", "segformer.encoder")
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
idx = key[key.find("patch_embed") + len("patch_embed")]
key = key.replace(f"patch_embed{idx}", f"patch_embeddings.{int(idx)-1}")
if "norm" in key:
key = key.replace("norm", "layer_norm")
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
idx = key[key.find("segformer.encoder.layer_norm") + len("segformer.encoder.layer_norm")]
key = key.replace(f"layer_norm{idx}", f"layer_norm.{int(idx)-1}")
if "layer_norm1" in key:
key = key.replace("layer_norm1", "layer_norm_1")
if "layer_norm2" in key:
key = key.replace("layer_norm2", "layer_norm_2")
if "block" in key:
# replace for example block1 by block.0
idx = key[key.find("block") + len("block")]
key = key.replace(f"block{idx}", f"block.{int(idx)-1}")
if "attn.q" in key:
key = key.replace("attn.q", "attention.self.query")
if "attn.proj" in key:
key = key.replace("attn.proj", "attention.output.dense")
if "attn" in key:
key = key.replace("attn", "attention.self")
if "fc1" in key:
key = key.replace("fc1", "dense1")
if "fc2" in key:
key = key.replace("fc2", "dense2")
if "linear_pred" in key:
key = key.replace("linear_pred", "classifier")
if "linear_fuse" in key:
key = key.replace("linear_fuse.conv", "linear_fuse")
key = key.replace("linear_fuse.bn", "batch_norm")
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
idx = key[key.find("linear_c") + len("linear_c")]
key = key.replace(f"linear_c{idx}", f"linear_c.{int(idx)-1}")
if key.startswith("head"):
key = key.replace("head", "classifier")
new_state_dict[key] = value
return new_state_dict
def read_in_k_v(state_dict, config):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks):
for j in range(config.depths[i]):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
kv_weight = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight")
kv_bias = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias")
# next, add keys and values (in that order) to the state dict
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.weight"] = kv_weight[
: config.hidden_sizes[i], :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.key.bias"] = kv_bias[: config.hidden_sizes[i]]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.weight"] = kv_weight[
config.hidden_sizes[i] :, :
]
state_dict[f"segformer.encoder.block.{i}.{j}.attention.self.value.bias"] = kv_bias[
config.hidden_sizes[i] :
]
# We will verify our results on a COCO image
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@torch.no_grad()
def convert_segformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our SegFormer structure.
"""
# load default SegFormer configuration
config = SegformerConfig()
encoder_only = False
# set attributes based on model_name
repo_id = "huggingface/label-files"
if "segformer" in model_name:
size = model_name[len("segformer.") : len("segformer.") + 2]
if "ade" in model_name:
config.num_labels = 150
filename = "ade20k-id2label.json"
expected_shape = (1, 150, 128, 128)
elif "city" in model_name:
config.num_labels = 19
filename = "cityscapes-id2label.json"
expected_shape = (1, 19, 128, 128)
else:
raise ValueError(f"Model {model_name} not supported")
elif "mit" in model_name:
encoder_only = True
size = model_name[4:6]
config.num_labels = 1000
filename = "imagenet-1k-id2label.json"
expected_shape = (1, 1000)
else:
raise ValueError(f"Model {model_name} not supported")
# set config attributes
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
if size == "b0":
pass
elif size == "b1":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 256
elif size == "b2":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 6, 3]
elif size == "b3":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 4, 18, 3]
elif size == "b4":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 8, 27, 3]
elif size == "b5":
config.hidden_sizes = [64, 128, 320, 512]
config.decoder_hidden_size = 768
config.depths = [3, 6, 40, 3]
else:
raise ValueError(f"Size {size} not supported")
# load feature extractor (only resize + normalize)
feature_extractor = SegformerFeatureExtractor(
image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False
)
# prepare image
image = prepare_img()
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
logger.info(f"Converting model {model_name}...")
# load original state dict
if encoder_only:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
else:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
# rename keys
state_dict = rename_keys(state_dict, encoder_only=encoder_only)
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(state_dict, config)
# create HuggingFace model and load state dict
if encoder_only:
config.reshape_last_stage = False
model = SegformerForImageClassification(config)
else:
model = SegformerForSemanticSegmentation(config)
model.load_state_dict(state_dict)
model.eval()
# forward pass
outputs = model(pixel_values)
logits = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
]
)
elif model_name == "segformer.b1.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
]
)
elif model_name == "segformer.b2.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
]
)
elif model_name == "segformer.b3.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
]
)
elif model_name == "segformer.b4.512x512.ade.160k":
expected_slice = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
]
)
elif model_name == "segformer.b5.640x640.ade.160k":
expected_slice = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
]
)
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
]
)
elif model_name == "segformer.b0.512x1024.city.160k":
expected_slice = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
]
)
elif model_name == "segformer.b0.640x1280.city.160k":
expected_slice = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
]
)
elif model_name == "segformer.b0.768x768.city.160k":
expected_slice = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
]
)
elif model_name == "segformer.b1.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
]
)
elif model_name == "segformer.b2.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
]
)
elif model_name == "segformer.b3.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
]
)
elif model_name == "segformer.b4.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
]
)
elif model_name == "segformer.b5.1024x1024.city.160k":
expected_slice = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
]
)
else:
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-2)
# finally, save model and feature extractor
logger.info(f"Saving PyTorch model and feature extractor to {pytorch_dump_folder_path}...")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
feature_extractor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
args = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/whisper/modeling_tf_whisper.py | # coding=utf-8
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow Whisper model."""
import math
import random
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_whisper import WhisperConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "WhisperConfig"
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openai/whisper-base",
# See all Whisper models at https://huggingface.co/models?filter=whisper
]
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill(
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFWhisperPositionalEmbedding(tf.keras.layers.Layer):
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs):
super().__init__(**kwargs)
self.num_positions = num_positions
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
def build(self, input_shape):
self.weight = self.add_weight(
name="weight",
shape=[self.num_positions, self.embedding_dim],
trainable=True,
)
super().build(input_shape)
def call(self, input_ids, past_key_values_length=0):
past_key_values_length = tf.cast(past_key_values_length, tf.int32)
gather_indices = tf.range(tf.shape(input_ids)[-1], delta=1) + past_key_values_length
return tf.gather(self.weight, gather_indices)
class TFWhisperAttention(tf.keras.layers.Layer):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=False, name="k_proj")
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention._shape with BART->whisper
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention.call with BART->whisper
def call(
self,
hidden_states: tf.Tensor,
key_value_states: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextEncoderLayer with Speech2Text->Whisper
class TFWhisperEncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFWhisperAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False
):
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
training=training,
)
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return hidden_states, self_attn_weights
# Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextDecoderLayer with Speech2Text->Whisper
class TFWhisperDecoderLayer(tf.keras.layers.Layer):
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFWhisperAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFWhisperAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self,
hidden_states,
attention_mask: Optional[tf.Tensor] = None,
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
training=training,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
training=training,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
class TFWhisperPreTrainedModel(TFPreTrainedModel):
config_class = WhisperConfig
base_model_prefix = "model"
main_input_name = "input_features"
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor) -> int:
"""
Computes the output length of the convolutional layers
"""
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
return {
self.main_input_name: tf.random.uniform(
[2, self.config.num_mel_bins, self.config.max_source_positions * 2 - 1], dtype=tf.float32
),
"decoder_input_ids": tf.constant([[2, 3]], dtype=tf.int32),
}
@tf.function(
input_signature=[
{
"input_features": tf.TensorSpec((None, None, None), tf.float32, name="input_features"),
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
WHISPER_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
Parameters:
config ([`WhisperConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
WHISPER_INPUTS_DOCSTRING = r"""
Args:
input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained
by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.*
via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`WhisperFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a
tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`]
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
[`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@keras_serializable
class TFWhisperEncoder(tf.keras.layers.Layer):
config_class = WhisperConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TFWhisperEncoderLayer`].
Args:
config: WhisperConfig
embed_tokens (TFWhisperEmbedding): output embedding
"""
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layerdrop = config.encoder_layerdrop
self.embed_dim = config.d_model
self.num_mel_bins = config.num_mel_bins
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(self.embed_dim) if config.scale_embedding else 1.0
# Padding is added in call() to match the PyTorch implementation
self.conv1 = tf.keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=1, padding="valid", name="conv1")
self.conv2 = tf.keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=2, padding="valid", name="conv2")
self.embed_positions = TFWhisperPositionalEmbedding(
self.max_source_positions, self.embed_dim, name="embed_positions"
)
self.encoder_layers = [TFWhisperEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
@unpack_inputs
def call(
self,
input_features=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
r"""
Args:
input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the fbank features,
padding and conversion into a tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`]
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TF 2.0 layers can't use channels first format when running on CPU.
input_features = tf.transpose(input_features, perm=(0, 2, 1))
input_features = tf.pad(input_features, [[0, 0], [1, 1], [0, 0]])
inputs_embeds = tf.keras.activations.gelu(self.conv1(input_features))
inputs_embeds = tf.pad(inputs_embeds, [[0, 0], [1, 1], [0, 0]])
inputs_embeds = tf.keras.activations.gelu(self.conv2(inputs_embeds))
inputs_embeds = tf.transpose(inputs_embeds, perm=(0, 1, 2))
embed_pos = self.embed_positions(input_ids=tf.zeros((1, self.max_source_positions), dtype=tf.int32))
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout(hidden_states, training=training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
tf.debugging.assert_equal(
shape_list(head_mask)[0],
len(self.encoder_layers),
message=(
f"The head_mask should be specified for {len(self.encoder_layers)} layers, but it is for"
f" {shape_list(head_mask)[0]}."
),
)
for idx, encoder_layer in enumerate(self.encoder_layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(
hidden_states,
None,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
training=training,
)
if output_attentions:
all_attentions += (attn,)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
@keras_serializable
class TFWhisperDecoder(tf.keras.layers.Layer):
config_class = WhisperConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFWhisperDecoderLayer`]
Args:
config: WhisperConfig
"""
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_target_positions
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = tf.keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.d_model,
embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std),
name="embed_tokens",
)
self.embed_positions = TFWhisperPositionalEmbedding(
self.max_target_positions, config.d_model, name="embed_positions"
)
self.decoder_layers = [TFWhisperDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
batch_size, seq_len = input_shape[0], input_shape[1]
combined_attention_mask = tf.cond(
tf.math.greater(seq_len, 1),
lambda: _make_causal_mask(input_shape, past_key_values_length=past_key_values_length),
lambda: _expand_mask(tf.ones((batch_size, seq_len + past_key_values_length)), tgt_len=seq_len),
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
encoder_hidden_states=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape
`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids`
you can choose to directly pass an embedded representation. This is useful if you want more control
over how to convert `input_ids` indices into associated vectors than the model's internal embedding
lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = tf.shape(input_ids)
input_ids = tf.reshape(input_ids, (-1, input_shape[-1]))
elif inputs_embeds is not None:
input_shape = tf.shape(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf.debugging.assert_less(
input_ids,
tf.cast(self.embed_tokens.input_dim, dtype=input_ids.dtype),
message=(
"input_ids must be smaller than the embedding layer's input dimension (got"
f" {tf.math.reduce_max(input_ids)} >= {self.embed_tokens.input_dim})"
),
)
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length)
# embed positions
filled_past_positions = past_key_values_length if position_ids is None else position_ids[0, -1]
positions = self.embed_positions(input_ids, past_key_values_length=filled_past_positions)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout(hidden_states, training=training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.decoder_layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.decoder_layers)} layers, but it is"
f" for {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.decoder_layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
past_key_value=past_key_value,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Whisper Model outputting raw hidden-states without any specific head on top.",
WHISPER_START_DOCSTRING,
)
@keras_serializable
class TFWhisperMainLayer(tf.keras.layers.Layer):
config_class = WhisperConfig
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.encoder = TFWhisperEncoder(config, name="encoder")
self.decoder = TFWhisperDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_features=None,
decoder_input_ids=None,
decoder_attention_mask=None,
decoder_position_ids=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
r"""
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import TFWhisperModel, WhisperFeatureExtractor
>>> from datasets import load_dataset
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_features,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
encoder_outputs = TFBaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare Whisper Model outputting raw hidden-states without any specific head on top.",
WHISPER_START_DOCSTRING,
)
class TFWhisperModel(TFWhisperPreTrainedModel):
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = TFWhisperMainLayer(config, name="model")
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
def decoder(self):
return self.model.decoder
def encoder(self):
return self.model.encoder
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_features: Optional[TFModelInputType] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import TFWhisperModel, WhisperFeatureExtractor
>>> from datasets import load_dataset
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
outputs = self.model(
input_features=input_features,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
@add_start_docstrings(
"The Whisper Model with a language modeling head. Can be used for automatic speech recognition.",
WHISPER_START_DOCSTRING,
)
class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLanguageModelingLoss):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"encoder.version",
r"decoder.version",
r"proj_out.weight",
]
_keys_to_ignore_on_save = [
r"proj_out.weight",
]
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = TFWhisperMainLayer(config, name="model")
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def resize_token_embeddings(self, new_num_tokens: int) -> tf.keras.layers.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
return new_embeddings
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_features: Optional[TFModelInputType] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import WhisperProcessor, TFWhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features
>>> generated_ids = model.generate(input_ids=input_features)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_features,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
decoder_last_hidden_state = outputs[0]
# Decoder and encoder embeddings are tied
lm_logits = tf.matmul(decoder_last_hidden_state, self.get_output_embeddings().weights, transpose_b=True)
loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSeq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
use_cache=None,
encoder_outputs=None,
attention_mask=None,
decoder_attention_mask=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_attention_mask is not None: # xla
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
elif past is not None: # no xla + past
decoder_position_ids = past[0][0].shape[2]
else: # no xla + no past
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
decoder_position_ids = tf.broadcast_to(decoder_position_ids, decoder_input_ids.shape)
return {
"input_features": None, # Needs to be passed to make Keras.layer.__call__ happy
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"use_cache": use_cache,
"decoder_attention_mask": decoder_attention_mask,
"decoder_position_ids": decoder_position_ids,
}
#
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(tf.gather(past_state, beam_idx) for past_state in layer_past),)
return reordered_past
| # coding=utf-8
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow Whisper model."""
import math
import random
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_whisper import WhisperConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "WhisperConfig"
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openai/whisper-base",
# See all Whisper models at https://huggingface.co/models?filter=whisper
]
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill(
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFWhisperPositionalEmbedding(tf.keras.layers.Layer):
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs):
super().__init__(**kwargs)
self.num_positions = num_positions
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
def build(self, input_shape):
self.weight = self.add_weight(
name="weight",
shape=[self.num_positions, self.embedding_dim],
trainable=True,
)
super().build(input_shape)
def call(self, input_ids, past_key_values_length=0):
past_key_values_length = tf.cast(past_key_values_length, tf.int32)
gather_indices = tf.range(tf.shape(input_ids)[-1], delta=1) + past_key_values_length
return tf.gather(self.weight, gather_indices)
class TFWhisperAttention(tf.keras.layers.Layer):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=False, name="k_proj")
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention._shape with BART->whisper
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention.call with BART->whisper
def call(
self,
hidden_states: tf.Tensor,
key_value_states: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextEncoderLayer with Speech2Text->Whisper
class TFWhisperEncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFWhisperAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False
):
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
training=training,
)
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return hidden_states, self_attn_weights
# Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextDecoderLayer with Speech2Text->Whisper
class TFWhisperDecoderLayer(tf.keras.layers.Layer):
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFWhisperAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFWhisperAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self,
hidden_states,
attention_mask: Optional[tf.Tensor] = None,
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
cross_attn_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
training=training,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
training=training,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
class TFWhisperPreTrainedModel(TFPreTrainedModel):
config_class = WhisperConfig
base_model_prefix = "model"
main_input_name = "input_features"
def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor) -> int:
"""
Computes the output length of the convolutional layers
"""
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
return {
self.main_input_name: tf.random.uniform(
[2, self.config.num_mel_bins, self.config.max_source_positions * 2 - 1], dtype=tf.float32
),
"decoder_input_ids": tf.constant([[2, 3]], dtype=tf.int32),
}
@tf.function(
input_signature=[
{
"input_features": tf.TensorSpec((None, None, None), tf.float32, name="input_features"),
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
WHISPER_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
Parameters:
config ([`WhisperConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
WHISPER_INPUTS_DOCSTRING = r"""
Args:
input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained
by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.*
via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`WhisperFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a
tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`]
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
[`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@keras_serializable
class TFWhisperEncoder(tf.keras.layers.Layer):
config_class = WhisperConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TFWhisperEncoderLayer`].
Args:
config: WhisperConfig
embed_tokens (TFWhisperEmbedding): output embedding
"""
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layerdrop = config.encoder_layerdrop
self.embed_dim = config.d_model
self.num_mel_bins = config.num_mel_bins
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(self.embed_dim) if config.scale_embedding else 1.0
# Padding is added in call() to match the PyTorch implementation
self.conv1 = tf.keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=1, padding="valid", name="conv1")
self.conv2 = tf.keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=2, padding="valid", name="conv2")
self.embed_positions = TFWhisperPositionalEmbedding(
self.max_source_positions, self.embed_dim, name="embed_positions"
)
self.encoder_layers = [TFWhisperEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
@unpack_inputs
def call(
self,
input_features=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
r"""
Args:
input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the fbank features,
padding and conversion into a tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`]
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TF 2.0 layers can't use channels first format when running on CPU.
input_features = tf.transpose(input_features, perm=(0, 2, 1))
input_features = tf.pad(input_features, [[0, 0], [1, 1], [0, 0]])
inputs_embeds = tf.keras.activations.gelu(self.conv1(input_features))
inputs_embeds = tf.pad(inputs_embeds, [[0, 0], [1, 1], [0, 0]])
inputs_embeds = tf.keras.activations.gelu(self.conv2(inputs_embeds))
inputs_embeds = tf.transpose(inputs_embeds, perm=(0, 1, 2))
embed_pos = self.embed_positions(input_ids=tf.zeros((1, self.max_source_positions), dtype=tf.int32))
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout(hidden_states, training=training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
tf.debugging.assert_equal(
shape_list(head_mask)[0],
len(self.encoder_layers),
message=(
f"The head_mask should be specified for {len(self.encoder_layers)} layers, but it is for"
f" {shape_list(head_mask)[0]}."
),
)
for idx, encoder_layer in enumerate(self.encoder_layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(
hidden_states,
None,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
training=training,
)
if output_attentions:
all_attentions += (attn,)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
@keras_serializable
class TFWhisperDecoder(tf.keras.layers.Layer):
config_class = WhisperConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFWhisperDecoderLayer`]
Args:
config: WhisperConfig
"""
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_target_positions
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = tf.keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.d_model,
embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std),
name="embed_tokens",
)
self.embed_positions = TFWhisperPositionalEmbedding(
self.max_target_positions, config.d_model, name="embed_positions"
)
self.decoder_layers = [TFWhisperDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
batch_size, seq_len = input_shape[0], input_shape[1]
combined_attention_mask = tf.cond(
tf.math.greater(seq_len, 1),
lambda: _make_causal_mask(input_shape, past_key_values_length=past_key_values_length),
lambda: _expand_mask(tf.ones((batch_size, seq_len + past_key_values_length)), tgt_len=seq_len),
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
encoder_hidden_states=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape
`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids`
you can choose to directly pass an embedded representation. This is useful if you want more control
over how to convert `input_ids` indices into associated vectors than the model's internal embedding
lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = tf.shape(input_ids)
input_ids = tf.reshape(input_ids, (-1, input_shape[-1]))
elif inputs_embeds is not None:
input_shape = tf.shape(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf.debugging.assert_less(
input_ids,
tf.cast(self.embed_tokens.input_dim, dtype=input_ids.dtype),
message=(
"input_ids must be smaller than the embedding layer's input dimension (got"
f" {tf.math.reduce_max(input_ids)} >= {self.embed_tokens.input_dim})"
),
)
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length)
# embed positions
filled_past_positions = past_key_values_length if position_ids is None else position_ids[0, -1]
positions = self.embed_positions(input_ids, past_key_values_length=filled_past_positions)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout(hidden_states, training=training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.decoder_layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.decoder_layers)} layers, but it is"
f" for {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.decoder_layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
past_key_value=past_key_value,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare Whisper Model outputting raw hidden-states without any specific head on top.",
WHISPER_START_DOCSTRING,
)
@keras_serializable
class TFWhisperMainLayer(tf.keras.layers.Layer):
config_class = WhisperConfig
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.encoder = TFWhisperEncoder(config, name="encoder")
self.decoder = TFWhisperDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, value):
self.decoder.embed_tokens = value
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_features=None,
decoder_input_ids=None,
decoder_attention_mask=None,
decoder_position_ids=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
r"""
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import TFWhisperModel, WhisperFeatureExtractor
>>> from datasets import load_dataset
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_features,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
encoder_outputs = TFBaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare Whisper Model outputting raw hidden-states without any specific head on top.",
WHISPER_START_DOCSTRING,
)
class TFWhisperModel(TFWhisperPreTrainedModel):
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = TFWhisperMainLayer(config, name="model")
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
def decoder(self):
return self.model.decoder
def encoder(self):
return self.model.encoder
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_features: Optional[TFModelInputType] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import TFWhisperModel, WhisperFeatureExtractor
>>> from datasets import load_dataset
>>> model = TFWhisperModel.from_pretrained("openai/whisper-base")
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features
>>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 2, 512]
```"""
outputs = self.model(
input_features=input_features,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
@add_start_docstrings(
"The Whisper Model with a language modeling head. Can be used for automatic speech recognition.",
WHISPER_START_DOCSTRING,
)
class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLanguageModelingLoss):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"encoder.version",
r"decoder.version",
r"proj_out.weight",
]
_keys_to_ignore_on_save = [
r"proj_out.weight",
]
def __init__(self, config: WhisperConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = TFWhisperMainLayer(config, name="model")
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def resize_token_embeddings(self, new_num_tokens: int) -> tf.keras.layers.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
return new_embeddings
@add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
input_features: Optional[TFModelInputType] = None,
decoder_input_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_attention_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_position_ids: Optional[Union[np.ndarray, tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
decoder_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
cross_attn_head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import WhisperProcessor, TFWhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="tf")
>>> input_features = inputs.input_features
>>> generated_ids = model.generate(input_ids=input_features)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> transcription
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_features,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
decoder_last_hidden_state = outputs[0]
# Decoder and encoder embeddings are tied
lm_logits = tf.matmul(decoder_last_hidden_state, self.get_output_embeddings().weights, transpose_b=True)
loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSeq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
use_cache=None,
encoder_outputs=None,
attention_mask=None,
decoder_attention_mask=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_attention_mask is not None: # xla
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
elif past is not None: # no xla + past
decoder_position_ids = past[0][0].shape[2]
else: # no xla + no past
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
decoder_position_ids = tf.broadcast_to(decoder_position_ids, decoder_input_ids.shape)
return {
"input_features": None, # Needs to be passed to make Keras.layer.__call__ happy
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"use_cache": use_cache,
"decoder_attention_mask": decoder_attention_mask,
"decoder_position_ids": decoder_position_ids,
}
#
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(tf.gather(past_state, beam_idx) for past_state in layer_past),)
return reordered_past
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/pipelines/depth_estimation.py | from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
logger = logging.get_logger(__name__)
@add_end_docstrings(PIPELINE_INIT_ARGS)
class DepthEstimationPipeline(Pipeline):
"""
Depth estimation pipeline using any `AutoModelForDepthEstimation`. This pipeline predicts the depth of an image.
Example:
```python
>>> from transformers import pipeline
>>> depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-large")
>>> output = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg")
>>> # This is a tensor with the values being the depth expressed in meters for each pixel
>>> output["predicted_depth"].shape
torch.Size([1, 384, 384])
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This depth estimation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"depth-estimation"`.
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=depth-estimation).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
requires_backends(self, "vision")
self.check_model_type(MODEL_FOR_DEPTH_ESTIMATION_MAPPING)
def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs):
"""
Assign labels to the image(s) passed as inputs.
Args:
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
The pipeline handles three types of images:
- A string containing a http link pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
images.
top_k (`int`, *optional*, defaults to 5):
The number of top labels that will be returned by the pipeline. If the provided number is higher than
the number of labels available in the model configuration, it will default to the number of labels.
Return:
A dictionary or a list of dictionaries containing result. If the input is a single image, will return a
dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to
the images.
The dictionaries contain the following keys:
- **label** (`str`) -- The label identified by the model.
- **score** (`int`) -- The score attributed by the model for that label.
"""
return super().__call__(images, **kwargs)
def _sanitize_parameters(self, **kwargs):
return {}, {}, {}
def preprocess(self, image):
image = load_image(image)
self.image_size = image.size
model_inputs = self.feature_extractor(images=image, return_tensors=self.framework)
return model_inputs
def _forward(self, model_inputs):
model_outputs = self.model(**model_inputs)
return model_outputs
def postprocess(self, model_outputs):
predicted_depth = model_outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1), size=self.image_size[::-1], mode="bicubic", align_corners=False
)
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth = Image.fromarray(formatted)
output_dict = {}
output_dict["predicted_depth"] = predicted_depth
output_dict["depth"] = depth
return output_dict
| from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
logger = logging.get_logger(__name__)
@add_end_docstrings(PIPELINE_INIT_ARGS)
class DepthEstimationPipeline(Pipeline):
"""
Depth estimation pipeline using any `AutoModelForDepthEstimation`. This pipeline predicts the depth of an image.
Example:
```python
>>> from transformers import pipeline
>>> depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-large")
>>> output = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg")
>>> # This is a tensor with the values being the depth expressed in meters for each pixel
>>> output["predicted_depth"].shape
torch.Size([1, 384, 384])
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This depth estimation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"depth-estimation"`.
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=depth-estimation).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
requires_backends(self, "vision")
self.check_model_type(MODEL_FOR_DEPTH_ESTIMATION_MAPPING)
def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs):
"""
Assign labels to the image(s) passed as inputs.
Args:
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
The pipeline handles three types of images:
- A string containing a http link pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
images.
top_k (`int`, *optional*, defaults to 5):
The number of top labels that will be returned by the pipeline. If the provided number is higher than
the number of labels available in the model configuration, it will default to the number of labels.
Return:
A dictionary or a list of dictionaries containing result. If the input is a single image, will return a
dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to
the images.
The dictionaries contain the following keys:
- **label** (`str`) -- The label identified by the model.
- **score** (`int`) -- The score attributed by the model for that label.
"""
return super().__call__(images, **kwargs)
def _sanitize_parameters(self, **kwargs):
return {}, {}, {}
def preprocess(self, image):
image = load_image(image)
self.image_size = image.size
model_inputs = self.feature_extractor(images=image, return_tensors=self.framework)
return model_inputs
def _forward(self, model_inputs):
model_outputs = self.model(**model_inputs)
return model_outputs
def postprocess(self, model_outputs):
predicted_depth = model_outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1), size=self.image_size[::-1], mode="bicubic", align_corners=False
)
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth = Image.fromarray(formatted)
output_dict = {}
output_dict["predicted_depth"] = predicted_depth
output_dict["depth"] = depth
return output_dict
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/legacy/seq2seq/sentence_splitter.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from filelock import FileLock
try:
import nltk
NLTK_AVAILABLE = True
except (ImportError, ModuleNotFoundError):
NLTK_AVAILABLE = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def add_newline_to_end_of_each_sentence(x: str) -> str:
"""This was added to get rougeLsum scores matching published rougeL scores for BART and PEGASUS."""
re.sub("<n>", "", x) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(x))
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from filelock import FileLock
try:
import nltk
NLTK_AVAILABLE = True
except (ImportError, ModuleNotFoundError):
NLTK_AVAILABLE = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def add_newline_to_end_of_each_sentence(x: str) -> str:
"""This was added to get rougeLsum scores matching published rougeL scores for BART and PEGASUS."""
re.sub("<n>", "", x) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(x))
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/mluke/__init__.py | # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_import_structure = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_mluke"] = ["MLukeTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_import_structure = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_mluke"] = ["MLukeTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./scripts/pegasus/build_test_sample_spm_no_bos.py | #!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script builds a small sample spm file tests/fixtures/test_sentencepiece_no_bos.model, with features needed by pegasus
# 1. pip install sentencepiece
#
# 2. wget https://raw.githubusercontent.com/google/sentencepiece/master/data/botchan.txt
# 3. build
import sentencepiece as spm
# pegasus:
# 1. no bos
# 2. eos_id is 1
# 3. unk_id is 2
# build a sample spm file accordingly
spm.SentencePieceTrainer.train('--input=botchan.txt --model_prefix=test_sentencepiece_no_bos --bos_id=-1 --unk_id=2 --eos_id=1 --vocab_size=1000')
# 4. now update the fixture
# mv test_sentencepiece_no_bos.model ../../tests/fixtures/
| #!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script builds a small sample spm file tests/fixtures/test_sentencepiece_no_bos.model, with features needed by pegasus
# 1. pip install sentencepiece
#
# 2. wget https://raw.githubusercontent.com/google/sentencepiece/master/data/botchan.txt
# 3. build
import sentencepiece as spm
# pegasus:
# 1. no bos
# 2. eos_id is 1
# 3. unk_id is 2
# build a sample spm file accordingly
spm.SentencePieceTrainer.train('--input=botchan.txt --model_prefix=test_sentencepiece_no_bos --bos_id=-1 --unk_id=2 --eos_id=1 --vocab_size=1000')
# 4. now update the fixture
# mv test_sentencepiece_no_bos.model ../../tests/fixtures/
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./examples/research_projects/codeparrot/scripts/pretokenizing.py | import multiprocessing
import time
from datasets import load_dataset
from arguments import PretokenizationArguments
from transformers import AutoTokenizer, HfArgumentParser
def tokenize(example):
output = dict()
output["input_ids"] = tokenizer(example["content"], truncation=False)["input_ids"]
output["ratio_char_token"] = len(example["content"]) / len(output["input_ids"])
return output
parser = HfArgumentParser(PretokenizationArguments)
args = parser.parse_args()
if args.num_workers is None:
args.num_workers = multiprocessing.cpu_count()
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
t_start = time.time()
ds = load_dataset(args.dataset_name, split="train")
print(f"Dataset loaded in {time.time()-t_start:.2f}s")
t_start = time.time()
ds = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f"Dataset tokenized in {time.time()-t_start:.2f}s")
t_start = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f"Data pushed to the hub in {time.time()-t_start:.2f}s")
| import multiprocessing
import time
from datasets import load_dataset
from arguments import PretokenizationArguments
from transformers import AutoTokenizer, HfArgumentParser
def tokenize(example):
output = dict()
output["input_ids"] = tokenizer(example["content"], truncation=False)["input_ids"]
output["ratio_char_token"] = len(example["content"]) / len(output["input_ids"])
return output
parser = HfArgumentParser(PretokenizationArguments)
args = parser.parse_args()
if args.num_workers is None:
args.num_workers = multiprocessing.cpu_count()
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
t_start = time.time()
ds = load_dataset(args.dataset_name, split="train")
print(f"Dataset loaded in {time.time()-t_start:.2f}s")
t_start = time.time()
ds = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f"Dataset tokenized in {time.time()-t_start:.2f}s")
t_start = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f"Data pushed to the hub in {time.time()-t_start:.2f}s")
| -1 |
huggingface/transformers | 20,209 | Add gpt-sw3 model to transformers | This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ekgren | "2022-11-14T14:04:00Z" | "2022-12-12T18:12:13Z" | b58beebe7286bf53a80f137e0e5cd100ccb77ae2 | 5f94855dc31242d15d755b0d97ec6a0479ee0ea9 | Add gpt-sw3 model to transformers. This adds the gpt-sw3 models and tokenizer to hf. The models are developed by AI Sweden and others. They are gpt models trained from scratch with the nemo-megatron framework and will initially range in sizes from 128m to 20B. The models are multilingual and the languages in the models are English, Swedish, Norwegian, Danish and Icelandic.
Fixes # (issue) https://github.com/huggingface/transformers/issues/20176
@ArthurZucker | ./src/transformers/models/gpt2/tokenization_gpt2_fast.py | # coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpt2 import GPT2Tokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"gpt2": 1024,
"gpt2-medium": 1024,
"gpt2-large": 1024,
"gpt2-xl": 1024,
"distilgpt2": 1024,
}
class GPT2TokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```
>>> from transformers import GPT2TokenizerFast
>>> tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = GPT2Tokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.add_bos_token = kwargs.pop("add_bos_token", False)
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
self.add_prefix_space = add_prefix_space
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
"""This corresponds to DialoGPT variants of models."""
input_ids = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
if len(input_ids) > self.model_max_length:
input_ids = input_ids[-self.model_max_length :]
return input_ids
| # coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpt2 import GPT2Tokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"gpt2": 1024,
"gpt2-medium": 1024,
"gpt2-large": 1024,
"gpt2-xl": 1024,
"distilgpt2": 1024,
}
class GPT2TokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```
>>> from transformers import GPT2TokenizerFast
>>> tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
>>> tokenizer("Hello world")['input_ids']
[15496, 995]
>>> tokenizer(" Hello world")['input_ids']
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = GPT2Tokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.add_bos_token = kwargs.pop("add_bos_token", False)
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
pre_tok_state["add_prefix_space"] = add_prefix_space
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
self.add_prefix_space = add_prefix_space
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
"""This corresponds to DialoGPT variants of models."""
input_ids = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
if len(input_ids) > self.model_max_length:
input_ids = input_ids[-self.model_max_length :]
return input_ids
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/image_processing_utils.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import os
from typing import Any, Dict, Iterable, Optional, Tuple, Union
import numpy as np
from .dynamic_module_utils import custom_object_save
from .feature_extraction_utils import BatchFeature as BaseBatchFeature
from .utils import (
IMAGE_PROCESSOR_NAME,
PushToHubMixin,
cached_file,
copy_func,
download_url,
is_offline_mode,
is_remote_url,
logging,
)
logger = logging.get_logger(__name__)
# TODO: Move BatchFeature to be imported by both image_processing_utils and image_processing_utils
# We override the class string here, but logic is the same.
class BatchFeature(BaseBatchFeature):
r"""
Holds the output of the image processor specific `__call__` methods.
This class is derived from a python dictionary and can be used as a dictionary.
Args:
data (`dict`):
Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.).
tensor_type (`Union[None, str, TensorType]`, *optional*):
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
initialization.
"""
# TODO: (Amy) - factor out the common parts of this and the feature extractor
class ImageProcessingMixin(PushToHubMixin):
"""
This is an image processor mixin used to provide saving/loading functionality for sequential and image feature
extractors.
"""
_auto_class = None
def __init__(self, **kwargs):
"""Set elements of `kwargs` as attributes."""
# Pop "processor_class" as it should be saved as private attribute
self._processor_class = kwargs.pop("processor_class", None)
# Additional attributes without default values
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
logger.error(f"Can't set {key} with value {value} for {self}")
raise err
def _set_processor_class(self, processor_class: str):
"""Sets processor class as an attribute."""
self._processor_class = processor_class
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs):
r"""
Instantiate a type of [`~image_processing_utils.ImageProcessingMixin`] from an image processor.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a image processor file saved using the
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
`./my_model_directory/`.
- a path or url to a saved image processor JSON *file*, e.g.,
`./my_model_directory/preprocessor_config.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model image processor should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the image processor files and override the cached versions if
they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final image processor object. If `True`, then this
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
`kwargs` which has not been used to update `image_processor` and is otherwise ignored.
kwargs (`Dict[str, Any]`, *optional*):
The values in kwargs of any keys which are image processor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
Returns:
A image processor of type [`~image_processing_utils.ImageProcessingMixin`].
Examples:
```python
# We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
# derived class: *CLIPImageProcessor*
image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32"
) # Download image_processing_config from huggingface.co and cache.
image_processor = CLIPImageProcessor.from_pretrained(
"./test/saved_model/"
) # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32", do_normalize=False, foo=False
)
assert image_processor.do_normalize is False
image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
)
assert image_processor.do_normalize is False
assert unused_kwargs == {"foo": False}
```"""
image_processor_dict, kwargs = cls.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
return cls.from_dict(image_processor_dict, **kwargs)
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
"""
Save an image processor object to the directory `save_directory`, so that it can be re-loaded using the
[`~image_processing_utils.ImageProcessingMixin.from_pretrained`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the image processor JSON file will be saved (will be created if it does not exist).
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs:
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id, token = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
custom_object_save(self, save_directory, config=self)
# If we save using the predefined names, we can load using `from_pretrained`
output_image_processor_file = os.path.join(save_directory, IMAGE_PROCESSOR_NAME)
self.to_json_file(output_image_processor_file)
logger.info(f"Image processor saved in {output_image_processor_file}")
if push_to_hub:
self._upload_modified_files(
save_directory, repo_id, files_timestamps, commit_message=commit_message, token=token
)
return [output_image_processor_file]
@classmethod
def get_image_processor_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
image processor of type [`~image_processor_utils.ImageProcessingMixin`] using `from_dict`.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
Returns:
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the image processor object.
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "image processor", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
image_processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
if os.path.isfile(pretrained_model_name_or_path):
resolved_image_processor_file = pretrained_model_name_or_path
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
image_processor_file = pretrained_model_name_or_path
resolved_image_processor_file = download_url(pretrained_model_name_or_path)
else:
image_processor_file = IMAGE_PROCESSOR_NAME
try:
# Load from local folder or from cache or download from model Hub and cache
resolved_image_processor_file = cached_file(
pretrained_model_name_or_path,
image_processor_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
revision=revision,
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
# the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load image processor for '{pretrained_model_name_or_path}'. If you were trying to load"
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
)
try:
# Load image_processor dict
with open(resolved_image_processor_file, "r", encoding="utf-8") as reader:
text = reader.read()
image_processor_dict = json.loads(text)
except json.JSONDecodeError:
raise EnvironmentError(
f"It looks like the config file at '{resolved_image_processor_file}' is not a valid JSON file."
)
if is_local:
logger.info(f"loading configuration file {resolved_image_processor_file}")
else:
logger.info(
f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}"
)
return image_processor_dict, kwargs
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Instantiates a type of [`~image_processing_utils.ImageProcessingMixin`] from a Python dictionary of parameters.
Args:
image_processor_dict (`Dict[str, Any]`):
Dictionary that will be used to instantiate the image processor object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the
[`~image_processing_utils.ImageProcessingMixin.to_dict`] method.
kwargs (`Dict[str, Any]`):
Additional parameters from which to initialize the image processor object.
Returns:
[`~image_processing_utils.ImageProcessingMixin`]: The image processor object instantiated from those
parameters.
"""
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
image_processor = cls(**image_processor_dict)
# Update image_processor with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(image_processor, key):
setattr(image_processor, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
logger.info(f"Image processor {image_processor}")
if return_unused_kwargs:
return image_processor, kwargs
else:
return image_processor
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this image processor instance.
"""
output = copy.deepcopy(self.__dict__)
output["image_processor_type"] = self.__class__.__name__
return output
@classmethod
def from_json_file(cls, json_file: Union[str, os.PathLike]):
"""
Instantiates a image processor of type [`~image_processing_utils.ImageProcessingMixin`] from the path to a JSON
file of parameters.
Args:
json_file (`str` or `os.PathLike`):
Path to the JSON file containing the parameters.
Returns:
A image processor of type [`~image_processing_utils.ImageProcessingMixin`]: The image_processor object
instantiated from that JSON file.
"""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
image_processor_dict = json.loads(text)
return cls(**image_processor_dict)
def to_json_string(self) -> str:
"""
Serializes this instance to a JSON string.
Returns:
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
"""
dictionary = self.to_dict()
for key, value in dictionary.items():
if isinstance(value, np.ndarray):
dictionary[key] = value.tolist()
# make sure private name "_processor_class" is correctly
# saved as "processor_class"
_processor_class = dictionary.pop("_processor_class", None)
if _processor_class is not None:
dictionary["processor_class"] = _processor_class
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
"""
Save this instance to a JSON file.
Args:
json_file_path (`str` or `os.PathLike`):
Path to the JSON file in which this image_processor instance's parameters will be saved.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string())
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
@classmethod
def register_for_auto_class(cls, auto_class="AutoImageProcessor"):
"""
Register this class with a given auto class. This should only be used for custom image processors as the ones
in the library are already mapped with `AutoImageProcessor `.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):
The auto class to register this new image processor with.
"""
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class
class BaseImageProcessor(ImageProcessingMixin):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def __call__(self, images, **kwargs) -> BatchFeature:
"""Preprocess an image or a batch of images."""
return self.preprocess(images, **kwargs)
def preprocess(self, images, **kwargs) -> BatchFeature:
raise NotImplementedError("Each image processor must implement its own preprocess method")
def get_size_dict(
size: Union[int, Iterable[int], Dict[str, int]] = None,
max_size: Optional[int] = None,
height_width_order: bool = True,
default_to_square: bool = True,
) -> dict:
"""
Converts the old size parameter in the config into the new dict expected in the config. This is to ensure backwards
compatibility with the old image processor configs and removes ambiguity over whether the tuple is in (height,
width) or (width, height) format.
- If `size` is tuple, it is converted to `{"height": size[0], "width": size[1]}` or `{"height": size[1], "width":
size[0]}` if `height_width_order` is `False`.
- If `size` is an int, and `default_to_square` is `True`, it is converted to `{"height": size, "width": size}`.
- If `size` is an int and `default_to_square` is False, it is converted to `{"shortest_edge": size}`. If `max_size`
is set, it is added to the dict as `{"longest_edge": max_size}`.
Args:
size (`Union[int, Iterable[int], Dict[str, int]]`, *optional*):
The `size` parameter to be cast into a size dictionary.
max_size (`Optional[int]`, *optional*):
The `max_size` parameter to be cast into a size dictionary.
height_width_order (`bool`, *optional*, defaults to `True`):
If `size` is a tuple, whether it's in (height, width) or (width, height) order.
default_to_square (`bool`, *optional*, defaults to `True`):
If `size` is an int, whether to default to a square image or not.
"""
# If a dict is passed, we check if it's a valid size dict and then return it.
if isinstance(size, dict):
size_keys = set(size.keys())
if (
size_keys != set(["height", "width"])
and size_keys != set(["shortest_edge"])
and size_keys != set(["shortest_edge", "longest_edge"])
):
raise ValueError(
"The size dict must contain either the keys ('height', 'width') or ('shortest_edge')"
f"or ('shortest_edge', 'longest_edge') but got {size_keys}"
)
return size
# By default, if size is an int we assume it represents a tuple of (size, size).
elif isinstance(size, int) and default_to_square:
if max_size is not None:
raise ValueError("Cannot specify both size as an int, with default_to_square=True and max_size")
size_dict = {"height": size, "width": size}
# In other configs, if size is an int and default_to_square is False, size represents the length of the shortest edge after resizing.
elif isinstance(size, int) and not default_to_square:
if max_size is not None:
size_dict = {"shortest_edge": size, "longest_edge": max_size}
else:
size_dict = {"shortest_edge": size}
elif isinstance(size, (tuple, list)) and height_width_order:
size_dict = {"height": size[0], "width": size[1]}
elif isinstance(size, (tuple, list)) and not height_width_order:
size_dict = {"height": size[1], "width": size[0]}
logger.info(
"The size parameter should be a dictionary with keys ('height', 'width'), ('shortest_edge', 'longest_edge')"
f" or ('shortest_edge',) got {size}. Setting as {size_dict}.",
)
return size_dict
ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)
ImageProcessingMixin.push_to_hub.__doc__ = ImageProcessingMixin.push_to_hub.__doc__.format(
object="image processor", object_class="AutoImageProcessor", object_files="image processor file"
)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import os
from typing import Any, Dict, Iterable, Optional, Tuple, Union
import numpy as np
from .dynamic_module_utils import custom_object_save
from .feature_extraction_utils import BatchFeature as BaseBatchFeature
from .utils import (
IMAGE_PROCESSOR_NAME,
PushToHubMixin,
cached_file,
copy_func,
download_url,
is_offline_mode,
is_remote_url,
logging,
)
logger = logging.get_logger(__name__)
# TODO: Move BatchFeature to be imported by both image_processing_utils and image_processing_utils
# We override the class string here, but logic is the same.
class BatchFeature(BaseBatchFeature):
r"""
Holds the output of the image processor specific `__call__` methods.
This class is derived from a python dictionary and can be used as a dictionary.
Args:
data (`dict`):
Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.).
tensor_type (`Union[None, str, TensorType]`, *optional*):
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
initialization.
"""
# TODO: (Amy) - factor out the common parts of this and the feature extractor
class ImageProcessingMixin(PushToHubMixin):
"""
This is an image processor mixin used to provide saving/loading functionality for sequential and image feature
extractors.
"""
_auto_class = None
def __init__(self, **kwargs):
"""Set elements of `kwargs` as attributes."""
# Pop "processor_class" as it should be saved as private attribute
self._processor_class = kwargs.pop("processor_class", None)
# Additional attributes without default values
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
logger.error(f"Can't set {key} with value {value} for {self}")
raise err
def _set_processor_class(self, processor_class: str):
"""Sets processor class as an attribute."""
self._processor_class = processor_class
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs):
r"""
Instantiate a type of [`~image_processing_utils.ImageProcessingMixin`] from an image processor.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a image processor file saved using the
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
`./my_model_directory/`.
- a path or url to a saved image processor JSON *file*, e.g.,
`./my_model_directory/preprocessor_config.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model image processor should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the image processor files and override the cached versions if
they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final image processor object. If `True`, then this
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
`kwargs` which has not been used to update `image_processor` and is otherwise ignored.
kwargs (`Dict[str, Any]`, *optional*):
The values in kwargs of any keys which are image processor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
Returns:
A image processor of type [`~image_processing_utils.ImageProcessingMixin`].
Examples:
```python
# We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
# derived class: *CLIPImageProcessor*
image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32"
) # Download image_processing_config from huggingface.co and cache.
image_processor = CLIPImageProcessor.from_pretrained(
"./test/saved_model/"
) # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32", do_normalize=False, foo=False
)
assert image_processor.do_normalize is False
image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
)
assert image_processor.do_normalize is False
assert unused_kwargs == {"foo": False}
```"""
image_processor_dict, kwargs = cls.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
return cls.from_dict(image_processor_dict, **kwargs)
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
"""
Save an image processor object to the directory `save_directory`, so that it can be re-loaded using the
[`~image_processing_utils.ImageProcessingMixin.from_pretrained`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the image processor JSON file will be saved (will be created if it does not exist).
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs:
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id, token = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
custom_object_save(self, save_directory, config=self)
# If we save using the predefined names, we can load using `from_pretrained`
output_image_processor_file = os.path.join(save_directory, IMAGE_PROCESSOR_NAME)
self.to_json_file(output_image_processor_file)
logger.info(f"Image processor saved in {output_image_processor_file}")
if push_to_hub:
self._upload_modified_files(
save_directory, repo_id, files_timestamps, commit_message=commit_message, token=token
)
return [output_image_processor_file]
@classmethod
def get_image_processor_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
image processor of type [`~image_processor_utils.ImageProcessingMixin`] using `from_dict`.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
Returns:
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the image processor object.
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "image processor", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
image_processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
if os.path.isfile(pretrained_model_name_or_path):
resolved_image_processor_file = pretrained_model_name_or_path
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
image_processor_file = pretrained_model_name_or_path
resolved_image_processor_file = download_url(pretrained_model_name_or_path)
else:
image_processor_file = IMAGE_PROCESSOR_NAME
try:
# Load from local folder or from cache or download from model Hub and cache
resolved_image_processor_file = cached_file(
pretrained_model_name_or_path,
image_processor_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
revision=revision,
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
# the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load image processor for '{pretrained_model_name_or_path}'. If you were trying to load"
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
)
try:
# Load image_processor dict
with open(resolved_image_processor_file, "r", encoding="utf-8") as reader:
text = reader.read()
image_processor_dict = json.loads(text)
except json.JSONDecodeError:
raise EnvironmentError(
f"It looks like the config file at '{resolved_image_processor_file}' is not a valid JSON file."
)
if is_local:
logger.info(f"loading configuration file {resolved_image_processor_file}")
else:
logger.info(
f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}"
)
return image_processor_dict, kwargs
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Instantiates a type of [`~image_processing_utils.ImageProcessingMixin`] from a Python dictionary of parameters.
Args:
image_processor_dict (`Dict[str, Any]`):
Dictionary that will be used to instantiate the image processor object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the
[`~image_processing_utils.ImageProcessingMixin.to_dict`] method.
kwargs (`Dict[str, Any]`):
Additional parameters from which to initialize the image processor object.
Returns:
[`~image_processing_utils.ImageProcessingMixin`]: The image processor object instantiated from those
parameters.
"""
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
image_processor = cls(**image_processor_dict)
# Update image_processor with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(image_processor, key):
setattr(image_processor, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
logger.info(f"Image processor {image_processor}")
if return_unused_kwargs:
return image_processor, kwargs
else:
return image_processor
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this image processor instance.
"""
output = copy.deepcopy(self.__dict__)
output["image_processor_type"] = self.__class__.__name__
return output
@classmethod
def from_json_file(cls, json_file: Union[str, os.PathLike]):
"""
Instantiates a image processor of type [`~image_processing_utils.ImageProcessingMixin`] from the path to a JSON
file of parameters.
Args:
json_file (`str` or `os.PathLike`):
Path to the JSON file containing the parameters.
Returns:
A image processor of type [`~image_processing_utils.ImageProcessingMixin`]: The image_processor object
instantiated from that JSON file.
"""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
image_processor_dict = json.loads(text)
return cls(**image_processor_dict)
def to_json_string(self) -> str:
"""
Serializes this instance to a JSON string.
Returns:
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
"""
dictionary = self.to_dict()
for key, value in dictionary.items():
if isinstance(value, np.ndarray):
dictionary[key] = value.tolist()
# make sure private name "_processor_class" is correctly
# saved as "processor_class"
_processor_class = dictionary.pop("_processor_class", None)
if _processor_class is not None:
dictionary["processor_class"] = _processor_class
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
"""
Save this instance to a JSON file.
Args:
json_file_path (`str` or `os.PathLike`):
Path to the JSON file in which this image_processor instance's parameters will be saved.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string())
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
@classmethod
def register_for_auto_class(cls, auto_class="AutoImageProcessor"):
"""
Register this class with a given auto class. This should only be used for custom image processors as the ones
in the library are already mapped with `AutoImageProcessor `.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):
The auto class to register this new image processor with.
"""
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class
class BaseImageProcessor(ImageProcessingMixin):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def __call__(self, images, **kwargs) -> BatchFeature:
"""Preprocess an image or a batch of images."""
return self.preprocess(images, **kwargs)
def preprocess(self, images, **kwargs) -> BatchFeature:
raise NotImplementedError("Each image processor must implement its own preprocess method")
VALID_SIZE_DICT_KEYS = ({"height", "width"}, {"shortest_edge"}, {"shortest_edge", "longest_edge"})
def is_valid_size_dict(size_dict):
if not isinstance(size_dict, dict):
return False
size_dict_keys = set(size_dict.keys())
for allowed_keys in VALID_SIZE_DICT_KEYS:
if size_dict_keys == allowed_keys:
return True
return False
def convert_to_size_dict(
size, max_size: Optional[int] = None, default_to_square: bool = True, height_width_order: bool = True
):
# By default, if size is an int we assume it represents a tuple of (size, size).
if isinstance(size, int) and default_to_square:
if max_size is not None:
raise ValueError("Cannot specify both size as an int, with default_to_square=True and max_size")
return {"height": size, "width": size}
# In other configs, if size is an int and default_to_square is False, size represents the length of
# the shortest edge after resizing.
elif isinstance(size, int) and not default_to_square:
size_dict = {"shortest_edge": size}
if max_size is not None:
size_dict["longest_edge"] = max_size
return size_dict
# Otherwise, if size is a tuple it's either (height, width) or (width, height)
elif isinstance(size, (tuple, list)) and height_width_order:
return {"height": size[0], "width": size[1]}
elif isinstance(size, (tuple, list)) and not height_width_order:
return {"height": size[1], "width": size[0]}
raise ValueError(f"Could not convert size input to size dict: {size}")
def get_size_dict(
size: Union[int, Iterable[int], Dict[str, int]] = None,
max_size: Optional[int] = None,
height_width_order: bool = True,
default_to_square: bool = True,
param_name="size",
) -> dict:
"""
Converts the old size parameter in the config into the new dict expected in the config. This is to ensure backwards
compatibility with the old image processor configs and removes ambiguity over whether the tuple is in (height,
width) or (width, height) format.
- If `size` is tuple, it is converted to `{"height": size[0], "width": size[1]}` or `{"height": size[1], "width":
size[0]}` if `height_width_order` is `False`.
- If `size` is an int, and `default_to_square` is `True`, it is converted to `{"height": size, "width": size}`.
- If `size` is an int and `default_to_square` is False, it is converted to `{"shortest_edge": size}`. If `max_size`
is set, it is added to the dict as `{"longest_edge": max_size}`.
Args:
size (`Union[int, Iterable[int], Dict[str, int]]`, *optional*):
The `size` parameter to be cast into a size dictionary.
max_size (`Optional[int]`, *optional*):
The `max_size` parameter to be cast into a size dictionary.
height_width_order (`bool`, *optional*, defaults to `True`):
If `size` is a tuple, whether it's in (height, width) or (width, height) order.
default_to_square (`bool`, *optional*, defaults to `True`):
If `size` is an int, whether to default to a square image or not.
"""
if not isinstance(size, dict):
size_dict = convert_to_size_dict(size, max_size, default_to_square, height_width_order)
logger.info(
"{param_name} should be a dictionary on of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size}."
" Converted to {size_dict}.",
)
else:
size_dict = size
if not is_valid_size_dict(size_dict):
raise ValueError(
f"{param_name} must have one of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size_dict.keys()}"
)
return size_dict
ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)
ImageProcessingMixin.push_to_hub.__doc__ = ImageProcessingMixin.push_to_hub.__doc__.format(
object="image processor", object_class="AutoImageProcessor", object_files="image processor file"
)
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/beit/image_processing_beit.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Beit."""
import warnings
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_torch_available, is_torch_tensor, is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class BeitImageProcessor(BaseImageProcessor):
r"""
Constructs a BEiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
`preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
Can be overridden by the `crop_size` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
The mean to use if normalizing the image. This is a float or list of floats of length of the number of
channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs
) -> None:
if "reduce_labels" in kwargs:
warnings.warn(
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use"
" `do_reduce_labels` instead.",
FutureWarning,
)
do_reduce_labels = kwargs.pop("reduce_labels")
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_reduce_labels = do_reduce_labels
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to (size["height"], size["width"]).
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
image = self._preprocess(
image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
return image
def _preprocess_segmentation_map(
self,
segmentation_map: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_reduce_labels: bool = None,
):
"""Preprocesses a single segmentation map."""
# All transformations expect numpy arrays.
segmentation_map = to_numpy_array(segmentation_map)
# Add an axis to the segmentation maps for transformations.
if segmentation_map.ndim == 2:
segmentation_map = segmentation_map[None, ...]
added_dimension = True
else:
added_dimension = False
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_normalize=False,
do_rescale=False,
)
# Remove extra axis if added
if added_dimension:
segmentation_map = np.squeeze(segmentation_map, axis=0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
# Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
# be passed in as positional arguments.
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
if not is_batched(images):
images = [images]
segmentation_maps = [segmentation_maps] if segmentation_maps is not None else None
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
do_center_crop=do_center_crop,
do_rescale=do_rescale,
do_normalize=do_normalize,
resample=resample,
size=size,
rescale_factor=rescale_factor,
crop_size=crop_size,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_segmentation_map(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`BeitForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If left to
None, predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Beit."""
import warnings
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_torch_available, is_torch_tensor, is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class BeitImageProcessor(BaseImageProcessor):
r"""
Constructs a BEiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
`preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
Can be overridden by the `crop_size` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
The mean to use if normalizing the image. This is a float or list of floats of length of the number of
channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
The standard deviation to use if normalizing the image. This is a float or list of floats of length of the
number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs
) -> None:
if "reduce_labels" in kwargs:
warnings.warn(
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use"
" `do_reduce_labels` instead.",
FutureWarning,
)
do_reduce_labels = kwargs.pop("reduce_labels")
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_reduce_labels = do_reduce_labels
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to (size["height"], size["width"]).
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=True, param_name="size")
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=True, param_name="size")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
image = self._preprocess(
image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
return image
def _preprocess_segmentation_map(
self,
segmentation_map: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_reduce_labels: bool = None,
):
"""Preprocesses a single segmentation map."""
# All transformations expect numpy arrays.
segmentation_map = to_numpy_array(segmentation_map)
# Add an axis to the segmentation maps for transformations.
if segmentation_map.ndim == 2:
segmentation_map = segmentation_map[None, ...]
added_dimension = True
else:
added_dimension = False
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_normalize=False,
do_rescale=False,
)
# Remove extra axis if added
if added_dimension:
segmentation_map = np.squeeze(segmentation_map, axis=0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
# Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
# be passed in as positional arguments.
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=True, param_name="size")
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
if not is_batched(images):
images = [images]
segmentation_maps = [segmentation_maps] if segmentation_maps is not None else None
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
do_center_crop=do_center_crop,
do_rescale=do_rescale,
do_normalize=do_normalize,
resample=resample,
size=size,
rescale_factor=rescale_factor,
crop_size=crop_size,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_segmentation_map(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=resample,
size=size,
do_center_crop=do_center_crop,
crop_size=crop_size,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`BeitForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If left to
None, predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/clip/image_processing_clip.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for CLIP."""
from typing import Any, Dict, List, Optional, Union
import numpy as np
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images
from ...utils import logging
from ...utils.import_utils import is_vision_available
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
def convert_to_rgb(image: Union[Any, PIL.Image.Image]) -> Union[Any, PIL.Image.Image]:
"""
Converts `PIL.Image.Image` to RGB format. Images in other formats are returned as is.
Args:
image (`PIL.Image.Image`):
The image to convert.
"""
if not isinstance(image, PIL.Image.Image):
return image
return image.convert("RGB")
class CLIPImageProcessor(BaseImageProcessor):
r"""
Constructs a CLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize:
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Image standard deviation.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else [0.48145466, 0.4578275, 0.40821073]
self.image_std = image_std if image_std is not None else [0.26862954, 0.26130258, 0.27577711]
self.do_convert_rgb = do_convert_rgb
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image. If the image is too small to be cropped to the size given, it will be padded (so the
returned result will always be of size `size`).
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image in the form of a dictionary with keys `height` and `width`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
**kwargs
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for CLIP."""
from typing import Any, Dict, List, Optional, Union
import numpy as np
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images
from ...utils import logging
from ...utils.import_utils import is_vision_available
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
def convert_to_rgb(image: Union[Any, PIL.Image.Image]) -> Union[Any, PIL.Image.Image]:
"""
Converts `PIL.Image.Image` to RGB format. Images in other formats are returned as is.
Args:
image (`PIL.Image.Image`):
The image to convert.
"""
if not isinstance(image, PIL.Image.Image):
return image
return image.convert("RGB")
class CLIPImageProcessor(BaseImageProcessor):
r"""
Constructs a CLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize:
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Image standard deviation.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else [0.48145466, 0.4578275, 0.40821073]
self.image_std = image_std if image_std is not None else [0.26862954, 0.26130258, 0.27577711]
self.do_convert_rgb = do_convert_rgb
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image. If the image is too small to be cropped to the size given, it will be padded (so the
returned result will always be of size `size`).
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image in the form of a dictionary with keys `height` and `width`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
**kwargs
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/deit/image_processing_deit.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for DeiT."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class DeiTImageProcessor(BaseImageProcessor):
r"""
Constructs a DeiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PIL.Image.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PIL.Image.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])` using the specified resampling filter.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(crop_size["height"], crop_size["width"])`. If the input size is smaller than
`crop_size` along any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample=None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
`True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for DeiT."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class DeiTImageProcessor(BaseImageProcessor):
r"""
Constructs a DeiT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`):
Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PIL.Image.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 256, "width": 256}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PIL.Image.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])` using the specified resampling filter.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(crop_size["height"], crop_size["width"])`. If the input size is smaller than
`crop_size` along any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample=None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
`True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/flava/image_processing_flava.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Flava."""
import math
import random
from functools import lru_cache
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
# These values are taken from CLIP
FLAVA_IMAGE_MEAN = [0.48145466, 0.4578275, 0.40821073]
FLAVA_IMAGE_STD = [0.26862954, 0.26130258, 0.27577711]
FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0]
FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0]
LOGIT_LAPLACE_EPS: float = 0.1
# Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py
class FlavaMaskingGenerator:
def __init__(
self,
input_size: Union[int, Tuple[int, int]] = 14,
total_mask_patches: int = 75,
mask_group_max_patches: Optional[int] = None,
mask_group_min_patches: int = 16,
mask_group_min_aspect_ratio: Optional[float] = 0.3,
mask_group_max_aspect_ratio: float = None,
):
if not isinstance(input_size, tuple):
input_size = (input_size,) * 2
self.height, self.width = input_size
self.num_patches = self.height * self.width
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
def __repr__(self):
repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
self.height,
self.width,
self.mask_group_min_patches,
self.mask_group_max_patches,
self.total_mask_patches,
self.log_aspect_ratio[0],
self.log_aspect_ratio[1],
)
return repr_str
def get_shape(self):
return self.height, self.width
def _mask(self, mask, max_mask_patches):
delta = 0
for _attempt in range(10):
target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
height = int(round(math.sqrt(target_area * aspect_ratio)))
width = int(round(math.sqrt(target_area / aspect_ratio)))
if width < self.width and height < self.height:
top = random.randint(0, self.height - height)
left = random.randint(0, self.width - width)
num_masked = mask[top : top + height, left : left + width].sum()
# Overlap
if 0 < height * width - num_masked <= max_mask_patches:
for i in range(top, top + height):
for j in range(left, left + width):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def __call__(self):
mask = np.zeros(shape=self.get_shape(), dtype=int)
mask_count = 0
while mask_count < self.total_mask_patches:
max_mask_patches = self.total_mask_patches - mask_count
max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
delta = self._mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
return mask
class FlavaImageProcessor(BaseImageProcessor):
r"""
Constructs a Flava image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in
`preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`.
crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the
`crop_size` parameter in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in `preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in
`preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
return_image_mask (`bool`, *optional*, defaults to `False`):
Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`.
input_size_patches (`int`, *optional*, defaults to 14):
Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden
by the `input_size_patches` parameter in `preprocess`.
total_mask_patches (`int`, *optional*, defaults to 75):
Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in
`preprocess`.
mask_group_min_patches (`int`, *optional*, defaults to 16):
Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches`
parameter in `preprocess`.
mask_group_max_patches (`int`, *optional*):
Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches`
parameter in `preprocess`.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter
in `preprocess`.
mask_group_max_aspect_ratio (`float`, *optional*):
Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter
in `preprocess`.
codebook_do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize`
parameter in `preprocess`. `codebook_size`.
codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in
`preprocess`.
codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample`
parameter in `preprocess`.
codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input for codebook at the center. If the input size is smaller than
`codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be
overridden by the `codebook_do_center_crop` parameter in `preprocess`.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size for codebook input when applying center-cropping. Can be overridden by the
`codebook_crop_size` parameter in `preprocess`.
codebook_do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be
overridden by the `codebook_do_rescale` parameter in `preprocess`.
codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the codebook image. Can be overridden by the
`codebook_rescale_factor` parameter in `preprocess`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `True`):
Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the
`codebook_do_map_pixels` parameter in `preprocess`.
codebook_do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can
be overridden by the `codebook_do_normalize` parameter in `preprocess`.
codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`):
The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden
by the `codebook_image_mean` parameter in `preprocess`.
codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can
be overridden by the `codebook_image_std` parameter in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Optional[Union[float, Iterable[float]]] = None,
# Mask related params
return_image_mask: bool = False,
input_size_patches: int = 14,
total_mask_patches: int = 75,
mask_group_min_patches: int = 16,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: float = 0.3,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: bool = False,
codebook_do_resize: bool = True,
codebook_size: bool = None,
codebook_resample: int = PILImageResampling.LANCZOS,
codebook_do_center_crop: bool = True,
codebook_crop_size: int = None,
codebook_do_rescale: bool = True,
codebook_rescale_factor: Union[int, float] = 1 / 255,
codebook_do_map_pixels: bool = True,
codebook_do_normalize: bool = True,
codebook_image_mean: Optional[Union[float, Iterable[float]]] = None,
codebook_image_std: Optional[Union[float, Iterable[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
codebook_size = get_size_dict(codebook_size)
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
codebook_crop_size = get_size_dict(codebook_crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN
self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD
self.return_image_mask = return_image_mask
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.return_codebook_pixels = return_codebook_pixels
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_rescale = codebook_do_rescale
self.codebook_rescale_factor = codebook_rescale_factor
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
@lru_cache()
def masking_generator(
self,
input_size_patches,
total_mask_patches,
mask_group_min_patches,
mask_group_max_patches,
mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio,
) -> FlavaMaskingGenerator:
return FlavaMaskingGenerator(
input_size=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain 'height' and 'width' keys. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def map_pixels(self, image: np.ndarray) -> np.ndarray:
return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_map_pixels: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
) -> np.ndarray:
"""Preprocesses a single image."""
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
if do_map_pixels:
image = self.map_pixels(image)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
return image
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
# Mask related params
return_image_mask: Optional[bool] = None,
input_size_patches: Optional[int] = None,
total_mask_patches: Optional[int] = None,
mask_group_min_patches: Optional[int] = None,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: Optional[float] = None,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: Optional[bool] = None,
codebook_do_resize: Optional[bool] = None,
codebook_size: Optional[Dict[str, int]] = None,
codebook_resample: Optional[int] = None,
codebook_do_center_crop: Optional[bool] = None,
codebook_crop_size: Optional[Dict[str, int]] = None,
codebook_do_rescale: Optional[bool] = None,
codebook_rescale_factor: Optional[float] = None,
codebook_do_map_pixels: Optional[bool] = None,
codebook_do_normalize: Optional[bool] = None,
codebook_image_mean: Optional[Iterable[float]] = None,
codebook_image_std: Optional[Iterable[float]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`):
Whether to return the image mask.
input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`):
Size of the patches to extract from the image.
total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`):
Total number of patches to extract from the image.
mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`):
Minimum number of patches to extract from the image.
mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`):
Maximum number of patches to extract from the image.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`):
Minimum aspect ratio of the patches to extract from the image.
mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`):
Maximum aspect ratio of the patches to extract from the image.
return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`):
Whether to return the codebook pixels.
codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`):
Whether to resize the codebook pixels.
codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`):
Size of the codebook pixels.
codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`):
Resampling filter to use if resizing the codebook pixels. This can be one of the enum
`PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`.
codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`):
Whether to center crop the codebook pixels.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`):
Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set
to `True`.
codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`):
Whether to rescale the codebook pixels values between [0 - 1].
codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`):
Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`):
Whether to map the codebook pixels values.
codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`):
Whether to normalize the codebook pixels.
codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`):
Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`.
codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`):
Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is
set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask
input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches
total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches
mask_group_min_patches = (
mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches
)
mask_group_max_patches = (
mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches
)
mask_group_min_aspect_ratio = (
mask_group_min_aspect_ratio
if mask_group_min_aspect_ratio is not None
else self.mask_group_min_aspect_ratio
)
mask_group_max_aspect_ratio = (
mask_group_max_aspect_ratio
if mask_group_max_aspect_ratio is not None
else self.mask_group_max_aspect_ratio
)
return_codebook_pixels = (
return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels
)
codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize
codebook_size = codebook_size if codebook_size is not None else self.codebook_size
codebook_size = get_size_dict(codebook_size)
codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample
codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale
codebook_rescale_factor = (
codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor
)
codebook_do_center_crop = (
codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop
)
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size
codebook_crop_size = get_size_dict(codebook_crop_size)
codebook_do_map_pixels = (
codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels
)
codebook_do_normalize = (
codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize
)
codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean
codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
processed_images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_map_pixels=False,
data_format=data_format,
)
for img in images
]
data = {"pixel_values": processed_images}
if return_codebook_pixels:
codebook_images = [
self._preprocess_image(
image=img,
do_resize=codebook_do_resize,
size=codebook_size,
resample=codebook_resample,
do_center_crop=codebook_do_center_crop,
crop_size=codebook_crop_size,
do_rescale=codebook_do_rescale,
rescale_factor=codebook_rescale_factor,
do_normalize=codebook_do_normalize,
image_mean=codebook_image_mean,
image_std=codebook_image_std,
do_map_pixels=codebook_do_map_pixels,
data_format=data_format,
)
for img in images
]
data["codebook_pixel_values"] = codebook_images
if return_image_mask:
mask_generator = self.masking_generator(
input_size_patches=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
masks = [mask_generator() for _ in images]
data["bool_masked_pos"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Flava."""
import math
import random
from functools import lru_cache
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
# These values are taken from CLIP
FLAVA_IMAGE_MEAN = [0.48145466, 0.4578275, 0.40821073]
FLAVA_IMAGE_STD = [0.26862954, 0.26130258, 0.27577711]
FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0]
FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0]
LOGIT_LAPLACE_EPS: float = 0.1
# Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py
class FlavaMaskingGenerator:
def __init__(
self,
input_size: Union[int, Tuple[int, int]] = 14,
total_mask_patches: int = 75,
mask_group_max_patches: Optional[int] = None,
mask_group_min_patches: int = 16,
mask_group_min_aspect_ratio: Optional[float] = 0.3,
mask_group_max_aspect_ratio: float = None,
):
if not isinstance(input_size, tuple):
input_size = (input_size,) * 2
self.height, self.width = input_size
self.num_patches = self.height * self.width
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
def __repr__(self):
repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
self.height,
self.width,
self.mask_group_min_patches,
self.mask_group_max_patches,
self.total_mask_patches,
self.log_aspect_ratio[0],
self.log_aspect_ratio[1],
)
return repr_str
def get_shape(self):
return self.height, self.width
def _mask(self, mask, max_mask_patches):
delta = 0
for _attempt in range(10):
target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
height = int(round(math.sqrt(target_area * aspect_ratio)))
width = int(round(math.sqrt(target_area / aspect_ratio)))
if width < self.width and height < self.height:
top = random.randint(0, self.height - height)
left = random.randint(0, self.width - width)
num_masked = mask[top : top + height, left : left + width].sum()
# Overlap
if 0 < height * width - num_masked <= max_mask_patches:
for i in range(top, top + height):
for j in range(left, left + width):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def __call__(self):
mask = np.zeros(shape=self.get_shape(), dtype=int)
mask_count = 0
while mask_count < self.total_mask_patches:
max_mask_patches = self.total_mask_patches - mask_count
max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
delta = self._mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
return mask
class FlavaImageProcessor(BaseImageProcessor):
r"""
Constructs a Flava image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in
`preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`.
crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the
`crop_size` parameter in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in `preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in
`preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
return_image_mask (`bool`, *optional*, defaults to `False`):
Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`.
input_size_patches (`int`, *optional*, defaults to 14):
Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden
by the `input_size_patches` parameter in `preprocess`.
total_mask_patches (`int`, *optional*, defaults to 75):
Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in
`preprocess`.
mask_group_min_patches (`int`, *optional*, defaults to 16):
Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches`
parameter in `preprocess`.
mask_group_max_patches (`int`, *optional*):
Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches`
parameter in `preprocess`.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter
in `preprocess`.
mask_group_max_aspect_ratio (`float`, *optional*):
Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter
in `preprocess`.
codebook_do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize`
parameter in `preprocess`. `codebook_size`.
codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in
`preprocess`.
codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample`
parameter in `preprocess`.
codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input for codebook at the center. If the input size is smaller than
`codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be
overridden by the `codebook_do_center_crop` parameter in `preprocess`.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size for codebook input when applying center-cropping. Can be overridden by the
`codebook_crop_size` parameter in `preprocess`.
codebook_do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be
overridden by the `codebook_do_rescale` parameter in `preprocess`.
codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the codebook image. Can be overridden by the
`codebook_rescale_factor` parameter in `preprocess`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `True`):
Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the
`codebook_do_map_pixels` parameter in `preprocess`.
codebook_do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can
be overridden by the `codebook_do_normalize` parameter in `preprocess`.
codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`):
The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden
by the `codebook_image_mean` parameter in `preprocess`.
codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can
be overridden by the `codebook_image_std` parameter in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Optional[Union[float, Iterable[float]]] = None,
# Mask related params
return_image_mask: bool = False,
input_size_patches: int = 14,
total_mask_patches: int = 75,
mask_group_min_patches: int = 16,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: float = 0.3,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: bool = False,
codebook_do_resize: bool = True,
codebook_size: bool = None,
codebook_resample: int = PILImageResampling.LANCZOS,
codebook_do_center_crop: bool = True,
codebook_crop_size: int = None,
codebook_do_rescale: bool = True,
codebook_rescale_factor: Union[int, float] = 1 / 255,
codebook_do_map_pixels: bool = True,
codebook_do_normalize: bool = True,
codebook_image_mean: Optional[Union[float, Iterable[float]]] = None,
codebook_image_std: Optional[Union[float, Iterable[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN
self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD
self.return_image_mask = return_image_mask
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.return_codebook_pixels = return_codebook_pixels
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_rescale = codebook_do_rescale
self.codebook_rescale_factor = codebook_rescale_factor
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
@lru_cache()
def masking_generator(
self,
input_size_patches,
total_mask_patches,
mask_group_min_patches,
mask_group_max_patches,
mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio,
) -> FlavaMaskingGenerator:
return FlavaMaskingGenerator(
input_size=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain 'height' and 'width' keys. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain 'height' and 'width' keys. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def map_pixels(self, image: np.ndarray) -> np.ndarray:
return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_map_pixels: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
) -> np.ndarray:
"""Preprocesses a single image."""
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
if do_map_pixels:
image = self.map_pixels(image)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
return image
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
# Mask related params
return_image_mask: Optional[bool] = None,
input_size_patches: Optional[int] = None,
total_mask_patches: Optional[int] = None,
mask_group_min_patches: Optional[int] = None,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: Optional[float] = None,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: Optional[bool] = None,
codebook_do_resize: Optional[bool] = None,
codebook_size: Optional[Dict[str, int]] = None,
codebook_resample: Optional[int] = None,
codebook_do_center_crop: Optional[bool] = None,
codebook_crop_size: Optional[Dict[str, int]] = None,
codebook_do_rescale: Optional[bool] = None,
codebook_rescale_factor: Optional[float] = None,
codebook_do_map_pixels: Optional[bool] = None,
codebook_do_normalize: Optional[bool] = None,
codebook_image_mean: Optional[Iterable[float]] = None,
codebook_image_std: Optional[Iterable[float]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`):
Whether to return the image mask.
input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`):
Size of the patches to extract from the image.
total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`):
Total number of patches to extract from the image.
mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`):
Minimum number of patches to extract from the image.
mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`):
Maximum number of patches to extract from the image.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`):
Minimum aspect ratio of the patches to extract from the image.
mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`):
Maximum aspect ratio of the patches to extract from the image.
return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`):
Whether to return the codebook pixels.
codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`):
Whether to resize the codebook pixels.
codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`):
Size of the codebook pixels.
codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`):
Resampling filter to use if resizing the codebook pixels. This can be one of the enum
`PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`.
codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`):
Whether to center crop the codebook pixels.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`):
Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set
to `True`.
codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`):
Whether to rescale the codebook pixels values between [0 - 1].
codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`):
Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`):
Whether to map the codebook pixels values.
codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`):
Whether to normalize the codebook pixels.
codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`):
Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`.
codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`):
Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is
set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask
input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches
total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches
mask_group_min_patches = (
mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches
)
mask_group_max_patches = (
mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches
)
mask_group_min_aspect_ratio = (
mask_group_min_aspect_ratio
if mask_group_min_aspect_ratio is not None
else self.mask_group_min_aspect_ratio
)
mask_group_max_aspect_ratio = (
mask_group_max_aspect_ratio
if mask_group_max_aspect_ratio is not None
else self.mask_group_max_aspect_ratio
)
return_codebook_pixels = (
return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels
)
codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize
codebook_size = codebook_size if codebook_size is not None else self.codebook_size
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample
codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale
codebook_rescale_factor = (
codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor
)
codebook_do_center_crop = (
codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop
)
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
codebook_do_map_pixels = (
codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels
)
codebook_do_normalize = (
codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize
)
codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean
codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
processed_images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_map_pixels=False,
data_format=data_format,
)
for img in images
]
data = {"pixel_values": processed_images}
if return_codebook_pixels:
codebook_images = [
self._preprocess_image(
image=img,
do_resize=codebook_do_resize,
size=codebook_size,
resample=codebook_resample,
do_center_crop=codebook_do_center_crop,
crop_size=codebook_crop_size,
do_rescale=codebook_do_rescale,
rescale_factor=codebook_rescale_factor,
do_normalize=codebook_do_normalize,
image_mean=codebook_image_mean,
image_std=codebook_image_std,
do_map_pixels=codebook_do_map_pixels,
data_format=data_format,
)
for img in images
]
data["codebook_pixel_values"] = codebook_images
if return_image_mask:
mask_generator = self.masking_generator(
input_size_patches=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
masks = [mask_generator() for _ in images]
data["bool_masked_pos"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/levit/image_processing_levit.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for LeViT."""
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
logger = logging.get_logger(__name__)
class LevitImageProcessor(BaseImageProcessor):
r"""
Constructs a LeViT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Wwhether to resize the shortest edge of the input to int(256/224 *`size`). Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 224}`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will
be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest
edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this
value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width,
size["shortest_egde"])`. Can be overridden by the `size` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether or not to center crop the input to `(crop_size["height"], crop_size["width"])`. Can be overridden
by the `do_center_crop` parameter in the `preprocess` method.
crop_size (`Dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired image size after `center_crop`. Can be overridden by the `crop_size` parameter in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`List[int]`, defaults to `[0.229, 0.224, 0.225]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`List[int]`, defaults to `[0.485, 0.456, 0.406]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN,
image_std: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
If size is a dict with keys "width" and "height", the image will be resized to `(size["height"],
size["width"])`.
If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`.
The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled
to `(size["shortest_egde"] * height / width, size["shortest_egde"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
`c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
i.e, if height > width, then image will be rescaled to (size * height / width, size).
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size_dict = get_size_dict(size, default_to_square=False)
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
shortest_edge = int((256 / 224) * size["shortest_edge"])
output_size = get_resize_output_image_size(image, size=shortest_edge, default_to_square=False)
size_dict = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}"
)
return resize(
image, size=(size_dict["height"], size_dict["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Dict `{"height": int, "width": int}` specifying the size of the output image after cropping.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean.
std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Optional[Union[float, Iterable[float]]] = None,
return_tensors: Optional[TensorType] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or batch of images to be used as input to a LeViT model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
`c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
i.e, if height > width, then image will be rescaled to (size * height / width, size).
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the output image after center cropping. Crops images to (crop_size["height"],
crop_size["width"]).
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image pixel values by `rescaling_factor` - typical to values between 0 and 1.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Factor to rescale the image pixel values by.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image pixel values by `image_mean` and `image_std`.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to normalize the image pixel values by.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to normalize the image pixel values by.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image, size, resample) for image in images]
if do_center_crop:
images = [self.center_crop(image, crop_size) for image in images]
if do_rescale:
images = [self.rescale(image, rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image, image_mean, image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for LeViT."""
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
logger = logging.get_logger(__name__)
class LevitImageProcessor(BaseImageProcessor):
r"""
Constructs a LeViT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Wwhether to resize the shortest edge of the input to int(256/224 *`size`). Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 224}`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will
be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest
edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this
value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width,
size["shortest_egde"])`. Can be overridden by the `size` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether or not to center crop the input to `(crop_size["height"], crop_size["width"])`. Can be overridden
by the `do_center_crop` parameter in the `preprocess` method.
crop_size (`Dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired image size after `center_crop`. Can be overridden by the `crop_size` parameter in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`List[int]`, defaults to `[0.229, 0.224, 0.225]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`List[int]`, defaults to `[0.485, 0.456, 0.406]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN,
image_std: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
If size is a dict with keys "width" and "height", the image will be resized to `(size["height"],
size["width"])`.
If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`.
The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled
to `(size["shortest_egde"] * height / width, size["shortest_egde"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
`c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
i.e, if height > width, then image will be rescaled to (size * height / width, size).
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size_dict = get_size_dict(size, default_to_square=False)
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
shortest_edge = int((256 / 224) * size["shortest_edge"])
output_size = get_resize_output_image_size(image, size=shortest_edge, default_to_square=False)
size_dict = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}"
)
return resize(
image, size=(size_dict["height"], size_dict["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Dict `{"height": int, "width": int}` specifying the size of the output image after cropping.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"Size dict must have keys 'height' and 'width'. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean.
std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Optional[Union[float, Iterable[float]]] = None,
return_tensors: Optional[TensorType] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or batch of images to be used as input to a LeViT model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
`c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
i.e, if height > width, then image will be rescaled to (size * height / width, size).
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the output image after center cropping. Crops images to (crop_size["height"],
crop_size["width"]).
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image pixel values by `rescaling_factor` - typical to values between 0 and 1.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Factor to rescale the image pixel values by.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image pixel values by `image_mean` and `image_std`.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to normalize the image pixel values by.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to normalize the image pixel values by.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image, size, resample) for image in images]
if do_center_crop:
images = [self.center_crop(image, crop_size) for image in images]
if do_rescale:
images = [self.rescale(image, rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image, image_mean, image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for MobileNetV2."""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_torch_available, is_torch_tensor
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class MobileNetV2ImageProcessor(BaseImageProcessor):
r"""
Constructs a MobileNetV2 image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
`preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
Can be overridden by the `crop_size` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize:
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 256}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
) -> np.ndarray:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean to use for normalization.
std (`float` or `List[float]`):
Image standard deviation to use for normalization.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The normalized image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports
PyTorch.
Args:
outputs ([`MobileNetV2ForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]`, *optional*):
A list of length `batch_size`, where each item is a `Tuple[int, int]` corresponding to the requested
final size (height, width) of each prediction. If left to None, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for MobileNetV2."""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_torch_available, is_torch_tensor
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class MobileNetV2ImageProcessor(BaseImageProcessor):
r"""
Constructs a MobileNetV2 image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
`preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
Can be overridden by the `crop_size` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize:
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 256}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self, image: np.ndarray, scale: float, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs
) -> np.ndarray:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean to use for normalization.
std (`float` or `List[float]`):
Image standard deviation to use for normalization.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The normalized image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`MobileNetV2ForSemanticSegmentation`] into semantic segmentation maps. Only supports
PyTorch.
Args:
outputs ([`MobileNetV2ForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]`, *optional*):
A list of length `batch_size`, where each item is a `Tuple[int, int]` corresponding to the requested
final size (height, width) of each prediction. If left to None, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/mobilevit/image_processing_mobilevit.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for MobileViT."""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_torch_available, is_torch_tensor, is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, get_resize_output_image_size, rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
def flip_channel_order(image: np.ndarray, data_format: Optional[ChannelDimension]) -> np.ndarray:
"""
Flip the color channels from RGB to BGR or vice versa.
Args:
image (`np.ndarray`):
The image, represented as a numpy array.
data_format (`ChannelDimension`, *`optional`*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
Returns:
`np.ndarray`: The image with the flipped color channels.
"""
input_data_format = infer_channel_dimension_format(image)
if input_data_format == ChannelDimension.LAST:
image = image[..., ::-1]
elif input_data_format == ChannelDimension.FIRST:
image = image[:, ::-1, ...]
else:
raise ValueError(f"Invalid input channel dimension format: {input_data_format}")
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
return image
class MobileViTImageProcessor(BaseImageProcessor):
r"""
Constructs a MobileViT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Controls the size of the output image after resizing. Can be overridden by the `size` parameter in the
`preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in
the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
Desired output size `(size["height"], size["width"])` when applying center-cropping. Can be overridden by
the `crop_size` parameter in the `preprocess` method.
do_flip_channel_order (`bool`, *optional*, defaults to `True`):
Whether to flip the color channels from RGB to BGR. Can be overridden by the `do_flip_channel_order`
parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_flip_channel_order: bool = True,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_flip_channel_order = do_flip_channel_order
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PIL.Image.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Controls the size of the output image. The shortest edge of the image will be resized to
`size["shortest_edge"]` while maintaining the aspect ratio.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to size `(size["height], size["width"])`. If the input size is smaller than `size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def flip_channel_order(
self, image: np.ndarray, data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Flip the color channels from RGB to BGR or vice versa.
Args:
image (`np.ndarray`):
The image, represented as a numpy array.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return flip_channel_order(image, data_format=data_format)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_flip_channel_order: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image by rescale factor.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop if `do_center_crop` is set to `True`.
do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`):
Whether to flip the channel order of the image.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_flip_channel_order = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
images = [self.flip_channel_order(image=image) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`MobileViTForSemanticSegmentation`] into semantic segmentation maps. Only supports
PyTorch.
Args:
outputs ([`MobileViTForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]`, *optional*):
A list of length `batch_size`, where each item is a `Tuple[int, int]` corresponding to the requested
final size (height, width) of each prediction. If left to None, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for MobileViT."""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_torch_available, is_torch_tensor, is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, get_resize_output_image_size, rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
def flip_channel_order(image: np.ndarray, data_format: Optional[ChannelDimension]) -> np.ndarray:
"""
Flip the color channels from RGB to BGR or vice versa.
Args:
image (`np.ndarray`):
The image, represented as a numpy array.
data_format (`ChannelDimension`, *`optional`*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
Returns:
`np.ndarray`: The image with the flipped color channels.
"""
input_data_format = infer_channel_dimension_format(image)
if input_data_format == ChannelDimension.LAST:
image = image[..., ::-1]
elif input_data_format == ChannelDimension.FIRST:
image = image[:, ::-1, ...]
else:
raise ValueError(f"Invalid input channel dimension format: {input_data_format}")
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
return image
class MobileViTImageProcessor(BaseImageProcessor):
r"""
Constructs a MobileViT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Controls the size of the output image after resizing. Can be overridden by the `size` parameter in the
`preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in
the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
Desired output size `(size["height"], size["width"])` when applying center-cropping. Can be overridden by
the `crop_size` parameter in the `preprocess` method.
do_flip_channel_order (`bool`, *optional*, defaults to `True`):
Whether to flip the color channels from RGB to BGR. Can be overridden by the `do_flip_channel_order`
parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_flip_channel_order: bool = True,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_flip_channel_order = do_flip_channel_order
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PIL.Image.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Controls the size of the output image. The shortest edge of the image will be resized to
`size["shortest_edge"]` while maintaining the aspect ratio.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}")
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to size `(size["height], size["width"])`. If the input size is smaller than `size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def flip_channel_order(
self, image: np.ndarray, data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Flip the color channels from RGB to BGR or vice versa.
Args:
image (`np.ndarray`):
The image, represented as a numpy array.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return flip_channel_order(image, data_format=data_format)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_flip_channel_order: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image by rescale factor.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop if `do_center_crop` is set to `True`.
do_flip_channel_order (`bool`, *optional*, defaults to `self.do_flip_channel_order`):
Whether to flip the channel order of the image.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_flip_channel_order = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
images = [self.flip_channel_order(image=image) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`MobileViTForSemanticSegmentation`] into semantic segmentation maps. Only supports
PyTorch.
Args:
outputs ([`MobileViTForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]`, *optional*):
A list of length `batch_size`, where each item is a `Tuple[int, int]` corresponding to the requested
final size (height, width) of each prediction. If left to None, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/perceiver/image_processing_perceiver.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Perceiver."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class PerceiverImageProcessor(BaseImageProcessor):
r"""
Constructs a Perceiver image processor.
Args:
do_center_crop (`bool`, `optional`, defaults to `True`):
Whether or not to center crop the image. If the input size if smaller than `crop_size` along any edge, the
image will be padded with zeros and then center cropped. Can be overridden by the `do_center_crop`
parameter in the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
Desired output size when applying center-cropping. Can be overridden by the `crop_size` parameter in the
`preprocess` method.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image to `(size["height"], size["width"])`. Can be overridden by the `do_resize`
parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
in the `preprocess` method.
do_normalize:
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256}
crop_size = get_size_dict(crop_size)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def center_crop(
self,
image: np.ndarray,
crop_size: Dict[str, int],
size: Optional[int] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(size["height"] / crop_size["height"] * min_dim, size["width"] / crop_size["width"] *
min_dim)`. Where `min_dim = min(size["height"], size["width"])`.
If the input size is smaller than `crop_size` along any edge, the image will be padded with zeros and then
center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
crop_size (`Dict[str, int]`):
Desired output size after applying the center crop.
size (`Dict[str, int]`, *optional*):
Size of the image after resizing. If not provided, the self.size attribute will be used.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = self.size if size is None else size
size = get_size_dict(size)
crop_size = get_size_dict(crop_size)
height, width = get_image_size(image)
min_dim = min(height, width)
cropped_height = (size["height"] / crop_size["height"]) * min_dim
cropped_width = (size["width"] / crop_size["width"]) * min_dim
return center_crop(image, size=(cropped_height, cropped_width), data_format=data_format, **kwargs)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PIL.Image.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean.
std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image to `crop_size`.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Desired output size after applying the center crop.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_center_crop and crop_size is None:
raise ValueError("If `do_center_crop` is set to `True`, `crop_size` must be provided.")
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and image standard deviation must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_center_crop:
images = [self.center_crop(image, crop_size, size=size) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Perceiver."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class PerceiverImageProcessor(BaseImageProcessor):
r"""
Constructs a Perceiver image processor.
Args:
do_center_crop (`bool`, `optional`, defaults to `True`):
Whether or not to center crop the image. If the input size if smaller than `crop_size` along any edge, the
image will be padded with zeros and then center cropped. Can be overridden by the `do_center_crop`
parameter in the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
Desired output size when applying center-cropping. Can be overridden by the `crop_size` parameter in the
`preprocess` method.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image to `(size["height"], size["width"])`. Can be overridden by the `do_resize`
parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
in the `preprocess` method.
do_normalize:
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256}
crop_size = get_size_dict(crop_size, param_name="crop_size")
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def center_crop(
self,
image: np.ndarray,
crop_size: Dict[str, int],
size: Optional[int] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(size["height"] / crop_size["height"] * min_dim, size["width"] / crop_size["width"] *
min_dim)`. Where `min_dim = min(size["height"], size["width"])`.
If the input size is smaller than `crop_size` along any edge, the image will be padded with zeros and then
center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
crop_size (`Dict[str, int]`):
Desired output size after applying the center crop.
size (`Dict[str, int]`, *optional*):
Size of the image after resizing. If not provided, the self.size attribute will be used.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = self.size if size is None else size
size = get_size_dict(size)
crop_size = get_size_dict(crop_size, param_name="crop_size")
height, width = get_image_size(image)
min_dim = min(height, width)
cropped_height = (size["height"] / crop_size["height"]) * min_dim
cropped_width = (size["width"] / crop_size["width"]) * min_dim
return center_crop(image, size=(cropped_height, cropped_width), data_format=data_format, **kwargs)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PIL.Image.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean.
std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image to `crop_size`.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Desired output size after applying the center crop.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_center_crop and crop_size is None:
raise ValueError("If `do_center_crop` is set to `True`, `crop_size` must be provided.")
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and image standard deviation must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_center_crop:
images = [self.center_crop(image, crop_size, size=size) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, resample=resample) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/poolformer/image_processing_poolformer.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for PoolFormer."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class PoolFormerImageProcessor(BaseImageProcessor):
r"""
Constructs a PoolFormer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. If crop_pct is
unset:
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
aspect ratio.
If crop_pct is set:
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
int(floor(w/crop_pct)))`
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
crop_pct (`float`, *optional*, defaults to `0.9`):
Percentage of the image to crop from the center. Can be overridden by `crop_pct` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in the `preprocess`
method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying center crop. Only has an effect if `do_center_crop` is set to `True`. Can
be overridden by the `crop_size` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
crop_pct: int = 0.9,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.crop_pct = crop_pct
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
crop_pct: Optional[float] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
If crop_pct is unset:
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
aspect ratio.
if crop_pct is set:
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
int(floor(w/crop_pct)))`
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
crop_pct (`float`, *optional*):
Percentage of the image that will be cropped from the center. If set, the image is resized
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
if crop_pct is not None:
if "shortest_edge" in size:
scale_size = int(size["shortest_edge"] / crop_pct)
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
scale_size = int(size["height"] / crop_pct)
else:
scale_size = (int(size["height"] / crop_pct), int(size["width"] / crop_pct))
else:
raise ValueError("Invalid size for resize: {}".format(size))
output_size = get_resize_output_image_size(image, size=scale_size, default_to_square=False)
else:
if "shortest_edge" in size:
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError("Invalid size for resize: {}".format(size))
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
crop_pct: int = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
Percentage of the image to crop. Only has an effect if `do_resize` is set to `True`.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying center crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_pct is None:
raise ValueError("Crop_pct must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, crop_pct=crop_pct, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for PoolFormer."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class PoolFormerImageProcessor(BaseImageProcessor):
r"""
Constructs a PoolFormer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. If crop_pct is
unset:
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
aspect ratio.
If crop_pct is set:
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
int(floor(w/crop_pct)))`
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
crop_pct (`float`, *optional*, defaults to `0.9`):
Percentage of the image to crop from the center. Can be overridden by `crop_pct` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in the `preprocess`
method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying center crop. Only has an effect if `do_center_crop` is set to `True`. Can
be overridden by the `crop_size` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
crop_pct: int = 0.9,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.crop_pct = crop_pct
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
crop_pct: Optional[float] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
If crop_pct is unset:
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
aspect ratio.
if crop_pct is set:
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
int(floor(w/crop_pct)))`
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
crop_pct (`float`, *optional*):
Percentage of the image that will be cropped from the center. If set, the image is resized
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
if crop_pct is not None:
if "shortest_edge" in size:
scale_size = int(size["shortest_edge"] / crop_pct)
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
scale_size = int(size["height"] / crop_pct)
else:
scale_size = (int(size["height"] / crop_pct), int(size["width"] / crop_pct))
else:
raise ValueError("Invalid size for resize: {}".format(size))
output_size = get_resize_output_image_size(image, size=scale_size, default_to_square=False)
else:
if "shortest_edge" in size:
output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError("Invalid size for resize: {}".format(size))
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to (size["height"], size["width"]). If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"size must contain 'height' and 'width' as keys. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
crop_pct: int = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
Percentage of the image to crop. Only has an effect if `do_resize` is set to `True`.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying center crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
if not is_batched(images):
images = [images]
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_pct is None:
raise ValueError("Crop_pct must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_resize:
images = [self.resize(image=image, size=size, crop_pct=crop_pct, resample=resample) for image in images]
if do_center_crop:
images = [self.center_crop(image=image, size=crop_size) for image in images]
if do_rescale:
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
if do_normalize:
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/segformer/image_processing_segformer.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Segformer."""
import warnings
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_torch_available, is_torch_tensor, is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL.Image
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class SegformerImageProcessor(BaseImageProcessor):
r"""
Constructs a Segformer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 512, "width": 512}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs
) -> None:
if "reduce_labels" in kwargs:
warnings.warn(
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use "
"`do_reduce_labels` instead.",
FutureWarning,
)
do_reduce_labels = kwargs.pop("reduce_labels")
super().__init__(**kwargs)
size = size if size is not None else {"height": 512, "width": 512}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_reduce_labels = do_reduce_labels
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: bool,
do_resize: bool,
do_rescale: bool,
do_normalize: bool,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
rescale_factor: Optional[float] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
image = self._preprocess(
image=image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
return image
def _preprocess_mask(
self,
segmentation_map: ImageInput,
do_reduce_labels: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
) -> np.ndarray:
"""Preprocesses a single mask."""
segmentation_map = to_numpy_array(segmentation_map)
# Add channel dimension if missing - needed for certain transformations
added_channel_dim = False
if segmentation_map.ndim == 2:
added_channel_dim = True
segmentation_map = segmentation_map[None, ...]
# reduce zero label if needed
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=PIL.Image.NEAREST,
size=size,
do_rescale=False,
do_normalize=False,
)
# Remove extra channel dimension if added for processing
if added_channel_dim:
segmentation_map = segmentation_map.squeeze(0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
"""
Preprocesses a batch of images and optionally segmentation maps.
Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be
passed in as positional arguments.
"""
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
segmentation_maps (`ImageInput`, *optional*):
Segmentation map to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize` is applied.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
resample = resample if resample is not None else self.resample
size = size if size is not None else self.size
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
if not is_batched(images):
images = [images]
segmentation_maps = [segmentation_maps] if segmentation_maps is not None else None
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
resample=resample,
size=size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_mask(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=PIL.Image.NEAREST,
size=size,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`SegformerForSemanticSegmentation`] into semantic segmentation maps. Only supports
PyTorch.
Args:
outputs ([`SegformerForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If left to
None, predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Segformer."""
import warnings
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.utils import is_torch_available, is_torch_tensor, is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL.Image
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class SegformerImageProcessor(BaseImageProcessor):
r"""
Constructs a Segformer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 512, "width": 512}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: bool = False,
**kwargs
) -> None:
if "reduce_labels" in kwargs:
warnings.warn(
"The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use "
"`do_reduce_labels` instead.",
FutureWarning,
)
do_reduce_labels = kwargs.pop("reduce_labels")
super().__init__(**kwargs)
size = size if size is not None else {"height": 512, "width": 512}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_reduce_labels = do_reduce_labels
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
return resize(
image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs
)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
any edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: bool,
do_resize: bool,
do_rescale: bool,
do_normalize: bool,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
rescale_factor: Optional[float] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
image = self._preprocess(
image=image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format)
return image
def _preprocess_mask(
self,
segmentation_map: ImageInput,
do_reduce_labels: bool = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
) -> np.ndarray:
"""Preprocesses a single mask."""
segmentation_map = to_numpy_array(segmentation_map)
# Add channel dimension if missing - needed for certain transformations
added_channel_dim = False
if segmentation_map.ndim == 2:
added_channel_dim = True
segmentation_map = segmentation_map[None, ...]
# reduce zero label if needed
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=PIL.Image.NEAREST,
size=size,
do_rescale=False,
do_normalize=False,
)
# Remove extra channel dimension if added for processing
if added_channel_dim:
segmentation_map = segmentation_map.squeeze(0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
def __call__(self, images, segmentation_maps=None, **kwargs):
"""
Preprocesses a batch of images and optionally segmentation maps.
Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be
passed in as positional arguments.
"""
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
segmentation_maps (`ImageInput`, *optional*):
Segmentation map to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize` is applied.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
resample = resample if resample is not None else self.resample
size = size if size is not None else self.size
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
if not is_batched(images):
images = [images]
segmentation_maps = [segmentation_maps] if segmentation_maps is not None else None
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if segmentation_maps is not None and not valid_images(segmentation_maps):
raise ValueError(
"Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
resample=resample,
size=size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_mask(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
resample=PIL.Image.NEAREST,
size=size,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`SegformerForSemanticSegmentation`] into semantic segmentation maps. Only supports
PyTorch.
Args:
outputs ([`SegformerForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If left to
None, predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/videomae/image_processing_videomae.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for VideoMAE."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
def make_batched(videos) -> List[List[ImageInput]]:
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(videos):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}")
class VideoMAEImageProcessor(BaseImageProcessor):
r"""
Constructs a VideoMAE image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the output image after resizing. The shortest edge of the image will be resized to
`size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by
`size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
parameter in the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
shortest edge of length `s` while keeping the aspect ratio of the original image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "shortest_edge" in size:
output_size = get_resize_output_image_size(image, size["shortest_edge"], default_to_square=False)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
) -> np.ndarray:
"""Preprocesses a single image."""
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
if do_center_crop:
image = self.center_crop(image, size=crop_size)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
image = to_channel_dimension_format(image, data_format)
return image
def preprocess(
self,
videos: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
Whether to centre crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying the centre crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the inferred channel dimension format of the input image.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
if not valid_images(videos):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
videos = make_batched(videos)
videos = [
[
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
)
for img in video
]
for video in videos
]
data = {"pixel_values": videos}
return BatchFeature(data=data, tensor_type=return_tensors)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for VideoMAE."""
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
def make_batched(videos) -> List[List[ImageInput]]:
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
return [videos]
elif is_valid_image(videos):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}")
class VideoMAEImageProcessor(BaseImageProcessor):
r"""
Constructs a VideoMAE image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the output image after resizing. The shortest edge of the image will be resized to
`size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by
`size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop`
parameter in the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will
have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its
shortest edge of length `s` while keeping the aspect ratio of the original image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" in size:
output_size = get_resize_output_image_size(image, size["shortest_edge"], default_to_square=False)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
def center_crop(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `size` along any
edge, the image is padded with 0's and then center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
size (`Dict[str, int]`):
Size of the output image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}")
return center_crop(image, size=(size["height"], size["width"]), data_format=data_format, **kwargs)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, List[float]],
std: Union[float, List[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
) -> np.ndarray:
"""Preprocesses a single image."""
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample)
if do_center_crop:
image = self.center_crop(image, size=crop_size)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std)
image = to_channel_dimension_format(image, data_format)
return image
def preprocess(
self,
videos: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`):
Whether to centre crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying the centre crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the inferred channel dimension format of the input image.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
if not valid_images(videos):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
videos = make_batched(videos)
videos = [
[
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
)
for img in video
]
for video in videos
]
data = {"pixel_values": videos}
return BatchFeature(data=data, tensor_type=return_tensors)
| 1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/rembert/tokenization_rembert.py | # coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for RemBERT."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/rembert": 256,
}
class RemBertTokenizer(PreTrainedTokenizer):
"""
Construct a RemBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
do_lower_case=False,
remove_space=True,
keep_accents=True,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs
):
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(vocab_file)
@property
def vocab_size(self):
return len(self.sp_model)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text, sample=False):
"""Tokenize a string."""
pieces = self.sp_model.EncodeAsPieces(text)
return pieces
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index)
def convert_tokens_to_string(self, tokens):
out_string = self.sp_model.decode_pieces(tokens)
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A REMBERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| # coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for RemBERT."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/rembert": 256,
}
class RemBertTokenizer(PreTrainedTokenizer):
"""
Construct a RemBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
do_lower_case=False,
remove_space=True,
keep_accents=True,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs
):
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(vocab_file)
@property
def vocab_size(self):
return len(self.sp_model)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text, sample=False):
"""Tokenize a string."""
pieces = self.sp_model.EncodeAsPieces(text)
return pieces
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index)
def convert_tokens_to_string(self, tokens):
out_string = self.sp_model.decode_pieces(tokens)
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A REMBERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/markuplm/processing_markuplm.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MarkupLM.
"""
from typing import Optional, Union
from ...file_utils import TensorType
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy
class MarkupLMProcessor(ProcessorMixin):
r"""
Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single
processor.
[`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model.
It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings.
Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level
`input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`.
Args:
feature_extractor (`MarkupLMFeatureExtractor`):
An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`):
An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input.
parse_html (`bool`, *optional*, defaults to `True`):
Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths.
"""
feature_extractor_class = "MarkupLMFeatureExtractor"
tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast")
parse_html = True
def __call__(
self,
html_strings=None,
nodes=None,
xpaths=None,
node_labels=None,
questions=None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs
) -> BatchEncoding:
"""
This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it
passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and
returns the output.
Optionally, one can also provide a `text` argument which is passed along as first sequence.
Please refer to the docstring of the above two methods for more information.
"""
# first, create nodes and xpaths
if self.parse_html:
if html_strings is None:
raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`")
if nodes is not None or xpaths is not None or node_labels is not None:
raise ValueError(
"Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`"
)
features = self.feature_extractor(html_strings)
nodes = features["nodes"]
xpaths = features["xpaths"]
else:
if html_strings is not None:
raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.")
if nodes is None or xpaths is None:
raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`")
# # second, apply the tokenizer
if questions is not None and self.parse_html:
if isinstance(questions, str):
questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension)
encoded_inputs = self.tokenizer(
text=questions if questions is not None else nodes,
text_pair=nodes if questions is not None else None,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
return encoded_inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
return tokenizer_input_names
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MarkupLM.
"""
from typing import Optional, Union
from ...file_utils import TensorType
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy
class MarkupLMProcessor(ProcessorMixin):
r"""
Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single
processor.
[`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model.
It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings.
Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level
`input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`.
Args:
feature_extractor (`MarkupLMFeatureExtractor`):
An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`):
An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input.
parse_html (`bool`, *optional*, defaults to `True`):
Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths.
"""
feature_extractor_class = "MarkupLMFeatureExtractor"
tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast")
parse_html = True
def __call__(
self,
html_strings=None,
nodes=None,
xpaths=None,
node_labels=None,
questions=None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs
) -> BatchEncoding:
"""
This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it
passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and
returns the output.
Optionally, one can also provide a `text` argument which is passed along as first sequence.
Please refer to the docstring of the above two methods for more information.
"""
# first, create nodes and xpaths
if self.parse_html:
if html_strings is None:
raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`")
if nodes is not None or xpaths is not None or node_labels is not None:
raise ValueError(
"Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`"
)
features = self.feature_extractor(html_strings)
nodes = features["nodes"]
xpaths = features["xpaths"]
else:
if html_strings is not None:
raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.")
if nodes is None or xpaths is None:
raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`")
# # second, apply the tokenizer
if questions is not None and self.parse_html:
if isinstance(questions, str):
questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension)
encoded_inputs = self.tokenizer(
text=questions if questions is not None else nodes,
text_pair=nodes if questions is not None else None,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
return encoded_inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
return tokenizer_input_names
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/mobilenet_v2/convert_original_tf_checkpoint_to_pytorch.py | # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MobileNetV2 checkpoints from the tensorflow/models library."""
import argparse
import json
import re
from pathlib import Path
import torch
from PIL import Image
import requests
from huggingface_hub import hf_hub_download
from transformers import (
MobileNetV2Config,
MobileNetV2ForImageClassification,
MobileNetV2ForSemanticSegmentation,
MobileNetV2ImageProcessor,
load_tf_weights_in_mobilenet_v2,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_mobilenet_v2_config(model_name):
config = MobileNetV2Config(layer_norm_eps=0.001)
if "quant" in model_name:
raise ValueError("Quantized models are not supported.")
matches = re.match(r"^.*mobilenet_v2_([^_]*)_([^_]*)$", model_name)
if matches:
config.depth_multiplier = float(matches[1])
config.image_size = int(matches[2])
if model_name.startswith("deeplabv3_"):
config.output_stride = 8
config.num_labels = 21
filename = "pascal-voc-id2label.json"
else:
# The TensorFlow version of MobileNetV2 predicts 1001 classes instead
# of the usual 1000. The first class (index 0) is "background".
config.num_labels = 1001
filename = "imagenet-1k-id2label.json"
repo_id = "huggingface/label-files"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
if config.num_labels == 1001:
id2label = {int(k) + 1: v for k, v in id2label.items()}
id2label[0] = "background"
else:
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our MobileNetV2 structure.
"""
config = get_mobilenet_v2_config(model_name)
# Load 🤗 model
if model_name.startswith("deeplabv3_"):
model = MobileNetV2ForSemanticSegmentation(config).eval()
else:
model = MobileNetV2ForImageClassification(config).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_v2(model, config, checkpoint_path)
# Check outputs on an image, prepared by MobileNetV2ImageProcessor
feature_extractor = MobileNetV2ImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size},
size={"shortest_edge": config.image_size + 32},
)
encoding = feature_extractor(images=prepare_img(), return_tensors="pt")
outputs = model(**encoding)
logits = outputs.logits
if model_name.startswith("deeplabv3_"):
assert logits.shape == (1, 21, 65, 65)
if model_name == "deeplabv3_mobilenet_v2_1.0_513":
expected_logits = torch.tensor(
[
[[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]],
[[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]],
[[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]],
]
)
else:
raise ValueError(f"Unknown model name: {model_name}")
assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4)
else:
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v2_1.4_224":
expected_logits = torch.tensor([0.0181, -1.0015, 0.4688])
elif model_name == "mobilenet_v2_1.0_224":
expected_logits = torch.tensor([0.2445, -1.1993, 0.1905])
elif model_name == "mobilenet_v2_0.75_160":
expected_logits = torch.tensor([0.2482, 0.4136, 0.6669])
elif model_name == "mobilenet_v2_0.35_96":
expected_logits = torch.tensor([0.1451, -0.4624, 0.7192])
else:
expected_logits = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving feature extractor to {pytorch_dump_folder_path}")
feature_extractor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print("Pushing to the hub...")
repo_id = "google/" + model_name
feature_extractor.push_to_hub(repo_id)
model.push_to_hub(repo_id)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v2_1.0_224",
type=str,
help="Name of the MobileNetV2 model you'd like to convert. Should in the form 'mobilenet_v2_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| # coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MobileNetV2 checkpoints from the tensorflow/models library."""
import argparse
import json
import re
from pathlib import Path
import torch
from PIL import Image
import requests
from huggingface_hub import hf_hub_download
from transformers import (
MobileNetV2Config,
MobileNetV2ForImageClassification,
MobileNetV2ForSemanticSegmentation,
MobileNetV2ImageProcessor,
load_tf_weights_in_mobilenet_v2,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_mobilenet_v2_config(model_name):
config = MobileNetV2Config(layer_norm_eps=0.001)
if "quant" in model_name:
raise ValueError("Quantized models are not supported.")
matches = re.match(r"^.*mobilenet_v2_([^_]*)_([^_]*)$", model_name)
if matches:
config.depth_multiplier = float(matches[1])
config.image_size = int(matches[2])
if model_name.startswith("deeplabv3_"):
config.output_stride = 8
config.num_labels = 21
filename = "pascal-voc-id2label.json"
else:
# The TensorFlow version of MobileNetV2 predicts 1001 classes instead
# of the usual 1000. The first class (index 0) is "background".
config.num_labels = 1001
filename = "imagenet-1k-id2label.json"
repo_id = "huggingface/label-files"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
if config.num_labels == 1001:
id2label = {int(k) + 1: v for k, v in id2label.items()}
id2label[0] = "background"
else:
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our MobileNetV2 structure.
"""
config = get_mobilenet_v2_config(model_name)
# Load 🤗 model
if model_name.startswith("deeplabv3_"):
model = MobileNetV2ForSemanticSegmentation(config).eval()
else:
model = MobileNetV2ForImageClassification(config).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_v2(model, config, checkpoint_path)
# Check outputs on an image, prepared by MobileNetV2ImageProcessor
feature_extractor = MobileNetV2ImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size},
size={"shortest_edge": config.image_size + 32},
)
encoding = feature_extractor(images=prepare_img(), return_tensors="pt")
outputs = model(**encoding)
logits = outputs.logits
if model_name.startswith("deeplabv3_"):
assert logits.shape == (1, 21, 65, 65)
if model_name == "deeplabv3_mobilenet_v2_1.0_513":
expected_logits = torch.tensor(
[
[[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]],
[[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]],
[[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]],
]
)
else:
raise ValueError(f"Unknown model name: {model_name}")
assert torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-4)
else:
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v2_1.4_224":
expected_logits = torch.tensor([0.0181, -1.0015, 0.4688])
elif model_name == "mobilenet_v2_1.0_224":
expected_logits = torch.tensor([0.2445, -1.1993, 0.1905])
elif model_name == "mobilenet_v2_0.75_160":
expected_logits = torch.tensor([0.2482, 0.4136, 0.6669])
elif model_name == "mobilenet_v2_0.35_96":
expected_logits = torch.tensor([0.1451, -0.4624, 0.7192])
else:
expected_logits = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving feature extractor to {pytorch_dump_folder_path}")
feature_extractor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print("Pushing to the hub...")
repo_id = "google/" + model_name
feature_extractor.push_to_hub(repo_id)
model.push_to_hub(repo_id)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v2_1.0_224",
type=str,
help="Name of the MobileNetV2 model you'd like to convert. Should in the form 'mobilenet_v2_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/longt5/modeling_longt5.py | # coding=utf-8
# Copyright 2022 Google LLC., LongT5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LongT5 model."""
import copy
import math
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.utils.checkpoint import checkpoint
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
replace_return_docstrings,
)
from .configuration_longt5 import LongT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LongT5Config"
_TOKENIZER_FOR_DOC = "T5Tokenizer"
_CHECKPOINT_FOR_DOC = "google/long-t5-local-base"
# TODO: Update before the merge
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/long-t5-local-base",
"google/long-t5-local-large",
"google/long-t5-tglobal-base",
"google/long-t5-tglobal-large",
]
def _pad_to_multiple(x: torch.Tensor, block_len: int, dim: int, pad_value: int = 0) -> torch.Tensor:
"""Pad a tensor so that a sequence length will be a multiple of `block_len`"""
pad_len = -x.shape[dim] % block_len
# Handle cases when an empty input sequence is given
if not all(x.shape):
new_shape = list(x.shape)
new_shape[dim] += pad_len
return torch.zeros(new_shape, dtype=x.dtype)
pad = [(0, 0)] * x.ndim
pad[dim] = (0, pad_len)
pad = sum(pad[::-1], ())
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
return x
def _split_into_blocks(x: torch.Tensor, block_len: int, dim: int) -> torch.Tensor:
"""Split an input tensor into blocks of a given `block_len` along the given `dim`. If the dimension length
is not a multiple of `block_len`, it will be padded first with selected `pad_value`.
"""
# pad tensor to multiple of block_len
if x.shape[dim] % block_len != 0:
x = _pad_to_multiple(x, block_len, dim, pad_value=0)
num_blocks = x.shape[dim] // block_len
output_shape = x.shape[:dim] + (num_blocks, block_len) + x.shape[(dim + 1) :]
# If 0 is in output_shape, we cannot apply reshape because of incompatibility with ONNX conversion
if 0 in output_shape:
return torch.empty(output_shape, dtype=x.dtype, device=x.device)
return x.reshape(output_shape)
def _concatenate_3_blocks(x: torch.Tensor, block_dim: int, sequence_dim: int, pad_value: int = 0) -> torch.Tensor:
"""Concatenate three consecutive blocks for each input block for local attentiont.
For more information, see: https://arxiv.org/pdf/2112.07916.pdf.
"""
num_blocks = x.shape[block_dim]
pad = [(0, 0)] * x.ndim
pad[block_dim] = (1, 1)
pad = sum(pad[::-1], ())
# [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len]
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
blocks_list: List[torch.Tensor] = []
for i in range(3):
# We use indexing approach here:
# https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs
indices = [slice(0, None)] * x.ndim
indices[block_dim] = slice(i, i + num_blocks)
indices = tuple(indices)
blocks_list.append(x[indices])
# [batch_size, num_blocks, 3 * block_len, ...]
return torch.cat(blocks_list, dim=sequence_dim)
def _make_3block_relative_position_ids(block_len: int) -> torch.Tensor:
"""Makes 3-blocked relative position ids for local attention."""
position_ids = torch.arange(3 * block_len, dtype=torch.int32)
center_position_ids = position_ids[block_len:-block_len]
# [block_len, 3 * block_len]
relative_position_ids = position_ids.unsqueeze(0) - center_position_ids.unsqueeze(1)
return relative_position_ids
def _mask_local_attention_mask(local_attention_mask: torch.Tensor, block_len: int) -> torch.Tensor:
"""Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius."""
relative_position_ids = _make_3block_relative_position_ids(block_len)
locality_mask = torch.abs(relative_position_ids) < block_len
locality_mask = locality_mask[None, None, :, :]
locality_mask = locality_mask.to(local_attention_mask.device)
return torch.logical_and(local_attention_mask, locality_mask)
def _get_local_attention_mask(attention_mask: torch.Tensor, block_len: int, device: torch.device) -> torch.Tensor:
"""Prepare attention mask to be applied for a local attention."""
# [batch_size, num_blocks, block_len]
_blocked_attention_mask = _split_into_blocks(attention_mask, block_len, dim=1)
# [batch_size, num_block, 3 * block_len]
_3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_dim=1, sequence_dim=2)
_blocked_attention_mask = _blocked_attention_mask.unsqueeze(-1)
_3blocked_attention_mask = _3blocked_attention_mask.unsqueeze(-2)
# [batch_size, num_block, block_len, 3 * block_len]
local_attention_mask = torch.logical_and(_blocked_attention_mask, _3blocked_attention_mask)
local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len)
# [batch_size, 1, num_block, block_len, 3 * block_len]
return local_attention_mask.unsqueeze(1).to(device)
def _make_global_fixed_block_ids(
attention_mask: torch.Tensor, global_block_size: int
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Obtain the "fixed block" global id corresponding to each input token.
This implementation is a simlified version of the original Flaxformr implementation adopted from:
https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py.
In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for
the whole fixed block, are assigned to the preceding block.
Padding tokens from the original sequence are represented by -1.
"""
batch_size, seq_len = attention_mask.shape[:2]
def handle_orphan_tokens(block_ids: torch.Tensor) -> torch.Tensor:
block_ends = (torch.arange(seq_len) % global_block_size) == global_block_size - 1
block_ends = block_ends.to(block_ids.device)
true_block_ends = torch.logical_and(block_ends, block_ids >= 0)
full_blocks = true_block_ends.sum(-1).unsqueeze(-1).type(block_ids.dtype) - 1
block_ids = torch.where(block_ids < full_blocks, block_ids, full_blocks)
return block_ids
fixed_block_mask = torch.ones_like(attention_mask, device=attention_mask.device) / global_block_size
fixed_block_mask = torch.cumsum(fixed_block_mask, axis=1) - fixed_block_mask
mask = torch.where(attention_mask != 0.0, 1.0, -1000.0).type(attention_mask.dtype)
global_block_ids = torch.floor(mask + fixed_block_mask - 1.0).type(attention_mask.dtype)
_global_block_ids_lower_bound = torch.tensor(-1, dtype=global_block_ids.dtype, device=global_block_ids.device)
global_block_ids = torch.where(
global_block_ids > _global_block_ids_lower_bound, global_block_ids, _global_block_ids_lower_bound
)
# set padding tokens to -1
global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1)
# [batch_size, seq_len]
global_block_ids = handle_orphan_tokens(global_block_ids)
num_globals = seq_len // global_block_size
# [batch_size, seq_len // global_block_size]
if num_globals > 0:
_sequence_block_ids_max = torch.max(global_block_ids, dim=-1).values.repeat(num_globals, 1).transpose(0, 1)
else:
_sequence_block_ids_max = torch.zeros(
batch_size, 0, dtype=global_block_ids.dtype, device=global_block_ids.device
)
global_segment_ids = torch.cumsum(torch.ones(batch_size, num_globals), dim=-1) - 1
global_segment_ids = global_segment_ids.to(attention_mask.device)
global_segment_ids = torch.where(global_segment_ids <= _sequence_block_ids_max, 1, 0)
return global_block_ids.type(torch.int), global_segment_ids.type(torch.int)
def _make_side_relative_position_ids(attention_mask: torch.Tensor, global_block_size: int) -> torch.Tensor:
"""Create the relative position tensor for local -> global attention."""
block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size)
global_seq_len = global_segment_ids.shape[-1]
global_positions = torch.arange(global_seq_len, device=block_ids.device)
side_relative_position = global_positions - block_ids[..., None]
return side_relative_position.type(torch.int64)
def _create_global_aggregates(
hidden_states: torch.Tensor, block_ids: torch.Tensor, global_seq_len: int
) -> torch.Tensor:
"""Compute individual block aggregates by summing over individual blocks."""
# (batch..., seq_len, global_seq_len))
block_ids = block_ids.where(
block_ids >= 0, torch.tensor(global_seq_len, dtype=block_ids.dtype, device=block_ids.device)
)
one_hot_block_ids = nn.functional.one_hot(block_ids.type(torch.int64), global_seq_len + 1)[:, :, :-1]
return torch.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids.type(hidden_states.dtype))
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->LongT5
class LongT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# LongT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
LongT5LayerNorm = FusedRMSNorm # noqa
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of LongT5LayerNorm")
except ImportError:
# using the normal LongT5LayerNorm
pass
except Exception:
logger.warning("discovered apex but it failed to load, falling back to LongT5LayerNorm")
pass
ALL_LAYERNORM_LAYERS.append(LongT5LayerNorm)
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->LongT5
class LongT5DenseActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->LongT5
class LongT5DenseGatedActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->LongT5
class LongT5LayerFF(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = LongT5DenseGatedActDense(config)
else:
self.DenseReluDense = LongT5DenseActDense(config)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->LongT5
class LongT5Attention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
assert (
len(past_key_value) == 2
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
def unshape(states):
"""reshape"""
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
# get key/value states
key_states = project(
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
)
value_states = project(
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
)
# compute scores
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if position_bias is None:
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if mask is not None:
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
scores
) # (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
) # (batch_size, n_heads, seq_length, key_length)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
attn_output = self.o(attn_output)
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5LocalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = torch.arange(
3 * block_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Compute scores
scores = torch.einsum(
"...qhd,...khd->...hqk", query_states, key_states
) # (batch_size, num_block, n_heads, block_len, 3 * block_len)
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if mask is not None:
# Replace masked positions with -1e10 (according to the original implementation)
mask = torch.where(mask > 0, 0.0, -1e10)
# We need to adjust position bias shape to be sum with mask
position_bias = position_bias + mask.transpose(1, 2)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
present_key_value_state = None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5TransientGlobalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.global_block_size = config.global_block_size
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
# Relativen attention bias & Layer norm for global attention
if self.has_relative_attention_bias:
self.global_relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.global_input_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = torch.arange(
3 * block_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def compute_side_bias(self, mask: torch.Tensor, global_segment_ids: torch.Tensor) -> torch.Tensor:
# (batch_size, 1, seq_len, global_seq_len)
side_attention_mask = torch.eq(mask[..., None], global_segment_ids[:, None, :])[:, None, ...]
attention_side_bias = torch.where(side_attention_mask > 0, 0.0, -1e10)
# (batch_size, seq_len, global_seq_len)
side_relative_position = _make_side_relative_position_ids(mask, self.global_block_size)
side_relative_position_bucket = self._relative_position_bucket(
side_relative_position,
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (batch_size, seq_len, global_seq_len, num_heads)
side_bias = self.global_relative_attention_bias(side_relative_position_bucket)
# (batch_size, num_heads, seq_len, global_seq_len)
side_bias = side_bias.permute([0, 3, 1, 2])
# (batch_size, num_heads, seq_len, global_seq_len)
attention_side_bias = attention_side_bias + side_bias
return attention_side_bias
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# Prepare components for transient-global attention
# Obtain block_ids and global_segment_ids
# global_seq_len := seq_len // self.global_block_size
# shapes: (batch_size, seq_len) & (batch_size, global_seq_len)
block_ids, global_segment_ids = _make_global_fixed_block_ids(
mask if mask is not None else torch.ones(hidden_states.shape[:-1]),
self.global_block_size,
)
# Create global inputs
_global_seq_len = global_segment_ids.shape[-1]
global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len)
global_inputs = self.global_input_layer_norm(global_inputs)
# get query states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Get global/side key/value states shape: (batch_size, global_seq_len, n_heads, dim_per_head)
side_key_states = shape(self.k(global_inputs))
side_value_states = shape(self.v(global_inputs))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Tile side inputs across local key/value blocks
# New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head)
reps = [1] * (side_key_states.ndim + 1)
reps[1] = key_states.shape[1]
side_key_states = side_key_states.unsqueeze(1).repeat(reps)
side_value_states = side_value_states.unsqueeze(1).repeat(reps)
# Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones
# New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head)
key_states = torch.cat([key_states, side_key_states], dim=2)
value_states = torch.cat([value_states, side_value_states], dim=2)
# Compute scores -> (batch_size, num_block, n_heads, block_len, 3 * block_len + global_seq_len)
scores = torch.einsum("...qhd,...khd->...hqk", query_states, key_states)
if mask is not None:
# We need to adjust position bias shape to be sum with mask
local_attention_mask = _get_local_attention_mask(mask, self.block_len, hidden_states.device)
# Replace masked positions with -10_000 (according to the original implementation)
local_attention_mask = torch.where(local_attention_mask > 0, 0.0, -1e10)
else:
local_attention_mask = None
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len),
device=scores.device,
dtype=scores.dtype,
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if local_attention_mask is not None:
# (batch_size, 1, n_heads, block_len, 3 * block_len)
position_bias = position_bias + local_attention_mask.transpose(1, 2)
position_bias = position_bias.type(scores.dtype)
# Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len)
if mask is None:
mask = torch.ones(batch_size, seq_length)
# (batch_size, num_heads, seq_len, global_seq_len)
side_position_bias = self.compute_side_bias(mask, global_segment_ids)
# (batch_size, num_blocks, num_heads, block_len, global_seq_len)
side_position_bias = _split_into_blocks(side_position_bias, self.block_len, dim=-2).transpose(1, 2)
side_position_bias = side_position_bias.type(scores.dtype).to(scores.device)
# (batch_size, num_blocks, num_heads, block_len, 3 * block_len + global_seq_len)
position_bias = torch.cat([position_bias, side_position_bias], dim=-1)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len + global_seq_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
present_key_value_state = None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->LongT5
class LongT5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.SelfAttention = LongT5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerLocalSelfAttention(nn.Module):
"""Local self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.LocalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerTransientGlobalSelfAttention(nn.Module):
"""Transient-Global self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.TransientGlobalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->LongT5
class LongT5LayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
if config.is_decoder:
attention_layer = LongT5LayerSelfAttention
elif config.encoder_attention_type == "local":
attention_layer = LongT5LayerLocalSelfAttention
elif config.encoder_attention_type == "transient-global":
attention_layer = LongT5LayerTransientGlobalSelfAttention
else:
raise ValueError(
"For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
f"but got {config.encoder_attention_type}."
)
self.layer = nn.ModuleList()
self.layer.append(attention_layer(config, has_relative_attention_bias=has_relative_attention_bias))
if self.is_decoder:
self.layer.append(LongT5LayerCrossAttention(config))
self.layer.append(LongT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
):
if past_key_value is not None:
if not self.is_decoder:
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
cross_attn_past_key_value = past_key_value[2:]
else:
self_attn_past_key_value, cross_attn_past_key_value = None, None
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
# the actual query length is unknown for cross attention
# if using past key value states. Need to inject it here
if present_key_value_state is not None:
query_length = present_key_value_state[0].shape[2]
else:
query_length = None
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
query_length=query_length,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = cross_attention_outputs[0]
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Combine self attn and cross attn key value states
if present_key_value_state is not None:
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class LongT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongT5Config
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
@property
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, LongT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, LongT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, LongT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
if isinstance(module, LongT5TransientGlobalAttention):
module.global_relative_attention_bias.weight.data.normal_(
mean=0.0, std=factor * ((d_model) ** -0.5)
)
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._set_gradient_checkpointing with T5->LongT5
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (LongT5Attention, LongT5Stack)):
module.gradient_checkpointing = value
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->LongT5
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
assert decoder_start_token_id is not None, (
"self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the"
" pad_token_id. See LongT5 docs for more information"
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class LongT5Stack(LongT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.block = nn.ModuleList(
[LongT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
)
self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings
def get_input_embeddings(self):
return self.embed_tokens
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
if use_cache is True:
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
# We use local attention in encoder self-attention, otherwise standard self & cross attentions are used
if self.is_decoder:
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape, inputs_embeds.device
)
elif self.config.encoder_attention_type == "local":
extended_attention_mask = _get_local_attention_mask(attention_mask, self.block_len, inputs_embeds.device)
else: # we need to use both local attention mask and standard extended mask for transient-global attention
extended_attention_mask = attention_mask
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return tuple(module(*inputs, use_cache, output_attentions))
return custom_forward
layer_outputs = checkpoint(
create_custom_forward(layer_module),
hidden_states,
extended_attention_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (present_key_value_state,)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
LONGT5_START_DOCSTRING = r"""
The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long
Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo
Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising
generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different
efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LongT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LONGT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5
Training](./longt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
LONGT5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting raw hidden-states without any specific head on top.",
LONGT5_START_DOCSTRING,
)
class LongT5Model(LongT5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder.embed_tokens.weight",
r"decoder.embed_tokens.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, LongT5Model
>>> tokenizer = T5Tokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5Model.from_pretrained("google/long-t5-local-base")
>>> # Let's try a very long encoder input.
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING)
class LongT5ForConditionalGeneration(LongT5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder.embed_tokens.weight",
r"decoder.embed_tokens.weight",
r"lm_head.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
>>> model = LongT5ForConditionalGeneration.from_pretrained(
... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps"
... )
>>> # Let's try a very long input.
>>> inputs = tokenizer(100 * "studies have shown that owning a dog is good for you ", return_tensors="pt")
>>> input_ids = inputs.input_ids
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
abstractthe aim of this article is to provide an overview of the literature on the role of dog
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past
reordered_decoder_past = ()
for layer_past_states in past:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
assert len(reordered_layer_past_states) == len(layer_past_states)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
LONGT5_START_DOCSTRING,
)
class LongT5EncoderModel(LongT5PreTrainedModel):
_keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LONGT5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
| # coding=utf-8
# Copyright 2022 Google LLC., LongT5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch LongT5 model."""
import copy
import math
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.utils.checkpoint import checkpoint
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
logging,
replace_return_docstrings,
)
from .configuration_longt5 import LongT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LongT5Config"
_TOKENIZER_FOR_DOC = "T5Tokenizer"
_CHECKPOINT_FOR_DOC = "google/long-t5-local-base"
# TODO: Update before the merge
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/long-t5-local-base",
"google/long-t5-local-large",
"google/long-t5-tglobal-base",
"google/long-t5-tglobal-large",
]
def _pad_to_multiple(x: torch.Tensor, block_len: int, dim: int, pad_value: int = 0) -> torch.Tensor:
"""Pad a tensor so that a sequence length will be a multiple of `block_len`"""
pad_len = -x.shape[dim] % block_len
# Handle cases when an empty input sequence is given
if not all(x.shape):
new_shape = list(x.shape)
new_shape[dim] += pad_len
return torch.zeros(new_shape, dtype=x.dtype)
pad = [(0, 0)] * x.ndim
pad[dim] = (0, pad_len)
pad = sum(pad[::-1], ())
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
return x
def _split_into_blocks(x: torch.Tensor, block_len: int, dim: int) -> torch.Tensor:
"""Split an input tensor into blocks of a given `block_len` along the given `dim`. If the dimension length
is not a multiple of `block_len`, it will be padded first with selected `pad_value`.
"""
# pad tensor to multiple of block_len
if x.shape[dim] % block_len != 0:
x = _pad_to_multiple(x, block_len, dim, pad_value=0)
num_blocks = x.shape[dim] // block_len
output_shape = x.shape[:dim] + (num_blocks, block_len) + x.shape[(dim + 1) :]
# If 0 is in output_shape, we cannot apply reshape because of incompatibility with ONNX conversion
if 0 in output_shape:
return torch.empty(output_shape, dtype=x.dtype, device=x.device)
return x.reshape(output_shape)
def _concatenate_3_blocks(x: torch.Tensor, block_dim: int, sequence_dim: int, pad_value: int = 0) -> torch.Tensor:
"""Concatenate three consecutive blocks for each input block for local attentiont.
For more information, see: https://arxiv.org/pdf/2112.07916.pdf.
"""
num_blocks = x.shape[block_dim]
pad = [(0, 0)] * x.ndim
pad[block_dim] = (1, 1)
pad = sum(pad[::-1], ())
# [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len]
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
blocks_list: List[torch.Tensor] = []
for i in range(3):
# We use indexing approach here:
# https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs
indices = [slice(0, None)] * x.ndim
indices[block_dim] = slice(i, i + num_blocks)
indices = tuple(indices)
blocks_list.append(x[indices])
# [batch_size, num_blocks, 3 * block_len, ...]
return torch.cat(blocks_list, dim=sequence_dim)
def _make_3block_relative_position_ids(block_len: int) -> torch.Tensor:
"""Makes 3-blocked relative position ids for local attention."""
position_ids = torch.arange(3 * block_len, dtype=torch.int32)
center_position_ids = position_ids[block_len:-block_len]
# [block_len, 3 * block_len]
relative_position_ids = position_ids.unsqueeze(0) - center_position_ids.unsqueeze(1)
return relative_position_ids
def _mask_local_attention_mask(local_attention_mask: torch.Tensor, block_len: int) -> torch.Tensor:
"""Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius."""
relative_position_ids = _make_3block_relative_position_ids(block_len)
locality_mask = torch.abs(relative_position_ids) < block_len
locality_mask = locality_mask[None, None, :, :]
locality_mask = locality_mask.to(local_attention_mask.device)
return torch.logical_and(local_attention_mask, locality_mask)
def _get_local_attention_mask(attention_mask: torch.Tensor, block_len: int, device: torch.device) -> torch.Tensor:
"""Prepare attention mask to be applied for a local attention."""
# [batch_size, num_blocks, block_len]
_blocked_attention_mask = _split_into_blocks(attention_mask, block_len, dim=1)
# [batch_size, num_block, 3 * block_len]
_3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_dim=1, sequence_dim=2)
_blocked_attention_mask = _blocked_attention_mask.unsqueeze(-1)
_3blocked_attention_mask = _3blocked_attention_mask.unsqueeze(-2)
# [batch_size, num_block, block_len, 3 * block_len]
local_attention_mask = torch.logical_and(_blocked_attention_mask, _3blocked_attention_mask)
local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len)
# [batch_size, 1, num_block, block_len, 3 * block_len]
return local_attention_mask.unsqueeze(1).to(device)
def _make_global_fixed_block_ids(
attention_mask: torch.Tensor, global_block_size: int
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Obtain the "fixed block" global id corresponding to each input token.
This implementation is a simlified version of the original Flaxformr implementation adopted from:
https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py.
In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for
the whole fixed block, are assigned to the preceding block.
Padding tokens from the original sequence are represented by -1.
"""
batch_size, seq_len = attention_mask.shape[:2]
def handle_orphan_tokens(block_ids: torch.Tensor) -> torch.Tensor:
block_ends = (torch.arange(seq_len) % global_block_size) == global_block_size - 1
block_ends = block_ends.to(block_ids.device)
true_block_ends = torch.logical_and(block_ends, block_ids >= 0)
full_blocks = true_block_ends.sum(-1).unsqueeze(-1).type(block_ids.dtype) - 1
block_ids = torch.where(block_ids < full_blocks, block_ids, full_blocks)
return block_ids
fixed_block_mask = torch.ones_like(attention_mask, device=attention_mask.device) / global_block_size
fixed_block_mask = torch.cumsum(fixed_block_mask, axis=1) - fixed_block_mask
mask = torch.where(attention_mask != 0.0, 1.0, -1000.0).type(attention_mask.dtype)
global_block_ids = torch.floor(mask + fixed_block_mask - 1.0).type(attention_mask.dtype)
_global_block_ids_lower_bound = torch.tensor(-1, dtype=global_block_ids.dtype, device=global_block_ids.device)
global_block_ids = torch.where(
global_block_ids > _global_block_ids_lower_bound, global_block_ids, _global_block_ids_lower_bound
)
# set padding tokens to -1
global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1)
# [batch_size, seq_len]
global_block_ids = handle_orphan_tokens(global_block_ids)
num_globals = seq_len // global_block_size
# [batch_size, seq_len // global_block_size]
if num_globals > 0:
_sequence_block_ids_max = torch.max(global_block_ids, dim=-1).values.repeat(num_globals, 1).transpose(0, 1)
else:
_sequence_block_ids_max = torch.zeros(
batch_size, 0, dtype=global_block_ids.dtype, device=global_block_ids.device
)
global_segment_ids = torch.cumsum(torch.ones(batch_size, num_globals), dim=-1) - 1
global_segment_ids = global_segment_ids.to(attention_mask.device)
global_segment_ids = torch.where(global_segment_ids <= _sequence_block_ids_max, 1, 0)
return global_block_ids.type(torch.int), global_segment_ids.type(torch.int)
def _make_side_relative_position_ids(attention_mask: torch.Tensor, global_block_size: int) -> torch.Tensor:
"""Create the relative position tensor for local -> global attention."""
block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size)
global_seq_len = global_segment_ids.shape[-1]
global_positions = torch.arange(global_seq_len, device=block_ids.device)
side_relative_position = global_positions - block_ids[..., None]
return side_relative_position.type(torch.int64)
def _create_global_aggregates(
hidden_states: torch.Tensor, block_ids: torch.Tensor, global_seq_len: int
) -> torch.Tensor:
"""Compute individual block aggregates by summing over individual blocks."""
# (batch..., seq_len, global_seq_len))
block_ids = block_ids.where(
block_ids >= 0, torch.tensor(global_seq_len, dtype=block_ids.dtype, device=block_ids.device)
)
one_hot_block_ids = nn.functional.one_hot(block_ids.type(torch.int64), global_seq_len + 1)[:, :, :-1]
return torch.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids.type(hidden_states.dtype))
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->LongT5
class LongT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# LongT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
LongT5LayerNorm = FusedRMSNorm # noqa
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of LongT5LayerNorm")
except ImportError:
# using the normal LongT5LayerNorm
pass
except Exception:
logger.warning("discovered apex but it failed to load, falling back to LongT5LayerNorm")
pass
ALL_LAYERNORM_LAYERS.append(LongT5LayerNorm)
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->LongT5
class LongT5DenseActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->LongT5
class LongT5DenseGatedActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->LongT5
class LongT5LayerFF(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = LongT5DenseGatedActDense(config)
else:
self.DenseReluDense = LongT5DenseActDense(config)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->LongT5
class LongT5Attention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
assert (
len(past_key_value) == 2
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
def unshape(states):
"""reshape"""
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
# get key/value states
key_states = project(
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
)
value_states = project(
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
)
# compute scores
scores = torch.matmul(
query_states, key_states.transpose(3, 2)
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
if position_bias is None:
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device)
# if key and values are already calculated
# we want only the last query position bias
if past_key_value is not None:
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
if mask is not None:
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
scores
) # (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
) # (batch_size, n_heads, seq_length, key_length)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
attn_output = self.o(attn_output)
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5LocalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = torch.arange(
3 * block_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Compute scores
scores = torch.einsum(
"...qhd,...khd->...hqk", query_states, key_states
) # (batch_size, num_block, n_heads, block_len, 3 * block_len)
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if mask is not None:
# Replace masked positions with -1e10 (according to the original implementation)
mask = torch.where(mask > 0, 0.0, -1e10)
# We need to adjust position bias shape to be sum with mask
position_bias = position_bias + mask.transpose(1, 2)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
present_key_value_state = None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5TransientGlobalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.global_block_size = config.global_block_size
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
# Relativen attention bias & Layer norm for global attention
if self.has_relative_attention_bias:
self.global_relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.global_input_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
memory_position = torch.arange(
3 * block_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def compute_side_bias(self, mask: torch.Tensor, global_segment_ids: torch.Tensor) -> torch.Tensor:
# (batch_size, 1, seq_len, global_seq_len)
side_attention_mask = torch.eq(mask[..., None], global_segment_ids[:, None, :])[:, None, ...]
attention_side_bias = torch.where(side_attention_mask > 0, 0.0, -1e10)
# (batch_size, seq_len, global_seq_len)
side_relative_position = _make_side_relative_position_ids(mask, self.global_block_size)
side_relative_position_bucket = self._relative_position_bucket(
side_relative_position,
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (batch_size, seq_len, global_seq_len, num_heads)
side_bias = self.global_relative_attention_bias(side_relative_position_bucket)
# (batch_size, num_heads, seq_len, global_seq_len)
side_bias = side_bias.permute([0, 3, 1, 2])
# (batch_size, num_heads, seq_len, global_seq_len)
attention_side_bias = attention_side_bias + side_bias
return attention_side_bias
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# Prepare components for transient-global attention
# Obtain block_ids and global_segment_ids
# global_seq_len := seq_len // self.global_block_size
# shapes: (batch_size, seq_len) & (batch_size, global_seq_len)
block_ids, global_segment_ids = _make_global_fixed_block_ids(
mask if mask is not None else torch.ones(hidden_states.shape[:-1]),
self.global_block_size,
)
# Create global inputs
_global_seq_len = global_segment_ids.shape[-1]
global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len)
global_inputs = self.global_input_layer_norm(global_inputs)
# get query states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Get global/side key/value states shape: (batch_size, global_seq_len, n_heads, dim_per_head)
side_key_states = shape(self.k(global_inputs))
side_value_states = shape(self.v(global_inputs))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Tile side inputs across local key/value blocks
# New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head)
reps = [1] * (side_key_states.ndim + 1)
reps[1] = key_states.shape[1]
side_key_states = side_key_states.unsqueeze(1).repeat(reps)
side_value_states = side_value_states.unsqueeze(1).repeat(reps)
# Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones
# New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head)
key_states = torch.cat([key_states, side_key_states], dim=2)
value_states = torch.cat([value_states, side_value_states], dim=2)
# Compute scores -> (batch_size, num_block, n_heads, block_len, 3 * block_len + global_seq_len)
scores = torch.einsum("...qhd,...khd->...hqk", query_states, key_states)
if mask is not None:
# We need to adjust position bias shape to be sum with mask
local_attention_mask = _get_local_attention_mask(mask, self.block_len, hidden_states.device)
# Replace masked positions with -10_000 (according to the original implementation)
local_attention_mask = torch.where(local_attention_mask > 0, 0.0, -1e10)
else:
local_attention_mask = None
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len),
device=scores.device,
dtype=scores.dtype,
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if local_attention_mask is not None:
# (batch_size, 1, n_heads, block_len, 3 * block_len)
position_bias = position_bias + local_attention_mask.transpose(1, 2)
position_bias = position_bias.type(scores.dtype)
# Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len)
if mask is None:
mask = torch.ones(batch_size, seq_length)
# (batch_size, num_heads, seq_len, global_seq_len)
side_position_bias = self.compute_side_bias(mask, global_segment_ids)
# (batch_size, num_blocks, num_heads, block_len, global_seq_len)
side_position_bias = _split_into_blocks(side_position_bias, self.block_len, dim=-2).transpose(1, 2)
side_position_bias = side_position_bias.type(scores.dtype).to(scores.device)
# (batch_size, num_blocks, num_heads, block_len, 3 * block_len + global_seq_len)
position_bias = torch.cat([position_bias, side_position_bias], dim=-1)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len + global_seq_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
present_key_value_state = None
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->LongT5
class LongT5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.SelfAttention = LongT5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerLocalSelfAttention(nn.Module):
"""Local self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.LocalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerTransientGlobalSelfAttention(nn.Module):
"""Transient-Global self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.TransientGlobalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->LongT5
class LongT5LayerCrossAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super().__init__()
self.is_decoder = config.is_decoder
if config.is_decoder:
attention_layer = LongT5LayerSelfAttention
elif config.encoder_attention_type == "local":
attention_layer = LongT5LayerLocalSelfAttention
elif config.encoder_attention_type == "transient-global":
attention_layer = LongT5LayerTransientGlobalSelfAttention
else:
raise ValueError(
"For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
f"but got {config.encoder_attention_type}."
)
self.layer = nn.ModuleList()
self.layer.append(attention_layer(config, has_relative_attention_bias=has_relative_attention_bias))
if self.is_decoder:
self.layer.append(LongT5LayerCrossAttention(config))
self.layer.append(LongT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
):
if past_key_value is not None:
if not self.is_decoder:
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
cross_attn_past_key_value = past_key_value[2:]
else:
self_attn_past_key_value, cross_attn_past_key_value = None, None
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
# the actual query length is unknown for cross attention
# if using past key value states. Need to inject it here
if present_key_value_state is not None:
query_length = present_key_value_state[0].shape[2]
else:
query_length = None
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
query_length=query_length,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = cross_attention_outputs[0]
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Combine self attn and cross attn key value states
if present_key_value_state is not None:
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class LongT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongT5Config
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
@property
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, LongT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, LongT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, LongT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
if isinstance(module, LongT5TransientGlobalAttention):
module.global_relative_attention_bias.weight.data.normal_(
mean=0.0, std=factor * ((d_model) ** -0.5)
)
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._set_gradient_checkpointing with T5->LongT5
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (LongT5Attention, LongT5Stack)):
module.gradient_checkpointing = value
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->LongT5
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
assert decoder_start_token_id is not None, (
"self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the"
" pad_token_id. See LongT5 docs for more information"
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class LongT5Stack(LongT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.block = nn.ModuleList(
[LongT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
)
self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings
def get_input_embeddings(self):
return self.embed_tokens
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
if use_cache is True:
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
if attention_mask is None:
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
# We use local attention in encoder self-attention, otherwise standard self & cross attentions are used
if self.is_decoder:
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape, inputs_embeds.device
)
elif self.config.encoder_attention_type == "local":
extended_attention_mask = _get_local_attention_mask(attention_mask, self.block_len, inputs_embeds.device)
else: # we need to use both local attention mask and standard extended mask for transient-global attention
extended_attention_mask = attention_mask
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return tuple(module(*inputs, use_cache, output_attentions))
return custom_forward
layer_outputs = checkpoint(
create_custom_forward(layer_module),
hidden_states,
extended_attention_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (present_key_value_state,)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
LONGT5_START_DOCSTRING = r"""
The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long
Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo
Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising
generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different
efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LongT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LONGT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5
Training](./longt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
LONGT5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting raw hidden-states without any specific head on top.",
LONGT5_START_DOCSTRING,
)
class LongT5Model(LongT5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder.embed_tokens.weight",
r"decoder.embed_tokens.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import T5Tokenizer, LongT5Model
>>> tokenizer = T5Tokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5Model.from_pretrained("google/long-t5-local-base")
>>> # Let's try a very long encoder input.
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING)
class LongT5ForConditionalGeneration(LongT5PreTrainedModel):
_keys_to_ignore_on_load_missing = [
r"encoder.embed_tokens.weight",
r"decoder.embed_tokens.weight",
r"lm_head.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
>>> model = LongT5ForConditionalGeneration.from_pretrained(
... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps"
... )
>>> # Let's try a very long input.
>>> inputs = tokenizer(100 * "studies have shown that owning a dog is good for you ", return_tensors="pt")
>>> input_ids = inputs.input_ids
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
abstractthe aim of this article is to provide an overview of the literature on the role of dog
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {
"decoder_input_ids": input_ids,
"past_key_values": past,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache,
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past
reordered_decoder_past = ()
for layer_past_states in past:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
assert len(reordered_layer_past_states) == len(layer_past_states)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
@add_start_docstrings(
"The bare LONGT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
LONGT5_START_DOCSTRING,
)
class LongT5EncoderModel(LongT5PreTrainedModel):
_keys_to_ignore_on_load_missing = [r"encoder.embed_tokens.weight"]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(LONGT5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./examples/legacy/seq2seq/xla_spawn.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A simple launcher script for TPU training
Inspired by https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py
::
>>> python xla_spawn.py --num_cores=NUM_CORES_YOU_HAVE
YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other
arguments of your training script)
"""
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def parse_args():
"""
Helper function parsing the command line options
@retval ArgumentParser
"""
parser = ArgumentParser(
description=(
"PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"
)
)
# Optional arguments for the launch helper
parser.add_argument("--num_cores", type=int, default=1, help="Number of TPU cores to use (1 or 8).")
# positional
parser.add_argument(
"training_script",
type=str,
help=(
"The full path to the single TPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
),
)
# rest from the training program
parser.add_argument("training_script_args", nargs=REMAINDER)
return parser.parse_args()
def main():
args = parse_args()
# Import training_script as a module.
script_fpath = Path(args.training_script)
sys.path.append(str(script_fpath.parent.resolve()))
mod_name = script_fpath.stem
mod = importlib.import_module(mod_name)
# Patch sys.argv
sys.argv = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)]
xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores)
if __name__ == "__main__":
main()
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A simple launcher script for TPU training
Inspired by https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py
::
>>> python xla_spawn.py --num_cores=NUM_CORES_YOU_HAVE
YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other
arguments of your training script)
"""
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def parse_args():
"""
Helper function parsing the command line options
@retval ArgumentParser
"""
parser = ArgumentParser(
description=(
"PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"
)
)
# Optional arguments for the launch helper
parser.add_argument("--num_cores", type=int, default=1, help="Number of TPU cores to use (1 or 8).")
# positional
parser.add_argument(
"training_script",
type=str,
help=(
"The full path to the single TPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
),
)
# rest from the training program
parser.add_argument("training_script_args", nargs=REMAINDER)
return parser.parse_args()
def main():
args = parse_args()
# Import training_script as a module.
script_fpath = Path(args.training_script)
sys.path.append(str(script_fpath.parent.resolve()))
mod_name = script_fpath.stem
mod = importlib.import_module(mod_name)
# Patch sys.argv
sys.argv = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)]
xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores)
if __name__ == "__main__":
main()
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./tests/models/bart/test_modeling_bart.py | # coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BART model. """
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import BartConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
from transformers import (
AutoModelForSequenceClassification,
BartForCausalLM,
BartForConditionalGeneration,
BartForQuestionAnswering,
BartForSequenceClassification,
BartModel,
BartTokenizer,
pipeline,
)
from transformers.models.bart.modeling_bart import BartDecoder, BartEncoder, shift_tokens_right
def prepare_bart_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class BartModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
# forcing a certain token to be generated, sets all other tokens to -inf
# if however the token to be generated is already at -inf then it can lead token
# `nan` values and thus break generation
self.forced_bos_token_id = None
self.forced_eos_token_id = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_bart_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return BartConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
forced_bos_token_id=self.forced_bos_token_id,
forced_eos_token_id=self.forced_eos_token_id,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = BartModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = BartModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = BartEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = BartDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class BartHeadTests(unittest.TestCase):
vocab_size = 99
def _get_config_and_data(self):
input_ids = torch.tensor(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
],
dtype=torch.long,
device=torch_device,
)
batch_size = input_ids.shape[0]
config = BartConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
return config, input_ids, batch_size
def test_sequence_classification_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
labels = _long_tensor([2] * batch_size).to(torch_device)
model = BartForSequenceClassification(config)
model.to(torch_device)
outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=labels)
expected_shape = torch.Size((batch_size, config.num_labels))
self.assertEqual(outputs["logits"].shape, expected_shape)
self.assertIsInstance(outputs["loss"].item(), float)
def test_question_answering_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
sequence_labels = ids_tensor([batch_size], 2).to(torch_device)
model = BartForQuestionAnswering(config)
model.to(torch_device)
outputs = model(
input_ids=input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.assertEqual(outputs["start_logits"].shape, input_ids.shape)
self.assertEqual(outputs["end_logits"].shape, input_ids.shape)
self.assertIsInstance(outputs["loss"].item(), float)
@timeout_decorator.timeout(1)
def test_lm_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
lm_labels = ids_tensor([batch_size, input_ids.shape[1]], self.vocab_size).to(torch_device)
lm_model = BartForConditionalGeneration(config)
lm_model.to(torch_device)
outputs = lm_model(input_ids=input_ids, labels=lm_labels)
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
self.assertIsInstance(outputs["loss"].item(), float)
def test_lm_uneven_forward(self):
config = BartConfig(
vocab_size=self.vocab_size,
d_model=14,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=8,
decoder_ffn_dim=8,
max_position_embeddings=48,
)
lm_model = BartForConditionalGeneration(config).to(torch_device)
context = torch.tensor(
[[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long
)
summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long)
outputs = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary)
expected_shape = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_generate_beam_search(self):
input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], device=torch_device, dtype=torch.long)
config = BartConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
lm_model = BartForConditionalGeneration(config).to(torch_device)
lm_model.eval()
max_length = 5
generated_ids = lm_model.generate(
input_ids.clone(),
do_sample=True,
num_return_sequences=1,
num_beams=2,
no_repeat_ngram_size=3,
max_length=max_length,
)
self.assertEqual(generated_ids.shape, (input_ids.shape[0], max_length))
def test_shift_tokens_right(self):
input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long)
shifted = shift_tokens_right(input_ids, 1, 2)
n_pad_before = input_ids.eq(1).float().sum()
n_pad_after = shifted.eq(1).float().sum()
self.assertEqual(shifted.shape, input_ids.shape)
self.assertEqual(n_pad_after, n_pad_before - 1)
self.assertTrue(torch.eq(shifted[:, 0], 2).all())
@slow
def test_tokenization(self):
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
examples = [" Hello world", " DomDramg"] # need leading spaces for equality
fairseq_results = [
torch.tensor([0, 20920, 232, 2]),
torch.tensor([0, 11349, 495, 4040, 571, 2]),
]
for ex, desired_result in zip(examples, fairseq_results):
bart_toks = tokenizer.encode(ex, return_tensors="pt").squeeze()
assert_tensors_close(desired_result.long(), bart_toks, prefix=ex)
def test_generate_fp16(self):
config, input_ids, batch_size = self._get_config_and_data()
attention_mask = input_ids.ne(1).to(torch_device)
model = BartForConditionalGeneration(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_dummy_inputs(self):
config, *_ = self._get_config_and_data()
model = BartForConditionalGeneration(config).eval().to(torch_device)
model(**model.dummy_inputs)
def test_resize_tokens_embeddings_more(self):
config, input_ids, _ = self._get_config_and_data()
def _get_embs(m):
return (m.get_input_embeddings().weight.data.clone(), m.get_output_embeddings().weight.data.clone())
model = BartForConditionalGeneration(config).eval().to(torch_device)
input, output = _get_embs(model)
self.assertTrue(torch.eq(input, output).all())
new_vocab_size = 45
model.resize_token_embeddings(new_vocab_size)
input_new, output_new = _get_embs(model)
self.assertEqual(input_new.shape, (new_vocab_size, config.d_model))
self.assertEqual(output_new.shape, (new_vocab_size, config.d_model))
self.assertTrue(torch.eq(input_new, output_new).all())
@require_torch
class BartModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(BartModel, BartForConditionalGeneration, BartForSequenceClassification, BartForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (BartForConditionalGeneration,) if is_torch_available() else ()
is_encoder_decoder = True
fx_compatible = True
test_pruning = False
def setUp(self):
self.model_tester = BartModelTester(self)
self.config_tester = ConfigTester(self, config_class=BartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
# BartForSequenceClassification does not support inputs_embeds
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (BartModel, BartForConditionalGeneration, BartForQuestionAnswering):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = BartForConditionalGeneration(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
@slow
class FastIntegrationTests(unittest.TestCase):
"""These tests are useful for debugging since they operate on a model with 1 encoder layer and 1 decoder layer."""
@cached_property
def tok(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@cached_property
def xsum_1_1_model(self):
return BartForConditionalGeneration.from_pretrained("sshleifer/distilbart-xsum-1-1")
def test_xsum_1_1_generation(self):
hf = self.xsum_1_1_model
tok = self.tok
ARTICLE = (
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes."
)
EXPECTED = (
" The International Criminal Court (ICC) has announced that it has been announced by the International"
" Criminal court."
)
dct = tok(ARTICLE, return_tensors="pt")
generated_ids = hf.generate(**dct, num_beams=4)
result = tok.batch_decode(generated_ids, skip_special_tokens=True)[0]
assert EXPECTED == result
def test_xsum_1_1_batch_generation(self):
# test batch
batch = self.tok(
[
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories."
" The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is"
" based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted"
' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including'
' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination'
" into the situation in Palestinian territories, paving the way for possible war crimes investigations"
" against Israelis. As members of the court, Palestinians may be subject to counter-charges as well."
" Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts"
" to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony,"
' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome'
' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he'
' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of'
' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was'
' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State'
" of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a"
' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she'
' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize'
" Palestine for joining the ICC should immediately end their pressure, and countries that support"
" universal acceptance of the court's treaty should speak out to welcome its membership,\" said"
" Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts"
" to undermine international justice, not Palestine's decision to join a treaty to which over 100"
' countries around the world are members." In January, when the preliminary ICC examination was'
" opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was"
' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s'
' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we'
' do not believe that it is eligible to join the ICC," the State Department said in a statement. It'
' urged the warring sides to resolve their differences through direct negotiations. "We will continue'
' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.'
" But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows'
" the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor"
' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."'
" The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The"
" inquiry will include alleged war crimes committed since June. The International Criminal Court was"
" set up in 2002 to prosecute genocide, crimes against humanity and war crimes.",
"The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted"
" Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor"
' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A'
" person who has such a video needs to immediately give it to the investigators.\" Robin's comments"
" follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the"
" French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was"
" recovered from a phone at the wreckage site. The two publications described the supposed video, but"
" did not post it on their websites. The publications said that they watched the video, which was"
" found by a source close to the investigation. \"One can hear cries of 'My God' in several"
' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps'
" of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy"
' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing'
" scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident"
" investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc"
" Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the"
' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell'
' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."'
" Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute"
" in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working"
" hand-in-hand with investigators. But none of the cell phones found so far have been sent to the"
" institute, Menichini said. Asked whether staff involved in the search could have leaked a memory"
' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:'
' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are'
' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is'
" something we did not know before. ... Overall we can say many things of the investigation weren't"
' revealed by the investigation at the beginning," he said. What was mental state of Germanwings'
" co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled"
" depression years before he took the controls of Germanwings Flight 9525, which he's accused of"
" deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school"
' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email'
" correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa"
" said, included medical documents he submitted in connection with resuming his flight training. The"
" announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle"
" with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa,"
" whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday"
' as a "swift and seamless clarification" and said it was sharing the information and documents --'
" including training and medical records -- with public prosecutors. Spohr traveled to the crash site"
" Wednesday, where recovery teams have been working for the past week to recover human remains and"
" plane debris scattered across a steep mountainside. He saw the crisis center set up in"
" Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving"
" families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no"
" visible human remains were left at the site but recovery teams would keep searching. French"
" President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the"
" victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini"
" said. Among those personal belongings could be more cell phones belonging to the 144 passengers and"
" six crew on board. Check out the latest from our correspondents . The details about Lubitz's"
" correspondence with the flight school during his training were among several developments as"
" investigators continued to delve into what caused the crash and Lubitz's possible motive for"
" downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical"
' certificate, had passed all his examinations and "held all the licenses required." Earlier, a'
" spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal"
" Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent"
" psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting"
" Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether"
" Lubitz feared his medical condition would cause him to lose his pilot's license, a European"
' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part'
" of his life,\" the source said, it's only one theory being considered. Another source, a law"
" enforcement official briefed on the investigation, also told CNN that authorities believe the"
" primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly"
" because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor"
" and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had"
" psychological issues, the European government official said. But no matter what details emerge about"
" his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the'
" fact that maybe they weren't going to keep doing their job and they're upset about that and so"
' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels'
" entitled to also take that rage and turn it outward on 149 other people who had nothing to do with"
" the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of"
" Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from"
" Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff,"
" Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.",
],
return_tensors="pt",
padding="longest",
truncation=True,
)
generated_ids = self.xsum_1_1_model.generate(**batch, num_beams=4)
result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)
assert (
result[0]
== " The International Criminal Court (ICC) has announced that it has been announced by the International"
" Criminal court."
)
assert (
result[1]
== " An investigation into the crash that killed at least 10 people in the French capital has been"
" released by the French police investigating the crash."
)
def test_encoder_equiv(self):
# test batch
batch = self.tok(
[
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories."
" The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is"
" based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted"
' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including'
' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination'
" into the situation in Palestinian territories, paving the way for possible war crimes investigations"
" against Israelis. As members of the court, Palestinians may be subject to counter-charges as well."
" Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts"
" to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony,"
' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome'
' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he'
' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of'
' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was'
' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State'
" of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a"
' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she'
' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize'
" Palestine for joining the ICC should immediately end their pressure, and countries that support"
" universal acceptance of the court's treaty should speak out to welcome its membership,\" said"
" Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts"
" to undermine international justice, not Palestine's decision to join a treaty to which over 100"
' countries around the world are members." In January, when the preliminary ICC examination was'
" opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was"
' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s'
' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we'
' do not believe that it is eligible to join the ICC," the State Department said in a statement. It'
' urged the warring sides to resolve their differences through direct negotiations. "We will continue'
' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.'
" But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows'
" the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor"
' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."'
" The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The"
" inquiry will include alleged war crimes committed since June. The International Criminal Court was"
" set up in 2002 to prosecute genocide, crimes against humanity and war crimes.",
"The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted"
" Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor"
' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A'
" person who has such a video needs to immediately give it to the investigators.\" Robin's comments"
" follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the"
" French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was"
" recovered from a phone at the wreckage site. The two publications described the supposed video, but"
" did not post it on their websites. The publications said that they watched the video, which was"
" found by a source close to the investigation. \"One can hear cries of 'My God' in several"
' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps'
" of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy"
' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing'
" scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident"
" investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc"
" Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the"
' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell'
' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."'
" Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute"
" in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working"
" hand-in-hand with investigators. But none of the cell phones found so far have been sent to the"
" institute, Menichini said. Asked whether staff involved in the search could have leaked a memory"
' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:'
' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are'
' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is'
" something we did not know before. ... Overall we can say many things of the investigation weren't"
' revealed by the investigation at the beginning," he said. What was mental state of Germanwings'
" co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled"
" depression years before he took the controls of Germanwings Flight 9525, which he's accused of"
" deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school"
' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email'
" correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa"
" said, included medical documents he submitted in connection with resuming his flight training. The"
" announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle"
" with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa,"
" whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday"
' as a "swift and seamless clarification" and said it was sharing the information and documents --'
" including training and medical records -- with public prosecutors. Spohr traveled to the crash site"
" Wednesday, where recovery teams have been working for the past week to recover human remains and"
" plane debris scattered across a steep mountainside. He saw the crisis center set up in"
" Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving"
" families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no"
" visible human remains were left at the site but recovery teams would keep searching. French"
" President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the"
" victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini"
" said. Among those personal belongings could be more cell phones belonging to the 144 passengers and"
" six crew on board. Check out the latest from our correspondents . The details about Lubitz's"
" correspondence with the flight school during his training were among several developments as"
" investigators continued to delve into what caused the crash and Lubitz's possible motive for"
" downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical"
' certificate, had passed all his examinations and "held all the licenses required." Earlier, a'
" spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal"
" Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent"
" psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting"
" Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether"
" Lubitz feared his medical condition would cause him to lose his pilot's license, a European"
' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part'
" of his life,\" the source said, it's only one theory being considered. Another source, a law"
" enforcement official briefed on the investigation, also told CNN that authorities believe the"
" primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly"
" because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor"
" and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had"
" psychological issues, the European government official said. But no matter what details emerge about"
" his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the'
" fact that maybe they weren't going to keep doing their job and they're upset about that and so"
' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels'
" entitled to also take that rage and turn it outward on 149 other people who had nothing to do with"
" the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of"
" Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from"
" Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff,"
" Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.",
],
return_tensors="pt",
padding="longest",
truncation=True,
)
features = self.xsum_1_1_model.get_encoder()(**batch).last_hidden_state
expected = [[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]]
assert_tensors_close(features[0, :3, :3], torch.tensor(expected), atol=1e-3)
@require_torch
@require_sentencepiece
@require_tokenizers
class BartModelIntegrationTests(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@slow
def test_inference_no_head(self):
model = BartModel.from_pretrained("facebook/bart-large").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
attention_mask = input_ids.ne(model.config.pad_token_id)
with torch.no_grad():
output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
expected_shape = torch.Size((1, 11, 1024))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], device=torch_device
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))
@slow
def test_base_mask_filling(self):
pbase = pipeline(task="fill-mask", model="facebook/bart-base")
src_text = [" I went to the <mask>."]
results = [x["token_str"] for x in pbase(src_text)]
assert " bathroom" in results
@slow
def test_large_mask_filling(self):
plarge = pipeline(task="fill-mask", model="facebook/bart-large")
src_text = [" I went to the <mask>."]
results = [x["token_str"] for x in plarge(src_text)]
expected_results = [" bathroom", " gym", " wrong", " movies", " hospital"]
self.assertListEqual(results, expected_results)
@slow
def test_mnli_inference(self):
example_b = [0, 31414, 232, 328, 740, 1140, 69, 46078, 1588, 2, 1]
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2], example_b])
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli").to(
torch_device
) # eval called in from_pre
attention_mask = input_ids.ne(model.config.pad_token_id)
# Test that model hasn't changed
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
batched_logits = outputs.logits
expected_shape = torch.Size((2, 3))
self.assertEqual(batched_logits.shape, expected_shape)
expected_slice = torch.tensor([[0.1907, 1.4342, -1.0289]], device=torch_device)
logits_arr = batched_logits[0].detach()
# Test that padding does not change results
input_ids_no_pad = _long_tensor([example_b[:-1]])
attention_mask_no_pad = input_ids_no_pad.ne(model.config.pad_token_id)
with torch.no_grad():
logits2 = model(input_ids=input_ids_no_pad, attention_mask=attention_mask_no_pad).logits.squeeze()
assert_tensors_close(batched_logits[1], logits2, atol=1e-3)
assert_tensors_close(expected_slice, logits_arr, atol=1e-3)
@slow
def test_xsum_summarization_same_as_fairseq(self):
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-xsum").to(torch_device)
tok = self.default_tokenizer
PGE_ARTICLE = """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
EXPECTED_SUMMARY = (
"California's largest power company has begun shutting off electricity to thousands of customers in the"
" state."
)
dct = tok.batch_encode_plus(
[PGE_ARTICLE],
max_length=1024,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(torch_device)
hypotheses_batch = model.generate(
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
num_beams=2,
max_length=62,
min_length=11,
length_penalty=1.0,
no_repeat_ngram_size=3,
early_stopping=True,
decoder_start_token_id=model.config.eos_token_id,
)
decoded = tok.batch_decode(
hypotheses_batch,
skip_special_tokens=True,
)
self.assertEqual(EXPECTED_SUMMARY, decoded[0])
def test_xsum_config_generation_params(self):
config = BartConfig.from_pretrained("facebook/bart-large-xsum")
expected_params = dict(num_beams=6, do_sample=False, early_stopping=True, length_penalty=1.0)
config_params = {k: getattr(config, k, "MISSING") for k, v in expected_params.items()}
self.assertDictEqual(expected_params, config_params)
@slow
def test_cnn_summarization_same_as_fairseq(self):
hf = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
FRANCE_ARTICLE = ( # @noq
" Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings"
" Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane."
' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."'
' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s'
" comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French"
" Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a"
" phone at the wreckage site. The two publications described the supposed video, but did not post it on"
" their websites. The publications said that they watched the video, which was found by a source close to"
" the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported."
' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the'
" cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the"
' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,'
" editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said"
" the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman"
" in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the"
' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,'
' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be'
" sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by"
" specialized technicians working hand-in-hand with investigators. But none of the cell phones found so"
" far have been sent to the institute, Menichini said. Asked whether staff involved in the search could"
' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin'
' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match'
' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is something'
" we did not know before. ... Overall we can say many things of the investigation weren't revealed by the"
' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline'
" Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the"
" controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the"
' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of'
' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school'
" discovered in an internal investigation, Lufthansa said, included medical documents he submitted in"
" connection with resuming his flight training. The announcement indicates that Lufthansa, the parent"
" company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and"
" ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%"
' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was'
" sharing the information and documents -- including training and medical records -- with public"
" prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the"
" past week to recover human remains and plane debris scattered across a steep mountainside. He saw the"
" crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash"
" site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late"
" Tuesday that no visible human remains were left at the site but recovery teams would keep searching."
" French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all"
" the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said."
" Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew"
" on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with"
" the flight school during his training were among several developments as investigators continued to"
" delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa"
" spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his"
' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in'
" Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at"
" some point before his aviation career and underwent psychotherapy before he got his pilot's license."
" Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the"
" crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to"
" lose his pilot's license, a European government official briefed on the investigation told CNN on"
' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being'
" considered. Another source, a law enforcement official briefed on the investigation, also told CNN that"
" authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would"
" not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had"
" seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded"
" he had psychological issues, the European government official said. But no matter what details emerge"
" about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact'
" that maybe they weren't going to keep doing their job and they're upset about that and so they're"
' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to'
" also take that rage and turn it outward on 149 other people who had nothing to do with the person's"
' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight'
" 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura"
" Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine"
" Amiel and Anna-Maja Rappard contributed to this report."
)
SHORTER_ARTICLE = (
" (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder"
" and Faith Karimi contributed to this report."
)
# The below article tests that we don't add any hypotheses outside of the top n_beams
IRAN_ARTICLE = (
" (CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran"
" in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively"
" block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger."
" Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli"
" Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a"
" letter to the Iranian leadership warning them away from a deal. The debate that has already begun since"
" the announcement of the new framework will likely result in more heat than light. It will not be helped"
" by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ."
" The most misleading assertion, despite universal rejection by experts, is that the negotiations'"
" objective at the outset was the total elimination of any nuclear program in Iran. That is the position"
" of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it"
" had been, there would have been no Iranian team at the negotiating table. Rather, the objective has"
" always been to structure an agreement or series of agreements so that Iran could not covertly develop a"
" nuclear arsenal before the United States and its allies could respond. The new framework has exceeded"
" expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by"
" two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another"
" dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite"
" sharp accusations by some in the United States and its allies, Iran denies having such a program, and"
" U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's"
" continued cooperation with International Atomic Energy Agency inspections is further evidence on this"
" point, and we'll know even more about Iran's program in the coming months and years because of the deal."
" In fact, the inspections provisions that are part of this agreement are designed to protect against any"
" covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that"
" the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter"
" warning that a deal might be killed by Congress or a future president). This of course is not the case."
" The talks were between Iran and the five permanent members of the U.N. Security Council (United States,"
" United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has"
" played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement"
" reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran"
" and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement"
" contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the"
" case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased"
" or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes"
" Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear"
" sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going"
" forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such"
" a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the"
' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not'
" suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New"
" START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement"
" with Iran will not be so balanced. The restrictions and obligations in the final framework agreement"
" will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove"
" most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally"
" some insist that any agreement must address Iranian missile programs, human rights violations or support"
" for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are"
" unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in"
" the negotiations would be a poison pill. This agreement should be judged on its merits and on how it"
" affects the security of our negotiating partners and allies, including Israel. Those judgments should be"
" fact-based, not based on questionable assertions or dubious assumptions."
)
ARTICLE_SUBWAY = (
" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
dct = tok.batch_encode_plus(
[FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY],
max_length=1024,
padding="max_length",
truncation_strategy="only_first",
truncation=True,
return_tensors="pt",
)
self.assertEqual(1024, dct["input_ids"].shape[1])
hypotheses_batch = hf.generate(
input_ids=dct["input_ids"].to(torch_device),
attention_mask=dct["attention_mask"].to(torch_device),
num_beams=2,
)
assert hypotheses_batch[:, 1].eq(0).all().item()
EXPECTED = [
"A French prosecutor says he is not aware of any video footage from on board the plane. Two German "
"magazines claim to have found a cell phone video showing the crash. The publications say they watched "
"the video, which was found by a source close to the investigation. All 150 on board Germanwings Flight "
"9525 were killed.",
"Palestinian Authority becomes 123rd member of the International Criminal Court. The move gives the court "
"jurisdiction over alleged crimes in Palestinian territories. Israel and the United States opposed the "
"Palestinians' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki said it was a "
"move toward greater justice.",
"U.S. and its negotiating partners reached a strong framework agreement with Iran. Peter Bergen: The "
"debate that has already begun will likely result in more heat than light. He says critics have made "
"dubious assumptions and doubtful assertions. Bergen says the goal was to block Iran from building a "
"nuclear weapon.",
"Liana Barrientos, 39, has been married 10 times, sometimes within two weeks of each other. Prosecutors "
"say the marriages were part of an immigration scam. She pleaded not guilty at State Supreme Court in the "
"Bronx on Friday. If convicted, she faces up to four years in prison.",
]
generated_summaries = tok.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
assert generated_summaries == EXPECTED
@slow
def test_contrastive_search_bart(self):
article = (
" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
input_ids = bart_tokenizer(
article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt"
).input_ids.to(torch_device)
outputs = bart_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64)
generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)
self.assertListEqual(
generated_text,
[
"Liana Barrientos, 39, pleaded not guilty to charges related to false marriage statements. "
"Prosecutors say she married at least 10 times, sometimes within two weeks of each other. She is "
"accused of being part of an immigration scam to get permanent residency. If convicted, she faces up "
"to four years in"
],
)
class BartStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=4,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = BartConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
encoder_layers=self.decoder_layers,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
attention_mask,
lm_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.decoder_seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = BartDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = BartDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class BartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (BartDecoder, BartForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (BartForCausalLM,) if is_torch_available() else ()
fx_comptatible = True
test_pruning = False
is_encoder_decoder = False
test_missing_keys = False
def setUp(
self,
):
self.model_tester = BartStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=BartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return
| # coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BART model. """
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import BartConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
from transformers import (
AutoModelForSequenceClassification,
BartForCausalLM,
BartForConditionalGeneration,
BartForQuestionAnswering,
BartForSequenceClassification,
BartModel,
BartTokenizer,
pipeline,
)
from transformers.models.bart.modeling_bart import BartDecoder, BartEncoder, shift_tokens_right
def prepare_bart_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class BartModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
# forcing a certain token to be generated, sets all other tokens to -inf
# if however the token to be generated is already at -inf then it can lead token
# `nan` values and thus break generation
self.forced_bos_token_id = None
self.forced_eos_token_id = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_bart_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return BartConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
forced_bos_token_id=self.forced_bos_token_id,
forced_eos_token_id=self.forced_eos_token_id,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
config.vocab_size = 300
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = BartModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = BartModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = BartEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = BartDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class BartHeadTests(unittest.TestCase):
vocab_size = 99
def _get_config_and_data(self):
input_ids = torch.tensor(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
],
dtype=torch.long,
device=torch_device,
)
batch_size = input_ids.shape[0]
config = BartConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
return config, input_ids, batch_size
def test_sequence_classification_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
labels = _long_tensor([2] * batch_size).to(torch_device)
model = BartForSequenceClassification(config)
model.to(torch_device)
outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=labels)
expected_shape = torch.Size((batch_size, config.num_labels))
self.assertEqual(outputs["logits"].shape, expected_shape)
self.assertIsInstance(outputs["loss"].item(), float)
def test_question_answering_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
sequence_labels = ids_tensor([batch_size], 2).to(torch_device)
model = BartForQuestionAnswering(config)
model.to(torch_device)
outputs = model(
input_ids=input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.assertEqual(outputs["start_logits"].shape, input_ids.shape)
self.assertEqual(outputs["end_logits"].shape, input_ids.shape)
self.assertIsInstance(outputs["loss"].item(), float)
@timeout_decorator.timeout(1)
def test_lm_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
lm_labels = ids_tensor([batch_size, input_ids.shape[1]], self.vocab_size).to(torch_device)
lm_model = BartForConditionalGeneration(config)
lm_model.to(torch_device)
outputs = lm_model(input_ids=input_ids, labels=lm_labels)
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
self.assertIsInstance(outputs["loss"].item(), float)
def test_lm_uneven_forward(self):
config = BartConfig(
vocab_size=self.vocab_size,
d_model=14,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=8,
decoder_ffn_dim=8,
max_position_embeddings=48,
)
lm_model = BartForConditionalGeneration(config).to(torch_device)
context = torch.tensor(
[[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long
)
summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long)
outputs = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary)
expected_shape = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_generate_beam_search(self):
input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], device=torch_device, dtype=torch.long)
config = BartConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
lm_model = BartForConditionalGeneration(config).to(torch_device)
lm_model.eval()
max_length = 5
generated_ids = lm_model.generate(
input_ids.clone(),
do_sample=True,
num_return_sequences=1,
num_beams=2,
no_repeat_ngram_size=3,
max_length=max_length,
)
self.assertEqual(generated_ids.shape, (input_ids.shape[0], max_length))
def test_shift_tokens_right(self):
input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long)
shifted = shift_tokens_right(input_ids, 1, 2)
n_pad_before = input_ids.eq(1).float().sum()
n_pad_after = shifted.eq(1).float().sum()
self.assertEqual(shifted.shape, input_ids.shape)
self.assertEqual(n_pad_after, n_pad_before - 1)
self.assertTrue(torch.eq(shifted[:, 0], 2).all())
@slow
def test_tokenization(self):
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
examples = [" Hello world", " DomDramg"] # need leading spaces for equality
fairseq_results = [
torch.tensor([0, 20920, 232, 2]),
torch.tensor([0, 11349, 495, 4040, 571, 2]),
]
for ex, desired_result in zip(examples, fairseq_results):
bart_toks = tokenizer.encode(ex, return_tensors="pt").squeeze()
assert_tensors_close(desired_result.long(), bart_toks, prefix=ex)
def test_generate_fp16(self):
config, input_ids, batch_size = self._get_config_and_data()
attention_mask = input_ids.ne(1).to(torch_device)
model = BartForConditionalGeneration(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_dummy_inputs(self):
config, *_ = self._get_config_and_data()
model = BartForConditionalGeneration(config).eval().to(torch_device)
model(**model.dummy_inputs)
def test_resize_tokens_embeddings_more(self):
config, input_ids, _ = self._get_config_and_data()
def _get_embs(m):
return (m.get_input_embeddings().weight.data.clone(), m.get_output_embeddings().weight.data.clone())
model = BartForConditionalGeneration(config).eval().to(torch_device)
input, output = _get_embs(model)
self.assertTrue(torch.eq(input, output).all())
new_vocab_size = 45
model.resize_token_embeddings(new_vocab_size)
input_new, output_new = _get_embs(model)
self.assertEqual(input_new.shape, (new_vocab_size, config.d_model))
self.assertEqual(output_new.shape, (new_vocab_size, config.d_model))
self.assertTrue(torch.eq(input_new, output_new).all())
@require_torch
class BartModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(BartModel, BartForConditionalGeneration, BartForSequenceClassification, BartForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = (BartForConditionalGeneration,) if is_torch_available() else ()
is_encoder_decoder = True
fx_compatible = True
test_pruning = False
def setUp(self):
self.model_tester = BartModelTester(self)
self.config_tester = ConfigTester(self, config_class=BartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
# BartForSequenceClassification does not support inputs_embeds
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (BartModel, BartForConditionalGeneration, BartForQuestionAnswering):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = BartForConditionalGeneration(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
@slow
class FastIntegrationTests(unittest.TestCase):
"""These tests are useful for debugging since they operate on a model with 1 encoder layer and 1 decoder layer."""
@cached_property
def tok(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@cached_property
def xsum_1_1_model(self):
return BartForConditionalGeneration.from_pretrained("sshleifer/distilbart-xsum-1-1")
def test_xsum_1_1_generation(self):
hf = self.xsum_1_1_model
tok = self.tok
ARTICLE = (
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes."
)
EXPECTED = (
" The International Criminal Court (ICC) has announced that it has been announced by the International"
" Criminal court."
)
dct = tok(ARTICLE, return_tensors="pt")
generated_ids = hf.generate(**dct, num_beams=4)
result = tok.batch_decode(generated_ids, skip_special_tokens=True)[0]
assert EXPECTED == result
def test_xsum_1_1_batch_generation(self):
# test batch
batch = self.tok(
[
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories."
" The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is"
" based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted"
' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including'
' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination'
" into the situation in Palestinian territories, paving the way for possible war crimes investigations"
" against Israelis. As members of the court, Palestinians may be subject to counter-charges as well."
" Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts"
" to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony,"
' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome'
' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he'
' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of'
' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was'
' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State'
" of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a"
' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she'
' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize'
" Palestine for joining the ICC should immediately end their pressure, and countries that support"
" universal acceptance of the court's treaty should speak out to welcome its membership,\" said"
" Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts"
" to undermine international justice, not Palestine's decision to join a treaty to which over 100"
' countries around the world are members." In January, when the preliminary ICC examination was'
" opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was"
' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s'
' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we'
' do not believe that it is eligible to join the ICC," the State Department said in a statement. It'
' urged the warring sides to resolve their differences through direct negotiations. "We will continue'
' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.'
" But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows'
" the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor"
' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."'
" The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The"
" inquiry will include alleged war crimes committed since June. The International Criminal Court was"
" set up in 2002 to prosecute genocide, crimes against humanity and war crimes.",
"The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted"
" Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor"
' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A'
" person who has such a video needs to immediately give it to the investigators.\" Robin's comments"
" follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the"
" French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was"
" recovered from a phone at the wreckage site. The two publications described the supposed video, but"
" did not post it on their websites. The publications said that they watched the video, which was"
" found by a source close to the investigation. \"One can hear cries of 'My God' in several"
' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps'
" of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy"
' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing'
" scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident"
" investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc"
" Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the"
' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell'
' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."'
" Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute"
" in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working"
" hand-in-hand with investigators. But none of the cell phones found so far have been sent to the"
" institute, Menichini said. Asked whether staff involved in the search could have leaked a memory"
' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:'
' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are'
' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is'
" something we did not know before. ... Overall we can say many things of the investigation weren't"
' revealed by the investigation at the beginning," he said. What was mental state of Germanwings'
" co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled"
" depression years before he took the controls of Germanwings Flight 9525, which he's accused of"
" deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school"
' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email'
" correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa"
" said, included medical documents he submitted in connection with resuming his flight training. The"
" announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle"
" with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa,"
" whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday"
' as a "swift and seamless clarification" and said it was sharing the information and documents --'
" including training and medical records -- with public prosecutors. Spohr traveled to the crash site"
" Wednesday, where recovery teams have been working for the past week to recover human remains and"
" plane debris scattered across a steep mountainside. He saw the crisis center set up in"
" Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving"
" families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no"
" visible human remains were left at the site but recovery teams would keep searching. French"
" President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the"
" victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini"
" said. Among those personal belongings could be more cell phones belonging to the 144 passengers and"
" six crew on board. Check out the latest from our correspondents . The details about Lubitz's"
" correspondence with the flight school during his training were among several developments as"
" investigators continued to delve into what caused the crash and Lubitz's possible motive for"
" downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical"
' certificate, had passed all his examinations and "held all the licenses required." Earlier, a'
" spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal"
" Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent"
" psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting"
" Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether"
" Lubitz feared his medical condition would cause him to lose his pilot's license, a European"
' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part'
" of his life,\" the source said, it's only one theory being considered. Another source, a law"
" enforcement official briefed on the investigation, also told CNN that authorities believe the"
" primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly"
" because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor"
" and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had"
" psychological issues, the European government official said. But no matter what details emerge about"
" his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the'
" fact that maybe they weren't going to keep doing their job and they're upset about that and so"
' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels'
" entitled to also take that rage and turn it outward on 149 other people who had nothing to do with"
" the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of"
" Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from"
" Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff,"
" Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.",
],
return_tensors="pt",
padding="longest",
truncation=True,
)
generated_ids = self.xsum_1_1_model.generate(**batch, num_beams=4)
result = self.tok.batch_decode(generated_ids, skip_special_tokens=True)
assert (
result[0]
== " The International Criminal Court (ICC) has announced that it has been announced by the International"
" Criminal court."
)
assert (
result[1]
== " An investigation into the crash that killed at least 10 people in the French capital has been"
" released by the French police investigating the crash."
)
def test_encoder_equiv(self):
# test batch
batch = self.tok(
[
"The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories."
" The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is"
" based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted"
' its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including'
' East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination'
" into the situation in Palestinian territories, paving the way for possible war crimes investigations"
" against Israelis. As members of the court, Palestinians may be subject to counter-charges as well."
" Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts"
" to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony,"
' said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome'
' Statute today, the world is also a step closer to ending a long era of impunity and injustice," he'
' said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of'
' justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was'
' just the first step for the Palestinians. "As the Rome Statute today enters into force for the State'
" of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a"
' State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she'
' said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize'
" Palestine for joining the ICC should immediately end their pressure, and countries that support"
" universal acceptance of the court's treaty should speak out to welcome its membership,\" said"
" Balkees Jarrah, international justice counsel for the group. \"What's objectionable is the attempts"
" to undermine international justice, not Palestine's decision to join a treaty to which over 100"
' countries around the world are members." In January, when the preliminary ICC examination was'
" opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was"
' overstepping its boundaries. The United States also said it "strongly" disagreed with the court\'s'
' decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we'
' do not believe that it is eligible to join the ICC," the State Department said in a statement. It'
' urged the warring sides to resolve their differences through direct negotiations. "We will continue'
' to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said.'
" But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows'
" the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor"
' Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality."'
" The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The"
" inquiry will include alleged war crimes committed since June. The International Criminal Court was"
" set up in 2002 to prosecute genocide, crimes against humanity and war crimes.",
"The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted"
" Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor"
' Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A'
" person who has such a video needs to immediately give it to the investigators.\" Robin's comments"
" follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the"
" French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was"
" recovered from a phone at the wreckage site. The two publications described the supposed video, but"
" did not post it on their websites. The publications said that they watched the video, which was"
" found by a source close to the investigation. \"One can hear cries of 'My God' in several"
' languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps'
" of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy"
' shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing'
" scene,\" said Julian Reichelt, editor-in-chief of Bild online. An official with France's accident"
" investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc"
" Menichini, a French Gendarmerie spokesman in charge of communications on rescue efforts around the"
' Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell'
' phones have been collected at the site, he said, but that they "hadn\'t been exploited yet."'
" Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute"
" in Rosny sous-Bois, near Paris, in order to be analyzed by specialized technicians working"
" hand-in-hand with investigators. But none of the cell phones found so far have been sent to the"
" institute, Menichini said. Asked whether staff involved in the search could have leaked a memory"
' card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett:'
' Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match are'
' "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is'
" something we did not know before. ... Overall we can say many things of the investigation weren't"
' revealed by the investigation at the beginning," he said. What was mental state of Germanwings'
" co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled"
" depression years before he took the controls of Germanwings Flight 9525, which he's accused of"
" deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training school"
' in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email'
" correspondence between Lubitz and the school discovered in an internal investigation, Lufthansa"
" said, included medical documents he submitted in connection with resuming his flight training. The"
" announcement indicates that Lufthansa, the parent company of Germanwings, knew of Lubitz's battle"
" with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa,"
" whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly, described its statement Tuesday"
' as a "swift and seamless clarification" and said it was sharing the information and documents --'
" including training and medical records -- with public prosecutors. Spohr traveled to the crash site"
" Wednesday, where recovery teams have been working for the past week to recover human remains and"
" plane debris scattered across a steep mountainside. He saw the crisis center set up in"
" Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving"
" families have left flowers at a simple stone memorial. Menichini told CNN late Tuesday that no"
" visible human remains were left at the site but recovery teams would keep searching. French"
" President Francois Hollande, speaking Tuesday, said that it should be possible to identify all the"
" victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini"
" said. Among those personal belongings could be more cell phones belonging to the 144 passengers and"
" six crew on board. Check out the latest from our correspondents . The details about Lubitz's"
" correspondence with the flight school during his training were among several developments as"
" investigators continued to delve into what caused the crash and Lubitz's possible motive for"
" downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical"
' certificate, had passed all his examinations and "held all the licenses required." Earlier, a'
" spokesman for the prosecutor's office in Dusseldorf, Christoph Kumpa, said medical records reveal"
" Lubitz suffered from suicidal tendencies at some point before his aviation career and underwent"
" psychotherapy before he got his pilot's license. Kumpa emphasized there's no evidence suggesting"
" Lubitz was suicidal or acting aggressively before the crash. Investigators are looking into whether"
" Lubitz feared his medical condition would cause him to lose his pilot's license, a European"
' government official briefed on the investigation told CNN on Tuesday. While flying was "a big part'
" of his life,\" the source said, it's only one theory being considered. Another source, a law"
" enforcement official briefed on the investigation, also told CNN that authorities believe the"
" primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly"
" because of his medical problems. Lubitz's girlfriend told investigators he had seen an eye doctor"
" and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had"
" psychological issues, the European government official said. But no matter what details emerge about"
" his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the'
" fact that maybe they weren't going to keep doing their job and they're upset about that and so"
' they\'re suicidal," he said. "But there is no mental illness that explains why somebody then feels'
" entitled to also take that rage and turn it outward on 149 other people who had nothing to do with"
" the person's problems.\" Germanwings crash compensation: What we know . Who was the captain of"
" Germanwings Flight 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from"
" Dusseldorf, while Laura Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff,"
" Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.",
],
return_tensors="pt",
padding="longest",
truncation=True,
)
features = self.xsum_1_1_model.get_encoder()(**batch).last_hidden_state
expected = [[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]]
assert_tensors_close(features[0, :3, :3], torch.tensor(expected), atol=1e-3)
@require_torch
@require_sentencepiece
@require_tokenizers
class BartModelIntegrationTests(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@slow
def test_inference_no_head(self):
model = BartModel.from_pretrained("facebook/bart-large").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
attention_mask = input_ids.ne(model.config.pad_token_id)
with torch.no_grad():
output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
expected_shape = torch.Size((1, 11, 1024))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], device=torch_device
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))
@slow
def test_base_mask_filling(self):
pbase = pipeline(task="fill-mask", model="facebook/bart-base")
src_text = [" I went to the <mask>."]
results = [x["token_str"] for x in pbase(src_text)]
assert " bathroom" in results
@slow
def test_large_mask_filling(self):
plarge = pipeline(task="fill-mask", model="facebook/bart-large")
src_text = [" I went to the <mask>."]
results = [x["token_str"] for x in plarge(src_text)]
expected_results = [" bathroom", " gym", " wrong", " movies", " hospital"]
self.assertListEqual(results, expected_results)
@slow
def test_mnli_inference(self):
example_b = [0, 31414, 232, 328, 740, 1140, 69, 46078, 1588, 2, 1]
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2], example_b])
model = AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli").to(
torch_device
) # eval called in from_pre
attention_mask = input_ids.ne(model.config.pad_token_id)
# Test that model hasn't changed
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
batched_logits = outputs.logits
expected_shape = torch.Size((2, 3))
self.assertEqual(batched_logits.shape, expected_shape)
expected_slice = torch.tensor([[0.1907, 1.4342, -1.0289]], device=torch_device)
logits_arr = batched_logits[0].detach()
# Test that padding does not change results
input_ids_no_pad = _long_tensor([example_b[:-1]])
attention_mask_no_pad = input_ids_no_pad.ne(model.config.pad_token_id)
with torch.no_grad():
logits2 = model(input_ids=input_ids_no_pad, attention_mask=attention_mask_no_pad).logits.squeeze()
assert_tensors_close(batched_logits[1], logits2, atol=1e-3)
assert_tensors_close(expected_slice, logits_arr, atol=1e-3)
@slow
def test_xsum_summarization_same_as_fairseq(self):
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-xsum").to(torch_device)
tok = self.default_tokenizer
PGE_ARTICLE = """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
EXPECTED_SUMMARY = (
"California's largest power company has begun shutting off electricity to thousands of customers in the"
" state."
)
dct = tok.batch_encode_plus(
[PGE_ARTICLE],
max_length=1024,
padding="max_length",
truncation=True,
return_tensors="pt",
).to(torch_device)
hypotheses_batch = model.generate(
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
num_beams=2,
max_length=62,
min_length=11,
length_penalty=1.0,
no_repeat_ngram_size=3,
early_stopping=True,
decoder_start_token_id=model.config.eos_token_id,
)
decoded = tok.batch_decode(
hypotheses_batch,
skip_special_tokens=True,
)
self.assertEqual(EXPECTED_SUMMARY, decoded[0])
def test_xsum_config_generation_params(self):
config = BartConfig.from_pretrained("facebook/bart-large-xsum")
expected_params = dict(num_beams=6, do_sample=False, early_stopping=True, length_penalty=1.0)
config_params = {k: getattr(config, k, "MISSING") for k, v in expected_params.items()}
self.assertDictEqual(expected_params, config_params)
@slow
def test_cnn_summarization_same_as_fairseq(self):
hf = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
FRANCE_ARTICLE = ( # @noq
" Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings"
" Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane."
' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."'
' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s'
" comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French"
" Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a"
" phone at the wreckage site. The two publications described the supposed video, but did not post it on"
" their websites. The publications said that they watched the video, which was found by a source close to"
" the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported."
' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the'
" cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the"
' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,'
" editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said"
" the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman"
" in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the"
' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,'
' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be'
" sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by"
" specialized technicians working hand-in-hand with investigators. But none of the cell phones found so"
" far have been sent to the institute, Menichini said. Asked whether staff involved in the search could"
' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin'
' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match'
' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is something'
" we did not know before. ... Overall we can say many things of the investigation weren't revealed by the"
' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline'
" Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the"
" controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the"
' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of'
' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school'
" discovered in an internal investigation, Lufthansa said, included medical documents he submitted in"
" connection with resuming his flight training. The announcement indicates that Lufthansa, the parent"
" company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and"
" ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%"
' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was'
" sharing the information and documents -- including training and medical records -- with public"
" prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the"
" past week to recover human remains and plane debris scattered across a steep mountainside. He saw the"
" crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash"
" site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late"
" Tuesday that no visible human remains were left at the site but recovery teams would keep searching."
" French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all"
" the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said."
" Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew"
" on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with"
" the flight school during his training were among several developments as investigators continued to"
" delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa"
" spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his"
' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in'
" Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at"
" some point before his aviation career and underwent psychotherapy before he got his pilot's license."
" Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the"
" crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to"
" lose his pilot's license, a European government official briefed on the investigation told CNN on"
' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being'
" considered. Another source, a law enforcement official briefed on the investigation, also told CNN that"
" authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would"
" not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had"
" seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded"
" he had psychological issues, the European government official said. But no matter what details emerge"
" about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact'
" that maybe they weren't going to keep doing their job and they're upset about that and so they're"
' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to'
" also take that rage and turn it outward on 149 other people who had nothing to do with the person's"
' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight'
" 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura"
" Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine"
" Amiel and Anna-Maja Rappard contributed to this report."
)
SHORTER_ARTICLE = (
" (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder"
" and Faith Karimi contributed to this report."
)
# The below article tests that we don't add any hypotheses outside of the top n_beams
IRAN_ARTICLE = (
" (CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran"
" in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively"
" block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger."
" Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli"
" Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a"
" letter to the Iranian leadership warning them away from a deal. The debate that has already begun since"
" the announcement of the new framework will likely result in more heat than light. It will not be helped"
" by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ."
" The most misleading assertion, despite universal rejection by experts, is that the negotiations'"
" objective at the outset was the total elimination of any nuclear program in Iran. That is the position"
" of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it"
" had been, there would have been no Iranian team at the negotiating table. Rather, the objective has"
" always been to structure an agreement or series of agreements so that Iran could not covertly develop a"
" nuclear arsenal before the United States and its allies could respond. The new framework has exceeded"
" expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by"
" two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another"
" dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite"
" sharp accusations by some in the United States and its allies, Iran denies having such a program, and"
" U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's"
" continued cooperation with International Atomic Energy Agency inspections is further evidence on this"
" point, and we'll know even more about Iran's program in the coming months and years because of the deal."
" In fact, the inspections provisions that are part of this agreement are designed to protect against any"
" covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that"
" the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter"
" warning that a deal might be killed by Congress or a future president). This of course is not the case."
" The talks were between Iran and the five permanent members of the U.N. Security Council (United States,"
" United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has"
" played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement"
" reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran"
" and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement"
" contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the"
" case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased"
" or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes"
" Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear"
" sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going"
" forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such"
" a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the"
' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not'
" suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New"
" START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement"
" with Iran will not be so balanced. The restrictions and obligations in the final framework agreement"
" will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove"
" most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally"
" some insist that any agreement must address Iranian missile programs, human rights violations or support"
" for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are"
" unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in"
" the negotiations would be a poison pill. This agreement should be judged on its merits and on how it"
" affects the security of our negotiating partners and allies, including Israel. Those judgments should be"
" fact-based, not based on questionable assertions or dubious assumptions."
)
ARTICLE_SUBWAY = (
" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
dct = tok.batch_encode_plus(
[FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY],
max_length=1024,
padding="max_length",
truncation_strategy="only_first",
truncation=True,
return_tensors="pt",
)
self.assertEqual(1024, dct["input_ids"].shape[1])
hypotheses_batch = hf.generate(
input_ids=dct["input_ids"].to(torch_device),
attention_mask=dct["attention_mask"].to(torch_device),
num_beams=2,
)
assert hypotheses_batch[:, 1].eq(0).all().item()
EXPECTED = [
"A French prosecutor says he is not aware of any video footage from on board the plane. Two German "
"magazines claim to have found a cell phone video showing the crash. The publications say they watched "
"the video, which was found by a source close to the investigation. All 150 on board Germanwings Flight "
"9525 were killed.",
"Palestinian Authority becomes 123rd member of the International Criminal Court. The move gives the court "
"jurisdiction over alleged crimes in Palestinian territories. Israel and the United States opposed the "
"Palestinians' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki said it was a "
"move toward greater justice.",
"U.S. and its negotiating partners reached a strong framework agreement with Iran. Peter Bergen: The "
"debate that has already begun will likely result in more heat than light. He says critics have made "
"dubious assumptions and doubtful assertions. Bergen says the goal was to block Iran from building a "
"nuclear weapon.",
"Liana Barrientos, 39, has been married 10 times, sometimes within two weeks of each other. Prosecutors "
"say the marriages were part of an immigration scam. She pleaded not guilty at State Supreme Court in the "
"Bronx on Friday. If convicted, she faces up to four years in prison.",
]
generated_summaries = tok.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
assert generated_summaries == EXPECTED
@slow
def test_contrastive_search_bart(self):
article = (
" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
input_ids = bart_tokenizer(
article, add_special_tokens=False, truncation=True, max_length=512, return_tensors="pt"
).input_ids.to(torch_device)
outputs = bart_model.generate(input_ids, penalty_alpha=0.5, top_k=5, max_length=64)
generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)
self.assertListEqual(
generated_text,
[
"Liana Barrientos, 39, pleaded not guilty to charges related to false marriage statements. "
"Prosecutors say she married at least 10 times, sometimes within two weeks of each other. She is "
"accused of being part of an immigration scam to get permanent residency. If convicted, she faces up "
"to four years in"
],
)
class BartStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
d_model=16,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=4,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = BartConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
encoder_layers=self.decoder_layers,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
attention_mask,
lm_labels,
) = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.decoder_seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = BartDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = BartDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class BartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (BartDecoder, BartForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (BartForCausalLM,) if is_torch_available() else ()
fx_comptatible = True
test_pruning = False
is_encoder_decoder = False
test_missing_keys = False
def setUp(
self,
):
self.model_tester = BartStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=BartConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./examples/legacy/seq2seq/pack_dataset.py | #!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fill examples with bitext up to max_tokens without breaking up examples.
[['I went', 'yo fui'],
['to the store', 'a la tienda']
]
=> ['I went to the store', 'yo fui a la tienda']
"""
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def pack_examples(tok, src_examples, tgt_examples, max_tokens=1024):
finished_src, finished_tgt = [], []
sorted_examples = list(zip(src_examples, tgt_examples))
new_src, new_tgt = sorted_examples[0]
def is_too_big(strang):
return tok(strang, return_tensors="pt").input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:]):
cand_src = new_src + " " + src
cand_tgt = new_tgt + " " + tgt
if is_too_big(cand_src) or is_too_big(cand_tgt): # cant fit, finalize example
finished_src.append(new_src)
finished_tgt.append(new_tgt)
new_src, new_tgt = src, tgt
else: # can fit, keep adding
new_src, new_tgt = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(new_src)
finished_tgt.append(new_tgt)
return finished_src, finished_tgt
def pack_data_dir(tok, data_dir: Path, max_tokens, save_path):
save_path = Path(save_path)
save_path.mkdir(exist_ok=True)
for split in ["train"]:
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
src_docs = [x.rstrip() for x in Path(src_path).open().readlines()]
tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()]
packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens)
print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.")
Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src))
Path(save_path / f"{split}.target").open("w").write("\n".join(packed_tgt))
for split in ["val", "test"]:
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
shutil.copyfile(src_path, save_path / f"{split}.source")
shutil.copyfile(tgt_path, save_path / f"{split}.target")
def packer_cli():
parser = argparse.ArgumentParser()
parser.add_argument("--tok_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.")
parser.add_argument("--max_seq_len", type=int, default=128)
parser.add_argument("--data_dir", type=str)
parser.add_argument("--save_path", type=str)
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.tok_name)
return pack_data_dir(tokenizer, Path(args.data_dir), args.max_seq_len, args.save_path)
if __name__ == "__main__":
packer_cli()
| #!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fill examples with bitext up to max_tokens without breaking up examples.
[['I went', 'yo fui'],
['to the store', 'a la tienda']
]
=> ['I went to the store', 'yo fui a la tienda']
"""
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def pack_examples(tok, src_examples, tgt_examples, max_tokens=1024):
finished_src, finished_tgt = [], []
sorted_examples = list(zip(src_examples, tgt_examples))
new_src, new_tgt = sorted_examples[0]
def is_too_big(strang):
return tok(strang, return_tensors="pt").input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:]):
cand_src = new_src + " " + src
cand_tgt = new_tgt + " " + tgt
if is_too_big(cand_src) or is_too_big(cand_tgt): # cant fit, finalize example
finished_src.append(new_src)
finished_tgt.append(new_tgt)
new_src, new_tgt = src, tgt
else: # can fit, keep adding
new_src, new_tgt = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(new_src)
finished_tgt.append(new_tgt)
return finished_src, finished_tgt
def pack_data_dir(tok, data_dir: Path, max_tokens, save_path):
save_path = Path(save_path)
save_path.mkdir(exist_ok=True)
for split in ["train"]:
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
src_docs = [x.rstrip() for x in Path(src_path).open().readlines()]
tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()]
packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens)
print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.")
Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src))
Path(save_path / f"{split}.target").open("w").write("\n".join(packed_tgt))
for split in ["val", "test"]:
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
shutil.copyfile(src_path, save_path / f"{split}.source")
shutil.copyfile(tgt_path, save_path / f"{split}.target")
def packer_cli():
parser = argparse.ArgumentParser()
parser.add_argument("--tok_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.")
parser.add_argument("--max_seq_len", type=int, default=128)
parser.add_argument("--data_dir", type=str)
parser.add_argument("--save_path", type=str)
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.tok_name)
return pack_data_dir(tokenizer, Path(args.data_dir), args.max_seq_len, args.save_path)
if __name__ == "__main__":
packer_cli()
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./tests/models/nystromformer/__init__.py | -1 |
||
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/esm/tokenization_esm.py | # coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for ESM."""
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/esm2_t6_8M_UR50D": 1024,
"facebook/esm2_t12_35M_UR50D": 1024,
}
def load_vocab_file(vocab_file):
with open(vocab_file, "r") as f:
lines = f.read().splitlines()
return [l.strip() for l in lines]
class EsmTokenizer(PreTrainedTokenizer):
"""
Constructs an ESM tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(self, vocab_file, **kwargs):
super().__init__(**kwargs)
self.all_tokens = load_vocab_file(vocab_file)
self._id_to_token = {ind: tok for ind, tok in enumerate(self.all_tokens)}
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
self.unk_token = "<unk>"
self.cls_token = "<cls>"
self.pad_token = "<pad>"
self.mask_token = "<mask>"
self.eos_token = "<eos>"
self.unique_no_split_tokens = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def _convert_id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def _convert_token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def _tokenize(self, text, **kwargs):
return text.split()
def get_vocab_size(self, with_added_tokens=False):
return len(self._id_to_token)
def get_vocab(self):
return {token: i for i, token in enumerate(self.all_tokens)}
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.eos_token_id]
cls = [self.cls_token_id]
sep = [self.eos_token_id] # No sep token in ESM vocabulary
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
List of ids of the second sequence.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
mask = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
mask += [0] * len(token_ids_1) + [1]
return mask
def save_vocabulary(self, save_directory, filename_prefix):
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
with open(vocab_file, "w") as f:
f.write("\n".join(self.all_tokens))
return (vocab_file,)
@property
def vocab_size(self) -> int:
return self.get_vocab_size(with_added_tokens=False)
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
return super()._add_tokens(new_tokens, special_tokens=True)
| # coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for ESM."""
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/esm2_t6_8M_UR50D": 1024,
"facebook/esm2_t12_35M_UR50D": 1024,
}
def load_vocab_file(vocab_file):
with open(vocab_file, "r") as f:
lines = f.read().splitlines()
return [l.strip() for l in lines]
class EsmTokenizer(PreTrainedTokenizer):
"""
Constructs an ESM tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(self, vocab_file, **kwargs):
super().__init__(**kwargs)
self.all_tokens = load_vocab_file(vocab_file)
self._id_to_token = {ind: tok for ind, tok in enumerate(self.all_tokens)}
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
self.unk_token = "<unk>"
self.cls_token = "<cls>"
self.pad_token = "<pad>"
self.mask_token = "<mask>"
self.eos_token = "<eos>"
self.unique_no_split_tokens = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def _convert_id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def _convert_token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def _tokenize(self, text, **kwargs):
return text.split()
def get_vocab_size(self, with_added_tokens=False):
return len(self._id_to_token)
def get_vocab(self):
return {token: i for i, token in enumerate(self.all_tokens)}
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.eos_token_id]
cls = [self.cls_token_id]
sep = [self.eos_token_id] # No sep token in ESM vocabulary
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
List of ids of the second sequence.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
mask = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
mask += [0] * len(token_ids_1) + [1]
return mask
def save_vocabulary(self, save_directory, filename_prefix):
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
with open(vocab_file, "w") as f:
f.write("\n".join(self.all_tokens))
return (vocab_file,)
@property
def vocab_size(self) -> int:
return self.get_vocab_size(with_added_tokens=False)
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
return super()._add_tokens(new_tokens, special_tokens=True)
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/commands/train.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
# TF training parameters
USE_XLA = False
USE_AMP = False
def train_command_factory(args: Namespace):
"""
Factory function used to instantiate training command from provided command line arguments.
Returns: TrainCommand
"""
return TrainCommand(args)
class TrainCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
"""
Register this command to argparse so it's available for the transformer-cli
Args:
parser: Root parser to register command-specific arguments
"""
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
train_parser.add_argument(
"--train_data",
type=str,
required=True,
help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",
)
train_parser.add_argument(
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
)
train_parser.add_argument(
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
)
train_parser.add_argument(
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
)
train_parser.add_argument(
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
)
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
train_parser.add_argument(
"--validation_split",
type=float,
default=0.1,
help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",
)
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
train_parser.add_argument(
"--task", type=str, default="text_classification", help="Task to train the model on."
)
train_parser.add_argument(
"--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model."
)
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
train_parser.set_defaults(func=train_command_factory)
def __init__(self, args: Namespace):
self.logger = logging.get_logger("transformers-cli/training")
self.framework = "tf" if is_tf_available() else "torch"
os.makedirs(args.output, exist_ok=True)
self.output = args.output
self.column_label = args.column_label
self.column_text = args.column_text
self.column_id = args.column_id
self.logger.info(f"Loading {args.task} pipeline for {args.model}")
if args.task == "text_classification":
self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f"Loading dataset from {args.train_data}")
self.train_dataset = Processor.create_from_csv(
args.train_data,
column_label=args.column_label,
column_text=args.column_text,
column_id=args.column_id,
skip_first_row=args.skip_first_row,
)
self.valid_dataset = None
if args.validation_data:
self.logger.info(f"Loading validation dataset from {args.validation_data}")
self.valid_dataset = Processor.create_from_csv(
args.validation_data,
column_label=args.column_label,
column_text=args.column_text,
column_id=args.column_id,
skip_first_row=args.skip_first_row,
)
self.validation_split = args.validation_split
self.train_batch_size = args.train_batch_size
self.valid_batch_size = args.valid_batch_size
self.learning_rate = args.learning_rate
self.adam_epsilon = args.adam_epsilon
def run(self):
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def run_torch(self):
raise NotImplementedError
def run_tf(self):
self.pipeline.fit(
self.train_dataset,
validation_data=self.valid_dataset,
validation_split=self.validation_split,
learning_rate=self.learning_rate,
adam_epsilon=self.adam_epsilon,
train_batch_size=self.train_batch_size,
valid_batch_size=self.valid_batch_size,
)
# Save trained pipeline
self.pipeline.save_pretrained(self.output)
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training")
# TF training parameters
USE_XLA = False
USE_AMP = False
def train_command_factory(args: Namespace):
"""
Factory function used to instantiate training command from provided command line arguments.
Returns: TrainCommand
"""
return TrainCommand(args)
class TrainCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
"""
Register this command to argparse so it's available for the transformer-cli
Args:
parser: Root parser to register command-specific arguments
"""
train_parser = parser.add_parser("train", help="CLI tool to train a model on a task.")
train_parser.add_argument(
"--train_data",
type=str,
required=True,
help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.",
)
train_parser.add_argument(
"--column_label", type=int, default=0, help="Column of the dataset csv file with example labels."
)
train_parser.add_argument(
"--column_text", type=int, default=1, help="Column of the dataset csv file with example texts."
)
train_parser.add_argument(
"--column_id", type=int, default=2, help="Column of the dataset csv file with example ids."
)
train_parser.add_argument(
"--skip_first_row", action="store_true", help="Skip the first row of the csv file (headers)."
)
train_parser.add_argument("--validation_data", type=str, default="", help="path to validation dataset.")
train_parser.add_argument(
"--validation_split",
type=float,
default=0.1,
help="if validation dataset is not provided, fraction of train dataset to use as validation dataset.",
)
train_parser.add_argument("--output", type=str, default="./", help="path to saved the trained model.")
train_parser.add_argument(
"--task", type=str, default="text_classification", help="Task to train the model on."
)
train_parser.add_argument(
"--model", type=str, default="bert-base-uncased", help="Model's name or path to stored model."
)
train_parser.add_argument("--train_batch_size", type=int, default=32, help="Batch size for training.")
train_parser.add_argument("--valid_batch_size", type=int, default=64, help="Batch size for validation.")
train_parser.add_argument("--learning_rate", type=float, default=3e-5, help="Learning rate.")
train_parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon for Adam optimizer.")
train_parser.set_defaults(func=train_command_factory)
def __init__(self, args: Namespace):
self.logger = logging.get_logger("transformers-cli/training")
self.framework = "tf" if is_tf_available() else "torch"
os.makedirs(args.output, exist_ok=True)
self.output = args.output
self.column_label = args.column_label
self.column_text = args.column_text
self.column_id = args.column_id
self.logger.info(f"Loading {args.task} pipeline for {args.model}")
if args.task == "text_classification":
self.pipeline = TextClassificationPipeline.from_pretrained(args.model)
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f"Loading dataset from {args.train_data}")
self.train_dataset = Processor.create_from_csv(
args.train_data,
column_label=args.column_label,
column_text=args.column_text,
column_id=args.column_id,
skip_first_row=args.skip_first_row,
)
self.valid_dataset = None
if args.validation_data:
self.logger.info(f"Loading validation dataset from {args.validation_data}")
self.valid_dataset = Processor.create_from_csv(
args.validation_data,
column_label=args.column_label,
column_text=args.column_text,
column_id=args.column_id,
skip_first_row=args.skip_first_row,
)
self.validation_split = args.validation_split
self.train_batch_size = args.train_batch_size
self.valid_batch_size = args.valid_batch_size
self.learning_rate = args.learning_rate
self.adam_epsilon = args.adam_epsilon
def run(self):
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def run_torch(self):
raise NotImplementedError
def run_tf(self):
self.pipeline.fit(
self.train_dataset,
validation_data=self.valid_dataset,
validation_split=self.validation_split,
learning_rate=self.learning_rate,
adam_epsilon=self.adam_epsilon,
train_batch_size=self.train_batch_size,
valid_batch_size=self.valid_batch_size,
)
# Save trained pipeline
self.pipeline.save_pretrained(self.output)
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/gptj/__init__.py | # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {"configuration_gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig", "GPTJOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gptj"] = [
"GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTJForCausalLM",
"GPTJForQuestionAnswering",
"GPTJForSequenceClassification",
"GPTJModel",
"GPTJPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_gptj"] = [
"TFGPTJForCausalLM",
"TFGPTJForQuestionAnswering",
"TFGPTJForSequenceClassification",
"TFGPTJModel",
"TFGPTJPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_gptj"] = [
"FlaxGPTJForCausalLM",
"FlaxGPTJModel",
"FlaxGPTJPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig, GPTJOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gptj import (
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTJForCausalLM,
GPTJForQuestionAnswering,
GPTJForSequenceClassification,
GPTJModel,
GPTJPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_gptj import (
TFGPTJForCausalLM,
TFGPTJForQuestionAnswering,
TFGPTJForSequenceClassification,
TFGPTJModel,
TFGPTJPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| # flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {"configuration_gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig", "GPTJOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gptj"] = [
"GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTJForCausalLM",
"GPTJForQuestionAnswering",
"GPTJForSequenceClassification",
"GPTJModel",
"GPTJPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_gptj"] = [
"TFGPTJForCausalLM",
"TFGPTJForQuestionAnswering",
"TFGPTJForSequenceClassification",
"TFGPTJModel",
"TFGPTJPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_gptj"] = [
"FlaxGPTJForCausalLM",
"FlaxGPTJModel",
"FlaxGPTJPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig, GPTJOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gptj import (
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTJForCausalLM,
GPTJForQuestionAnswering,
GPTJForSequenceClassification,
GPTJModel,
GPTJPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_gptj import (
TFGPTJForCausalLM,
TFGPTJForQuestionAnswering,
TFGPTJForSequenceClassification,
TFGPTJModel,
TFGPTJPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/models/x_clip/modeling_x_clip.py | # coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch X-CLIP model."""
from copy import copy
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_x_clip import XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/xclip-base-patch32"
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/xclip-base-patch32",
# See all X-CLIP models at https://huggingface.co/models?filter=x-clip
]
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/clip.html
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->x_clip
def x_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@dataclass
class XCLIPOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for video-text similarity.
logits_per_video (`torch.FloatTensor` of shape `(video_batch_size, text_batch_size)`):
The scaled dot product scores between `video_embeds` and `text_embeds`. This represents the video-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, video_batch_size)`):
The scaled dot product scores between `text_embeds` and `video_embeds`. This represents the text-video
similarity scores.
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`XCLIPTextModel`].
video_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The video embeddings obtained by applying the projection layer to the pooled output of
[`XCLIPVisionModel`].
text_model_output (`BaseModelOutputWithPooling`):
The output of the [`XCLIPTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`XCLIPVisionModel`].
mit_output (`BaseModelOutputWithPooling`):
The output of `XCLIPMultiframeIntegrationTransformer` (MIT for short).
"""
loss: Optional[torch.FloatTensor] = None
logits_per_video: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
video_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
mit_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k]
if k not in ["text_model_output", "vision_model_output", "mit_output"]
else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->XCLIP
class XCLIPVisionEmbeddings(nn.Module):
def __init__(self, config: XCLIPVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->XCLIP
class XCLIPTextEmbeddings(nn.Module):
def __init__(self, config: XCLIPTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->XCLIP
class XCLIPAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->XCLIP
class XCLIPMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->XCLIP
class XCLIPEncoderLayer(nn.Module):
def __init__(self, config: XCLIPConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = XCLIPAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim)
self.mlp = XCLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->XCLIP
class XCLIPDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class XCLIPVisionEncoderLayer(nn.Module):
"""
This corresponds to the `CrossFramelAttentionBlock` class in the original implementation.
"""
def __init__(self, config: XCLIPConfig):
super().__init__()
self.num_frames = config.num_frames
self.embed_dim = config.hidden_size
self.message_fc = nn.Linear(self.embed_dim, self.embed_dim)
self.message_ln = nn.LayerNorm(self.embed_dim)
self.message_attn = XCLIPAttention(config)
self.drop_path = XCLIPDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
self.self_attn = XCLIPAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim)
self.mlp = XCLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
batch_time, seq_length, hidden_size = hidden_states.size()
batch_size = batch_time // self.num_frames
msg_token = self.message_fc(hidden_states[:, 0, :])
msg_token = msg_token.view(batch_size, self.num_frames, hidden_size)
msg_token = msg_token + self.drop_path(self.message_attn(self.message_ln(msg_token))[0])
# add dummy sequence dimension
msg_token = msg_token.view(-1, 1, hidden_size)
hidden_states = torch.cat([hidden_states, msg_token], dim=1)
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
hidden_states = hidden_states[:, :seq_length, :]
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class XCLIPPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XCLIPConfig
base_model_prefix = "x_clip"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, XCLIPTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, XCLIPVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, XCLIPAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, XCLIPMLP):
factor = self.config.initializer_factor
in_proj_std = (
(module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
)
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, XCLIPModel):
factor = self.config.initializer_factor
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * factor,
)
nn.init.normal_(module.prompts_visual_projection, mean=0.0, std=module.vision_embed_dim**-0.5 * factor)
elif isinstance(module, XCLIPMultiframeIntegrationTransformer):
nn.init.normal_(module.position_embedding, std=self.config.initializer_factor)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
if module.bias is not None:
module.bias.data.zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (XCLIPEncoder, XCLIPVisionEncoder)):
module.gradient_checkpointing = value
X_CLIP_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`XCLIPConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
X_CLIP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
X_CLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
X_CLIP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->XCLIP
class XCLIPEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`XCLIPEncoderLayer`].
Args:
config: XCLIPConfig
"""
def __init__(self, config: XCLIPConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([XCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
causal_attention_mask,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class XCLIPTextTransformer(nn.Module):
def __init__(self, config: XCLIPTextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = XCLIPTextEmbeddings(config)
self.encoder = XCLIPEncoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim)
@add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify either input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
batch_size, seq_len = input_shape
# X_CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_len, hidden_states.dtype).to(
hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def _build_causal_attention_mask(self, batch_size, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(batch_size, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
class XCLIPTextModel(XCLIPPreTrainedModel):
config_class = XCLIPTextConfig
def __init__(self, config: XCLIPTextConfig):
super().__init__(config)
self.text_model = XCLIPTextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import CLIPTokenizer, XCLIPTextModel
>>> model = XCLIPTextModel.from_pretrained("microsoft/xclip-base-patch32")
>>> tokenizer = CLIPTokenizer.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class XCLIPVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`XCLIPVisionEncoderLayer`].
Args:
config: XCLIPConfig
"""
def __init__(self, config: XCLIPConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([XCLIPVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
causal_attention_mask,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class XCLIPVisionTransformer(nn.Module):
"""
This corresponds to the `CrossFrameCommunicationTransformer` class in the original implementation.
"""
def __init__(self, config: XCLIPVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = XCLIPVisionEmbeddings(config)
self.pre_layernorm = nn.LayerNorm(embed_dim)
self.encoder = XCLIPVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim)
@add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layernorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class XCLIPVisionModel(XCLIPPreTrainedModel):
config_class = XCLIPVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: XCLIPVisionConfig):
super().__init__(config)
self.vision_model = XCLIPVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from decord import VideoReader, cpu
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, XCLIPVisionModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> # sample 16 frames
>>> vr.seek(0)
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=len(vr))
>>> video = vr.get_batch(indices).asnumpy()
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = XCLIPVisionModel.from_pretrained("microsoft/xclip-base-patch32")
>>> pixel_values = processor(videos=list(video), return_tensors="pt").pixel_values
>>> batch_size, num_frames, num_channels, height, width = pixel_values.shape
>>> pixel_values = pixel_values.reshape(-1, num_channels, height, width)
>>> outputs = model(pixel_values)
>>> last_hidden_state = outputs.last_hidden_state
```"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class XCLIPMultiframeIntegrationTransformer(nn.Module):
"""
This corresponds to the `MultiframeIntegrationTransformer` class in the original implementation.
"""
def __init__(self, config: XCLIPVisionConfig):
super().__init__()
self.position_embedding = nn.Parameter(torch.empty(1, config.num_frames, config.hidden_size))
self.encoder = XCLIPEncoder(config)
def forward(
self,
hidden_states,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
residual = hidden_states
# add position embeddings
hidden_states = hidden_states + self.position_embedding
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = last_hidden_state.type(hidden_states.dtype) + residual
pooled_output = last_hidden_state.mean(dim=1, keepdim=False)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class XCLIPCrossAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.num_heads = config.prompt_num_attention_heads
dim = config.projection_dim
head_dim = dim // self.num_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, dim, bias=False)
self.k_proj = nn.Linear(dim, dim, bias=False)
self.v_proj = nn.Linear(dim, dim, bias=False)
self.attn_drop = nn.Dropout(config.prompt_attention_dropout)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(config.prompt_projection_dropout)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(self, queries, keys, values):
"""Input shape: Batch x Time x Channel"""
batch_size, query_seq_len, hidden_size = queries.shape
batch_size, key_seq_len, hidden_size = keys.shape
queries = (
self.q_proj(queries)
.reshape(batch_size, query_seq_len, self.num_heads, hidden_size // self.num_heads)
.permute(0, 2, 1, 3)
)
keys = (
self.k_proj(keys)
.reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads)
.permute(0, 2, 1, 3)
)
values = (
self.v_proj(values)
.reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads)
.permute(0, 2, 1, 3)
)
attn = (queries @ keys.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ values).transpose(1, 2).reshape(batch_size, query_seq_len, hidden_size)
x = self.proj(x)
x = self.proj_drop(x)
return x
class PromptGeneratorLayer(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.projection_dim
self.cross_attn = XCLIPCrossAttention(config)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm3 = nn.LayerNorm(embed_dim)
self.mlp = nn.Sequential(
nn.Linear(embed_dim, embed_dim * 4),
ACT2FN[config.prompt_hidden_act],
nn.Dropout(config.prompt_attention_dropout),
nn.Linear(embed_dim * 4, embed_dim),
)
def forward(self, x, visual):
x = x + self.cross_attn(self.norm1(x), visual, visual)
x = x + self.mlp(self.norm3(x))
return x
class XCLIPPromptGenerator(nn.Module):
"""This corresponds to the `VideoSpecificPrompt` class in the original implementation."""
def __init__(self, config):
super().__init__()
embed_dim = config.projection_dim
self.layernorm = nn.LayerNorm(embed_dim)
self.decoder = nn.ModuleList([PromptGeneratorLayer(config) for _ in range(config.prompt_layers)])
self.alpha = nn.Parameter(torch.ones(embed_dim) * config.prompt_alpha)
def forward(self, text, visual):
visual = self.layernorm(visual)
for layer in self.decoder:
text = layer(text, visual)
return self.alpha * text
@add_start_docstrings(X_CLIP_START_DOCSTRING)
class XCLIPModel(XCLIPPreTrainedModel):
config_class = XCLIPConfig
def __init__(self, config: XCLIPConfig):
super().__init__(config)
if not isinstance(config.text_config, XCLIPTextConfig):
raise ValueError(
"config.text_config is expected to be of type XCLIPTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, XCLIPVisionConfig):
raise ValueError(
"config.vision_config is expected to be of type XCLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = XCLIPTextTransformer(text_config)
self.vision_model = XCLIPVisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value)
self.prompts_visual_layernorm = nn.LayerNorm(self.vision_embed_dim)
self.prompts_visual_projection = nn.Parameter(torch.randn(self.vision_embed_dim, self.projection_dim))
mit_config = copy(vision_config)
mit_config.hidden_size = vision_config.mit_hidden_size
mit_config.intermediate_size = vision_config.mit_intermediate_size
mit_config.num_hidden_layers = vision_config.mit_num_hidden_layers
mit_config.num_attention_heads = vision_config.mit_num_attention_heads
self.mit = XCLIPMultiframeIntegrationTransformer(mit_config)
self.prompts_generator = XCLIPPromptGenerator(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`XCLIPTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
return text_embeds
@add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING)
def get_video_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
video_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by
applying the projection layer to the pooled output of [`XCLIPVisionModel`] and
[`XCLIPMultiframeIntegrationTransformer`].
Examples:
```python
>>> from decord import VideoReader, cpu
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, AutoModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> # sample 16 frames
>>> vr.seek(0)
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=len(vr))
>>> video = vr.get_batch(indices).asnumpy()
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = processor(videos=list(video), return_tensors="pt")
>>> video_features = model.get_video_features(**inputs)
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(-1, num_channels, height, width)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = vision_outputs[1]
video_embeds = self.visual_projection(video_embeds)
cls_features = video_embeds.view(batch_size, num_frames, -1)
mit_outputs = self.mit(
cls_features,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = mit_outputs[1]
return video_embeds
@add_start_docstrings_to_model_forward(X_CLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=XCLIPOutput, config_class=XCLIPConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, XCLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from decord import VideoReader, cpu
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, AutoModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> # sample 16 frames
>>> vr.seek(0)
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=len(vr))
>>> video = vr.get_batch(indices).asnumpy()
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = processor(
... text=["playing sports", "eating spaghetti", "go shopping"],
... videos=list(video),
... return_tensors="pt",
... padding=True,
... )
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_video = outputs.logits_per_video # this is the video-text similarity score
>>> probs = logits_per_video.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[1.9496e-04, 9.9960e-01, 2.0825e-04]])
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(-1, num_channels, height, width)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = vision_outputs[1]
video_embeds = self.visual_projection(video_embeds)
cls_features = video_embeds.view(batch_size, num_frames, -1)
mit_outputs = self.mit(
cls_features,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = mit_outputs[1]
img_features = vision_outputs[0][:, 1:, :]
img_features = self.prompts_visual_layernorm(img_features)
img_features = img_features @ self.prompts_visual_projection
img_features = img_features.view(batch_size, num_frames, -1, video_embeds.shape[-1])
img_features = img_features.mean(dim=1, keepdim=False)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
text_embeds = text_embeds.unsqueeze(0).expand(batch_size, -1, -1)
text_embeds = text_embeds + self.prompts_generator(text_embeds, img_features)
# normalized features
video_embeds = video_embeds / video_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_video = torch.einsum("bd,bkd->bk", video_embeds, logit_scale * text_embeds)
logits_per_text = logits_per_video.T
loss = None
if return_loss:
loss = x_clip_loss(logits_per_text)
if not return_dict:
output = (logits_per_video, logits_per_text, text_embeds, video_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return XCLIPOutput(
loss=loss,
logits_per_video=logits_per_video,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
video_embeds=video_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
mit_output=mit_outputs,
)
| # coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch X-CLIP model."""
from copy import copy
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_x_clip import XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/xclip-base-patch32"
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/xclip-base-patch32",
# See all X-CLIP models at https://huggingface.co/models?filter=x-clip
]
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/clip.html
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->x_clip
def x_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@dataclass
class XCLIPOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for video-text similarity.
logits_per_video (`torch.FloatTensor` of shape `(video_batch_size, text_batch_size)`):
The scaled dot product scores between `video_embeds` and `text_embeds`. This represents the video-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, video_batch_size)`):
The scaled dot product scores between `text_embeds` and `video_embeds`. This represents the text-video
similarity scores.
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`XCLIPTextModel`].
video_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The video embeddings obtained by applying the projection layer to the pooled output of
[`XCLIPVisionModel`].
text_model_output (`BaseModelOutputWithPooling`):
The output of the [`XCLIPTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`XCLIPVisionModel`].
mit_output (`BaseModelOutputWithPooling`):
The output of `XCLIPMultiframeIntegrationTransformer` (MIT for short).
"""
loss: Optional[torch.FloatTensor] = None
logits_per_video: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
video_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
mit_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k]
if k not in ["text_model_output", "vision_model_output", "mit_output"]
else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->XCLIP
class XCLIPVisionEmbeddings(nn.Module):
def __init__(self, config: XCLIPVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)))
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->XCLIP
class XCLIPTextEmbeddings(nn.Module):
def __init__(self, config: XCLIPTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->XCLIP
class XCLIPAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->XCLIP
class XCLIPMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->XCLIP
class XCLIPEncoderLayer(nn.Module):
def __init__(self, config: XCLIPConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = XCLIPAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim)
self.mlp = XCLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->XCLIP
class XCLIPDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, x: torch.Tensor) -> torch.Tensor:
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class XCLIPVisionEncoderLayer(nn.Module):
"""
This corresponds to the `CrossFramelAttentionBlock` class in the original implementation.
"""
def __init__(self, config: XCLIPConfig):
super().__init__()
self.num_frames = config.num_frames
self.embed_dim = config.hidden_size
self.message_fc = nn.Linear(self.embed_dim, self.embed_dim)
self.message_ln = nn.LayerNorm(self.embed_dim)
self.message_attn = XCLIPAttention(config)
self.drop_path = XCLIPDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
self.self_attn = XCLIPAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim)
self.mlp = XCLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
batch_time, seq_length, hidden_size = hidden_states.size()
batch_size = batch_time // self.num_frames
msg_token = self.message_fc(hidden_states[:, 0, :])
msg_token = msg_token.view(batch_size, self.num_frames, hidden_size)
msg_token = msg_token + self.drop_path(self.message_attn(self.message_ln(msg_token))[0])
# add dummy sequence dimension
msg_token = msg_token.view(-1, 1, hidden_size)
hidden_states = torch.cat([hidden_states, msg_token], dim=1)
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
hidden_states = hidden_states[:, :seq_length, :]
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class XCLIPPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XCLIPConfig
base_model_prefix = "x_clip"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, XCLIPTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, XCLIPVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, XCLIPAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, XCLIPMLP):
factor = self.config.initializer_factor
in_proj_std = (
(module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
)
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, XCLIPModel):
factor = self.config.initializer_factor
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * factor,
)
nn.init.normal_(module.prompts_visual_projection, mean=0.0, std=module.vision_embed_dim**-0.5 * factor)
elif isinstance(module, XCLIPMultiframeIntegrationTransformer):
nn.init.normal_(module.position_embedding, std=self.config.initializer_factor)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor)
if module.bias is not None:
module.bias.data.zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (XCLIPEncoder, XCLIPVisionEncoder)):
module.gradient_checkpointing = value
X_CLIP_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`XCLIPConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
X_CLIP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
X_CLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
X_CLIP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`CLIPFeatureExtractor`]. See [`CLIPFeatureExtractor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->XCLIP
class XCLIPEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`XCLIPEncoderLayer`].
Args:
config: XCLIPConfig
"""
def __init__(self, config: XCLIPConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([XCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
causal_attention_mask,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class XCLIPTextTransformer(nn.Module):
def __init__(self, config: XCLIPTextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = XCLIPTextEmbeddings(config)
self.encoder = XCLIPEncoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim)
@add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify either input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
batch_size, seq_len = input_shape
# X_CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = self._build_causal_attention_mask(batch_size, seq_len, hidden_states.dtype).to(
hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def _build_causal_attention_mask(self, batch_size, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(batch_size, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
class XCLIPTextModel(XCLIPPreTrainedModel):
config_class = XCLIPTextConfig
def __init__(self, config: XCLIPTextConfig):
super().__init__(config)
self.text_model = XCLIPTextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import CLIPTokenizer, XCLIPTextModel
>>> model = XCLIPTextModel.from_pretrained("microsoft/xclip-base-patch32")
>>> tokenizer = CLIPTokenizer.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class XCLIPVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`XCLIPVisionEncoderLayer`].
Args:
config: XCLIPConfig
"""
def __init__(self, config: XCLIPConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([XCLIPVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
causal_attention_mask,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class XCLIPVisionTransformer(nn.Module):
"""
This corresponds to the `CrossFrameCommunicationTransformer` class in the original implementation.
"""
def __init__(self, config: XCLIPVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = XCLIPVisionEmbeddings(config)
self.pre_layernorm = nn.LayerNorm(embed_dim)
self.encoder = XCLIPVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim)
@add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layernorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class XCLIPVisionModel(XCLIPPreTrainedModel):
config_class = XCLIPVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: XCLIPVisionConfig):
super().__init__(config)
self.vision_model = XCLIPVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from decord import VideoReader, cpu
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, XCLIPVisionModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> # sample 16 frames
>>> vr.seek(0)
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=len(vr))
>>> video = vr.get_batch(indices).asnumpy()
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = XCLIPVisionModel.from_pretrained("microsoft/xclip-base-patch32")
>>> pixel_values = processor(videos=list(video), return_tensors="pt").pixel_values
>>> batch_size, num_frames, num_channels, height, width = pixel_values.shape
>>> pixel_values = pixel_values.reshape(-1, num_channels, height, width)
>>> outputs = model(pixel_values)
>>> last_hidden_state = outputs.last_hidden_state
```"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class XCLIPMultiframeIntegrationTransformer(nn.Module):
"""
This corresponds to the `MultiframeIntegrationTransformer` class in the original implementation.
"""
def __init__(self, config: XCLIPVisionConfig):
super().__init__()
self.position_embedding = nn.Parameter(torch.empty(1, config.num_frames, config.hidden_size))
self.encoder = XCLIPEncoder(config)
def forward(
self,
hidden_states,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
residual = hidden_states
# add position embeddings
hidden_states = hidden_states + self.position_embedding
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = last_hidden_state.type(hidden_states.dtype) + residual
pooled_output = last_hidden_state.mean(dim=1, keepdim=False)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class XCLIPCrossAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.num_heads = config.prompt_num_attention_heads
dim = config.projection_dim
head_dim = dim // self.num_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, dim, bias=False)
self.k_proj = nn.Linear(dim, dim, bias=False)
self.v_proj = nn.Linear(dim, dim, bias=False)
self.attn_drop = nn.Dropout(config.prompt_attention_dropout)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(config.prompt_projection_dropout)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(self, queries, keys, values):
"""Input shape: Batch x Time x Channel"""
batch_size, query_seq_len, hidden_size = queries.shape
batch_size, key_seq_len, hidden_size = keys.shape
queries = (
self.q_proj(queries)
.reshape(batch_size, query_seq_len, self.num_heads, hidden_size // self.num_heads)
.permute(0, 2, 1, 3)
)
keys = (
self.k_proj(keys)
.reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads)
.permute(0, 2, 1, 3)
)
values = (
self.v_proj(values)
.reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads)
.permute(0, 2, 1, 3)
)
attn = (queries @ keys.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ values).transpose(1, 2).reshape(batch_size, query_seq_len, hidden_size)
x = self.proj(x)
x = self.proj_drop(x)
return x
class PromptGeneratorLayer(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.projection_dim
self.cross_attn = XCLIPCrossAttention(config)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm3 = nn.LayerNorm(embed_dim)
self.mlp = nn.Sequential(
nn.Linear(embed_dim, embed_dim * 4),
ACT2FN[config.prompt_hidden_act],
nn.Dropout(config.prompt_attention_dropout),
nn.Linear(embed_dim * 4, embed_dim),
)
def forward(self, x, visual):
x = x + self.cross_attn(self.norm1(x), visual, visual)
x = x + self.mlp(self.norm3(x))
return x
class XCLIPPromptGenerator(nn.Module):
"""This corresponds to the `VideoSpecificPrompt` class in the original implementation."""
def __init__(self, config):
super().__init__()
embed_dim = config.projection_dim
self.layernorm = nn.LayerNorm(embed_dim)
self.decoder = nn.ModuleList([PromptGeneratorLayer(config) for _ in range(config.prompt_layers)])
self.alpha = nn.Parameter(torch.ones(embed_dim) * config.prompt_alpha)
def forward(self, text, visual):
visual = self.layernorm(visual)
for layer in self.decoder:
text = layer(text, visual)
return self.alpha * text
@add_start_docstrings(X_CLIP_START_DOCSTRING)
class XCLIPModel(XCLIPPreTrainedModel):
config_class = XCLIPConfig
def __init__(self, config: XCLIPConfig):
super().__init__(config)
if not isinstance(config.text_config, XCLIPTextConfig):
raise ValueError(
"config.text_config is expected to be of type XCLIPTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, XCLIPVisionConfig):
raise ValueError(
"config.vision_config is expected to be of type XCLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = XCLIPTextTransformer(text_config)
self.vision_model = XCLIPVisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value)
self.prompts_visual_layernorm = nn.LayerNorm(self.vision_embed_dim)
self.prompts_visual_projection = nn.Parameter(torch.randn(self.vision_embed_dim, self.projection_dim))
mit_config = copy(vision_config)
mit_config.hidden_size = vision_config.mit_hidden_size
mit_config.intermediate_size = vision_config.mit_intermediate_size
mit_config.num_hidden_layers = vision_config.mit_num_hidden_layers
mit_config.num_attention_heads = vision_config.mit_num_attention_heads
self.mit = XCLIPMultiframeIntegrationTransformer(mit_config)
self.prompts_generator = XCLIPPromptGenerator(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`XCLIPTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
return text_embeds
@add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING)
def get_video_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
video_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by
applying the projection layer to the pooled output of [`XCLIPVisionModel`] and
[`XCLIPMultiframeIntegrationTransformer`].
Examples:
```python
>>> from decord import VideoReader, cpu
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, AutoModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> # sample 16 frames
>>> vr.seek(0)
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=len(vr))
>>> video = vr.get_batch(indices).asnumpy()
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = processor(videos=list(video), return_tensors="pt")
>>> video_features = model.get_video_features(**inputs)
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(-1, num_channels, height, width)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = vision_outputs[1]
video_embeds = self.visual_projection(video_embeds)
cls_features = video_embeds.view(batch_size, num_frames, -1)
mit_outputs = self.mit(
cls_features,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = mit_outputs[1]
return video_embeds
@add_start_docstrings_to_model_forward(X_CLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=XCLIPOutput, config_class=XCLIPConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, XCLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from decord import VideoReader, cpu
>>> import torch
>>> import numpy as np
>>> from transformers import AutoProcessor, AutoModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> vr = VideoReader(file_path, num_threads=1, ctx=cpu(0))
>>> # sample 16 frames
>>> vr.seek(0)
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=len(vr))
>>> video = vr.get_batch(indices).asnumpy()
>>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32")
>>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32")
>>> inputs = processor(
... text=["playing sports", "eating spaghetti", "go shopping"],
... videos=list(video),
... return_tensors="pt",
... padding=True,
... )
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_video = outputs.logits_per_video # this is the video-text similarity score
>>> probs = logits_per_video.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[1.9496e-04, 9.9960e-01, 2.0825e-04]])
```"""
# Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(-1, num_channels, height, width)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = vision_outputs[1]
video_embeds = self.visual_projection(video_embeds)
cls_features = video_embeds.view(batch_size, num_frames, -1)
mit_outputs = self.mit(
cls_features,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
video_embeds = mit_outputs[1]
img_features = vision_outputs[0][:, 1:, :]
img_features = self.prompts_visual_layernorm(img_features)
img_features = img_features @ self.prompts_visual_projection
img_features = img_features.view(batch_size, num_frames, -1, video_embeds.shape[-1])
img_features = img_features.mean(dim=1, keepdim=False)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
text_embeds = text_embeds.unsqueeze(0).expand(batch_size, -1, -1)
text_embeds = text_embeds + self.prompts_generator(text_embeds, img_features)
# normalized features
video_embeds = video_embeds / video_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_video = torch.einsum("bd,bkd->bk", video_embeds, logit_scale * text_embeds)
logits_per_text = logits_per_video.T
loss = None
if return_loss:
loss = x_clip_loss(logits_per_text)
if not return_dict:
output = (logits_per_video, logits_per_text, text_embeds, video_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return XCLIPOutput(
loss=loss,
logits_per_video=logits_per_video,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
video_embeds=video_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
mit_output=mit_outputs,
)
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./tests/models/whisper/test_tokenization_whisper.py | # Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.models.whisper import WhisperTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
ES_CODE = 50262
EN_CODE = 50259
END_OF_TRANSCRIPT = 50257
START_OF_TRANSCRIPT = 50258
TRANSLATE = 50358
TRANSCRIBE = 50359
NOTIMESTAMPS = 50363
class WhisperTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = WhisperTokenizer
test_rust_tokenizer = False
test_sentencepiece = False
test_seq2seq = False
def setUp(self):
super().setUp()
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
tokenizer.pad_token_id = 50256
tokenizer.pad_token = "<|endoftext|>"
tokenizer.save_pretrained(self.tmpdirname)
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "Where"
token_id = 14436
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "!")
self.assertEqual(vocab_keys[1], '"')
self.assertEqual(vocab_keys[-1], "<|notimestamps|>")
self.assertEqual(len(vocab_keys), 50364)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 50257)
def test_full_tokenizer(self):
tokenizer = WhisperTokenizer.from_pretrained(self.tmpdirname)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["This", "Ġis", "Ġa", "Ġ", "test"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[5723, 307, 257, 220, 31636],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
# fmt: off
['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
# fmt: on
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [40, 390, 4232, 294, 1722, 25743, 11, 293, 220, 11176, 307, 16720, 526, 13])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
# fmt: off
['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
# fmt: on
)
def test_tokenizer_slow_store_full_signature(self):
pass
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[50257, 50362, 41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13, 50256], [50257, 50362, 13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13, 50256], [50257, 50362, 464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13, 50256]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding, model_name="openai/whisper-tiny.en", padding=False
)
class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
checkpoint_name = "openai/whisper-small.en"
@classmethod
def setUpClass(cls):
cls.tokenizer: WhisperTokenizer = WhisperTokenizer.from_pretrained(cls.checkpoint_name)
return cls
def test_tokenizer_equivalence(self):
text = "다람쥐 헌 쳇바퀴에 타고파"
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="korean")
monolingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
monolingual_tokens = monolingual_tokenizer.encode(text, add_special_tokens=False)
multilingual_tokens = multilingual_tokenizer.encode(text, add_special_tokens=False)
assert monolingual_tokenizer.decode(monolingual_tokens) == text
assert multilingual_tokenizer.decode(multilingual_tokens) == text
assert len(monolingual_tokens) > len(multilingual_tokens)
# fmt: off
EXPECTED_ENG = [
46695, 97, 167, 252, 234, 168, 98, 238, 220, 169,
245, 234, 23821, 111, 229, 167, 108, 242, 169, 222,
112, 168, 245, 238, 220, 169, 225, 222, 166, 111,
254, 169, 234, 234
]
EXPECTED_MULTI = [
9835, 22855, 168, 98, 238, 13431, 234, 43517, 229, 47053,
169, 222, 19086, 19840, 1313, 17974
]
# fmt: on
self.assertListEqual(monolingual_tokens, EXPECTED_ENG)
self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)
def test_tokenizer_special(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="english", task="transcribe"
)
text = "Hey! How are you feeling? J'ai l'impression que 郷さん est prêt"
multilingual_tokens = multilingual_tokenizer.encode(text)
# fmt: off
# format: <|startoftranscript|> <|lang-id|> <|task|> <|notimestamps|> ... transcription ids ... <|endoftext|>
EXPECTED_MULTI = [
START_OF_TRANSCRIPT, EN_CODE, TRANSCRIBE, NOTIMESTAMPS, 7057, 0, 1012, 366, 291,
2633, 30, 508, 6, 1301, 287, 6, 36107, 631, 220, 11178,
115, 15567, 871, 44393, END_OF_TRANSCRIPT
]
EXPECTED_SPECIAL_TEXT = (
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|>Hey! How are you feeling? "
"J'ai l'impression que 郷さん est prêt<|endoftext|>"
)
# fmt: on
self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)
special_transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=False)
self.assertEqual(special_transcript, EXPECTED_SPECIAL_TEXT)
transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=True)
self.assertEqual(transcript, text)
def test_vocab_size(self):
self.assertEqual(self.tokenizer.vocab_size, 50257)
# Copied from transformers.tests.speech_to_test.test_tokenization_speech_to_text.py
def test_tokenizer_decode_ignores_language_codes(self):
self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_spanish)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_batch_encoding(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="spanish", task="translate"
)
batch = ["El gato ", "El gato se sentó"]
batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
# fmt: off
EXPECTED_MULTI = [
[START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 220,
END_OF_TRANSCRIPT, END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
[START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 369,
2279, 812, END_OF_TRANSCRIPT]
]
# fmt: on
self.assertListEqual(batch_output, EXPECTED_MULTI)
def test_set_prefix_tokens(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="spanish", task="translate"
)
# change the language prefix token from Spanish to English
multilingual_tokenizer.set_prefix_tokens(language="english")
batch = ["the cat", "the cat sat"]
batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
# fmt: off
EXPECTED_MULTI = [
[START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
[START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
3227, END_OF_TRANSCRIPT]
]
# fmt: on
self.assertListEqual(batch_output, EXPECTED_MULTI)
def test_batch_encoding_decoding(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish")
batch = ["hola güey", "que onda"]
batch_encoding = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
transcription = multilingual_tokenizer.batch_decode(batch_encoding, skip_special_tokens=True)
self.assertListEqual(batch, transcription)
| # Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.models.whisper import WhisperTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
ES_CODE = 50262
EN_CODE = 50259
END_OF_TRANSCRIPT = 50257
START_OF_TRANSCRIPT = 50258
TRANSLATE = 50358
TRANSCRIBE = 50359
NOTIMESTAMPS = 50363
class WhisperTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = WhisperTokenizer
test_rust_tokenizer = False
test_sentencepiece = False
test_seq2seq = False
def setUp(self):
super().setUp()
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
tokenizer.pad_token_id = 50256
tokenizer.pad_token = "<|endoftext|>"
tokenizer.save_pretrained(self.tmpdirname)
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "Where"
token_id = 14436
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "!")
self.assertEqual(vocab_keys[1], '"')
self.assertEqual(vocab_keys[-1], "<|notimestamps|>")
self.assertEqual(len(vocab_keys), 50364)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 50257)
def test_full_tokenizer(self):
tokenizer = WhisperTokenizer.from_pretrained(self.tmpdirname)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["This", "Ġis", "Ġa", "Ġ", "test"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[5723, 307, 257, 220, 31636],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
# fmt: off
['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
# fmt: on
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [40, 390, 4232, 294, 1722, 25743, 11, 293, 220, 11176, 307, 16720, 526, 13])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
# fmt: off
['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
# fmt: on
)
def test_tokenizer_slow_store_full_signature(self):
pass
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[50257, 50362, 41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13, 50256], [50257, 50362, 13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13, 50256], [50257, 50362, 464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13, 50256]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding, model_name="openai/whisper-tiny.en", padding=False
)
class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
checkpoint_name = "openai/whisper-small.en"
@classmethod
def setUpClass(cls):
cls.tokenizer: WhisperTokenizer = WhisperTokenizer.from_pretrained(cls.checkpoint_name)
return cls
def test_tokenizer_equivalence(self):
text = "다람쥐 헌 쳇바퀴에 타고파"
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="korean")
monolingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
monolingual_tokens = monolingual_tokenizer.encode(text, add_special_tokens=False)
multilingual_tokens = multilingual_tokenizer.encode(text, add_special_tokens=False)
assert monolingual_tokenizer.decode(monolingual_tokens) == text
assert multilingual_tokenizer.decode(multilingual_tokens) == text
assert len(monolingual_tokens) > len(multilingual_tokens)
# fmt: off
EXPECTED_ENG = [
46695, 97, 167, 252, 234, 168, 98, 238, 220, 169,
245, 234, 23821, 111, 229, 167, 108, 242, 169, 222,
112, 168, 245, 238, 220, 169, 225, 222, 166, 111,
254, 169, 234, 234
]
EXPECTED_MULTI = [
9835, 22855, 168, 98, 238, 13431, 234, 43517, 229, 47053,
169, 222, 19086, 19840, 1313, 17974
]
# fmt: on
self.assertListEqual(monolingual_tokens, EXPECTED_ENG)
self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)
def test_tokenizer_special(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="english", task="transcribe"
)
text = "Hey! How are you feeling? J'ai l'impression que 郷さん est prêt"
multilingual_tokens = multilingual_tokenizer.encode(text)
# fmt: off
# format: <|startoftranscript|> <|lang-id|> <|task|> <|notimestamps|> ... transcription ids ... <|endoftext|>
EXPECTED_MULTI = [
START_OF_TRANSCRIPT, EN_CODE, TRANSCRIBE, NOTIMESTAMPS, 7057, 0, 1012, 366, 291,
2633, 30, 508, 6, 1301, 287, 6, 36107, 631, 220, 11178,
115, 15567, 871, 44393, END_OF_TRANSCRIPT
]
EXPECTED_SPECIAL_TEXT = (
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|>Hey! How are you feeling? "
"J'ai l'impression que 郷さん est prêt<|endoftext|>"
)
# fmt: on
self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)
special_transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=False)
self.assertEqual(special_transcript, EXPECTED_SPECIAL_TEXT)
transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=True)
self.assertEqual(transcript, text)
def test_vocab_size(self):
self.assertEqual(self.tokenizer.vocab_size, 50257)
# Copied from transformers.tests.speech_to_test.test_tokenization_speech_to_text.py
def test_tokenizer_decode_ignores_language_codes(self):
self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_spanish)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_batch_encoding(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="spanish", task="translate"
)
batch = ["El gato ", "El gato se sentó"]
batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
# fmt: off
EXPECTED_MULTI = [
[START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 220,
END_OF_TRANSCRIPT, END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
[START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 369,
2279, 812, END_OF_TRANSCRIPT]
]
# fmt: on
self.assertListEqual(batch_output, EXPECTED_MULTI)
def test_set_prefix_tokens(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-tiny", language="spanish", task="translate"
)
# change the language prefix token from Spanish to English
multilingual_tokenizer.set_prefix_tokens(language="english")
batch = ["the cat", "the cat sat"]
batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
# fmt: off
EXPECTED_MULTI = [
[START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
[START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
3227, END_OF_TRANSCRIPT]
]
# fmt: on
self.assertListEqual(batch_output, EXPECTED_MULTI)
def test_batch_encoding_decoding(self):
multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish")
batch = ["hola güey", "que onda"]
batch_encoding = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
transcription = multilingual_tokenizer.batch_decode(batch_encoding, skip_special_tokens=True)
self.assertListEqual(batch, transcription)
| -1 |
huggingface/transformers | 20,205 | Make size_dict conversion logs clearer | # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | amyeroberts | "2022-11-14T12:52:07Z" | "2022-11-15T10:52:58Z" | f1e8c48c5eebf899a5c79b2c48c0ef8456e6bddc | 55ba31908a1216c1767463e3333aa94a6414e6d6 | Make size_dict conversion logs clearer. # What does this PR do?
* Tidies up logic for converting `size` parameter to the expected dictionary format for image processors.
* Adds `param_name` as a flag so logs reflect the variable being updated e.g. `crop_size` versus `size`
Address part of #20185 - trying to make the logs clearer.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests? | ./src/transformers/integrations.py | # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integrations with other Python libraries.
"""
import functools
import importlib.util
import json
import numbers
import os
import pickle
import shutil
import sys
import tempfile
from dataclasses import asdict
from pathlib import Path
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
from . import __version__ as version
from .utils import flatten_dict, is_datasets_available, is_torch_available, logging
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
# comet_ml requires to be imported before any ML frameworks
_has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED"
if _has_comet:
try:
import comet_ml # noqa: F401
if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"):
_has_comet = True
else:
if os.getenv("COMET_MODE", "").upper() != "DISABLED":
logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.")
_has_comet = False
except (ImportError, ValueError):
_has_comet = False
_has_neptune = importlib.util.find_spec("neptune") is not None
if TYPE_CHECKING and _has_neptune:
from neptune.new.metadata_containers.run import Run
from .trainer_callback import ProgressCallback, TrainerCallback # noqa: E402
from .trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy # noqa: E402
from .training_args import ParallelMode # noqa: E402
from .utils import ENV_VARS_TRUE_VALUES, is_torch_tpu_available # noqa: E402
# Integration functions:
def is_wandb_available():
# any value of WANDB_DISABLED disables wandb
if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES:
logger.warning(
"Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the "
"--report_to flag to control the integrations used for logging result (for instance --report_to none)."
)
return False
return importlib.util.find_spec("wandb") is not None
def is_comet_available():
return _has_comet
def is_tensorboard_available():
return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None
def is_optuna_available():
return importlib.util.find_spec("optuna") is not None
def is_ray_available():
return importlib.util.find_spec("ray") is not None
def is_ray_tune_available():
if not is_ray_available():
return False
return importlib.util.find_spec("ray.tune") is not None
def is_sigopt_available():
return importlib.util.find_spec("sigopt") is not None
def is_azureml_available():
if importlib.util.find_spec("azureml") is None:
return False
if importlib.util.find_spec("azureml.core") is None:
return False
return importlib.util.find_spec("azureml.core.run") is not None
def is_mlflow_available():
if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE":
return False
return importlib.util.find_spec("mlflow") is not None
def is_fairscale_available():
return importlib.util.find_spec("fairscale") is not None
def is_neptune_available():
return _has_neptune
def is_codecarbon_available():
return importlib.util.find_spec("codecarbon") is not None
def hp_params(trial):
if is_optuna_available():
import optuna
if isinstance(trial, optuna.Trial):
return trial.params
if is_ray_tune_available():
if isinstance(trial, dict):
return trial
if is_sigopt_available():
if isinstance(trial, dict):
return trial
if is_wandb_available():
if isinstance(trial, dict):
return trial
raise RuntimeError(f"Unknown type for trial {trial.__class__}")
def default_hp_search_backend():
if is_optuna_available():
return "optuna"
elif is_ray_tune_available():
return "ray"
elif is_sigopt_available():
return "sigopt"
def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import optuna
if trainer.args.process_index == 0:
def _objective(trial, checkpoint_dir=None):
checkpoint = None
if checkpoint_dir:
for subdir in os.listdir(checkpoint_dir):
if subdir.startswith(PREFIX_CHECKPOINT_DIR):
checkpoint = os.path.join(checkpoint_dir, subdir)
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(trial)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=checkpoint)
else:
trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return trainer.objective
timeout = kwargs.pop("timeout", None)
n_jobs = kwargs.pop("n_jobs", 1)
study = optuna.create_study(direction=direction, **kwargs)
study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs)
best_trial = study.best_trial
return BestRun(str(best_trial.number), best_trial.value, best_trial.params)
else:
for i in range(n_trials):
trainer.objective = None
args_main_rank = list(pickle.dumps(trainer.args))
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
torch.distributed.broadcast_object_list(args_main_rank, src=0)
args = pickle.loads(bytes(args_main_rank))
for key, value in asdict(args).items():
if key != "local_rank":
setattr(trainer.args, key, value)
trainer.train(resume_from_checkpoint=None)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return None
def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import ray
def _objective(trial, local_trainer, checkpoint_dir=None):
try:
from transformers.utils.notebook import NotebookProgressCallback
if local_trainer.pop_callback(NotebookProgressCallback):
local_trainer.add_callback(ProgressCallback)
except ModuleNotFoundError:
pass
checkpoint = None
if checkpoint_dir:
for subdir in os.listdir(checkpoint_dir):
if subdir.startswith(PREFIX_CHECKPOINT_DIR):
checkpoint = os.path.join(checkpoint_dir, subdir)
local_trainer.objective = None
local_trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
# If there hasn't been any evaluation during the training loop.
if getattr(local_trainer, "objective", None) is None:
metrics = local_trainer.evaluate()
local_trainer.objective = local_trainer.compute_objective(metrics)
local_trainer._tune_save_checkpoint()
ray.tune.report(objective=local_trainer.objective, **metrics, done=True)
if not trainer._memory_tracker.skip_memory_metrics:
from .trainer_utils import TrainerMemoryTracker
logger.warning(
"Memory tracking for your Trainer is currently "
"enabled. Automatically disabling the memory tracker "
"since the memory tracker is not serializable."
)
trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True)
# The model and TensorBoard writer do not pickle so we have to remove them (if they exists)
# while doing the ray hp search.
_tb_writer = trainer.pop_callback(TensorBoardCallback)
trainer.model = None
# Setup default `resources_per_trial`.
if "resources_per_trial" not in kwargs:
# Default to 1 CPU and 1 GPU (if applicable) per trial.
kwargs["resources_per_trial"] = {"cpu": 1}
if trainer.args.n_gpu > 0:
kwargs["resources_per_trial"]["gpu"] = 1
resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "")
logger.info(
"No `resources_per_trial` arg was passed into "
"`hyperparameter_search`. Setting it to a default value "
f"of {resource_msg} for each trial."
)
# Make sure each trainer only uses GPUs that were allocated per trial.
gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0)
trainer.args._n_gpu = gpus_per_trial
# Setup default `progress_reporter`.
if "progress_reporter" not in kwargs:
from ray.tune import CLIReporter
kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"])
if "keep_checkpoints_num" in kwargs and kwargs["keep_checkpoints_num"] > 0:
# `keep_checkpoints_num=0` would disabled checkpointing
trainer.use_tune_checkpoints = True
if kwargs["keep_checkpoints_num"] > 1:
logger.warning(
f"Currently keeping {kwargs['keep_checkpoints_num']} checkpoints for each trial. "
"Checkpoints are usually huge, "
"consider setting `keep_checkpoints_num=1`."
)
if "scheduler" in kwargs:
from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining
# Check if checkpointing is enabled for PopulationBasedTraining
if isinstance(kwargs["scheduler"], PopulationBasedTraining):
if not trainer.use_tune_checkpoints:
logger.warning(
"You are using PopulationBasedTraining but you haven't enabled checkpointing. "
"This means your trials will train from scratch everytime they are exploiting "
"new configurations. Consider enabling checkpointing by passing "
"`keep_checkpoints_num=1` as an additional argument to `Trainer.hyperparameter_search`."
)
# Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting.
if isinstance(
kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining)
) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == IntervalStrategy.NO):
raise RuntimeError(
"You are using {cls} as a scheduler but you haven't enabled evaluation during training. "
"This means your trials will not report intermediate results to Ray Tune, and "
"can thus not be stopped early or used to exploit other trials parameters. "
"If this is what you want, do not use {cls}. If you would like to use {cls}, "
"make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the "
"Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__)
)
trainable = ray.tune.with_parameters(_objective, local_trainer=trainer)
@functools.wraps(trainable)
def dynamic_modules_import_trainable(*args, **kwargs):
"""
Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor.
Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565.
Assumes that `_objective`, defined above, is a function.
"""
if is_datasets_available():
import datasets.load
dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py")
# load dynamic_modules from path
spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path)
datasets_modules = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = datasets_modules
spec.loader.exec_module(datasets_modules)
return trainable(*args, **kwargs)
# special attr set by tune.with_parameters
if hasattr(trainable, "__mixins__"):
dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__
analysis = ray.tune.run(
dynamic_modules_import_trainable,
config=trainer.hp_space(None),
num_samples=n_trials,
**kwargs,
)
best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope)
best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config)
if _tb_writer is not None:
trainer.add_callback(_tb_writer)
return best_run
def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import sigopt
from transformers.utils.versions import importlib_metadata
if trainer.args.process_index == 0:
if importlib_metadata.version("sigopt") >= "8.0.0":
sigopt.set_project("huggingface")
experiment = sigopt.create_experiment(
name="huggingface-tune",
type="offline",
parameters=trainer.hp_space(None),
metrics=[dict(name="objective", objective=direction, strategy="optimize")],
parallel_bandwidth=1,
budget=n_trials,
)
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")
for run in experiment.loop():
with run:
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(run.run)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=None)
else:
trainer.train(resume_from_checkpoint=None, trial=run.run)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
run.log_metric("objective", trainer.objective)
best = list(experiment.get_best_runs())[0]
best_run = BestRun(best.id, best.values["objective"].value, best.assignments)
else:
from sigopt import Connection
conn = Connection()
proxies = kwargs.pop("proxies", None)
if proxies is not None:
conn.set_proxies(proxies)
experiment = conn.experiments().create(
name="huggingface-tune",
parameters=trainer.hp_space(None),
metrics=[dict(name="objective", objective=direction, strategy="optimize")],
parallel_bandwidth=1,
observation_budget=n_trials,
project="huggingface",
)
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")
while experiment.progress.observation_count < experiment.observation_budget:
suggestion = conn.experiments(experiment.id).suggestions().create()
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(suggestion)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=None)
else:
trainer.train(resume_from_checkpoint=None, trial=suggestion)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
values = [dict(name="objective", value=trainer.objective)]
obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values)
logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]")
experiment = conn.experiments(experiment.id).fetch()
best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0]
best_run = BestRun(best.id, best.value, best.assignments)
return best_run
else:
for i in range(n_trials):
trainer.objective = None
args_main_rank = list(pickle.dumps(trainer.args))
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
torch.distributed.broadcast_object_list(args_main_rank, src=0)
args = pickle.loads(bytes(args_main_rank))
for key, value in asdict(args).items():
if key != "local_rank":
setattr(trainer.args, key, value)
trainer.train(resume_from_checkpoint=None)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return None
def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
from .integrations import is_wandb_available
if not is_wandb_available():
raise ImportError("This function needs wandb installed: `pip install wandb`")
import wandb
# add WandbCallback if not already added in trainer callbacks
reporting_to_wandb = False
for callback in trainer.callback_handler.callbacks:
if isinstance(callback, WandbCallback):
reporting_to_wandb = True
break
if not reporting_to_wandb:
trainer.add_callback(WandbCallback())
trainer.args.report_to = "wandb"
best_trial = {"run_id": None, "objective": None, "hyperparameters": None}
sweep_id = kwargs.pop("sweep_id", None)
project = kwargs.pop("project", None)
name = kwargs.pop("name", None)
entity = kwargs.pop("entity", None)
metric = kwargs.pop("metric", "eval/loss")
sweep_config = trainer.hp_space(None)
sweep_config["metric"]["goal"] = direction
sweep_config["metric"]["name"] = metric
if name:
sweep_config["name"] = name
def _objective():
run = wandb.run if wandb.run else wandb.init()
trainer.state.trial_name = run.name
run.config.update({"assignments": {}, "metric": metric})
config = wandb.config
trainer.objective = None
trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"])
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
format_metrics = rewrite_logs(metrics)
if metric not in format_metrics:
logger.warning(
f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available"
f" metrics are {format_metrics.keys()}"
)
best_score = False
if best_trial["run_id"] is not None:
if direction == "minimize":
best_score = trainer.objective < best_trial["objective"]
elif direction == "maximize":
best_score = trainer.objective > best_trial["objective"]
if best_score or best_trial["run_id"] is None:
best_trial["run_id"] = run.id
best_trial["objective"] = trainer.objective
best_trial["hyperparameters"] = dict(config)
return trainer.objective
sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id
logger.info(f"wandb sweep id - {sweep_id}")
wandb.agent(sweep_id, function=_objective, count=n_trials)
return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"])
def get_available_reporting_integrations():
integrations = []
if is_azureml_available():
integrations.append("azure_ml")
if is_comet_available():
integrations.append("comet_ml")
if is_mlflow_available():
integrations.append("mlflow")
if is_neptune_available():
integrations.append("neptune")
if is_tensorboard_available():
integrations.append("tensorboard")
if is_wandb_available():
integrations.append("wandb")
if is_codecarbon_available():
integrations.append("codecarbon")
return integrations
def rewrite_logs(d):
new_d = {}
eval_prefix = "eval_"
eval_prefix_len = len(eval_prefix)
test_prefix = "test_"
test_prefix_len = len(test_prefix)
for k, v in d.items():
if k.startswith(eval_prefix):
new_d["eval/" + k[eval_prefix_len:]] = v
elif k.startswith(test_prefix):
new_d["test/" + k[test_prefix_len:]] = v
else:
new_d["train/" + k] = v
return new_d
class TensorBoardCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard).
Args:
tb_writer (`SummaryWriter`, *optional*):
The writer to use. Will instantiate one if not set.
"""
def __init__(self, tb_writer=None):
has_tensorboard = is_tensorboard_available()
if not has_tensorboard:
raise RuntimeError(
"TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or"
" install tensorboardX."
)
if has_tensorboard:
try:
from torch.utils.tensorboard import SummaryWriter # noqa: F401
self._SummaryWriter = SummaryWriter
except ImportError:
try:
from tensorboardX import SummaryWriter
self._SummaryWriter = SummaryWriter
except ImportError:
self._SummaryWriter = None
else:
self._SummaryWriter = None
self.tb_writer = tb_writer
def _init_summary_writer(self, args, log_dir=None):
log_dir = log_dir or args.logging_dir
if self._SummaryWriter is not None:
self.tb_writer = self._SummaryWriter(log_dir=log_dir)
def on_train_begin(self, args, state, control, **kwargs):
if not state.is_world_process_zero:
return
log_dir = None
if state.is_hyper_param_search:
trial_name = state.trial_name
if trial_name is not None:
log_dir = os.path.join(args.logging_dir, trial_name)
if self.tb_writer is None:
self._init_summary_writer(args, log_dir)
if self.tb_writer is not None:
self.tb_writer.add_text("args", args.to_json_string())
if "model" in kwargs:
model = kwargs["model"]
if hasattr(model, "config") and model.config is not None:
model_config_json = model.config.to_json_string()
self.tb_writer.add_text("model_config", model_config_json)
# Version of TensorBoard coming from tensorboardX does not have this method.
if hasattr(self.tb_writer, "add_hparams"):
self.tb_writer.add_hparams(args.to_sanitized_dict(), metric_dict={})
def on_log(self, args, state, control, logs=None, **kwargs):
if not state.is_world_process_zero:
return
if self.tb_writer is None:
self._init_summary_writer(args)
if self.tb_writer is not None:
logs = rewrite_logs(logs)
for k, v in logs.items():
if isinstance(v, (int, float)):
self.tb_writer.add_scalar(k, v, state.global_step)
else:
logger.warning(
"Trainer is attempting to log a value of "
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
"This invocation of Tensorboard's writer.add_scalar() "
"is incorrect so we dropped this attribute."
)
self.tb_writer.flush()
def on_train_end(self, args, state, control, **kwargs):
if self.tb_writer:
self.tb_writer.close()
self.tb_writer = None
class WandbCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [Weight and Biases](https://www.wandb.com/).
"""
def __init__(self):
has_wandb = is_wandb_available()
if not has_wandb:
raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.")
if has_wandb:
import wandb
self._wandb = wandb
self._initialized = False
# log outputs
self._log_model = os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"})
def setup(self, args, state, model, **kwargs):
"""
Setup the optional Weights & Biases (*wandb*) integration.
One can subclass and override this method to customize the setup if needed. Find more information
[here](https://docs.wandb.ai/integrations/huggingface). You can also override the following environment
variables:
Environment:
WANDB_LOG_MODEL (`bool`, *optional*, defaults to `False`):
Whether or not to log model as artifact at the end of training. Use along with
*TrainingArguments.load_best_model_at_end* to upload best model.
WANDB_WATCH (`str`, *optional* defaults to `"gradients"`):
Can be `"gradients"`, `"all"` or `"false"`. Set to `"false"` to disable gradient logging or `"all"` to
log gradients and parameters.
WANDB_PROJECT (`str`, *optional*, defaults to `"huggingface"`):
Set this to a custom string to store results in a different project.
WANDB_DISABLED (`bool`, *optional*, defaults to `False`):
Whether or not to disable wandb entirely. Set *WANDB_DISABLED=true* to disable.
"""
if self._wandb is None:
return
self._initialized = True
if state.is_world_process_zero:
logger.info(
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
)
combined_dict = {**args.to_sanitized_dict()}
if hasattr(model, "config") and model.config is not None:
model_config = model.config.to_dict()
combined_dict = {**model_config, **combined_dict}
trial_name = state.trial_name
init_args = {}
if trial_name is not None:
run_name = trial_name
init_args["group"] = args.run_name
else:
run_name = args.run_name
if self._wandb.run is None:
self._wandb.init(
project=os.getenv("WANDB_PROJECT", "huggingface"),
name=run_name,
**init_args,
)
# add config parameters (run may have been created manually)
self._wandb.config.update(combined_dict, allow_val_change=True)
# define default x-axis (for latest wandb versions)
if getattr(self._wandb, "define_metric", None):
self._wandb.define_metric("train/global_step")
self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True)
# keep track of model topology and gradients, unsupported on TPU
if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
self._wandb.watch(
model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, args.logging_steps)
)
def on_train_begin(self, args, state, control, model=None, **kwargs):
if self._wandb is None:
return
hp_search = state.is_hyper_param_search
if hp_search:
self._wandb.finish()
self._initialized = False
args.run_name = None
if not self._initialized:
self.setup(args, state, model, **kwargs)
def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs):
if self._wandb is None:
return
if self._log_model and self._initialized and state.is_world_process_zero:
from .trainer import Trainer
fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer)
with tempfile.TemporaryDirectory() as temp_dir:
fake_trainer.save_model(temp_dir)
metadata = (
{
k: v
for k, v in dict(self._wandb.summary).items()
if isinstance(v, numbers.Number) and not k.startswith("_")
}
if not args.load_best_model_at_end
else {
f"eval/{args.metric_for_best_model}": state.best_metric,
"train/total_floss": state.total_flos,
}
)
artifact = self._wandb.Artifact(name=f"model-{self._wandb.run.id}", type="model", metadata=metadata)
for f in Path(temp_dir).glob("*"):
if f.is_file():
with artifact.new_file(f.name, mode="wb") as fa:
fa.write(f.read_bytes())
self._wandb.run.log_artifact(artifact)
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if self._wandb is None:
return
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
logs = rewrite_logs(logs)
self._wandb.log({**logs, "train/global_step": state.global_step})
class CometCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.ml/site/).
"""
def __init__(self):
if not _has_comet:
raise RuntimeError("CometCallback requires comet-ml to be installed. Run `pip install comet-ml`.")
self._initialized = False
self._log_assets = False
def setup(self, args, state, model):
"""
Setup the optional Comet.ml integration.
Environment:
COMET_MODE (`str`, *optional*):
Whether to create an online, offline experiment or disable Comet logging. Can be "OFFLINE", "ONLINE",
or "DISABLED". Defaults to "ONLINE".
COMET_PROJECT_NAME (`str`, *optional*):
Comet project name for experiments
COMET_OFFLINE_DIRECTORY (`str`, *optional*):
Folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE"
COMET_LOG_ASSETS (`str`, *optional*):
Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be "TRUE", or
"FALSE". Defaults to "TRUE".
For a number of configurable items in the environment, see
[here](https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables).
"""
self._initialized = True
log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper()
if log_assets in {"TRUE", "1"}:
self._log_assets = True
if state.is_world_process_zero:
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
experiment = None
experiment_kwargs = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
if comet_mode == "ONLINE":
experiment = comet_ml.Experiment(**experiment_kwargs)
experiment.log_other("Created from", "transformers")
logger.info("Automatic Comet.ml online logging enabled")
elif comet_mode == "OFFLINE":
experiment_kwargs["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
experiment = comet_ml.OfflineExperiment(**experiment_kwargs)
experiment.log_other("Created from", "transformers")
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
if experiment is not None:
experiment._set_model_graph(model, framework="transformers")
experiment._log_parameters(args, prefix="args/", framework="transformers")
if hasattr(model, "config"):
experiment._log_parameters(model.config, prefix="config/", framework="transformers")
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
experiment = comet_ml.config.get_global_experiment()
if experiment is not None:
experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers")
def on_train_end(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero:
experiment = comet_ml.config.get_global_experiment()
if experiment is not None:
if self._log_assets is True:
logger.info("Logging checkpoints. This may take time.")
experiment.log_asset_folder(
args.output_dir, recursive=True, log_file_name=True, step=state.global_step
)
experiment.end()
class AzureMLCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/).
"""
def __init__(self, azureml_run=None):
if not is_azureml_available():
raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.")
self.azureml_run = azureml_run
def on_init_end(self, args, state, control, **kwargs):
from azureml.core.run import Run
if self.azureml_run is None and state.is_world_process_zero:
self.azureml_run = Run.get_context()
def on_log(self, args, state, control, logs=None, **kwargs):
if self.azureml_run and state.is_world_process_zero:
for k, v in logs.items():
if isinstance(v, (int, float)):
self.azureml_run.log(k, v, description=k)
class MLflowCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting
environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`.
"""
def __init__(self):
if not is_mlflow_available():
raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.")
import mlflow
self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH
self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH
self._initialized = False
self._auto_end_run = False
self._log_artifacts = False
self._ml_flow = mlflow
def setup(self, args, state, model):
"""
Setup the optional MLflow integration.
Environment:
HF_MLFLOW_LOG_ARTIFACTS (`str`, *optional*):
Whether to use MLflow .log_artifact() facility to log artifacts. This only makes sense if logging to a
remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in
[`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote
storage will just copy the files to your artifact location.
MLFLOW_EXPERIMENT_NAME (`str`, *optional*):
Whether to use an MLflow experiment_name under which to launch the run. Default to "None" which will
point to the "Default" experiment in MLflow. Otherwise, it is a case sensitive name of the experiment
to be activated. If an experiment with this name does not exist, a new experiment with this name is
created.
MLFLOW_TAGS (`str`, *optional*):
A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example:
os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'
MLFLOW_NESTED_RUN (`str`, *optional*):
Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current
run.
MLFLOW_RUN_ID (`str`, *optional*):
Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint.
When MLFLOW_RUN_ID environment variable is set, start_run attempts to resume a run with the specified
run ID and other parameters are ignored.
MLFLOW_FLATTEN_PARAMS (`str`, *optional*):
Whether to flatten the parameters dictionary before logging. Default to `False`.
"""
self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None)
self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._run_id = os.getenv("MLFLOW_RUN_ID", None)
logger.debug(
f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run},"
f" tags={self._nested_run}"
)
if state.is_world_process_zero:
if self._ml_flow.active_run() is None or self._nested_run or self._run_id:
if self._experiment_name:
# Use of set_experiment() ensure that Experiment is created if not exists
self._ml_flow.set_experiment(self._experiment_name)
self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run)
logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}")
self._auto_end_run = True
combined_dict = args.to_dict()
if hasattr(model, "config") and model.config is not None:
model_config = model.config.to_dict()
combined_dict = {**model_config, **combined_dict}
combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict
# remove params that are too long for MLflow
for name, value in list(combined_dict.items()):
# internally, all values are converted to str in MLflow
if len(str(value)) > self._MAX_PARAM_VAL_LENGTH:
logger.warning(
f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
" log_param() only accepts values no longer than 250 characters so we dropped this attribute."
" You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and"
" avoid this message."
)
del combined_dict[name]
# MLflow cannot log more than 100 values in one go, so we have to split it
combined_dict_items = list(combined_dict.items())
for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH):
self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]))
mlflow_tags = os.getenv("MLFLOW_TAGS", None)
if mlflow_tags:
mlflow_tags = json.loads(mlflow_tags)
self._ml_flow.set_tags(mlflow_tags)
self._initialized = True
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
def on_log(self, args, state, control, logs, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
metrics = {}
for k, v in logs.items():
if isinstance(v, (int, float)):
metrics[k] = v
else:
logger.warning(
f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. '
"MLflow's log_metric() only accepts float and int types so we dropped this attribute."
)
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step)
def on_train_end(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero:
if self._auto_end_run and self._ml_flow.active_run():
self._ml_flow.end_run()
def on_save(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero and self._log_artifacts:
ckpt_dir = f"checkpoint-{state.global_step}"
artifact_path = os.path.join(args.output_dir, ckpt_dir)
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.")
self._ml_flow.pyfunc.log_model(
ckpt_dir,
artifacts={"model_path": artifact_path},
python_model=self._ml_flow.pyfunc.PythonModel(),
)
def __del__(self):
# if the previous run is not terminated correctly, the fluent API will
# not let you start a new run before the previous one is killed
if (
self._auto_end_run
and callable(getattr(self._ml_flow, "active_run", None))
and self._ml_flow.active_run() is not None
):
self._ml_flow.end_run()
class NeptuneMissingConfiguration(Exception):
def __init__(self):
super().__init__(
"""
------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to
`NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and
`project` by saving them as environment variables or passing them to the callback.
"""
)
class NeptuneCallback(TrainerCallback):
"""TrainerCallback that sends the logs to [Neptune](https://neptune.ai).
Args:
api_token (`str`, optional):
Neptune API token obtained upon registration. You can leave this argument out if you have saved your token
to the `NEPTUNE_API_TOKEN` environment variable (strongly recommended). See full setup instructions in the
[docs](https://docs.neptune.ai/getting-started/installation).
project (`str`, optional):
Name of an existing Neptune project, in the form: "workspace-name/project-name". You can find and copy the
name from the project Settings -> Properties in Neptune. If None (default), the value of the
`NEPTUNE_PROJECT` environment variable will be used.
name (`str`, optional): Custom name for the run.
base_namespace (`str`, optional, defaults to "finetuning"): In the Neptune run, the root namespace
that will contain all of the logged metadata.
log_parameters (`bool`, optional, defaults to True):
If True, logs all Trainer arguments and model parameters provided by the Trainer.
log_checkpoints (`str`, optional, defaults to None):
If "same", uploads checkpoints whenever they are saved by the Trainer. If "last", uploads only the most
recently saved checkpoint. If "best", uploads the best checkpoint (among the ones saved by the Trainer). If
None, does not upload checkpoints.
run (`Run`, optional):
Pass a Neptune run object if you want to continue logging to an existing run. Read more about resuming runs
in the [docs](https://docs.neptune.ai/how-to-guides/neptune-api/resume-run).
**neptune_run_kwargs (optional):
Additional keyword arguments to be passed directly to the
[neptune.init_run()](https://docs.neptune.ai/api-reference/neptune#.init_run) function when a new run is
created.
"""
integration_version_key = "source_code/integrations/transformers"
model_parameters_key = "model_parameters"
trial_name_key = "trial"
trial_params_key = "trial_params"
trainer_parameters_key = "trainer_parameters"
flat_metrics = {"train/epoch"}
def __init__(
self,
*,
api_token: Optional[str] = None,
project: Optional[str] = None,
name: Optional[str] = None,
base_namespace: str = "finetuning",
run: Optional["Run"] = None,
log_parameters: bool = True,
log_checkpoints: Optional[str] = None,
**neptune_run_kwargs
):
if not is_neptune_available():
raise ValueError(
"NeptuneCallback requires the Neptune client library to be installed. "
"To install the library, run `pip install neptune-client`."
)
from neptune.new.metadata_containers.run import Run
try:
from neptune.new.integrations.utils import verify_type
except ImportError:
from neptune.new.internal.utils import verify_type
verify_type("api_token", api_token, (str, type(None)))
verify_type("project", project, (str, type(None)))
verify_type("name", name, (str, type(None)))
verify_type("base_namespace", base_namespace, str)
verify_type("run", run, (Run, type(None)))
verify_type("log_parameters", log_parameters, bool)
verify_type("log_checkpoints", log_checkpoints, (str, type(None)))
self._base_namespace_path = base_namespace
self._log_parameters = log_parameters
self._log_checkpoints = log_checkpoints
self._initial_run: Optional[Run] = run
self._run = None
self._is_monitoring_run = False
self._run_id = None
self._force_reset_monitoring_run = False
self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs}
self._volatile_checkpoints_dir = None
self._should_upload_checkpoint = self._log_checkpoints is not None
self._recent_checkpoint_path = None
if self._log_checkpoints in {"last", "best"}:
self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}"
self._should_clean_recently_uploaded_checkpoint = True
else:
self._target_checkpoints_namespace = "checkpoints"
self._should_clean_recently_uploaded_checkpoint = False
def _stop_run_if_exists(self):
if self._run:
self._run.stop()
del self._run
self._run = None
def _initialize_run(self, **additional_neptune_kwargs):
from neptune.new import init_run
from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException
self._stop_run_if_exists()
try:
self._run = init_run(**self._init_run_kwargs, **additional_neptune_kwargs)
self._run_id = self._run["sys/id"].fetch()
except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e:
raise NeptuneMissingConfiguration() from e
def _use_initial_run(self):
self._run = self._initial_run
self._is_monitoring_run = True
self._run_id = self._run["sys/id"].fetch()
self._initial_run = None
def _ensure_run_with_monitoring(self):
if self._initial_run is not None:
self._use_initial_run()
else:
if not self._force_reset_monitoring_run and self._is_monitoring_run:
return
if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run:
self._initialize_run(run=self._run_id)
self._is_monitoring_run = True
else:
self._initialize_run()
self._force_reset_monitoring_run = False
def _ensure_at_least_run_without_monitoring(self):
if self._initial_run is not None:
self._use_initial_run()
else:
if not self._run:
self._initialize_run(
run=self._run_id,
capture_stdout=False,
capture_stderr=False,
capture_hardware_metrics=False,
capture_traceback=False,
)
self._is_monitoring_run = False
@property
def run(self):
if self._run is None:
self._ensure_at_least_run_without_monitoring()
return self._run
@property
def _metadata_namespace(self):
return self.run[self._base_namespace_path]
def _log_integration_version(self):
self.run[NeptuneCallback.integration_version_key] = version
def _log_trainer_parameters(self, args):
self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict()
def _log_model_parameters(self, model):
if model and hasattr(model, "config") and model.config is not None:
self._metadata_namespace[NeptuneCallback.model_parameters_key] = model.config.to_dict()
def _log_hyper_param_search_parameters(self, state):
if state and hasattr(state, "trial_name"):
self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name
if state and hasattr(state, "trial_params") and state.trial_params is not None:
self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params
def _log_model_checkpoint(self, source_directory: str, checkpoint: str):
target_path = relative_path = os.path.join(source_directory, checkpoint)
if self._volatile_checkpoints_dir is not None:
consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint)
try:
shutil.copytree(relative_path, os.path.join(consistent_checkpoint_path, relative_path))
target_path = consistent_checkpoint_path
except IOError as e:
logger.warning(
"NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'."
"Could fail trying to upload.".format(e)
)
self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path)
if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None:
self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path)
self._recent_checkpoint_path = relative_path
def on_init_end(self, args, state, control, **kwargs):
self._volatile_checkpoints_dir = None
if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None):
self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name
if self._log_checkpoints == "best" and not args.load_best_model_at_end:
raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.")
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not state.is_world_process_zero:
return
self._ensure_run_with_monitoring()
self._force_reset_monitoring_run = True
self._log_integration_version()
if self._log_parameters:
self._log_trainer_parameters(args)
self._log_model_parameters(model)
if state.is_hyper_param_search:
self._log_hyper_param_search_parameters(state)
def on_train_end(self, args, state, control, **kwargs):
self._stop_run_if_exists()
def __del__(self):
if self._volatile_checkpoints_dir is not None:
shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True)
self._stop_run_if_exists()
def on_save(self, args, state, control, **kwargs):
if self._should_upload_checkpoint:
self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}")
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
if self._log_checkpoints == "best":
best_metric_name = args.metric_for_best_model
if not best_metric_name.startswith("eval_"):
best_metric_name = f"eval_{best_metric_name}"
metric_value = metrics.get(best_metric_name)
operator = np.greater if args.greater_is_better else np.less
self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric)
@classmethod
def get_run(cls, trainer):
for callback in trainer.callback_handler.callbacks:
if isinstance(callback, cls):
return callback.run
raise Exception("The trainer doesn't have a NeptuneCallback configured.")
def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs):
if not state.is_world_process_zero:
return
if logs is not None:
for name, value in rewrite_logs(logs).items():
if isinstance(value, (int, float)):
if name in NeptuneCallback.flat_metrics:
self._metadata_namespace[name] = value
else:
self._metadata_namespace[name].log(value, step=state.global_step)
class CodeCarbonCallback(TrainerCallback):
"""
A [`TrainerCallback`] that tracks the CO2 emission of training.
"""
def __init__(self):
if not is_codecarbon_available():
raise RuntimeError(
"CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`."
)
import codecarbon
self._codecarbon = codecarbon
self.tracker = None
def on_init_end(self, args, state, control, **kwargs):
if self.tracker is None and state.is_local_process_zero:
# CodeCarbon will automatically handle environment variables for configuration
self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir)
def on_train_begin(self, args, state, control, model=None, **kwargs):
if self.tracker and state.is_local_process_zero:
self.tracker.start()
def on_train_end(self, args, state, control, **kwargs):
if self.tracker and state.is_local_process_zero:
self.tracker.stop()
INTEGRATION_TO_CALLBACK = {
"azure_ml": AzureMLCallback,
"comet_ml": CometCallback,
"mlflow": MLflowCallback,
"neptune": NeptuneCallback,
"tensorboard": TensorBoardCallback,
"wandb": WandbCallback,
"codecarbon": CodeCarbonCallback,
}
def get_reporting_integration_callbacks(report_to):
for integration in report_to:
if integration not in INTEGRATION_TO_CALLBACK:
raise ValueError(
f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported."
)
return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to]
| # Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integrations with other Python libraries.
"""
import functools
import importlib.util
import json
import numbers
import os
import pickle
import shutil
import sys
import tempfile
from dataclasses import asdict
from pathlib import Path
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
from . import __version__ as version
from .utils import flatten_dict, is_datasets_available, is_torch_available, logging
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
# comet_ml requires to be imported before any ML frameworks
_has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED"
if _has_comet:
try:
import comet_ml # noqa: F401
if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"):
_has_comet = True
else:
if os.getenv("COMET_MODE", "").upper() != "DISABLED":
logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.")
_has_comet = False
except (ImportError, ValueError):
_has_comet = False
_has_neptune = importlib.util.find_spec("neptune") is not None
if TYPE_CHECKING and _has_neptune:
from neptune.new.metadata_containers.run import Run
from .trainer_callback import ProgressCallback, TrainerCallback # noqa: E402
from .trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy # noqa: E402
from .training_args import ParallelMode # noqa: E402
from .utils import ENV_VARS_TRUE_VALUES, is_torch_tpu_available # noqa: E402
# Integration functions:
def is_wandb_available():
# any value of WANDB_DISABLED disables wandb
if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES:
logger.warning(
"Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the "
"--report_to flag to control the integrations used for logging result (for instance --report_to none)."
)
return False
return importlib.util.find_spec("wandb") is not None
def is_comet_available():
return _has_comet
def is_tensorboard_available():
return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None
def is_optuna_available():
return importlib.util.find_spec("optuna") is not None
def is_ray_available():
return importlib.util.find_spec("ray") is not None
def is_ray_tune_available():
if not is_ray_available():
return False
return importlib.util.find_spec("ray.tune") is not None
def is_sigopt_available():
return importlib.util.find_spec("sigopt") is not None
def is_azureml_available():
if importlib.util.find_spec("azureml") is None:
return False
if importlib.util.find_spec("azureml.core") is None:
return False
return importlib.util.find_spec("azureml.core.run") is not None
def is_mlflow_available():
if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE":
return False
return importlib.util.find_spec("mlflow") is not None
def is_fairscale_available():
return importlib.util.find_spec("fairscale") is not None
def is_neptune_available():
return _has_neptune
def is_codecarbon_available():
return importlib.util.find_spec("codecarbon") is not None
def hp_params(trial):
if is_optuna_available():
import optuna
if isinstance(trial, optuna.Trial):
return trial.params
if is_ray_tune_available():
if isinstance(trial, dict):
return trial
if is_sigopt_available():
if isinstance(trial, dict):
return trial
if is_wandb_available():
if isinstance(trial, dict):
return trial
raise RuntimeError(f"Unknown type for trial {trial.__class__}")
def default_hp_search_backend():
if is_optuna_available():
return "optuna"
elif is_ray_tune_available():
return "ray"
elif is_sigopt_available():
return "sigopt"
def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import optuna
if trainer.args.process_index == 0:
def _objective(trial, checkpoint_dir=None):
checkpoint = None
if checkpoint_dir:
for subdir in os.listdir(checkpoint_dir):
if subdir.startswith(PREFIX_CHECKPOINT_DIR):
checkpoint = os.path.join(checkpoint_dir, subdir)
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(trial)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=checkpoint)
else:
trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return trainer.objective
timeout = kwargs.pop("timeout", None)
n_jobs = kwargs.pop("n_jobs", 1)
study = optuna.create_study(direction=direction, **kwargs)
study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs)
best_trial = study.best_trial
return BestRun(str(best_trial.number), best_trial.value, best_trial.params)
else:
for i in range(n_trials):
trainer.objective = None
args_main_rank = list(pickle.dumps(trainer.args))
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
torch.distributed.broadcast_object_list(args_main_rank, src=0)
args = pickle.loads(bytes(args_main_rank))
for key, value in asdict(args).items():
if key != "local_rank":
setattr(trainer.args, key, value)
trainer.train(resume_from_checkpoint=None)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return None
def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import ray
def _objective(trial, local_trainer, checkpoint_dir=None):
try:
from transformers.utils.notebook import NotebookProgressCallback
if local_trainer.pop_callback(NotebookProgressCallback):
local_trainer.add_callback(ProgressCallback)
except ModuleNotFoundError:
pass
checkpoint = None
if checkpoint_dir:
for subdir in os.listdir(checkpoint_dir):
if subdir.startswith(PREFIX_CHECKPOINT_DIR):
checkpoint = os.path.join(checkpoint_dir, subdir)
local_trainer.objective = None
local_trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
# If there hasn't been any evaluation during the training loop.
if getattr(local_trainer, "objective", None) is None:
metrics = local_trainer.evaluate()
local_trainer.objective = local_trainer.compute_objective(metrics)
local_trainer._tune_save_checkpoint()
ray.tune.report(objective=local_trainer.objective, **metrics, done=True)
if not trainer._memory_tracker.skip_memory_metrics:
from .trainer_utils import TrainerMemoryTracker
logger.warning(
"Memory tracking for your Trainer is currently "
"enabled. Automatically disabling the memory tracker "
"since the memory tracker is not serializable."
)
trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True)
# The model and TensorBoard writer do not pickle so we have to remove them (if they exists)
# while doing the ray hp search.
_tb_writer = trainer.pop_callback(TensorBoardCallback)
trainer.model = None
# Setup default `resources_per_trial`.
if "resources_per_trial" not in kwargs:
# Default to 1 CPU and 1 GPU (if applicable) per trial.
kwargs["resources_per_trial"] = {"cpu": 1}
if trainer.args.n_gpu > 0:
kwargs["resources_per_trial"]["gpu"] = 1
resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "")
logger.info(
"No `resources_per_trial` arg was passed into "
"`hyperparameter_search`. Setting it to a default value "
f"of {resource_msg} for each trial."
)
# Make sure each trainer only uses GPUs that were allocated per trial.
gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0)
trainer.args._n_gpu = gpus_per_trial
# Setup default `progress_reporter`.
if "progress_reporter" not in kwargs:
from ray.tune import CLIReporter
kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"])
if "keep_checkpoints_num" in kwargs and kwargs["keep_checkpoints_num"] > 0:
# `keep_checkpoints_num=0` would disabled checkpointing
trainer.use_tune_checkpoints = True
if kwargs["keep_checkpoints_num"] > 1:
logger.warning(
f"Currently keeping {kwargs['keep_checkpoints_num']} checkpoints for each trial. "
"Checkpoints are usually huge, "
"consider setting `keep_checkpoints_num=1`."
)
if "scheduler" in kwargs:
from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining
# Check if checkpointing is enabled for PopulationBasedTraining
if isinstance(kwargs["scheduler"], PopulationBasedTraining):
if not trainer.use_tune_checkpoints:
logger.warning(
"You are using PopulationBasedTraining but you haven't enabled checkpointing. "
"This means your trials will train from scratch everytime they are exploiting "
"new configurations. Consider enabling checkpointing by passing "
"`keep_checkpoints_num=1` as an additional argument to `Trainer.hyperparameter_search`."
)
# Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting.
if isinstance(
kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining)
) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == IntervalStrategy.NO):
raise RuntimeError(
"You are using {cls} as a scheduler but you haven't enabled evaluation during training. "
"This means your trials will not report intermediate results to Ray Tune, and "
"can thus not be stopped early or used to exploit other trials parameters. "
"If this is what you want, do not use {cls}. If you would like to use {cls}, "
"make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the "
"Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__)
)
trainable = ray.tune.with_parameters(_objective, local_trainer=trainer)
@functools.wraps(trainable)
def dynamic_modules_import_trainable(*args, **kwargs):
"""
Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor.
Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565.
Assumes that `_objective`, defined above, is a function.
"""
if is_datasets_available():
import datasets.load
dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py")
# load dynamic_modules from path
spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path)
datasets_modules = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = datasets_modules
spec.loader.exec_module(datasets_modules)
return trainable(*args, **kwargs)
# special attr set by tune.with_parameters
if hasattr(trainable, "__mixins__"):
dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__
analysis = ray.tune.run(
dynamic_modules_import_trainable,
config=trainer.hp_space(None),
num_samples=n_trials,
**kwargs,
)
best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope)
best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config)
if _tb_writer is not None:
trainer.add_callback(_tb_writer)
return best_run
def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
import sigopt
from transformers.utils.versions import importlib_metadata
if trainer.args.process_index == 0:
if importlib_metadata.version("sigopt") >= "8.0.0":
sigopt.set_project("huggingface")
experiment = sigopt.create_experiment(
name="huggingface-tune",
type="offline",
parameters=trainer.hp_space(None),
metrics=[dict(name="objective", objective=direction, strategy="optimize")],
parallel_bandwidth=1,
budget=n_trials,
)
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")
for run in experiment.loop():
with run:
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(run.run)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=None)
else:
trainer.train(resume_from_checkpoint=None, trial=run.run)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
run.log_metric("objective", trainer.objective)
best = list(experiment.get_best_runs())[0]
best_run = BestRun(best.id, best.values["objective"].value, best.assignments)
else:
from sigopt import Connection
conn = Connection()
proxies = kwargs.pop("proxies", None)
if proxies is not None:
conn.set_proxies(proxies)
experiment = conn.experiments().create(
name="huggingface-tune",
parameters=trainer.hp_space(None),
metrics=[dict(name="objective", objective=direction, strategy="optimize")],
parallel_bandwidth=1,
observation_budget=n_trials,
project="huggingface",
)
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")
while experiment.progress.observation_count < experiment.observation_budget:
suggestion = conn.experiments(experiment.id).suggestions().create()
trainer.objective = None
if trainer.args.world_size > 1:
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
trainer._hp_search_setup(suggestion)
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
trainer.train(resume_from_checkpoint=None)
else:
trainer.train(resume_from_checkpoint=None, trial=suggestion)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
values = [dict(name="objective", value=trainer.objective)]
obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values)
logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]")
experiment = conn.experiments(experiment.id).fetch()
best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0]
best_run = BestRun(best.id, best.value, best.assignments)
return best_run
else:
for i in range(n_trials):
trainer.objective = None
args_main_rank = list(pickle.dumps(trainer.args))
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
torch.distributed.broadcast_object_list(args_main_rank, src=0)
args = pickle.loads(bytes(args_main_rank))
for key, value in asdict(args).items():
if key != "local_rank":
setattr(trainer.args, key, value)
trainer.train(resume_from_checkpoint=None)
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
return None
def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
from .integrations import is_wandb_available
if not is_wandb_available():
raise ImportError("This function needs wandb installed: `pip install wandb`")
import wandb
# add WandbCallback if not already added in trainer callbacks
reporting_to_wandb = False
for callback in trainer.callback_handler.callbacks:
if isinstance(callback, WandbCallback):
reporting_to_wandb = True
break
if not reporting_to_wandb:
trainer.add_callback(WandbCallback())
trainer.args.report_to = "wandb"
best_trial = {"run_id": None, "objective": None, "hyperparameters": None}
sweep_id = kwargs.pop("sweep_id", None)
project = kwargs.pop("project", None)
name = kwargs.pop("name", None)
entity = kwargs.pop("entity", None)
metric = kwargs.pop("metric", "eval/loss")
sweep_config = trainer.hp_space(None)
sweep_config["metric"]["goal"] = direction
sweep_config["metric"]["name"] = metric
if name:
sweep_config["name"] = name
def _objective():
run = wandb.run if wandb.run else wandb.init()
trainer.state.trial_name = run.name
run.config.update({"assignments": {}, "metric": metric})
config = wandb.config
trainer.objective = None
trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"])
# If there hasn't been any evaluation during the training loop.
if getattr(trainer, "objective", None) is None:
metrics = trainer.evaluate()
trainer.objective = trainer.compute_objective(metrics)
format_metrics = rewrite_logs(metrics)
if metric not in format_metrics:
logger.warning(
f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available"
f" metrics are {format_metrics.keys()}"
)
best_score = False
if best_trial["run_id"] is not None:
if direction == "minimize":
best_score = trainer.objective < best_trial["objective"]
elif direction == "maximize":
best_score = trainer.objective > best_trial["objective"]
if best_score or best_trial["run_id"] is None:
best_trial["run_id"] = run.id
best_trial["objective"] = trainer.objective
best_trial["hyperparameters"] = dict(config)
return trainer.objective
sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id
logger.info(f"wandb sweep id - {sweep_id}")
wandb.agent(sweep_id, function=_objective, count=n_trials)
return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"])
def get_available_reporting_integrations():
integrations = []
if is_azureml_available():
integrations.append("azure_ml")
if is_comet_available():
integrations.append("comet_ml")
if is_mlflow_available():
integrations.append("mlflow")
if is_neptune_available():
integrations.append("neptune")
if is_tensorboard_available():
integrations.append("tensorboard")
if is_wandb_available():
integrations.append("wandb")
if is_codecarbon_available():
integrations.append("codecarbon")
return integrations
def rewrite_logs(d):
new_d = {}
eval_prefix = "eval_"
eval_prefix_len = len(eval_prefix)
test_prefix = "test_"
test_prefix_len = len(test_prefix)
for k, v in d.items():
if k.startswith(eval_prefix):
new_d["eval/" + k[eval_prefix_len:]] = v
elif k.startswith(test_prefix):
new_d["test/" + k[test_prefix_len:]] = v
else:
new_d["train/" + k] = v
return new_d
class TensorBoardCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard).
Args:
tb_writer (`SummaryWriter`, *optional*):
The writer to use. Will instantiate one if not set.
"""
def __init__(self, tb_writer=None):
has_tensorboard = is_tensorboard_available()
if not has_tensorboard:
raise RuntimeError(
"TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or"
" install tensorboardX."
)
if has_tensorboard:
try:
from torch.utils.tensorboard import SummaryWriter # noqa: F401
self._SummaryWriter = SummaryWriter
except ImportError:
try:
from tensorboardX import SummaryWriter
self._SummaryWriter = SummaryWriter
except ImportError:
self._SummaryWriter = None
else:
self._SummaryWriter = None
self.tb_writer = tb_writer
def _init_summary_writer(self, args, log_dir=None):
log_dir = log_dir or args.logging_dir
if self._SummaryWriter is not None:
self.tb_writer = self._SummaryWriter(log_dir=log_dir)
def on_train_begin(self, args, state, control, **kwargs):
if not state.is_world_process_zero:
return
log_dir = None
if state.is_hyper_param_search:
trial_name = state.trial_name
if trial_name is not None:
log_dir = os.path.join(args.logging_dir, trial_name)
if self.tb_writer is None:
self._init_summary_writer(args, log_dir)
if self.tb_writer is not None:
self.tb_writer.add_text("args", args.to_json_string())
if "model" in kwargs:
model = kwargs["model"]
if hasattr(model, "config") and model.config is not None:
model_config_json = model.config.to_json_string()
self.tb_writer.add_text("model_config", model_config_json)
# Version of TensorBoard coming from tensorboardX does not have this method.
if hasattr(self.tb_writer, "add_hparams"):
self.tb_writer.add_hparams(args.to_sanitized_dict(), metric_dict={})
def on_log(self, args, state, control, logs=None, **kwargs):
if not state.is_world_process_zero:
return
if self.tb_writer is None:
self._init_summary_writer(args)
if self.tb_writer is not None:
logs = rewrite_logs(logs)
for k, v in logs.items():
if isinstance(v, (int, float)):
self.tb_writer.add_scalar(k, v, state.global_step)
else:
logger.warning(
"Trainer is attempting to log a value of "
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
"This invocation of Tensorboard's writer.add_scalar() "
"is incorrect so we dropped this attribute."
)
self.tb_writer.flush()
def on_train_end(self, args, state, control, **kwargs):
if self.tb_writer:
self.tb_writer.close()
self.tb_writer = None
class WandbCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [Weight and Biases](https://www.wandb.com/).
"""
def __init__(self):
has_wandb = is_wandb_available()
if not has_wandb:
raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.")
if has_wandb:
import wandb
self._wandb = wandb
self._initialized = False
# log outputs
self._log_model = os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"})
def setup(self, args, state, model, **kwargs):
"""
Setup the optional Weights & Biases (*wandb*) integration.
One can subclass and override this method to customize the setup if needed. Find more information
[here](https://docs.wandb.ai/integrations/huggingface). You can also override the following environment
variables:
Environment:
WANDB_LOG_MODEL (`bool`, *optional*, defaults to `False`):
Whether or not to log model as artifact at the end of training. Use along with
*TrainingArguments.load_best_model_at_end* to upload best model.
WANDB_WATCH (`str`, *optional* defaults to `"gradients"`):
Can be `"gradients"`, `"all"` or `"false"`. Set to `"false"` to disable gradient logging or `"all"` to
log gradients and parameters.
WANDB_PROJECT (`str`, *optional*, defaults to `"huggingface"`):
Set this to a custom string to store results in a different project.
WANDB_DISABLED (`bool`, *optional*, defaults to `False`):
Whether or not to disable wandb entirely. Set *WANDB_DISABLED=true* to disable.
"""
if self._wandb is None:
return
self._initialized = True
if state.is_world_process_zero:
logger.info(
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
)
combined_dict = {**args.to_sanitized_dict()}
if hasattr(model, "config") and model.config is not None:
model_config = model.config.to_dict()
combined_dict = {**model_config, **combined_dict}
trial_name = state.trial_name
init_args = {}
if trial_name is not None:
run_name = trial_name
init_args["group"] = args.run_name
else:
run_name = args.run_name
if self._wandb.run is None:
self._wandb.init(
project=os.getenv("WANDB_PROJECT", "huggingface"),
name=run_name,
**init_args,
)
# add config parameters (run may have been created manually)
self._wandb.config.update(combined_dict, allow_val_change=True)
# define default x-axis (for latest wandb versions)
if getattr(self._wandb, "define_metric", None):
self._wandb.define_metric("train/global_step")
self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True)
# keep track of model topology and gradients, unsupported on TPU
if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
self._wandb.watch(
model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, args.logging_steps)
)
def on_train_begin(self, args, state, control, model=None, **kwargs):
if self._wandb is None:
return
hp_search = state.is_hyper_param_search
if hp_search:
self._wandb.finish()
self._initialized = False
args.run_name = None
if not self._initialized:
self.setup(args, state, model, **kwargs)
def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs):
if self._wandb is None:
return
if self._log_model and self._initialized and state.is_world_process_zero:
from .trainer import Trainer
fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer)
with tempfile.TemporaryDirectory() as temp_dir:
fake_trainer.save_model(temp_dir)
metadata = (
{
k: v
for k, v in dict(self._wandb.summary).items()
if isinstance(v, numbers.Number) and not k.startswith("_")
}
if not args.load_best_model_at_end
else {
f"eval/{args.metric_for_best_model}": state.best_metric,
"train/total_floss": state.total_flos,
}
)
artifact = self._wandb.Artifact(name=f"model-{self._wandb.run.id}", type="model", metadata=metadata)
for f in Path(temp_dir).glob("*"):
if f.is_file():
with artifact.new_file(f.name, mode="wb") as fa:
fa.write(f.read_bytes())
self._wandb.run.log_artifact(artifact)
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if self._wandb is None:
return
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
logs = rewrite_logs(logs)
self._wandb.log({**logs, "train/global_step": state.global_step})
class CometCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.ml/site/).
"""
def __init__(self):
if not _has_comet:
raise RuntimeError("CometCallback requires comet-ml to be installed. Run `pip install comet-ml`.")
self._initialized = False
self._log_assets = False
def setup(self, args, state, model):
"""
Setup the optional Comet.ml integration.
Environment:
COMET_MODE (`str`, *optional*):
Whether to create an online, offline experiment or disable Comet logging. Can be "OFFLINE", "ONLINE",
or "DISABLED". Defaults to "ONLINE".
COMET_PROJECT_NAME (`str`, *optional*):
Comet project name for experiments
COMET_OFFLINE_DIRECTORY (`str`, *optional*):
Folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE"
COMET_LOG_ASSETS (`str`, *optional*):
Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be "TRUE", or
"FALSE". Defaults to "TRUE".
For a number of configurable items in the environment, see
[here](https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables).
"""
self._initialized = True
log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper()
if log_assets in {"TRUE", "1"}:
self._log_assets = True
if state.is_world_process_zero:
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
experiment = None
experiment_kwargs = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
if comet_mode == "ONLINE":
experiment = comet_ml.Experiment(**experiment_kwargs)
experiment.log_other("Created from", "transformers")
logger.info("Automatic Comet.ml online logging enabled")
elif comet_mode == "OFFLINE":
experiment_kwargs["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
experiment = comet_ml.OfflineExperiment(**experiment_kwargs)
experiment.log_other("Created from", "transformers")
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
if experiment is not None:
experiment._set_model_graph(model, framework="transformers")
experiment._log_parameters(args, prefix="args/", framework="transformers")
if hasattr(model, "config"):
experiment._log_parameters(model.config, prefix="config/", framework="transformers")
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
experiment = comet_ml.config.get_global_experiment()
if experiment is not None:
experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers")
def on_train_end(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero:
experiment = comet_ml.config.get_global_experiment()
if experiment is not None:
if self._log_assets is True:
logger.info("Logging checkpoints. This may take time.")
experiment.log_asset_folder(
args.output_dir, recursive=True, log_file_name=True, step=state.global_step
)
experiment.end()
class AzureMLCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/).
"""
def __init__(self, azureml_run=None):
if not is_azureml_available():
raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.")
self.azureml_run = azureml_run
def on_init_end(self, args, state, control, **kwargs):
from azureml.core.run import Run
if self.azureml_run is None and state.is_world_process_zero:
self.azureml_run = Run.get_context()
def on_log(self, args, state, control, logs=None, **kwargs):
if self.azureml_run and state.is_world_process_zero:
for k, v in logs.items():
if isinstance(v, (int, float)):
self.azureml_run.log(k, v, description=k)
class MLflowCallback(TrainerCallback):
"""
A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting
environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`.
"""
def __init__(self):
if not is_mlflow_available():
raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.")
import mlflow
self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH
self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH
self._initialized = False
self._auto_end_run = False
self._log_artifacts = False
self._ml_flow = mlflow
def setup(self, args, state, model):
"""
Setup the optional MLflow integration.
Environment:
HF_MLFLOW_LOG_ARTIFACTS (`str`, *optional*):
Whether to use MLflow .log_artifact() facility to log artifacts. This only makes sense if logging to a
remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in
[`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote
storage will just copy the files to your artifact location.
MLFLOW_EXPERIMENT_NAME (`str`, *optional*):
Whether to use an MLflow experiment_name under which to launch the run. Default to "None" which will
point to the "Default" experiment in MLflow. Otherwise, it is a case sensitive name of the experiment
to be activated. If an experiment with this name does not exist, a new experiment with this name is
created.
MLFLOW_TAGS (`str`, *optional*):
A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example:
os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'
MLFLOW_NESTED_RUN (`str`, *optional*):
Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current
run.
MLFLOW_RUN_ID (`str`, *optional*):
Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint.
When MLFLOW_RUN_ID environment variable is set, start_run attempts to resume a run with the specified
run ID and other parameters are ignored.
MLFLOW_FLATTEN_PARAMS (`str`, *optional*):
Whether to flatten the parameters dictionary before logging. Default to `False`.
"""
self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None)
self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
self._run_id = os.getenv("MLFLOW_RUN_ID", None)
logger.debug(
f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run},"
f" tags={self._nested_run}"
)
if state.is_world_process_zero:
if self._ml_flow.active_run() is None or self._nested_run or self._run_id:
if self._experiment_name:
# Use of set_experiment() ensure that Experiment is created if not exists
self._ml_flow.set_experiment(self._experiment_name)
self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run)
logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}")
self._auto_end_run = True
combined_dict = args.to_dict()
if hasattr(model, "config") and model.config is not None:
model_config = model.config.to_dict()
combined_dict = {**model_config, **combined_dict}
combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict
# remove params that are too long for MLflow
for name, value in list(combined_dict.items()):
# internally, all values are converted to str in MLflow
if len(str(value)) > self._MAX_PARAM_VAL_LENGTH:
logger.warning(
f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
" log_param() only accepts values no longer than 250 characters so we dropped this attribute."
" You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and"
" avoid this message."
)
del combined_dict[name]
# MLflow cannot log more than 100 values in one go, so we have to split it
combined_dict_items = list(combined_dict.items())
for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH):
self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]))
mlflow_tags = os.getenv("MLFLOW_TAGS", None)
if mlflow_tags:
mlflow_tags = json.loads(mlflow_tags)
self._ml_flow.set_tags(mlflow_tags)
self._initialized = True
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
def on_log(self, args, state, control, logs, model=None, **kwargs):
if not self._initialized:
self.setup(args, state, model)
if state.is_world_process_zero:
metrics = {}
for k, v in logs.items():
if isinstance(v, (int, float)):
metrics[k] = v
else:
logger.warning(
f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. '
"MLflow's log_metric() only accepts float and int types so we dropped this attribute."
)
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step)
def on_train_end(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero:
if self._auto_end_run and self._ml_flow.active_run():
self._ml_flow.end_run()
def on_save(self, args, state, control, **kwargs):
if self._initialized and state.is_world_process_zero and self._log_artifacts:
ckpt_dir = f"checkpoint-{state.global_step}"
artifact_path = os.path.join(args.output_dir, ckpt_dir)
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.")
self._ml_flow.pyfunc.log_model(
ckpt_dir,
artifacts={"model_path": artifact_path},
python_model=self._ml_flow.pyfunc.PythonModel(),
)
def __del__(self):
# if the previous run is not terminated correctly, the fluent API will
# not let you start a new run before the previous one is killed
if (
self._auto_end_run
and callable(getattr(self._ml_flow, "active_run", None))
and self._ml_flow.active_run() is not None
):
self._ml_flow.end_run()
class NeptuneMissingConfiguration(Exception):
def __init__(self):
super().__init__(
"""
------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to
`NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and
`project` by saving them as environment variables or passing them to the callback.
"""
)
class NeptuneCallback(TrainerCallback):
"""TrainerCallback that sends the logs to [Neptune](https://neptune.ai).
Args:
api_token (`str`, optional):
Neptune API token obtained upon registration. You can leave this argument out if you have saved your token
to the `NEPTUNE_API_TOKEN` environment variable (strongly recommended). See full setup instructions in the
[docs](https://docs.neptune.ai/getting-started/installation).
project (`str`, optional):
Name of an existing Neptune project, in the form: "workspace-name/project-name". You can find and copy the
name from the project Settings -> Properties in Neptune. If None (default), the value of the
`NEPTUNE_PROJECT` environment variable will be used.
name (`str`, optional): Custom name for the run.
base_namespace (`str`, optional, defaults to "finetuning"): In the Neptune run, the root namespace
that will contain all of the logged metadata.
log_parameters (`bool`, optional, defaults to True):
If True, logs all Trainer arguments and model parameters provided by the Trainer.
log_checkpoints (`str`, optional, defaults to None):
If "same", uploads checkpoints whenever they are saved by the Trainer. If "last", uploads only the most
recently saved checkpoint. If "best", uploads the best checkpoint (among the ones saved by the Trainer). If
None, does not upload checkpoints.
run (`Run`, optional):
Pass a Neptune run object if you want to continue logging to an existing run. Read more about resuming runs
in the [docs](https://docs.neptune.ai/how-to-guides/neptune-api/resume-run).
**neptune_run_kwargs (optional):
Additional keyword arguments to be passed directly to the
[neptune.init_run()](https://docs.neptune.ai/api-reference/neptune#.init_run) function when a new run is
created.
"""
integration_version_key = "source_code/integrations/transformers"
model_parameters_key = "model_parameters"
trial_name_key = "trial"
trial_params_key = "trial_params"
trainer_parameters_key = "trainer_parameters"
flat_metrics = {"train/epoch"}
def __init__(
self,
*,
api_token: Optional[str] = None,
project: Optional[str] = None,
name: Optional[str] = None,
base_namespace: str = "finetuning",
run: Optional["Run"] = None,
log_parameters: bool = True,
log_checkpoints: Optional[str] = None,
**neptune_run_kwargs
):
if not is_neptune_available():
raise ValueError(
"NeptuneCallback requires the Neptune client library to be installed. "
"To install the library, run `pip install neptune-client`."
)
from neptune.new.metadata_containers.run import Run
try:
from neptune.new.integrations.utils import verify_type
except ImportError:
from neptune.new.internal.utils import verify_type
verify_type("api_token", api_token, (str, type(None)))
verify_type("project", project, (str, type(None)))
verify_type("name", name, (str, type(None)))
verify_type("base_namespace", base_namespace, str)
verify_type("run", run, (Run, type(None)))
verify_type("log_parameters", log_parameters, bool)
verify_type("log_checkpoints", log_checkpoints, (str, type(None)))
self._base_namespace_path = base_namespace
self._log_parameters = log_parameters
self._log_checkpoints = log_checkpoints
self._initial_run: Optional[Run] = run
self._run = None
self._is_monitoring_run = False
self._run_id = None
self._force_reset_monitoring_run = False
self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs}
self._volatile_checkpoints_dir = None
self._should_upload_checkpoint = self._log_checkpoints is not None
self._recent_checkpoint_path = None
if self._log_checkpoints in {"last", "best"}:
self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}"
self._should_clean_recently_uploaded_checkpoint = True
else:
self._target_checkpoints_namespace = "checkpoints"
self._should_clean_recently_uploaded_checkpoint = False
def _stop_run_if_exists(self):
if self._run:
self._run.stop()
del self._run
self._run = None
def _initialize_run(self, **additional_neptune_kwargs):
from neptune.new import init_run
from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException
self._stop_run_if_exists()
try:
self._run = init_run(**self._init_run_kwargs, **additional_neptune_kwargs)
self._run_id = self._run["sys/id"].fetch()
except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e:
raise NeptuneMissingConfiguration() from e
def _use_initial_run(self):
self._run = self._initial_run
self._is_monitoring_run = True
self._run_id = self._run["sys/id"].fetch()
self._initial_run = None
def _ensure_run_with_monitoring(self):
if self._initial_run is not None:
self._use_initial_run()
else:
if not self._force_reset_monitoring_run and self._is_monitoring_run:
return
if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run:
self._initialize_run(run=self._run_id)
self._is_monitoring_run = True
else:
self._initialize_run()
self._force_reset_monitoring_run = False
def _ensure_at_least_run_without_monitoring(self):
if self._initial_run is not None:
self._use_initial_run()
else:
if not self._run:
self._initialize_run(
run=self._run_id,
capture_stdout=False,
capture_stderr=False,
capture_hardware_metrics=False,
capture_traceback=False,
)
self._is_monitoring_run = False
@property
def run(self):
if self._run is None:
self._ensure_at_least_run_without_monitoring()
return self._run
@property
def _metadata_namespace(self):
return self.run[self._base_namespace_path]
def _log_integration_version(self):
self.run[NeptuneCallback.integration_version_key] = version
def _log_trainer_parameters(self, args):
self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict()
def _log_model_parameters(self, model):
if model and hasattr(model, "config") and model.config is not None:
self._metadata_namespace[NeptuneCallback.model_parameters_key] = model.config.to_dict()
def _log_hyper_param_search_parameters(self, state):
if state and hasattr(state, "trial_name"):
self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name
if state and hasattr(state, "trial_params") and state.trial_params is not None:
self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params
def _log_model_checkpoint(self, source_directory: str, checkpoint: str):
target_path = relative_path = os.path.join(source_directory, checkpoint)
if self._volatile_checkpoints_dir is not None:
consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint)
try:
shutil.copytree(relative_path, os.path.join(consistent_checkpoint_path, relative_path))
target_path = consistent_checkpoint_path
except IOError as e:
logger.warning(
"NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'."
"Could fail trying to upload.".format(e)
)
self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path)
if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None:
self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path)
self._recent_checkpoint_path = relative_path
def on_init_end(self, args, state, control, **kwargs):
self._volatile_checkpoints_dir = None
if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None):
self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name
if self._log_checkpoints == "best" and not args.load_best_model_at_end:
raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.")
def on_train_begin(self, args, state, control, model=None, **kwargs):
if not state.is_world_process_zero:
return
self._ensure_run_with_monitoring()
self._force_reset_monitoring_run = True
self._log_integration_version()
if self._log_parameters:
self._log_trainer_parameters(args)
self._log_model_parameters(model)
if state.is_hyper_param_search:
self._log_hyper_param_search_parameters(state)
def on_train_end(self, args, state, control, **kwargs):
self._stop_run_if_exists()
def __del__(self):
if self._volatile_checkpoints_dir is not None:
shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True)
self._stop_run_if_exists()
def on_save(self, args, state, control, **kwargs):
if self._should_upload_checkpoint:
self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}")
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
if self._log_checkpoints == "best":
best_metric_name = args.metric_for_best_model
if not best_metric_name.startswith("eval_"):
best_metric_name = f"eval_{best_metric_name}"
metric_value = metrics.get(best_metric_name)
operator = np.greater if args.greater_is_better else np.less
self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric)
@classmethod
def get_run(cls, trainer):
for callback in trainer.callback_handler.callbacks:
if isinstance(callback, cls):
return callback.run
raise Exception("The trainer doesn't have a NeptuneCallback configured.")
def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs):
if not state.is_world_process_zero:
return
if logs is not None:
for name, value in rewrite_logs(logs).items():
if isinstance(value, (int, float)):
if name in NeptuneCallback.flat_metrics:
self._metadata_namespace[name] = value
else:
self._metadata_namespace[name].log(value, step=state.global_step)
class CodeCarbonCallback(TrainerCallback):
"""
A [`TrainerCallback`] that tracks the CO2 emission of training.
"""
def __init__(self):
if not is_codecarbon_available():
raise RuntimeError(
"CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`."
)
import codecarbon
self._codecarbon = codecarbon
self.tracker = None
def on_init_end(self, args, state, control, **kwargs):
if self.tracker is None and state.is_local_process_zero:
# CodeCarbon will automatically handle environment variables for configuration
self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir)
def on_train_begin(self, args, state, control, model=None, **kwargs):
if self.tracker and state.is_local_process_zero:
self.tracker.start()
def on_train_end(self, args, state, control, **kwargs):
if self.tracker and state.is_local_process_zero:
self.tracker.stop()
INTEGRATION_TO_CALLBACK = {
"azure_ml": AzureMLCallback,
"comet_ml": CometCallback,
"mlflow": MLflowCallback,
"neptune": NeptuneCallback,
"tensorboard": TensorBoardCallback,
"wandb": WandbCallback,
"codecarbon": CodeCarbonCallback,
}
def get_reporting_integration_callbacks(report_to):
for integration in report_to:
if integration not in INTEGRATION_TO_CALLBACK:
raise ValueError(
f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported."
)
return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to]
| -1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.